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Abstract

Workload consolidation is an important method for the efficient operation of cloud

data centers, impacting important quality attributes such as resource utilization and

power consumption. Many different approaches have been proposed for workload

consolidation, but few comparative studies were executed to date. Therefore, it is

unclear which of the proposed approaches work best in which situation. In this article,

we present a comprehensive simulation-based comparison of five workload consol-

idation techniques. We introduce a general framework for workload consolidation

techniques to the DISSECT-CF simulator to foster the development and comparison

of efficient data center consolidation algorithms. We use this framework to evaluate

the effectiveness of a first fit best fit decreasing heuristic, a custom heuristic, and three

population-based metaheuristics (genetic algorithm, artificial bee colony, and particle

swarm optimization). The evaluation is based on a wide variety of real-world workload

traces. The five algorithms are compared in terms of total energy consumption, the

duration of the simulation, and the number of migrations. Based on the results, there

is no generally best consolidation technique. The results deliver insight into the pros

and cons of the algorithms as well as the impact of different parameters. In particular,

the results show that population-based metaheuristics do not offer a significant gain

in terms of solution quality to compensate for the increased simulation time.

K E Y W O R D S

cloud computing, data center consolidation, IaaS, simulation, VM consolidation

1 INTRODUCTION

Cloud computing enables the virtualized management and provisioning of software and hardware solutions, including computing and storage

resources and application runtimes.1 The elasticity of Infrastructure as a Service (IaaS) clouds is a particularly appealing feature of cloud computing.

To provide this elasticity, the data centers underlying an IaaS cloud must effectively cope with a continuously varying workload. By consolidating

the workload to as few physical servers as possible, an IaaS provider can achieve good utilization of the available hardware resources and minimize

energy consumption by switching off unused servers.2 In virtualized data centers, workload consolidation is possible as virtual machines (VMs)

can be easily migrated between physical machines (PMs), incurring only an acceptable overhead. On the other hand, it is also important to avoid

too aggressive consolidation that would lead to overloaded PMs, which in turn may result in violations of service level objectives and performance

degradation for the applications hosted in the VMs.3
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Therefore, the consolidation of VMs is an important optimization problem. It is an intrinsically multicriteria optimization problem, in which a

good trade-off between multiple, often conflicting goals has to be found.4 Relevant optimization objectives include the number of used PMs, total

energy consumption, the number of overloaded PMs, and the number of migrations. Most practical formulations of the problem are NP-hard.5 On

the other hand, VM consolidation must be quick, so that a timely reaction to changes in the workload is possible.

Many algorithms have been proposed to solve the VM consolidation problem (VMCP).6 Since the problem is NP-hard but solutions are needed

quickly, most of the proposed algorithms are heuristics, that is, there is no formal guarantee that the results would be optimal. In such cases, the

empirical evaluation of the algorithms is especially important to assess their practical applicability. Early solutions for VM consolidation usually

relied on simple and fast heuristics such as greedy algorithms, first fit, or best fit (BF).7,8 In recent years, several researchers suggested to adopt

population-based metaheuristics instead, which work with multiple possible solutions and deliver the best one found. Examples of such algorithms

include genetic algorithms (GAs),9 artificial bee colony (ABC),10 and particle swarm optimization (PSO).11 Compared with the simpler, single-solution

heuristics, population-based metaheuristics are typically characterized by higher execution time, but may be able to deliver better solutions, for

example, by being better able to escape from local optima.

The plethora of available algorithms is a challenge for practitioners, because it is not clear which algorithm to choose, for two reasons. On

one hand, different articles address slightly different versions of the VMCP (e.g., they consider different objectives), which makes their comparison

difficult. On the other hand, the evaluation of the proposed algorithms in the respective articles is often unsatisfactory, for example, using only

synthetic data or a single workload. In addition, authors tend to compare their algorithms to trivial competitors (e.g., algorithms that do not take

into account some important aspect of the problem).6

For these reasons we believe there is a need for a comprehensive evaluation and unbiased comparison of VM consolidation algorithms, using

various realistic workloads. This is the main objective of this article. Particular emphasis is placed on population-based metaheuristics, because

previous work on comparing VM consolidation algorithms focused on simple single-solution algorithms.6,12 We are interested in finding out if (i)

the execution time penalty of population-based metaheuristics really pays off in the form of significantly improved results and (ii) how different

population-based metaheuristics perform compared with each other.

There are two principal ways to empirically compare VM consolidation algorithms: either in a real data center or using simulation. Although

using a real data center would offer the most realistic results, there are several obstacles to the practical realization of such experiments, including

the access to a real data center and the endangering of the safe operation of the data center with VM consolidation algorithms that are still at a test

stage. Simulation has several advantages: the results can be safely reproduced by any researcher with access to only limited hardware resources, and

it allows us to easily experiment with different hardware configurations, without the limitations of a specific infrastructure. Moreover, simulation

can be much faster than reality, so that, within a given time frame, simulation can lead to more insights.

We chose the simulator DISSECT-CF as the vehicle for our simulations. DISSECT-CF is a mature cloud simulator; in particular, it has been shown

to provide faster simulation and more accurate results than the popular CloudSim simulator.13 At the beginning of this work, DISSECT-CF did not

provide specific support for VM consolidation algorithms, so we extended DISSECT-CF accordingly as part of this work. We did this in a generic

way and with clear interfaces so that further VM consolidation algorithms can be easily integrated into DISSECT-CF (without the issues that were

previously detected in the way VM consolidation is integrated into CloudSim14) and will benefit from easy experimentation.

The article makes the following contributions:

• Implementation of a generic framework for integrating VM consolidation algorithms into the simulator DISSECT-CF. In particular, this framework

provides appropriate abstractions so that VM consolidation algorithms can carry out tentative migrations of VMs and assess the effect of these

migrations without actually performing migrations in the simulator. Moreover, when the VM consolidation algorithm finishes, the best solution

it found is automatically implemented by the framework, executing the necessary actions (switching PMs on or off, migrating VMs) in the correct

order.

• Implementation of five different VM consolidation algorithms: the first fit heuristic, a custom heuristic, and three population-based metaheuris-

tics (GA, ABC, and PSO). To foster comparability, all algorithms solve the same version of the VMCP, and all population-based metaheuristics use

the same solution encoding, the same kinds of data structures, and the same search improvement techniques (as much as this is possible), so that

only the actual algorithmic differences remain.

• Comprehensive empirical evaluation of the five algorithms using a variety of real-world workload traces. The evaluation focuses on selecting the

best parameter configuration for each VM consolidation algorithm and then on comparing these best configurations with each other. The compar-

ison (both between parameter configurations and between different algorithms) is challenging as several important metrics (energy consumption,

simulation time, number of migrations) must be considered. Moreover, the results depend heavily on the used workload trace.

The structure of the article is the following. First, in Section 2, we discuss the state-of-the-art in the field. In Section 3, we describe the generic

consolidation framework implemented in the DISSECT-CF simulator. The used algorithms are discussed in detail in Section 4. Section 5 presents

the experiments with the extended simulator and the achieved measurement results. Finally, Section 6 concludes the article.
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2 RELATED WORK

VM migration and dynamic voltage and frequency scaling methods are generally used to achieve server consolidation, which help to achieve resource

management goals such as load balancing and power management, though they also affect application performance.15 The unpredictable nature of

workloads and the inability to accurately predict application demands call for dynamic, lightweight and adaptive VM migration designs to improve

application performance.15 VM placement and migration are the major challenging issues in management of virtualized data-centers, and many

proposals apply different approaches ranging from linear programming, to GAs.16 Multiobjective proposals can reduce performance and increase

the problem complexity, therefore innovative solutions are needed to deal with multiple and complex aims. Our proposed simulation environment

aims at providing a way for investigating different algorithms to achieve these goals.

Concerning simulations, the CloudSim toolkit17 has been widely used to propose and evaluate certain heuristics for data center consolida-

tion, such as in References 18 and 19. The simulator used in this work, DISSECT-CF, is another publicly available open-source cloud simulator.20

DISSECT-CF features both higher accuracy and higher simulation performance than CloudSim.13

Many researchers have proposed applying population-based metaheuristic algorithms to the VMCP.10,11,21-23 Metaheuristics are

nature-inspired algorithms which are widely used to solve optimization problems yielding near-optimal solutions in a reasonable amount of time.

Population-based metaheuristics use a set of potential solutions and different operators to create new solutions from the already identified ones.

Popular population-based metaheuristics include GA, ABC, and PSO. The first GA using crossover, recombination, mutation and selection of genes

and chromosomes was invented by John Holland in the 1960s.24 The ABC algorithm imitates a honey bee swarm.25 The PSO algorithm also belongs

to the population-based metaheuristics as it is based on the behavior of birds and fish.26

Table 1 gives an overview of the different VM consolidation approaches using population-based metaheuristics that have been proposed so far

in the literature.

Several different problem formulations for the VMCP exist in the literature regarding, for example, the considered resources, the used tech-

niques, and the targeted objectives. Liu et al.28 considered CPU and memory as resources and used a weighted objective function with the primary

target of reducing the number of servers and the secondary target of achieving high utilization of each PM. Farahnakian et al.29 considered CPU and

memory as resources, too, but their aim is to reduce the energy consumption by reducing the number of active PMs. The VMCP is divided into the

subproblems of PM status detection and managing consolidation, which are addressed with a local controller inside each PM and a global controller

for consolidation, respectively. In addition, the k-nearest neighbor heuristic and a method to predict overloaded PMs are considered. Deng et al.35

took CPU, memory, disk utilization, and network utilization as resources into account. Their objectives were to minimize VM migration costs, to

maximize data center lifetime, to minimize the amount of service level agreement (SLA) violations and to minimize the energy consumption, so there

is also the focus on avoiding unprofitable and aggressive reconfigurations. Qiu et al.36 considered CPU, RAM, and bandwidth as resources. Their

objectives, for example, minimizing the number of used PMs or minimizing the number of migrations, are weighted and their algorithm used a rank-

ing system for each individual. In addition, they implemented subalgorithms which are chosen randomly, either in favor of minimizing the number of

used PMs, achieving better load balance, or reducing the communication costs of VMs. All these different problem variants make the comparison

of the proposed approaches very difficult.

Beside the most popular metaheuristics mentioned previously, there are many more. Zheng et al.22 implemented a biogeography-based opti-

mization algorithm and Kansal and Chana34 used a firefly optimization algorithm to solve the VMCP. Ant colony optimization was used in several

articles.23,28,29 Because of the variety of metaheuristic algorithms with similar principles but subtle details in their operation, it is difficult to deter-

mine the best one. In addition, population-based metaheuristics can be combined with local search to improve the solutions in the population, which

may lead to better results overall.38

A challenge of the VMCP is the handling of multiple objectives, for example, the number of active PMs and the number of migrations, in the

objective function. There are many different solutions for this in the literature. Li et al.11 considered only one metric, the energy efficiency factor of

each PM, to assess a given solution. Farahnakian et al.29 used a weighted sum, attaching a higher weight to the number of active PMs and a lower

weight to the number of migrations. References 23, 10, 28, and 31 implemented different combined objective functions. For example, Feller et al.23

used a weighted product, attaching the highest weight to the number of active PMs, while Jiang et al.10 considered an unweighted product of the

total energy consumption and the SLA violation rate. Qiu et al.36 implemented a weighted function with the possibility to favor one or more metrics

which shall be minimized (called Target) while ensuring that the other objectives do not become worse than before by using them as constraints

(called Keep). The best solution is then chosen based on the ordered metrics inside Target from first to last. Overall, finding the best way to handle

the conflicting metrics can be challenging.

There are also differences between the proposed approaches in the way they encode potential solutions as individuals in a population. The most

used way to encode solutions of these algorithms is a VM-to-PM mapping, that is, specifying for each VM the PM that should host it.11,23,33,35,36 A

slightly different way is used by Hallawi et al.:9 each solution is represented by an array of structures, where each structure contains a host PM and

an amount of VMs to be migrated from this PM. Another approach is introduced by Jiang et al.:10 they used two queues as their solution encoding,

one migrant VM queue for VM selection and a target host queue for VM allocation. References 29 and 31 used a migration plan as the encoding

which contains all necessary migration tuples. These tuples contain the source PM, the VM to be migrated and the destination PM.
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The extensive empirical evaluation of metaheuristic-based algorithms is important because the effectiveness of metaheuristics usually cannot

be proven theoretically. Reference 30 used CloudSim and Google trace data for their experiments. Reference 29 also used CloudSim as their simula-

tor. In addition, simulated workloads and 10 days of real workload out of PlanetLab were used to test their algorithm. Reference 21 used Matlab for

evaluation and considered real and simulated data for their experiments. Their simulation duration was 168 h for each considered method. In gen-

eral, different simulators and workload traces are used for evaluation. In most cases, the evaluation was limited, for example, only a small number of

experiments was carried out or only short traces were used, only synthetic data were used, or the evaluation was performed with in an unspecified

simulation environment the accuracy of which is unknown.9,11,22,23,28,34

The metaheuristics proposed in the literature were often only compared with greedy heuristics, for example, first fit decreasing or BF. This is

not sufficient to prove the quality of the proposed algorithms. It is also necessary to compare different metaheuristics to each other to show their

individual influence on the important metrics such as resource usage or number of migrations.

Overall, the analysis of related work shows the lack of objective and unbiased comparative studies of population-based metaheuristic VM con-

solidation approaches using a variety of real-world workloads. Such comparisons are hampered by the many different problem variants, objective

functions, and solution encodings used in the proposed approaches.

3 OUR PROPOSED FRAMEWORK FOR DATA CENTER CONSOLIDATORS

DISSECT-CF is a compact open-source20 simulator focusing on the internals of IaaS systems. Figure 1 presents its architecture. DISSECT-CF consists

of subsystems (framed with dashed lines), each responsible for a particular functionality:

• event system: the primary time reference;

• unified resource sharing: models low-level resource bottlenecks;

• energy modeling: for the analysis of energy-usage patterns of resources (e.g., CPUs and network interfaces) and their aggregations;

• infrastructure simulation: for physical/virtual machines, sensors and networking;

• infrastructure management: provides a cloud-like API, cloud-level scheduling, and system monitoring and management.

3.1 Foundation for consolidation algorithms

Data center consolidation techniques are heavily used in commercial clouds. Consolidation is built on the migration capabilities of VMs, where

virtualized workload is moved around in the data center according to the cloud operator’s goals, also taking into account workload characteristics

and tenant requirements. In the past years, there were several approaches proposed for consolidating the virtualized workloads of clouds.6 Most

of them were evaluated with simulations. When analyzing cost models, the effects of consolidation could not be avoided. The foundations for these

consolidator algorithms were laid down in our DISSECT-CF simulator from the beginning.13 As a next step, more precise live migration modeling was

incorporated.39 What was missing was the implementation of actual consolidation algorithms in the simulator. The basic layout for the consolidation

(including a more rudimentary version of the SimpleConsolidator discussed below) was laid out in Reference 40. In the following two paragraphs,

we recite our prior art relevant for this article, then we continue discussing how we extended on the originally offered techniques and foundations

to reach a more generic and approachable framework for VM consolidation research and development.

F I G U R E 1 The architecture of the DISSECT-CF simulator
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PMVM Network Node
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There are two distinct approaches possible to implement a consolidation algorithm in DISSECT-CF: (i) create a new PM controller which

incorporates consolidation techniques into the management of PMs or (ii) create an independent consolidator which builds on top of the other

infrastructure management components of the simulator. While both approaches could apply the same policies and enact the same goals of a

cloud provider, they should be implemented differently. In the first case, the PM controller should extend its possible actions from switching on/off

PMs to migrating VMs as well. In the second case, the consolidator is dedicated to only deciding on migration-related actions. This is beneficial

as the consolidator algorithm could collaborate with multiple PM controller strategies without the need for a complete rewrite of the consolida-

tion approach. The first approach offers a tighter integration of PM management and workload consolidation, but it is less flexible than the second

approach with which one could pair arbitrary consolidators with arbitrary PM controllers. Therefore, in the rest of the article, we focus on the

second approach.

As a generic foundation (shown on the top of Figure 2), the Consolidator class was introduced into the simulator. This abstract class han-

dles the basic connection of the future consolidators to the IaaSService. It is also responsible for regularly invoking the custom consolidation

algorithm implemented in the subclasses. For this, the minimum time interval Δt between algorithm invocations can be configured. The delay

between two consecutive invocations is guaranteed to be Δt only if there are VMs hosted on the cloud; if there are no VMs, the algorithm is not

invoked. To ensure this behavior, the Consolidator class observes how PMs are managed and utilized by PM controllers and VM schedulers.

Finally, the class defines the doConsolidation() method to interface with custom/future consolidation algorithms which must implement this

method. The doConsolidation() method receives the current state of the controlled cloud infrastructure as a list of PMs, that we will denote

as P:= {p1, p2, .., pi−1, pi, pi+1, .., pN} in the rest of the article. Here, pi denotes a particular PM, N is the number of PMs available for consolidation (at

the moment of the invocation of the algorithm). Note that the time required to make a single consolidation decision is expected to be negligible

compared with the total execution time of the cloud’s workload. Thus, the Consolidator class suspends the simulation until the consolidation

algorithm makes its decision.

3.2 Model-based consolidation

Several consolidators evaluate multiple possible mappings of the VMs on the PMs before making a decision. DISSECT-CF’s existing infrastructure

modeling classes (shown with gray color in Figure 2) did not support such experimentation directly as they were designed to enact realistic behavior

F I G U R E 2 Consolidation-related
extension of DISSECT-CF
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F I G U R E 3 Consolidation cycle by using an
abstract model of the PMs and VMs. PM, physical
machine; VM, virtual machine

of real-life entities.14 Thus, to foster the implementation of consolidators that evaluate multiple possible mappings, we extended DISSECT-CF with a

more abstract model of the simulated entities (calledModelVM andModelPM). These model objects allow multiple versions of the whole abstracted

infrastructure to be present during the consolidation process (possibly at the same time, as is typical in population-based algorithms) and enable

tentative changes as well as the evaluation against various metrics that drive the consolidators.

When implementing consolidators, a common pattern can be used to deal with these abstractions, as shown in Figure 3. To simplify

research on future consolidation techniques, we have encapsulated this process into the ModelBasedConsolidator (cf. Figure 2). This

class is responsible for maintaining the link between the abstract representation (i.e., the set of ModelPM and ModelVM instances, which

we will denote by MP and MV, respectively) and the instances of the simulator’s internal PhysicalMachine and VirtualMachine classes (which

we denote by P and V, respectively). When the consolidator is invoked, the abstract model is created on the basis of the actual situation

in the simulator (step 1 in Figure 3). The algorithm can freely work with the abstract model, for example, create and evolve a popula-

tion of possible mappings of VMs on PMs (step 2). At the end of the algorithm, the best solution is selected (step 3) and enacted in the

simulator (step 4).

Algorithm 1 shows the operation of the ModelBasedConsolidator from an algorithmic point of view. At first the abstract model is instan-

tiated, followed by the invocation of the actual consolidation algorithm, which works on the abstract model and is implemented by appropriate

subclasses. Finally, the solution determined by the algorithm must be enacted in the simulation. This may involve different kinds of actions, like turn-

ing PMs on or off and migrating VMs between PMs. There can also be dependencies among these actions: for example, a migration to a switched-off

PM can only be executed once the target PM has been turned on. The actions, together with the dependencies, form a directed acyclic graph (DAG)

and the actions must be executed in a topological order of this DAG. The creation and scheduling of the actions is performed automatically by the

ModelBasedConsolidator (see lines 4–6 in Algorithm 1).
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Algorithm 1. Algorithmic framework of the ModelBasedConsolidator

1: procedure DOCONSOLIDATION(pmList)

2: instantiate the abstract model

3: perform consolidation → Invocation of the specific algorithm implemented in the subclass

4: create all actions

5: create the graph of dependencies among the actions

6: execute the actions in topological order

7: end procedure

The Action class represents actions like starting a PM, stopping a PM, or migrating a VM. For the different types of actions, differ-

ent subclasses are implemented, namely, StartAction, ShutDownAction, and MigrationAction (cf. Figure 2). To represent the complete

and free resources offered by PMs (denoted by rc(pi) and rf (pi), respectively) we use ResourceConstraints objects, which already exist in

the simulator.

3.3 Foundations for metaheuristics

To ease specifically the development of metaheuristic-based consolidation algorithms, we introduce a further class called SolutionBasedCon-

solidator. This class extends the ModelBasedConsolidator with the functions that are useful for creating initial solutions for a subsequent

heuristic search. In particular, “first fit,” “random,” and “unchanged” solutions are supported. A “first fit” solution is created with the first fit heuris-

tic, a “random” solution contains a random assignment of VMs to PMs, and an “unchanged” solution mirrors the current situation of the IaaS in the

simulator without any modifications.

All metaheuristic-based algorithms use theFitness class to determine the fitness value of a given solution (cf. Figure 2). It consists of multiple

objective function values, namely, (i) the number of overloaded PMs, (ii) the number of active PMs, and (iii) the number of migrations. Note that the

fitness is not converted to a single numeric value. However, the Fitness class offers a function to compare two Fitness objects to each other to

decide which one is better.

The Solution class represents a solution, which can be used as an individual in a population, and contains a mapping of VMs to PMs.

Furthermore it offers various functions like initialization of the solution or determining its current fitness.

4 CONSOLIDATION TECHNIQUES

In this section, we first describe the exact problem variant addressed by the implemented algorithms, and then the algorithms themselves, consisting

of two single-solution heuristics and three population-based metaheuristics.

4.1 Addressed problem variant

For comparing the performance of different algorithms, it is essential that they solve the same problem. As shown in Section 2, the VMCP has many

variants, so we have to define the exact problem variant that is addressed by the implemented algorithms.

The problem inputs consist of (see also Table 2):

• The set of available PMs P= {p1, p2, … , pN}. For each PM pi, its capacity is given by c(pi) ∈ R
3. The three components of c(pi) correspond to (i) the

number of CPU cores, (ii) the processing power per CPU core, and (iii) the memory size, respectively.

• The set of VMs V = {v1, v2, … , vM}. For each VM vj, the amount of its required resources is denoted by r(vj) ∈ R
3. The three components of r(vj)

correspond to the same resource types as the ones of c(pi).

• The current allocation of VMs on PMs, given by h : P→2V , where for a PM pi, h(pi)⊂V denotes the set of VMs allocated on pi. The h(pi) sets must

build a partition of V, that is, ∪pi∈Ph(pi) = V and h(pi) ∩ h(p′
i
) = ∅ for any pi ≠ p′

i
.
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TA B L E 2 Summary of notation

Notation Explanation Notation Explanation

P Set of all physical machines in the cloud pi Physical machine i

V Set of all virtual machines in the cloud vj Virtual machine j

MP Set of all ModelPMs in the model of the cloud mpi ModelPM i

MV Set of all ModelVMs in the model of the cloud mvj ModelVM j

h(pi) Set of VMs hosted by PM i h(mpi) Set of ModelVMs hosted by ModelPM i

u(pi) Utilization of PM i u(mpi) Utilization of ModelPM i

r(vj) Amount of resources required by VM j r(mvj) Amount of resources required by ModelVM j

c(pi) Capacity of PM i cf (pi) Available capacity of PM i

c(mpi) Capacity of ModelPM i cf (mpi) Available capacity of ModelPM i

upperT Threshold above which the load of a PM is considered high lowerT Threshold below which the load of a PM is considered light

popsize Population size iter Maximum number of iterations

fit(k) Fitness value of individual k

Based on these inputs, the utilization and the available capacity of PM pi, denoted by u(pi) ∈ R
3 and cf (pi) ∈ R

3, respectively, can be computed:

u(pi) =
∑

vj∈h(pi)
r(vj), cf (pi) = c(pi) −

∑
vj∈h(pi)

r(vj). (1)

Note that the arithmetics in (1) is between three-dimensional (3D) vectors. A PM pi is overloaded if at least one component of cf (pi) is negative.

The aim of VM consolidation is to devise a new allocation h′ : P→2V that minimizes the following three objective functions:

• The number of used PMs, where a PM pi is used if h′(pi)≠ ∅.

• The number of overloaded PMs.

• The number of migrated VMs. A VM vj is migrated if vj ∈ h(pi) and vj ∈ h(p′
i
) for some PMs pi ≠ p′

i
.

Note that VM consolidation is a multicriteria optimization problem.

4.2 Single-solution heuristics

As a comparison baseline, we implemented two simple heuristic algorithms that constructively solve the VMCP by building a (single) solution.

4.2.1 The simple consolidator

The simulator offers a heuristic consolidation algorithm called SimpleConsolidator. This algorithm aims to pack the VMs to the smallest num-

ber of PMs as shown in Algorithm 2. Notice that this consolidator is not working on an abstract model, but directly operates on DISSECT-CF’s

IaaS representation. The algorithm migrates the VMs from the lightest loaded PMs (identified as psrc) to the heaviest loaded ones (called ptrg), sim-

ilarly as in the approach of Shi et al..12 Only those machines are selected as heavy loaded machines that have at least a nonnegligible amount of

free resources. The algorithm only moves VMs (vj) around that are not subject to VM management operations (boot, migrate, suspend, destroy,

and so forth) at the moment when the heuristic is invoked. This technique ensures that VMs are not moved around constantly in the data cen-

ter by guaranteeing that a migration decision will not be reverted or changed during the enactment of the migration. This approach is efficient

with the PM controller SchedulingDependentMachines which switches off all unused PMs once they become freed up (i.e., once all their VMs

migrate away).

The algorithm iteratively takes the PM with the highest free capacity that is hosting at least one VM (line 4 in Algorithm 2), and then tries to free

it up my migrating all the VMs hosted on this PM. Hence, for each VM hosted on the selected PM (line 5), a target PM is determined, which is the
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Algorithm 2. SimpleConsolidator’s heuristic

1: procedure DOCONSOLIDATION

2: Pt ← P

3: while Pt ≠ ∅ do

4: psrc ← pi ∈ Pt ∶ |h(pi)|>0 ∧ cf (pi)>0 ∧ cf (pi) = maxp∈Pt
cf (p)

5: for ∀vj ∈ h(psrc) do

6: if vj is in running state then

7: ptrg ← pi ∈ Pt ∶ |h(pi)|>0 ∧ cf (pi) ≥ r(vj) ∧ cf (pi) = minp∈Pt
cf(p)

8: if ptrg ≠ null then

9: Initiate migration of vj from psrc to ptrg

10: if cf (ptrg) − r(vj) is negligible then

11: Pt ← Pt ⧵ {ptrg}
12: end if

13: end if

14: end if

15: end for

16: Pt ← Pt ⧵ {psrc}
17: end while

18: end procedure

PM with smallest free capacity that can host the VM (line 7). If such a target PM could be found, the migration is initiated (lines 8–9). As a result, the

target PM may get practically full, in which case it is removed from the list of candidate PMs (lines 10–12). This procedure is repeated for all VMs of

the source PM, and then the next PM is considered as potential source.

It should be noted that the checks cf (pi)>0 and cf (pi)≥ r(vj) in lines 4 and 7 must hold for each dimension of the 3D vectors. For determining

the PM with maximum or minimum free capacity (lines 4 and 7), we need a total order among 3D vectors. This order is based on the product of the

coordinates.

4.2.2 First fit best fit decreasing consolidator

We also implemented a first-fit-best-fit-decreasing based algorithm to solve the VMCP. Unlike the SimpleConsolidator, this algorithm works

on the model of the allocation, not directly on the allocation in the simulator. Thus, it is implemented as an extension of the ModelBasedConsol-

idator, and can be invoked in line 3 of Algorithm 1. The first fit best fit decreasing (FFBFD) Consolidator works with the set of model PMs MP and

the set of model VMs MV.

The pseudocode of the FFBFDConsolidator is shown in Algorithm 3. Similarly as in the approach of Beloglazov and Buyya,2 the aim is to

completely empty lightly loaded PMs and to decrease the load of highly loaded PMs. Whether a PM is considered to be lightly loaded or highly

loaded is decided based on given lower and upper thresholds lowerT and upperT, where 0≤ lowerT ≤ upperT ≤1.

The algorithm iterates at first over the set of model PMs. If the next model PM mpi hosts VMs and is either lightly loaded or highly loaded (lines

3–4 of Algorithm 3), then we move VMs hosted on mpi to a list until the load either vanishes or the model PM is not highly loaded anymore (lines

5–6). The list of VMs thus collected and a copy of MP are sorted according to the BF decreasing order afterward (lines 9–10). Finally, each model

VM mvi in the list is migrated to the first host mpj that can host it under the condition cf (mpj)≥ r(mvi); if no suitable host is found, mvi is put back on

its previous host (lines 11–18).

While the basic idea of the FFBFD Consolidator is similar to that of the Simple Consolidator, there are three major differences. First, the Simple

Consolidator does not aim for reducing the load on highly loaded PMs, whereas this is done by the FFBFD Consolidator as a precaution to avoid PM

overloads. Second, the FFBFD Consolidator only tries to empty the lightly loaded PMs, whereas the Simple Consolidator investigates potentially

significantly more PMs that could be emptied. Third, the FFBFD Consolidator only performs the migrations from a lightly loaded PM if all affected

VMs can be migrated, whereas the Simple Consolidator performs the migrations even if only a subset of the VMs can be migrated.

The latter point is also the reason why a model-based approach is advantageous for the FFBFD Consolidator: the migrations can be performed

tentatively on the model and can even be undone if necessary, without incurring the costs of real migrations. Real migrations are only carried out

when the solution has been determined.
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Algorithm 3. First fit best fit decreasing consolidation

1: procedure OPTIMIZE

2: initialize MVtoMigrate as an empty set of ModelVMs.

3: for mpi ∈ MP do

4: while h(mpi)>0 and (u(mpi) ≤ c(mpi) ⋅ lowerT or u(mpi) ≥ c(mpi) ⋅ upperT) do

5: add the last mvlast to MVtoMigrate

6: remove mvlast of mpi

7: end while

8: end for

9: sort MVtoMigrate according to BFD

10: initialize MPsorted as a sorted clone of MP according to BFD

11: for mvi ∈ MVtoMigrate do

12: find the first mpj ∈ MPsorted to host mvi under the condition cf(mpj) ≥ r(mvi)
13: if a new host has been found for mvi then

14: migrate mvi to its new host

15: else

16: put mvi back on its previous host

17: end if

18: end for

19: end procedure

4.3 Population-based metaheuristics

This section describes the implementation of the population-based metaheuristic consolidation algorithms. As shown in Section 2, several

population-based metaheuristics have been suggested to solve the VMCP. We decided to implement three different and popular metaheuristics,

namely, GA (for reference see 9, 36), ABC (for reference see 10), and PSO (for reference see 11). All these algorithms use a population (sometimes

also called swarm) consisting of individuals where each individual encodes a possible solution of the VMCP. Different operators are used to alter

existing individuals or create new individuals. A fitness function is used to evaluate the merits of individuals.

To enable a meaningful comparison, we implemented the three algorithms in a consistent manner, as much as this was possible given their

algorithmic differences. In particular, we used the same encoding of individuals, the same fitness function, and the same algorithmic framework for

handling the population, the same procedure for generating the initial population, and the same local search procedures to improve individuals.

The encoding of individuals is defined in the InfrastructureModel class (cf. Figure 2). A solution to the VMCP is stored in the form of a

VM-to-PM mapping, that is, for each ModelVM, the ModelPM that should host it is stored.

The fitness function assigns to each individual three numbers: the total of ModelPM overloads, the number of used ModelPMs, and the num-

ber of migrations. This directly mirrors the three objectives of the VMCP as defined in Section 4.1. Since the fitness is vector-valued, this makes it

nontrivial to compare the fitness of two individuals. For this purpose, we use lexicographic ordering. That is, we first compare the two individuals in

terms of PM overloads, and if one individual is better than the other in this respect by at least 1%, then its fitness is considered better than that of

the other individual. If the two individuals lead to practically the same total of PM overloads, then they are compared in terms of the number of used

PMs. If one of them is better in this respect, then its fitness is considered better. If the two individuals are equal also in this regard, then the number of

migrations decides. Using this lexicographic ordering, minimizing the total of PM overloads is the primary objective, minimizing the number of used

PMs is the secondary objective, and minimizing the number of migrations is the tertiary objective. The notation fit(x)≻ fit(y) is used to denote that

the fitness of individual x is better than the fitness of individual y. The fitness comparison logic is also implemented in theInfrastructureModel

class.

Algorithm 4 shows the general algorithmic framework for population-based metaheuristics. The algorithms start by creating the initial pop-

ulation (line 2). To achieve both diversity and quality, we use multiple methods for generating individuals for the initial population. First, we add

some individuals corresponding to the current placement of VMs on PMs in the simulator. Second, a given number of individuals created with

the First Fit Consolidator are added. Third, the rest of the population is filled with individuals that are created randomly and then improved

using first fit. The creation of the initial population may be followed by some algorithm-specific initialization steps (line 3), and a given number

of iterations of steps (lines 4–10) altering the population, which are again algorithm-specific (line 6). If there is no improvement in the pop-

ulation in iteration, the algorithm is stopped to avoid wasting further computation time. Finally, the best solution found is transferred to the

simulator (line 11).
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Algorithm 4. Framework for population-based metaheuristics

1: procedure OPTIMIZE

2: create initial population

3: init() → algorithm-specific initialization steps

4: for i = 1,… , iter do

5: improved = false

6: oneIteration() → algorithm-specific steps to alter the population

7: if improved != true then

8: break

9: end if

10: end for

11: implement the found best solution in the simulator

12: end procedure

To boost the performance of population-based metaheuristics, they can be combined with local search to improve the solutions in the pop-

ulation, which may lead to better results overall. This optimization technique is well known in the evolutionary computation community.41 In

VM consolidation, most existing approaches using population-based metaheuristics do not use local search, but some do.21,38 As the applica-

tion of these local searches could interfere with the applied metaheuristics, when a new simulation is initiated these can be configured to be

inactive. This configuration option allows direct observation of the original metaheuristics and allows direct comparison with results found in

other works. If a new metaheuristic is devised this configuration also allows to check if local search has positive or negative impact on its

performance.

We implemented two local search procedures to optionally improve particular individuals in the population. Our two procedures corre-

spond to the algorithms of the SimpleConsolidator (implemented by the SimpleConsImprover class in Figure 2) and the FirstFitConsolidator

(implemented by FirstFitBFD), respectively. Any of the implemented population-based metaheuristics can simply invoke a method called

improve() to improve a modified or newly created individual; the method will execute one of the local search procedures, depending on a

parameter setting.

4.3.1 Genetic algorithm

The pseudocode of our GA-based algorithm is shown in Algorithm 5. There are no specific instructions needed before starting the consolidation

loop, so the init()method is not required.

For each individual (parent) in the population we create a new solution (child) by mutation (line 3). Note that the parent is not changed. To fill

the VM-to-PM mapping for the child, we use the following procedure: for each VM, with probability mutationProb a random PM is selected, and with

probability 1−mutationProb the same PM as in the parent. Afterward local search is used to improve the child (line 4). If the child has a better fitness

than the parent, then the parent gets replaced by the child in the population (lines 5–8).

After the mutations, a given number (nrCrossovers) of crossovers is performed. To do a crossover, we pick two random individuals (r1, r2) from

the population and recombine them to a new individual r3 which we then improve using local search (lines 11–13). If the fitness of the newly created

offspring is better than one of the two parents, then this parent is replaced by the offspring in the population (lines 14–20).

If there was any improvement in the population—either as the result of a mutation or as the result of a recombination—then improved is set to

true (lines 7, 16, 19), otherwise it remains false. This information is used in Algorithm 4 to determine if the algorithm should be continued with the

next iteration.

4.3.2 Artificial bee colony

The ABC algorithm is inspired by the behavior of a bee colony, in which bees with different roles cooperate to find the best food source.25 Our

ABC implementation is based on the pseudocode given by Mernik et al.,42 but adopts it to our problem model and algorithmic framework.

The pseudocode of our ABC-based algorithm is shown in Algorithms 6 and 7. For an individual x in the population, trials(x) denotes the number

of times the algorithm has tried to improve x without success since the last successful improvement. In the init() method, trials(x) is initialized
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Algorithm 5. Genetic algorithm

1: procedure ONEITERATION

2: for parent ∈ population do

3: child = mutate(parent)

4: improve(child)

5: if fit(child) ≻ fit(parent) then

6: replace parent with child in the population

7: improved = true

8: end if

9: end for

10: for n = 0; n < nrCrossovers; n++ do

11: r1, r2 = two random individuals in the population

12: r3 = crossover(r1, r2)

13: improve(r3)

14: if fit(r3) ≻ fit(r1) then

15: replace r1 with r3 in the population

16: improved = true

17: else if fit(r3) ≻ fit(r2) then

18: replace r2 with r3 in the population

19: improved = true

20: end if

21: end for

22: end procedure

Algorithm 6. Artificial bee colony—Part 1

1: procedure INIT

2: for x ∈ population do

3: trials(x) ← 0

4: end for

5: end procedure

6: procedure ONEBEE(x : an individual in the population)

7: x’ = mutate(x)

8: improve(x’)

9: if fit(x’) ≻ fit(x) then

10: replace x with x’ in the population

11: trials(x)=0

12: improved = true

13: else

14: trials(x)++

15: end if

16: end procedure

to be 0 for each individual (Algorithm 6, lines 2–4). Later on, when the algorithm tries to improve x without success (Algorithm 6, line 14), trials(x)

is increased. When a successful improvement takes place (Algorithm 6, line 11) or the individual is replaced by a freshly created one (Algorithm 7,

line 26), trials(x) is reset to 0.

The bee colony consists of three groups of bees: employed bees, onlooker bees, and scout bees, where each type of bee has its own acting phase

within the oneIteration()method.

The employed bees phase (Algorithm 7, lines 3–5) and the onlooker bees phase (Algorithm 7, lines 7–19) consist of a set of oneBee() calls.

Each oneBee() call tries to improve an individual by a mutation and a subsequent local search; the improvement is successful if it leads to better
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Algorithm 7. Artificial bee colony—Part 2

1: procedure ONEITERATION

2: //employed bees phase

3: for x ∈ population do

4: ONEBEE(x)

5: end for

6: //onlooker bees phase

7: for x ∈ population do

8: sample ← set of 𝜅 randomly chosen individuals of the population

9: p(x) ← |{y ∈ sample ∶ fit(x) ≻ fit(y)}|∕𝜅
10: end for

11: j = t = 0;

12: while t<popsize do

13: r = random double value from [0,1]

14: if r<p(j) then

15: ONEBEE(j)

16: t++

17: end if

18: j ← ((j + 1) mod popsize)
19: end while

20: //scout bee phase

21: n = individual with highest trials

22: if trials(n) ≥ limitTrials then

23: create a new random individual s

24: improve(s)

25: replace n with s in the population

26: trials(s) ← 0

27: end if

28: end procedure

fitness, otherwise it is discarded (Algorithm 6, lines 6–16). The difference between the employed bees phase and the onlooker bees phase is that in

the employed bees phase oneBee() is called for each individual exactly once, whereas in the onlooker bees phase individuals with better fitness

are preferred. In the original ABC algorithm, this is achieved by computing probabilities for the individuals that are proportional to their fitness. In

our case, since the fitness of an individual is not a single number, a different approach was needed. To estimate how good an individual x is compared

with its peers, we randomly sample 𝜅 other individuals from the population (where 𝜅 is a given positive integer) and compare the fitness of x to

each of them (Algorithm 7, lines 7–10). The percentage of the individuals that are worse than x in the sample is taken as the probability p(x), and

oneBee(x) is called with that probability (Algorithm 7, lines 13–15).

Finally in the scout bee phase, if the individual with highest trials(x) has been tried to improve without success at least limitTrials times (which

is a given constant), then it is replaced by a new individual (Algorithm 7, lines 21–27).

4.3.3 Particle swarm optimization

By contrast to the GA and ABC algorithms, here the individuals (called particles in the PSO terminology) encode the VM-to-PM mapping

numerically. That is, VMs are numbered from 1 to M, PMs are numbered from 1 to N, and the VM-to-PM mapping is given as an M-dimensional

vector, each coordinate of which is in {1, 2, … , N}. This vector is called the location of the particle. Beside its location, each particle also has

a velocity, which is also an M-dimensional vector. Encoding locations and velocities in R
M makes it possible to perform vector arithmetics with

these vectors.

For each particle p, the best location (in terms of fitness) it has found so far is stored in pBest(p). Moreover, the best location that any particle has

found so far is stored in gBest. In each iteration, the velocity of each particle is recomputed based on its current velocity (called inertia component),
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Algorithm 8. Particle swarm optimization

1: procedure INIT

2: for p ∈ population do

3: set pBest(p) to the current location of p

4: end for

5: Particle bestParticle = Particle with the best fitness

6: set gBest to the location of bestParticle

7: end procedure

8: procedure ONEITERATION

9: for p ∈ population do

10: if fit(p) ≻ fit(pBest(p)) then

11: set pBest(p) to the current location of p

12: end if

13: end for

14: Particle bestParticle = Particle with the best fitness

15: if fit(bestParticle) ≻ fit(gBest) then

16: set gBest to the location of bestParticle

17: end if

18: for p ∈ population do

19: calculate velocity(p) based on Equations∼((2))-((6))

20: location(p) = location(p) + velocity(p)
21: round location(p) to integer coordinates between 1 and N

22: improve(p)

23: end for

24: end procedure

its location relative to its pBest location (cognitive component), and its location relative to the gBest location (social component), also using given

and random weights. Specifically, the velocity of particle p is recomputed as follows (w, c1, c2 are given constants):

r1, r2 = two random values between 0 and 1, (2)

inertiaComp = velocity(p) ∗ w, (3)

cognitiveComp = (pBest(p) − location(p)) ∗ c1 ∗ r1, (4)

socialComp = (gBest − location(p)) ∗ c2 ∗ r2, (5)

velocity(p) = inertiaComp + cognitiveComp + socialComp. (6)

Note that Equations (3)–(6) use M-dimensional vector arithmetics. When velocity(p) has been recomputed, also location(p) can be updated using

location(p)= location(p)+ velocity(p).

The pseudocode of our PSO-based algorithm is shown in Algorithm 8. Theinit()method is used to initialize the pBest locations of the particles

(lines 2–4) and the gBest location (lines 5–6). Similarly in the oneIteration() method, the pBest locations of the particles are updated (lines

9–13) as well as the gBest location (lines 14–17). Then, the velocity and location of each particle is recomputed using the formulas given above (lines

19–20). Since this may lead to location coordinates outside {1, 2, … , N} which would be meaningless in our solution encoding, the coordinates are

rounded (line 21), also ensuring that values lower than 1 are changed to 1 and values larger than N are changed to N. Finally, improvement using

local search is performed (line 22).

5 EVALUATION

During our implementation and evaluation, where applicable, we used publicly available information from real data center environments to populate

our experiments, so as to maximize the relevance of our results to the real world. In particular, the experiments were based on 14 different real-world

workload traces.
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Experimental evaluation process
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F I G U R E 4 Overview of the evaluation process

A big challenge in the experimental evaluation of the implemented consolidation algorithms was the huge configuration space, resulting from

the many parametrization options of the considered algorithms. Specifically, there were more than 22 million configurations to test. In addition,

evaluating a configuration meant running a simulation with all traces, and since the traces are quite large, a single simulation run lasted up to several

hours. To cope with this problem, we needed a more sophisticated methodology than the brute-force approach of running all configurations on all

workload traces. The main idea of our evaluation methodology can be summarized as follows:

1. For each algorithm, we randomly selected a potential configuration from the previously discussed 22 million. The selection technique was done

with the help of a uniform pseudorandom generator following a Monte Carlo method.43 This allowed us to evenly sample the large search space

with just 400 thousand configurations and make predictions on the rest of the configurations without exhaustively needing to test all of them.

2. For each algorithm and each trace, the selected parameter configurations were tested on the first 5000 jobs of the trace (“small-scale experi-

ments”).

3. Based on the results of the small-scale experiments, appropriate values were determined and fixed for each parameter of each algorithm, for

each trace.

4. The algorithms were compared with each other on each full trace, using the parameter configurations determined previously (“large-scale

experiments”).

Even with this approach, the evaluation process took several months, using a HTCondor cluster with 31 CPU cores.

A more detailed overview of the evaluation process is given in Figure 4. The next subsections detail the inputs, the steps, and the results of the

evaluation process.

5.1 Inputs

We tested all five implemented consolidation algorithms (SimpleConsolidator, FFBFD, GA, ABC, PSO) described in Section 4. Each consolidator can

be used in combination with one of three different PM schedulers: either one of the two built-in PM schedulers of DISSECT-CF (AlwaysOnMa-

chines, SchedulingDependentMachines) or the newly created ConsolidationFriendly (CF) PM scheduler, which can be controlled by the consolidator

directly. Each algorithm can be configured with several parameters (see also the following subsection).

Though VM management log-based traces would be the best candidates for analyzing cloud characteristics, traces collected from other

large-scale infrastructures like grids are also appropriate. Generally, two main sources are used for this purpose: the grid workloads archive (GWA1)

1 http://gwa.ewi.tudelft.nl

http://gwa.ewi.tudelft.nl
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TA B L E 3 Values of the parameters used in the small-scale experiments

Parameter Values

mutationProb 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

iterations 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 41, 61, 81

population 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 41, 61, 81

doLocalSearch1 true, false

doLocalSearch2 true, false

limitTrials 1, 4, 5, 7, 10, 13

nrCrossovers 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 41, 61, 81

c1 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 1.60, 1.70, 1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80

c2 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 1.60, 1.70, 1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80

lowerThreshold 0.20, 0.40, 0.60

upperThreshold 1.00

and the parallel workloads archive (PWA2). For this study we used traces downloadable from GWA (namely, AuverGrid, DAS2, Grid5000, LCG,

NorduGrid, and SharcNet) as well as from PWA (IntelA, IntelB, IntelC, IntelD, LLNL-TH, METACTR2, PIK, RICC).

We used the JobDispatchingDemo class from the DISSECT-CF examples project3, to transform the jobs listed in the trace to VM requests

and VM activities. This dispatcher asks the simulator to fire an event every time when the loaded trace prescribes the arrival of a new job.

In addition, the dispatcher maintains a list of VMs available to serve job related activities (e.g., input & output data transfers, CPU and mem-

ory resource use). Initially the VM list is empty. A job arrival event is handled with two approaches: (i) if there is no unused VM in the VM

list that has sufficient resources for the prescribed job, then the dispatcher creates a VM according to the resource requirements of the job;

alternatively, (ii) if there is an unused VM with sufficient resources for the job, then the job is just assigned to the VM. In the first approach,

the job’s execution is delayed until its corresponding VM is spawned. In both cases, when the job finishes, it marks the VM as unused. This

step allows other jobs to reuse VMs pooled in the VM list. Finally, the VMs are not kept for indefinite periods of time, instead they are kept

in accordance with the billing period applied by the cloud provider. This ensures that the VMs are held for as long as they were paid for but

not any longer. If there is no suitable job coming for a VM within its billing period, then the VM is terminated and it is also removed from

the VM list.

5.2 Steps 1–3: Preparing and conducting the small-scale experiments

To determine the best parameter configuration for each consolidator and each trace, we defined a variety of small-scale tests with different com-

binations of the relevant parameters. In detail, Table 3 contains the used values for each parameter. Note that for parameters that are relevant for

multiple consolidators (like “mutationProb” or “iterations”), all values are tested for each consolidator, respectively. In addition, there are two global

parameters called “lowerThreshold” and “upperThreshold.” Those values determine the threshold of a PM’s load to determine whether it is too low

or too high, resulting in either emptying the PM or moving VMs to other PMs until the overload is resolved.

From the over 22 million possible parameter configurations, we randomly selected about 400,000 configurations using Monte Carlo sam-

pling. Testing so many configurations gave us sufficient insight into the impact of the parameter values, while still keeping the required time for the

experiments manageable. Randomly selecting the configurations to test helped to avoid bias stemming from specific combinations of parameter

values.

Technically, each test case is defined by an XML file containing the necessary parameters for the tested consolidator. To generate those files

automatically, we implemented a class calledConsolidationController, that offers the possibility to create one test file for each combination

of the values of the parameters.

The experiments are controlled by a separate script, which uses the JobDispatchingDemo to run all determined test cases for each consol-

idator, combined with each PM scheduler, on each trace.20 For the small-scale experiments, only a small fraction of each trace, namely, the first 5000

jobs, were used.

2 http://www.cs.huji.ac.il/labs/parallel/workload
3 https://github.com/kecskemeti/dissect-cf-examples

http://www.cs.huji.ac.il/labs/parallel/workload
https://github.com/kecskemeti/dissect-cf-examples
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5.3 Steps 4–7: Preparing and conducting the large-scale experiments

The small-scale experiments delivered a large set of data, containing several metrics for each tested parameter configuration of each algorithm,

combined with each PM scheduler4, on each trace. Our next task was to identify the “best” parameter configuration of each consolidator—PM sched-

uler pair on each trace. This was challenging because there are several important metrics for evaluating a configuration, and the best configuration

with respect to one metric may perform poorly with respect to some other metrics. In particular, we considered the following three metrics for the

comparison of the different parameter configurations:

• Total energy consumption

• Duration (in real time) of the simulation

• Duration (in simulated time) of the execution of the jobs

First, we identified the best 5% parameter configurations for each trace and each consolidator—PM scheduler pair. For this purpose, we consid-

ered the above three metrics in the given order of priority, that is, energy consumption had the highest importance. We used two different filtering

techniques: one based on strict lexicographic ordering of the three metrics according to their given order, and a less strict approach which allows

less energy efficient configurations to be selected if their runtime is significantly better.

Next, we identified the best value for each parameter based on the values’ occurrences in the top 5% of configurations. For this, we again used

two different techniques. On the one hand, we selected the most frequently occurring value of a parameter in the top 5% of configurations; in the

case of a tie, we selected the value that was used for achieving the best energy consumption. On the other hand, we performed a Bayesian analysis

to compute the most likely best value based on the given sample of top configurations.

In addition to these techniques, for numeric parameters we also computed the Pearson correlation coefficient between the parameter and the

considered metrics. In cases where a clear correlation could be established, we verified that the selected value is in line with this. For example, if

there is a positive correlation between a parameter and energy consumption, then a low value should be selected for the given parameter. Finally,

in cases where the values suggested by the different methods were significantly different, we used visual analysis of 3D plots (with the dimensions

corresponding to the considered metrics) created with an R program to identify the reasons for the discrepancy and to decide which value to choose.

The best parameter configurations selected for each consolidator, each PM scheduler, and each trace are shown in Table 4. These configurations

already lead to some interesting observations:

• It indeed makes sense to train each consolidator separately on each trace. In other words, there are no “globally good” values for the parameters.

For example, the best mutation probability of the GA is 0.1 for some traces and 0.8 for some others.

• Concerning the number of iterations and the population size, it would be plausible to expect that higher values are better. However, this is often

not true. In several cases, quite low values (e.g., 3) proved best. This means that also higher values did not lead to lower energy consumption, only

to higher simulation duration (because of the increased algorithm execution time).

• Local search is useful. However, there is no clear winner between the two used local search procedures.

Finally, we performed the large-scale experiments. That is, we ran each consolidator, in conjunction with the CF and SDM PM schedulers, on

each trace, with the parameter configuration shown in Table 4. By contrast to the small-scale experiments where only the first 5000 jobs were used

from each trace, this time the full length of the traces was used (which is orders of magnitudes higher).

5.4 Results of the large-scale experiment

Table 5 contains the results of the large-scale experiment for each used combination of consolidators and schedulers for each trace. For each test

run, three metrics are shown: the total energy consumption, the duration of the simulation (in real time), and the number of migrations. (We also

collected other metrics that we do not report here because they did not lead to significant insights. For example, the duration of the execution of the

workloads in simulated time was also captured, but there were hardly any differences between the consolidators in this regard.) For each trace and

each metric (i.e., for each row of the table) the best value achieved by any consolidator is italic in Table 5, as well as any other values that are at most

1% higher than this best value.

4 Since the main objective of VM consolidation is to minimize energy consumption by switching off unused PMs, we did not include the AlwaysOnMachines PM scheduler of DISSECT-CF which

never turns off PMs. Hence the comparison was limited to the SchedulingDependentMachines (SDM) and CF PM schedulers.
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TA B L E 5 Results of the large-scale experiment

trace metric ABC-CF ABC-SDM GA-CF GA-SDM PSO-CF PSO-SDM SC-SDM FFBFD-CF

auver consumed energy (kwh) 242,601 246,593 242,600 245,495 243,704 243,825 242,541 247,321

auver duration of simulation (ms) 790,696 749,127 898,250 747,485 875,909 849,414 690,603 732,158

auver number of migrations 72,773 233,205 72,750 288,910 411,096 581,933 124,039 9448

das2 consumed energy (kwh) 295,786 294,739 295,799 294,499 296,761 294,838 294,492 296,082

das2 duration of simulation (ms) 1,482,803 1,142,648 1,531,607 1,206,083 5,233,036 1,138,726 1,149,036 1,172,866

das2 number of migrations 61,998 59,573 66,157 42,134 141,832 18,936 53,581 9136

grid5000 consumed energy (kwh) 578,471 578,543 577,674 575,673 603,196 583,752 576,056 583,081

grid5000 duration of simulation (ms) 2,022,123 1,623,497 2,553,549 1,771,606 3,836,820 1,640,997 1,526,295 1,865,579

grid5000 number of migrations 169,163 375,431 133,809 139,707 2,051,322 14,058 98,572 9082

IntelA consumed energy (kwh) 48,896 48,737 48,897 48,736 49,677 49,397 48,737 52,260

IntelA duration of simulation (ms) 159,922 140,553 152,225 251,389 424,148 402,119 139,977 117,456

IntelA number of migrations 119,964 92,720 119,694 96,311 317,264 257,605 94,271 5578

IntelB consumed energy (kwh) 65,077 67,934 65,068 64,805 66,128 65,687 64,803 69,925

IntelB duration of simulation (ms) 152,087 8,025,616 175,628 178,636 667,375 541,144 144,784 140,902

IntelB number of migrations 124,472 1,734,237 121,817 69,216 419,227 322,330 69,401 7040

IntelC consumed energy (kwh) 76,733 76,541 76,732 76,541 78,740 77,688 76,537 86,739

IntelC duration of simulation (ms) 165,523 200,046 341,015 243,887 1,053,842 968,301 165,231 125,328

IntelC number of migrations 113,680 74,363 112,788 74,902 734,637 471,671 74,588 4426

IntelD consumed energy (kwh) 166,806 166,799 166,806 166,799 167,460 167,132 166,794 171,149

IntelD duration of simulation (ms) 289,034 637,491 1,426,950 695,826 5,907,145 1,310,731 204,052 239,706

IntelD number of migrations 24,802 21,362 24,802 21,362 198,723 113,928 21,846 3016

lcg consumed energy (kwh) 21,417 22,602 21,417 21,410 21,819 22,196 21,408 23,371

lcg duration of simulation (ms) 55,093 185,421 46,143 47,320 73,235 95,387 37,007 36,059

lcg number of migrations 29,662 404,610 29,662 28,668 134,237 282,562 31,085 2099

LLNL-TH consumed energy (kwh) 1,041,626 436,751 1,041,626 436,220 1,041,626 436,140 436,140 437,244

LLNL-TH duration of simulation (ms) 326,104 375,744 321,753 475,414 326,855 354,160 354,160 341,837

LLNL-TH number of migrations 8030 0 8030 6959 8030 5727 5727 0

METACTR2 consumed energy (kwh) 1,473,549 1,511,858 1,471,441 1,468,925 1,566,826 1,509,874 1,471,113 1,545,138

METACTR2 duration of simulation (ms) 7,425,433 2,371,684 2,974,369 1,907,065 34,103,890 9,325,688 1,123,653 1,017,380

METACTR2 number of migrations 462,926 6,406,271 520,516 482,238 9,978,470 6,360,341 444,690 18,084

nordugrid consumed energy (kwh) 1,140,027 1,181,924 1,129,382 1,102,303 1,137,959 1,089,088 1,077,688 1,102,551

nordugrid duration of simulation (ms) 4,498,178 2,088,051 18,351,988 3,997,516 11,640,415 5,631,482 1,715,608 1,950,208

nordugrid number of migrations 13,208,637 91,154 19,824,005 7,345,082 18,950,089 4,767,739 337,083 71,619

PIK consumed energy (kwh) 1,542,534 1,352,489 1,344,456 1,340,512 1,395,669 1,351,689 1,341,174 1,370,319

PIK duration of simulation (ms) 6,883,569 7,265,936 7,129,424 3,393,438 11,676,174 11,743,036 2,474,989 2,564,651

PIK number of migrations 21,521,828 4,324,181 258,590 226,589 9,684,692 3,356,802 242,755 22,759

RICC consumed energy (kwh) 850,820 851,725 850,691 849,735 877,788 852,862 849,814 851,458

RICC duration of simulation (ms) 461,519 1,288,276 594,482 621,392 2,061,391 20,195,037 409,210 391,213

RICC number of migrations 109,459 220,217 109,813 106,597 2,578,095 838,694 109,343 82,876

sharcnet consumed energy (kwh) 1,167,140 1,165,966 1,167,025 1,165,834 1,232,665 1,183,038 1,166,109 1,199,625

sharcnet duration of simulation (ms) 1,202,105 922,815 1,519,642 1,505,811 12,085,140 17,415,840 794,810 847,387

sharcnet number of migrations 414,824 380,356 422,474 382,815 13,341,063 4,502,810 394,903 46,492

Abbreviations: ABC, artificial bee colony; GA, genetic algorithm; PSO, particle swarm optimization; SDM, SchedulingDependentMachines.
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In general, we can establish that there is no clear winner among the considered algorithms. That is, the best algorithm for one trace may be beaten

by other algorithms on other traces regarding the same metric or on the same trace regarding other metrics. Nevertheless, several interesting trends

can be observed.

In terms of energy consumption, the SimpleConsolidator delivers one of the best results for each trace. For almost all traces, the results of ABC

and GA are also among the best—the only exception is the nordugrid trace, for which the SimpleConsolidator delivers significantly better results

than any other algorithm. The results of the PSO and FFBFD algorithms rarely belong to the best; on the other hand, they are also rarely more than

10% worse than the best results.

Concerning the duration of the simulation, the two single-solution heuristics (SC and FFBFD) are usually best. As expected, the population-based

algorithms (ABC, GA, PSO) are usually slower, sometimes much slower (for instance, in the case of the sharcnet trace), since these consolidators

have much higher execution time. The population-based algorithms exhibit quite large variance in their running time, in the sense that different

population-based consolidators or even the same consolidator but with different PM schedulers can lead to significantly different simulation times

on the same workload trace. This is due to the fact that we tuned each pair of consolidator and PM scheduler individually for a trace, and as noted

in Section 5.3, this often led to the adoption of very different parameter configurations. Choosing different values for the population size or the

number of iterations directly translates to different algorithm running times.

Regarding the number of migrations, the FFBFD algorithm usually leads to significantly fewer migrations than the other algorithms. Among the

other algorithms, there is no clear tendency of which algorithm would lead to fewer or more migrations.

It could be assumed that, to achieve lower energy consumption, a more “thorough” optimization is necessary, requiring longer simulation time

(because of the longer algorithm execution time) and more migrations. However, the results exhibit no such correlation. Low energy consumption

can often be achieved with low simulation time and few migrations. In addition, high simulation time and a large number of migrations often lead to

bad energy consumption values.

Concerning the effect of the used PM scheduler, no systematic difference can be determined from the results. That is, in some cases, using the

SDM scheduler leads to better results, while in other cases the CF scheduler proved better.

In the overall comparison of the algorithms, it becomes clear that the SimpleConsolidator offers in most cases a very good trade-off between

the considered metrics. The GA and ABC algorithms lead in most cases to similarly good energy consumption values as the SimpleConsolidator.

Looking at only the energy consumption and the number of migrations, there is no clear winner from these three algorithms. However, in terms of

simulation time, the SimpleConsolidator performs usually clearly better than GA and ABC. This was expected, but the insight from the results is

that GA and ABC do not offer a significant gain in terms of solution quality (energy consumption or number of migrations) to compensate for the

increased simulation time. The performance of the PSO algorithm was rather disappointing: in most cases, the PSO is outperformed by several other

algorithms concerning all considered metrics. We suspect this is because—at least with the used solution encoding—the arithmetics performed by

PSO to change the particle locations is not very meaningful, only very rarely leading to improvements. Finally, the FFBFD algorithm leads to few

migrations and is also quite fast, but its results are not that good in terms of energy consumption. Hence, FFBFD can be recommended mainly in

environments where migration is particularly costly.

6 CONCLUSIONS

In this article, we addressed the problem of evaluating and comparing algorithms for data center consolidation. Though several algorithms had been

proposed for consolidating VMs in data centers, only a few were comprehensively evaluated.

We presented an extension of the DISSECT-CF simulator to foster the implementation and evaluation of data center consolidation algorithms.

On this basis, we implemented five consolidation algorithms: two single-solution heuristics and three population-based metaheuristics, which use

the same solution encoding, the same fitness function, and the same search improvement techniques. We compared first different parameter con-

figurations of each algorithm, and then the best found configuration of each algorithm, on 14 large-scale real-world workload traces. Based on the

results of the comparison, we can draw the following conclusions:

• For different workload traces, different parameter configurations should be used to obtain good results.

• Local search is beneficial to boost the performance of the population-based metaheuristics.

• There is no clear winner among the algorithms that would consistently deliver good results regarding all considered quality metrics and for all

traces.

• In terms of energy consumption, the SimpleConsolidator, the GA, and the ABC algorithm delivered the best results for most traces.

• The population-based metaheuristics exhibit significantly higher execution time than the single-solution heuristics, leading to also considerably

higher simulation time. In particular, GA and ABC are much slower than the SimpleConsolidator and do not offer a significant gain in terms of

solution quality (energy consumption or number of migrations) to compensate for the increased simulation time.
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• The FFBFD algorithm leads consistently to the fewest migrations and is also fast; however, its results in terms of energy consumption are usually

outperformed by the other algorithms. Hence, FFBFD can be recommended mainly in environments where migration is particularly costly.

• The PSO algorithm is usually outperformed by several other algorithms.

In more general terms, our results suggest that, at least for the given variant of the VMCP, population-based metaheuristics do not offer a clear

benefit over a carefully engineered custom single-solution heuristic. Moreover, the GA and ABC algorithms which work with the logical structure of

candidate solutions seem to be more appropriate for the VMCP, at least with the considered solution encoding, than the PSO algorithm which uses

linear multidimensional arithmetics on the candidate solutions.

The evaluation of the impact of different solution encodings on the effectiveness of different VM consolidation algorithms is a possible path

for future research. Another important topic for future research is the parallelization of population-based VM consolidation algorithms and their

experimental evaluation.
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