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Abstract

Wireless communication protocols are often used in critical applications, e.g.,
urban water supply networks or healthcare monitoring within the Internet of
Things. It is essential that control software and protocols for such systems
are veri�ed to be both robust and reliable. The e�ects on the hardware
caused by environmental conditions and the choice of parameters used by
the protocol are among the largest obstacles to robustness and reliability in
wireless systems. In this paper we use formal veri�cation to verify that a
wireless sensor network synchronization and dissemination protocol is not
adversely a�ected by these factors.

Keywords: Formal Veri�cation, Protocol Veri�cation, Internet of Things,
Network Performance Evaluation, Model Checking, Wireless Sensor
Network

1. Introduction

The Internet of Things (IoT) promises a revolution in the monitoring and
control of a wide range of applications [1, 2], from water supply networks [3]
and precision agriculture food production [4, 5, 6], to vehicle connectivity [7]
and healthcare monitoring [8]. For applications in such critical areas, control
software and protocols for IoT systems must be veri�ed to be both robust and
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reliable. Two of the largest obstacles to robustness and reliability in IoT sys-
tems are the e�ects on the hardware caused by environmental conditions, and
the choice of parameters used by the protocol. In this paper we use a formal
method of logic-based exhaustive analysis to verify that a Wireless Sensor
Network (WSN) synchronization and dissemination protocol is not adversely
a�ected by the environment or the choice of parameters used in the protocol.
We show how the protocol can be converted into a logical model and then
analyzed using the probabilistic model-checker, Prism. Using this approach
we prove under which circumstances the protocol is guaranteed to synchro-
nize all nodes and disseminate new information to all nodes. We examine
the bounds on synchronization as the environment changes the performance
of the hardware clock, as well as the e�ects of varying important protocol
parameters such as refractory period and energy consumption. We also show
the scalability of this approach.

Systems for the Internet of Things (IoT) often involve networks of small,
resource-constrained, computer devices embedded in an environment. These
sensor nodes have low-power sensors, radios for communication, and can po-
tentially control motors and other devices to perform actuation to change
their environment. A common class of IoT systems, called Wireless Sensor
Networks (WSN), enable the monitoring and control of critical infrastruc-
tures made up of large, complex systems such as precision agriculture or
smart water networks. Such systems require control software that can syn-
chronize the events of the nodes in the system, and disseminate parameters
and code updates. WSN and IoT deployments are increasingly mobile, al-
lowing for wider applications and new challenges in their design and deploy-
ment [9, 10].

A key problem with the development of critical IoT systems is ensur-
ing that they will function correctly, or at least, fail in a way that is non-
destructive to the systems that they monitor and control. In this paper we
use formal veri�cation, via the logical algorithmic method of probabilistic
model-checking [11], to analyze and verify critical communication protocols
used for the Internet of Things (IoT) [12]. The use of probabilistic models
is crucial because it allows us to quantitatively analyze the system with the
dynamical e�ects caused by the environment � one of the largest causes of
failure for WSN [13]. WSN deployed on critical infrastructure su�er from the
e�ects of cyber-physical interactions in a way not seen with o�ce or domestic
computing. Environmental conditions such as rain or changes in temperature
will a�ect the performance of the sensor nodes. These e�ects will in�uence
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the correctness of protocols and algorithms running on the sensor nodes and
can potentially cause protocol or node failure. The system software that pro-
vides event synchronization and controls message dissemination needs to be
correct and reliable in the light of these potential problems. Errors here can
make the infrastructure itself ine�cient at best, or even unstable and failing
in the worst case.

1.1. Formal Veri�cation and Probabilistic Model Checking

Formal methods are a family of techniques used to verify software and
hardware, typically using mathematical, proof-based approaches [11]. These
include techniques such as automated theorem proving [14], in which full
mathematical proof is carried out, and model checking [15], in which every
state of a model (also known as the model's state space) can be examined
exhaustively. Formal methods allow for formal veri�cation, where models
of software and hardware systems can be proved to satisfy certain require-
ments. These requirements are typically provided using a precise formal
logical language such as temporal logic [11]. In this paper we use probabilis-
tic model-checking [16], a variant of traditional model-checking that allows
for probabilities to be incorporated into a model, and for quantitative analy-
ses to be carried out on such models. In traditional model checking the result
of formal veri�cation is a Boolean value indicating whether or not a model
satis�es the prescribed property; by contrast, probabilistic model checking
allow us to �nd the probability that a particular model satis�es that prop-
erty. Probabilistic model checking is essential for capturing and analyzing the
stochastic nature of WSN, e.g., communication errors, or changes in ambient
temperature resulting in clock drift. Additionally, the quantitative nature of
probabilistic model checking allows it to be used for performance evaluation
based on the time elapsed or energy consumed, for example [17, 18, 19, 20].

1.2. Contribution and Organization

This paper's contributions are as follows:

• A method of analyzing the reliability and correctness of communica-
tion protocols for WSN and IoT using formal veri�cation and model
checking, exempli�ed through the formal modelling and veri�cation of
a high-level communication protocol called FiGo. The translation from
pseudocode to the formal model and the resulting formal veri�cation
are described in detail so that similar communication protocols may be
analyzed in a similar way.
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• Probabilistic formal models of a high-level communication protocol
based on a design-level pseudocode-based description.

• Formal models of environmental conditions across a wireless sensor
network based on the e�ects of temperature di�erences between nodes
and the resulting hardware clock drift.

• Formal veri�cation of key requirements of the communication protocol
related to reliability, time and energy usage, encoded as logical prop-
erties that are used during model checking.

This work extends [21] via Section 7 on performance evaluation, an extended
comparison with the literature in Sections 2 and 5.4, and extended explana-
tions throughout.

The paper is organised as follows. We start with an overview of related
work in Section 2. Next we cover some background material on formal meth-
ods and a decentralized wireless network management protocol called FiGo
in Section 3. In Section 4 we show how a formal model of FiGo was developed
using Prism, and in Section 5 we describe how FiGo was formally veri�ed
through exhaustive analysis using the Prism model checker. In Section 6 we
introduce environmental e�ects into the Prism model to capture the e�ects
of temperature variation on hardware clock drift and examine the FiGo pro-
tocol's resilience to such e�ects. In Section 7 we evaluate the performance of
the FiGo protocol with respect to synchronization time, stability and energy
usage. In Section 8 we discuss our �ndings and make some more detailed
comparisons with results from the literature. Conclusions are provided in
Section 9.

2. Related Work

Formal methods have been used previously for design and analysis of
WSN and the IoT. For example, Chen et al. [22] provide a survey of a num-
ber of approaches to formal veri�cation of routing protocols for WSN. Kim
et al. [23] conduct a formal security analysis of an authorization toolkit for
the Internet of Things using the Alloy veri�cation tool. Mouradian & Augé�
Blum [24] describe the formal veri�cation of real-time WSN protocols using
the UPPAAL model checker. Tobarra et al. [25] use the Avispa model check-
ing tool to formally verify a security protocol for WSN. Usman et al. [26]
demonstrate formal veri�cation of mobile agent-based anomaly detection for
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WSN using the Symbolic Analysis Laboratory model checking tool. Dong et
al. [27] use a formal speci�cation language for sensor networks and perform
formal veri�cation using SAT-solvers. However, none of these approaches
uses a probabilistic model checker, as is the case in this paper, to determine
the probability of success or failure for a particular requirement.

Fruth [28] used Prism to analyze contention resolution and slot alloca-
tion protocols for WSN, but not synchronization or dissemination protocols.
Synchronization [29, 30, 31] and gossip protocols [32, 33, 34, 35, 36, 37] have
been formally veri�ed but not together, and not accounting for environmen-
tal e�ects. Performance evaluation of protocols based on time elapsed and
energy consumed has been examined before [29, 17, 20], but not with the
inclusion of environmental e�ects.

Mohsin et al. [38] used Prism to formally assess security risks in IoT sys-
tems, but not risks due to the environment. Modelling of embedded systems
and the environment have been explored by Baresi et al. [39], who used a
UML-based MADES approach to model a system. The approach can �nd
when constraints are not met, but does not perform an exhaustive search of
the entire state space, as is the case here.

Boano et al. explored the e�ects of temperature on CPU processing time
and transceiver performance though TempLab, a WSN test-bed which allows
for the manipulation of the temperature of each individual sensor node [40].
Lenzen et al. [41] studied the e�ect of temperature on the hardware clocks
chips used as timers on many common WSN sensor node platforms.

3. Background

In this paper we use the probabilistic model checker, Prism [16, 42] to
enable formal veri�cation of a typical communications protocol for wireless
sensor networks and the Internet of Things. Prism consists of two parts:
a modeling language, and a model checker. The Prism modeling language
can be used to specify the behaviour of a probabilistic �nite state automaton
(P-FSA), which can then be formally veri�ed via the model checker. For
example, a sensor node that can either transmit a message or remain idle
can be modelled simply using a P-FSA as shown in Figure 1.

The two states, `transmit' and `idle', are linked with arrows, or transi-
tions. These transitions specify how the state of the P-FSA can change. The
annotations on the transitions show the probability that the transition will
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transmit idle

0.01
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0.99 0.99

Figure 1: A simple probabilistic �nite state automaton with two states.

be taken. In this case there is a probability of 0.99 that the sensor node re-
mains in its current state, and a probability of 0.01 that the state will change.
Note that these values can either be chosen arbitrarily, or with reference to
a particular practical sensor node implementation. For example, a speci�c
sensor node may spend more time transmitting than idling, in which case
the probabilities associated with these transitions can be modi�ed.

We can model the sensor node above in the Prism modelling language
as follows:

module sensorNode
state : [0..1] init 0;
[] state=0 → 0.99: ( state '=0) + 0.01: ( state '=1);
[] state=1 → 0.99: ( state '=1) + 0.01: ( state '=0);

endmodule

This sensor node is modelled as a module in Prism. We have one variable,
`state', which can be set to 0 or 1 (which we de�ne as representing `transmit'
and `idle' respectively). Note that we de�ne an initial state of 0 for this
variable. There are two lines denoting commands. The �rst command says
that if the state is 0, then remain in state 0 with probability 0.99 or transition
to state 1 with probability 0.01. The second command is similar, but with 0
and 1 reversed. In general, commands take the form

[s] guard -> p1 : u1 + . . .+ pn : un;

where pi are probabilities and ui are lists of variable updates. In the case
where only one list of updates is made with probability 1.0, a simpler form
is used (e.g., [s] guard -> u;). The letter s denotes an optional synchroniza-
tion. Synchronized commands execute simultaneously with synchronization
commands from other modules that share the same label, and can be used
for inter-module communication. Another way for modules to communicate
is via the use of local variables, which can be read by all modules, as well as
global variables which can be read by, and written to, all modules.

Multiple modules can be speci�ed within a Prism model. Models are
executed by selecting non-deterministically a command (from any module)
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whose guard evaluates to true. If there are no commands whose guards are
true, then the model has reached a �xed point and will stop executing.

Once a formal model has been developed in the Prism language, it can
be formally veri�ed, with respect to some requirement, using the Prism

model checker. Prism requirements can be formalized as properties using
probabilistic computation tree logic (PCTL*) [42]. PCTL* is based on a
discrete formulation of time as a tree-like structure, starting from a particular
point and extending into the future. The following are well-formed PCTL*
formulae for propositions p and q:

• `p', meaning that p is true;

• `¬p', read as `not p,' meaning that p is false;

• `p =⇒ q', read as `p implies q,' meaning if p is true then q is true;

• `p ∧ q', read as `p and q,' meaning that both p and q are true;

• `p ∨ q', read as `p or q,' meaning that p or q (or both) are true;

• `F p', read as `�nally p' or `eventually p', meaning p is true now or at
some point in the future; and

• `G p', read as `globally p' or `always p,' meaning p is true now and at
every point in the future.

• `G F p', read as `always eventually p' or `in�nitely often p,' meaning
that it is always the case that p is eventually true.

• `F G p', read as `eventually always p,' meaning that at some point in
the future p becomes true, and remains true.

• `P=?[M ]', referring to the probability that M is true for some well-
formed formula M .

• `S=?[M ]', referring to the steady-state probability that M is true, i.e.,
the probability that at some point the formula M is true.

• `R=?[M ]', referring to the expected reward in states where M is true.
Rewards let us quantify things within a model, e.g., time taken or
energy used. Rewards are described in more detail in Section 7.
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Prism also allows the use of standard numerical operators such as =, ≥ and
≤ in PCTL* formulae. A full syntax and semantics for PCTL* can be found
elsewhere [15].

Model checking works by analyzing the entire state space of a model in
order to determine whether a particular property holds. For example, for the
sensor node model above, we can use PCTL* to specify that the sensor node
is eventually in the `idle' state:

F (state = 1)

This can then be turned into a property in Prism by adding the P=?[. . .]
operator around the PCTL* formula. This operator indicates that we are
querying Prism for the probability of the formula being true on some path
through the model:

P=?[F (state = 1)]

In this case, Prism has determined that the probability is 1.0. More complex
properties can be formed. For example, the following property gives the
probability that the model will always be in the `idle' state at some point:

P=?[G F (state = 1)]

This is also equal to 1.0 for the sensor node PRISM model.

3.1. The Fire�y-Gossip (FiGo) Protocol

In the next section we describe the construction of a Prism model of a
decentralized wireless network management protocol called FiGo. FiGo was
chosen because it is a relatively-simple protocol that contains characteris-
tics found in more commonly used protocols like Trickle [43] and RPL [44]
such as the use of local-only information and dissemination via epidemic
propagation [45]. Unlike these protocols, FiGo serves two functions, it both
synchronizes clocks and forces the agreement of new information for all of
the nodes in the network. In FiGo, these two functions are coupled, and so it
was important to the authors of FiGo that its correctness for both functions
be veri�ed.

FiGo synchronizes sensor node's clocks in order to unify the measurement
of time across the network using �re�y-like synchronization. In nature, �re-
�ies are bioluminescent beetles that create bursts of light to attract mates or
prey. Fire�ies have been observed to synchronize these bursts with nearby
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�re�ies. The FiGo protocol replicates this behaviour algorithmically to allow
WSN nodes to synchronize with one another. A key parameter in �re�y syn-
chronization algorithms is the refractory period, a period after transmitting
for which no further transmissions are made. Within a wireless sensor net-
work, a refractory period enables nodes to conserve energy usage in a similar
way to real �re�ies. In addition to synchronization, FiGo enables agreement
on key information between nodes via gossiping new information to their
neighbours.

Current techniques for large-scale computer management are not suitable
for WSN due to the unreliable nature of the nodes and their networks. A
potential solution is to use management protocols, such as FiGo, that scale
well and are robust to the failure of individual nodes [46]. In applications
such as precision agriculture [4, 5], wireless nodes need to be synchronized
to be able to deliver time-correlated samples of data such as moisture levels
and temperature, and to analyze the data. If the analysis shows a problem,
control messages need to be sent to nodes with actuators, e.g., to increase
irrigation in a drought, or decrease it if a particular disease is discovered.

Synchronization of a WSN is essential in many applications, for example
in adaptive sensing for smart water networks [47]. WSN allow urban water
providers to monitor the water �ow to match customer demand. Synchro-
nization enables the sensor nodes to measure, communicate and aggregate
the �ow rates and water pressure data. A control algorithm on the actuator
nodes can open or close valves to stabilize water �ow for the network, or
re-route water in the case of a major leak. Importantly, the control software
can also disseminate new control algorithms or critical security updates to
all the sensing and actuation nodes via gossiping.

FiGo is typical of a class of algorithms that combine �re�y synchroniza-
tion [48] and gossip protocols [45] into a single epidemic process [49]. This
mixture of synchronization and dissemination processes is used to bring the
internal states of WSN nodes to a stable, global equilibrium where all nodes
are synchronized with respect to both time and metadata. Experiments have
shown such protocols to be both scalable and resilient to individual node fail-
ure [49, 46, 50]. A typical FiGo algorithm is shown in Figure 2.

FiGo algorithms have been deployed for the synchronization and manage-
ment of several WSN deployments run by the Adaptive Emergent Systems
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Engineering group at Imperial College1. For example, they were used to or-
ganize pollution sensors for an experiment with mobile data mules as part of
an Imperial College Grand Challenge project, and to synchronize and con-
trol the sampling rate for a rainfall monitoring sensor network as part of a
�oodplain monitoring project done in collaboration with the Imperial College
Department of Civil Engineering [51].

In practice, FiGo algorithms like the one in Figure 2 are implemented on a
network of microcontroller-based computers equipped with sensors and radio
communications such as the MicaZ sensor nodes [52] shown in Figure 3. One
instance of the FiGo algorithm runs on each node. The nodes are switched
on randomly and the FiGo algorithm enables synchronization and gossiping
across the network. As sensor nodes are switched on at di�erent times it is not
possible to assume that the algorithms execute from the same starting point.
For example, one node may be executing line 1 of the algorithm, while another
is executing line 5, and other is executing line 12 within the main control
loop. Furthermore, we cannot assume that nodes execute synchronously as
sequences of instructions corresponding to di�erent lines within the algorithm
may execute at di�erent rates, and as we shall see in Section 6, environmental
factors such as temperature variation may a�ect the clock speed at which the
microcontrollers themselves operate.

4. A Prism Model of FiGo

It is possible to model various WSN protocols in Prism. In order to illus-
trate the approach, we create a model of the decentralized WSN management
protocol known as FiGo [49]. A Prism model of FiGo was developed pre-
cisely capturing the control �ow of the algorithm in Figure 2. An excerpt
from the Prism model can be seen in Appendix A. The algorithm begins
with a number of variable assignments which are directly translated into vari-
able assignments in Prism. Some of the variables are not updated at all in
the model, so these are set as global constants in Prism, e.g.:

const int cycleLength = 100;
const int refractoryPeriod = �oor(cycleLength/2);

The main loop of the algorithm is then divided into a number of phases.
For example, the transmit phase corresponds to the if-statement in lines 9

1http://wp.doc.ic.ac.uk/aese/
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to 14. The next if-statement consists of a number of nested if-statements
called listen, sync1, sync2, and so on. The �nal phase corresponds to the �nal
if-statement in the main loop and is called updateClock. These phases are
de�ned as global constants and were used as the values of a local variable
s1Phase which contains the currently-executing phase:

s1Phase : [0..9] init transmit ;

Note that s1Phase refers to the phase of the �rst sensor node module, which
is called s1. Other sensor node modules are called s2, s3, etc.

When one phase has �nished executing the next phase is chosen according
to the control �ow of the algorithm in Figure 2. For example, during the sync1
phase in lines 16 to 19 the algorithm checks whether a message has been
overheard (i.e., received), and if the clock is outside the refractory period.
If they are, then the sensor node updates its clock to the average of its own
clock and the clock of the other sensor node. The �circular average� is used,
in which the average of 90 and 10 is 0 (modulo 100), rather than 50. The
circular average ensures that the update to the clock variable moves it closer
to the clock of the other sensor node. The following procedure calculates the
circular average of two numbers a and b modulo 100:

if ( | a−b | > 50 )
return ceiling ((a+b+100)/2) mod 100

else
return ceiling (( a+b)/2)

In the Prism model, this behaviour is shown in the following three com-
mands:

[] s1Phase=sync1 & s1Clock>=refractoryPeriod & di� ≤ �oor (cycleLength/2) →
(s1Clock'=s1avg1) & (s1Phase'=sync2);

[] s1Phase=sync1 & s1Clock>=refractoryPeriod & di� >�oor(cycleLength/2) →
(s1Clock'=s1avg2) & (s1Phase'=sync2);

[] s1Phase=sync1 & !( s1Clock>=refractoryPeriod ) → (s1Phase'=sync2);

The PRISM formulae di�, s1avg1 and s1avg2 are de�ned as follows:

formula di� = max(s1Clock,s2Clock)−min(s1Clock,s2Clock);
formula s1avg1 = ceil ((s1Clock+s1InboxClock)/2);
formula s1avg2 = mod(ceil((s1Clock+s1InboxClock+cycleLength)/2),cycleLength);

The �rst two commands say that if the sensor node s1 is in the sync1 phase
and the clock is greater than or equal to refractoryPeriod, then set s1's clock
to the circular average of the s1's clock and s2's clock. The third command

11



says that if we are in the sync1 phase and we are within the refractory period,
then proceed to the next phase of the algorithm, sync2.

Prism models are based on modules which execute concurrently. Each
sensor node in the Prism model is represented by a single module. For exam-
ple, in a two-node model there are two modules. The Prism model is based
on a state transition system, and therefore time is modelled implicitly in the
transitions between states. Modules are able to communicate using: (i) syn-
chronizations, (ii) global variables that may be updated by any module, or
(iii) local variables which may be updated by just one module but which are
readable by all. Prism allows modules to be executed concurrently in di�er-
ent ways based on the use of ideas from communicating sequential processes
and process algebra [42]. The Prism model of FiGo is based the Prism

default of an alphabetised parallel composition of the transitions across each
of the modules. For example, for a n-node model with modules s1, s2, . . . , sn
the composition s1 || s2 || . . . || sn is used. The modules are synchronized
only on labelled transitions which appear in all modules. For example, the
tick synchronizations used in Section 5.1 cause the modules to synchronize
when executing the transitions with that label.

The sensor node which we have modelled here is called s1. To model
communication between sensor nodes we need at least one more sensor in
the model, s2. The sensor s2 is exactly the same as s1, except all references
to �s1� in the code are modi�ed to �s2.� Communication in the model is
achieved asynchronously through the use of inboxes: when a sensor sends
a message to another sensor it does so by leaving the message in an inbox,
which can then be read by the receiving sensor when it is ready to do so.

The resulting combined model is around 140 lines of code long including
variable declarations, and can be found online2. This Prism model is an
almost direct translation from the pseudocode to Prism and was not initially
optimized for formal veri�cation.

5. Formal Veri�cation Using Prism

We build a formal model in Prism, in our case using version 4.3.1, in
a manner analogous to compiling a program: an input �le containing the
Prism model is automatically converted into a probabilistic �nite state au-

2http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/1118
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tomaton. During this construction, Prism calculates the set of states reach-
able from the initial state and the transition matrix which de�nes transitions
between states. Building revealed that the full model consisted of 4,680,914
reachable states, with 9,361,828 transitions between those states. and took
21 minutes on an Intel Core i7-3720QM CPU @ 2.60GHz laptop, with 16 GB
of memory, running Ubuntu Linux 16.04. As we shall see in Section 5.1, it
was possible to reduce the size of this model signi�cantly.

One of the key features of Prism is that it can �nd the probability of a
particular property holding through some path through a computation tree.
For example, we can create a property to determine the probability that
eventually the two sensors are synchronized:

P=?[F (s1Clock = s2Clock)] [23.8s] (1)

In this case the probability is 1.0, meaning that on all paths through the
model the clocks will eventually synchronize. (The time taken for model
checking was 23.8 seconds.) That is not to say that they remain synchronized,
or that they become synchronized again once they are no longer synchronized.
If we wish to test the latter, that synchronization happens repeatedly, then
we can create a probability based on the second formula above:

P=?[G F s1Clock = s2Clock] [100s] (2)

Therefore the probability that synchronization occurs in�nitely often is 1.0.
We can strengthen the property further: we can verify that, once the clocks
are synchronized, that they remain synchronized:

P=?[F G s1Clock = s2Clock] [75.6s] (3)

In this case the probability of this property being true is 0.0, meaning that
it is never the case that the two clocks synchronize and then remain syn-
chronized forever. The reason this is so can be seen by examining a simu-
lation, or trace, of the model. (A simulation is a sample path or execution
of the model [42].) Below is a simulation of the model showing how de-
synchronization occurs after synchronization:

action s1Phase s1Clock s2Phase s2Clock

s1 updateClock 4 updateClock 4

s2 updateClock 4 transmit 5

s2 transmit 5 transmit 5
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The table shows the values of certain state variables during an execution of
the model. The leftmost column, `action�, shows which module, s1 or s2, is
currently executing. In the �rst state, both clocks have the value �4� and
are synchronized. However, a transition occurs in which one of the sensors,
in this case, s2, increments its clock value resulting in de-synchronization.
However, in the next state we can see that the sensor s1 updates its clock as
well, resulting in synchronization.

We might postulate that once synchronization occurs, then de-synchroniz-
ation will occur at some point. This can be encoded as the following property,
which evaluates to 1.0:

P=?

[
G

(
s1Clock = s2Clock =⇒
F ¬(s1Clock = s2Clock)

) ]
[123s] (4)

We can also verify whether once de-synchronization has happened, that syn-
chronization will eventually happen with a probability of 1.0:

P=?

[
G

(
¬(s1Clock = s2Clock) =⇒

F s1Clock = s2Clock

) ]
[175s] (5)

Property 1 tells us that synchronization will occur at some point during the
execution of the model and Property 2 tells us that synchronization will
occur in�nitely often. Properties 4 and 5 tell us even more: that periods
of synchronization are separated by periods of de-synchronization, and vice
versa.

5.1. Increasing the Model's Accuracy

Examining simulations using Prism reveals that clocks will rapidly de-
synchronize after synchronization, as we saw in the previous section. This is
a result of the way clocks were handled in this model: we allowed for clocks
to tick at any rate. Therefore it is possible for clocks to tick unevenly, as in
this case. In fact, it is possible for one clock to tick inde�nitely without the
other clock ticking. This assumption of the model can be seen to correlate
with a real-world sensor system in which clocks are unreliable and may vary
widely in comparative speeds.

The FiGo sensor network we are modelling is based on the `MICAz' sen-
sor node developed by Memsic Inc. [52] (see Figure 3). The network is
homogeneous across nodes, meaning that the same hardware and software
is present on each node. This includes the microcontroller, in this case the
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`ATmega128L' developed by Atmel Corporation [53]. This microcontroller
has a clock speed of 16 MHz and operates at up to 16 million instructions
per second. As the network is homogeneous we can assume that the clock
speed is constant across di�erent nodes. The current model assumes that
clock speeds may vary, however, so this model should be updated to use a
constant clock speed.

Clock speeds were made constant by introducing synchronizations in the
updateClock phase:

[ tick ] s1Phase=updateClock & s1Clock<cycleLength →
(s1Clock'=s1Clock+1) & (s1Phase'=transmit);

[ tick ] s1Phase=updateClock & s1Clock=cycleLength →
(s1Clock'=0) & (s1SameCount'=0) & (s1Phase'=transmit);

The �rst command says that if the clock is less than the cycle length (equal
to 99 in this model), then increment the clock, but if the clock is equal to
99, then reset the clock to zero.

These commands both use a synchronization label, tick, and correspond
to a similar set of commands in the s2 sensor module, which use the same
label. The label means that one of these commands must execute at the same
time as one of the corresponding commands in the s2 module. Since these
commands handle clock updates, this ensures that the clocks will update
synchronously, and therefore it is impossible for one clock to tick faster than
the other. This models more closely the homogeneous network on which the
FiGo algorithm is implemented.

Another advantage of constant clock speeds is that it reduces the total
number of states of the probabilistic model. Constant clock speeds were in-
troduced to increase the accuracy of the model, but also have a side-e�ect of
reducing model size and complexity. In this case the model reduced in size
from 4,680,914 states with 9,361,828 transitions to 8,870 states and 13,855
transitions. The time taken for model building also decreased, from 21 min-
utes to 17 minutes.

Properties 1�5 were formally veri�ed for this revised model and were
found to have the same probabilities as before, but with signi�cantly reduced
times for model checking, e.g.:

P=?[F s1Clock = s2Clock] [5.4s] (6)

5.2. Improving E�ciency Further

As described above, the Prism model has a long build time of 17 minutes.
To reduce the size of the model the duty cycle length was reduced from 100 to
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20. This reduces the size of the model to 1,947 states and 3,040 transitions,
and takes 16.8 seconds to build. The duty cycle length can be reduced from
100 to 20 without signi�cantly a�ecting the accuracy of the model, as there is
still a large enough range of possible values to allow for an accurate depiction
of clock synchronization via circular averaging. Therefore, from this point
on the reduced duty cycle length was used.

Naturally, reducing veri�cation time makes veri�cation more convenient,
but it also enables batch processing of veri�cation jobs known as experiments
within the Prism model checker. To demonstrate this, we used the experi-
ment feature within the Prism model checker to automatically check every
combination of nextBroadcast values. In the original de�nition of the FiGo
algorithm, the variable nextBroadcast is assigned a random value between 0
and 99 for each sensor. During construction of the Prism model, however,
these random values were modi�ed to a constant integer value. In order to
verify that the FiGo algorithm would work with every possible value of the
nextBroadcast constants we used the experiment feature automatically check
every combination of nextBroadcast values. This is done by removing the
values of the global constants that represent the next broadcast value. This
e�ectively makes them variables:

const int s1NextBroadcast;
const int s2NextBroadcast;

Then, Prism can be used to perform automatic, and exhaustive, model-
checking of properties across a range of values for these constants. Prop-
erty 2 was veri�ed with a range of [0, 20] for both variables. The results
can be found in the online repository3 and showed that the probability that
synchronization will happen in�nitely often (i.e., Property 2) is 1.0 for every
combination of values, meaning that the FiGo algorithm reaches synchro-
nization regardless of the particular values of the nextBroadcast variables.

5.3. Gossip and Synchronization

The properties examined thus far have concerned clock synchronization.
The other main function of the FiGo algorithm is to spread information
across a network using a gossip protocol in which sensors tell their neighbours
about a new piece of information. In the case of the FiGo algorithm, this
is represented by an integer variable whose initial value is zero, but which

3http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/1118
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may increase when a node is updated with a new piece of information. This
captures a common function of WSN that must share new information, roll-
out software updates, etc.

The FiGo algorithm currently modelled in Prism sends metadata to the
other sensors, and when it receives metadata it compares it against its own
local metadata value. In the models examined previously, the metadata was
�xed at zero across all sensors to allow us to examine clock synchronization
only. In order to analyze metadata synchronization the model was modi�ed
to allow new metadata values. This was done by creating a branching point
during the updateClock phase of the algorithm:

[ tick ] s1Phase=updateClock & s1Clock=cycleLength & s1Metadata<3 →
(1−pUpdateMetadata): (s1Clock'=0) & (s1SameCount'=0) & (s1Phase'=transmit)
+ pUpdateMetadata: (s1Clock'=0) & (s1SameCount'=0) &

(s1Metadata'=s1Metadata+1) &(s1Phase'=transmit);

The metadata can take any value from 0 to 3, representing a sequence of three
possible updates from the initial value. This updated command allows the
metadata to be incremented at the point the duty cycle ends. This happens
with probability pUpdateMetadata which is equal to 0.5, a value chosen to
represent that new metadata will happen, on average, every other duty cycle.
Therefore the probability that the metadata will not be updated at the end
of the duty cycle is also 0.5. This functionality is included in s1, but not
in s2, to model a sensor node that receives updates �rst. For example, this
could be the sensor node located closest to an engineer who is updating node
software, which will therefore receive an update �rst.

Adding this branch point to the model introduces new states for the
various values of the local metadata variables. This increased the size of
the model from 1,947 states and 3,040 transitions to 6,018 states and 9,408
transitions for a model with a duty cycle of 20. It is now possible to form
properties that verify the gossip part of the FiGo algorithm. For example:

P=?[F s1Metadata = s2Metadata] = 1.0 [0.041s] (7)

This property says that the probability that the metadata is eventually syn-
chronized across nodes is 1.0. It can also be veri�ed that metadata is syn-
chronized in�nitely often:

P=?[G F s1Metadata = s2Metadata] = 1.0 [2.0s] (8)

Furthermore, we can verify that the Fire�y and Gossip parts of the algorithm
both work, and that in�nitely often the two sensors will by synchronized on
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both time and metadata:

P=?

[
G F

(
s1Metadata = s2Metadata
∧ s1Clock = s2Clock

) ]
= 1.0 [1.6s] (9)

This allows us to verify the original requirements of the FiGo authors [46]
that both the Fire�y synchronization and Gossip parts of the algorithm can
correctly co-exist.

To examine the scalability of the FiGo algorithm as it is currently mod-
elled, the two-sensor network was extended to three and four sensors. A
complete graph topology was used, so that every node can communicate
with every other node. A range of clock duty cycle lengths was examined for
2�, 3� and 4�sensor networks. The aim was to see how total time to verify
Property 2 (including build and veri�cation time) was a�ected. The results
are summarized in Figure 4. All of the probabilities for Property 2 for the
di�erent network and duty cycle sizes were found to be 1.0, showing that
synchronization happens in�nitely often in all the cases examined.

The 2� and 3�sensor networks could be veri�ed formally with a clock
cycle length of up to 100 for 2-sensor networks, and 28 for 3�sensor networks.
However, the 4�sensor network could not be analyzed at all. The amount of
time taken to verify this property increases with cycle length, and increases
signi�cantly with the number of sensors (see Figure 4). This is due to a
state space explosion [54] occurring as a result of a larger number of large
variables occurring in the model (e.g., the duty cycle has a range of up to
100 for each sensor). These variables include the inboxes which have to be
updated with the clock and metadata values for synchronization and gossip
respectively. The state space also increases with cycle length due to increased
non-determinism in the model: the larger the duty cycles for the clocks of
each sensor, the more combinations of these clock values there are in the
model. It is possible to reduce the size of the state space by reducing the
number of variables in the model. For example, the use of inboxes results
in values being copied from the clock value of a sensor node to the inbox of
each of the other sensor nodes. We can, however, avoid the use of inboxes by
reading values directly from other modules (as all variables are readable by
other modules) or by using global variables. This would enable us to eliminate
the need for inbox variables, thereby reducing the size of the state space.
Strategies like this based on re-modelling and abstraction are often used to
manage the state space explosion problem and reduce the time and memory
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required during model checking. More information on these approaches can
be found in Section 5.4.

5.4. Overcoming State Space Explosion

It should be noted that the results presented earlier only pertain to the
FiGo model examined in this paper, and other models and protocols may
permit larger sensor networks to be analyzed. While state space explosion is
a recurrent theme in model checking, it can be mitigated through abstraction
and re-modelling to reduce the size of the state space. For example, it may
be possible to reduce the size of the state space signi�cantly by using a more
abstract model in which less relevant details are left out. In this paper, we
chose a straightforward translation from pseudocode to Prism for the fol-
lowing reasons. Firstly, the time taken to write the model is greatly reduced
by using a straightforward translation. Secondly, as it is more straightfor-
ward, the relationship between lines of pseudocode and their implementation
in the Prism model should be clearer, meaning that it is less likely that
errors have been introduced by more signi�cant abstractions. Thirdly, if the
authors of the pseudocode algorithm decide that modi�cations are necessary,
then these should be more straightforward to implement by modifying the
existing Prism model. Of course, as we saw in the previous section, the
use of a straightforward translation closely resembling the pseudocode of the
algorithm, and using little abstraction, is likely to result in a model with sig-
ni�cantly more states than would be found by using a more abstract model.
As is often the case in engineering, there are trade-o�s: in this case, between
ease of translation, clarity, extensibility, time and memory required for model
checking, and so on.

The complexity of model checking re�ects the high level of con�dence
gained through the exhaustive examination of the state space. Larger sensor
networks can be modelled using simulation, but simulation does not allow
for the complete traversal of the state space. However, model checking often
cannot model at the same level of detail as simulation. Therefore, we advo-
cate the use of model checking in concert with simulation, experimentation
(with real sensor networks) and other veri�cation tools, as is the case with
corroborative veri�cation and validation [55], in order to develop the highest
levels of con�dence in protocols for critical IoT systems.

In this section the size of the Prism model was reduced using a number
of simpli�cations, or abstractions. The aim of any abstraction is to remove
unnecessary detail, so that only pertinent information remains. For example,
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in order to reduce the build time of the Prism model from 17 minutes to 16.8
seconds the duty cycle time was reduced from 100 to 20. Another example
is in the handling of metadata, in which there are only 4 possible values
of the metadata used. In each case these abstractions allow us to reduce
the time and memory needed for probabilistic model checking, but without
signi�cantly a�ecting the accuracy of the model. Of course, as is the case
in many engineering situations, there is a trade-o�. At one end of the scale,
there are highly tractable models which are quick to compute and analyze,
but lack su�cient detail to allow us to draw any meaningful conclusions for
veri�cation. At the other end of the scale there are highly detailed models
which cannot be analyzed in a reasonable amount of time. The job of the
veri�cation engineer is to �nd a `happy medium' between these two extremes,
so that a model is su�ciently detailed to be interesting, but is su�ciently
simple to allow tractable analysis.

Simulation is often used as a veri�cation tool in a similar way to model
checking. Models of the system are built and then executed in order to
analyze the behaviour of the system across varying parameters. However, the
key di�erence between model checking and simulation is that model checking
is exhaustive, and examines every possible state of a model. In contrast,
simulation examines only the states which were encountered during a �nite
number of simulations. These states are often a very small subset of the set
of possible states. However, simulations can be more detailed than models
for model checkers, as not every state has to be examined.

In this paper we focus our e�orts on formal veri�cation of protocols for
WSN and critical IoT systems in order to show the applicability of the ap-
proach to more complex protocols such as FiGo. However, when verifying
systems for use in critical IoT systems, or any other kind of critical system,
the most preferable option is to use a variety of veri�cation and validation
techniques so that the best features of each can be leveraged [55].

6. Environmental E�ects on Hardware

IoT systems are often deployed out-of-doors in environments that are hos-
tile to electronics. Appropriate packaging can mitigate many of the a�ects of
the damp and animal intrusion, but can not help prevent changes in temper-
ature. It has been shown that the functioning of microcontrollers commonly
used in IoT sensor nodes, such as the ATmega128L, are particularly a�ected
by temperature. Speci�cally, the speed of the oscillator used the internal
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microcontroller clock changes depending on the temperature. (In this case
the clock speed refers to the clock internal to the microcontroller, not the
clock used in the FiGo algorithm described earlier.) Laboratory tests with
synchronized MICAz sensor nodes have revealed that the drift in clock speed
can be pronounced over a period of hours. Due to the pronounced e�ects
of temperature on the function of the sensor nodes, and the di�culty of
mitigating these with packaging, we focus on solely on temperature in this
work.

Lenzen et al. [41] studied the e�ect of varying ambient temperature on the
clock speed of a `Mica2' node, which uses the same processor as the MICAz
node used in this paper. It was found that drift was up to one microsecond
per second for a di�erence of �ve degrees Celsius (see Figure 5). Using the raw
data from [41] it was determined that at 0.0 degrees Celsius the operating
frequency was 921, 814 Hz, and at 30.0 degrees Celsius the frequency was
921, 810 Hz. Therefore, for each tick of the clock, the amount of time taken
per tick for a processor at 30.0 degrees Celsius will be 1.000004339 times
longer than for a clock at 0.0 Celsius. Eventually the warmer clock will lag
the colder clock by one whole tick, i.e., the colder clock will have ticked twice
and the warmer clock will have ticked once.

Suppose that clocks c1 and c2 starting ticking at the same point. When
clock c1 has ticked n1 times, with each tick having length l1, the total time
elapsed is n1l1. Similarly for clock c2, after n2 ticks the total time elapsed is
n2l2. After a period of time, the clocks will tick in unison again (see Figure 6),
so that n1l1 = n2l2. Suppose that clock c2 has ticked exactly once more than
c1, so that n1 = n2+1. Therefore we know that (n2+1)l1 = n2l2. If we let c1
be the colder clock, and c2 be the warmer clock, then we know that c2's tick
is 1.000004339 times longer that the tick of c1, so that l2 = 1.000004339l1.
Therefore (n2 + 1)l1 = 1.000004339l1n2. Therefore n2 = 230, 467, and we
know that after 230, 468 ticks of c2's clock it will be exactly one tick behind
c1's clock.

Therefore, on average, every 230, 468 ticks, the warmer clock will lag the
colder one by one whole tick. We can convert this to a probability, 1 in
230, 468, or 0.000004339, which can be incorporated into the probabilistic
Prism model:

[ tick ] s1Phase=updateClock & s1Clock=1 →
(1−pClockDrift): (s1Clock'=s1Clock+1) & (s1Phase'=start)
+ pClockDrift: (s1Clock'=s1Clock+2) & (s1Phase'=start) ;
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This command says that if it is time to update the clock, then increase the
clock value by 1 with probability 1− pClockDrift, or by 2 with probability
pClockDrift, where pClockDrift = 0.0004339. Note that pClockDrift is 100 ×
0.000004339. This is because clock drift is modelled as happening once per
duty cycle (speci�cally, when s1Clock = 1), which is every hundred clock
ticks. This helps reduce the state space because this branching point can only
happen once per duty cycle, rather than on every tick. Note that the clock is
increased by 2 when clock drift occurs. This is to ensure that the clock drifts
only once per duty cycle � if the clock was increased by 0 (representing a
slower clock rather than a faster one) then the precondition of this command
would be true on the next iteration of the algorithm meaning that the clock
could drift more than once in the duty cycle. As clock drift can be modelled
either by one clock slowing by one tick, or the other clock speeding up by
one tick, the accuracy of the model is not a�ected.

It is possible to calculate the e�ect of clock drift on the stability of clock
synchronization. One way to do this is use a steady-state probability in
Prism, which is the probability that a model is in a particular state at any
given time. For example it was found that:

S=?[s1Clock = s2Clock] = 0.999307518 [0.5s] (10)

i.e., the probability that the model is in a synchronized state is equal to
0.999307518. That is to say, 99.93% of the time the model is in a synchronized
state.

It should be noted that the numerical methods normally used to deter-
mine the steady state probabilities in Prism were not suitable in this case,
as they either did not converge or returned a value of 1.0 after a very short
execution time, indicating a possible problem with the use of the numerical
method. One possible reason for this is the closeness of the probability of
clock drift to zero. Instead, `exact model checking' was used, a technique
in which the model checker builds the state space explicitly, and returns a
probability based on the number of states matching the speci�ed formula
divided by the total number of states. Exact model checking is not enabled
by default as it requires a lot of time and memory [42], but in this case the
model was su�ciently small to allow its use.

Experiments with di�erent values for pClockDrift showed that the steady
state probability of synchronization is dependent on the clock drift rate. If
the clock drifts more often, then the model will spend less time in a synchro-
nized state. The varying clock drift rates due to ambient temperature were
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examined in order to determine the e�ect on synchronization of operating
at varying temperatures. Various clock speeds were taken from the data in
Lenzen et al.[41] corresponding to di�erent temperatures. The clock speeds
were compared against a base clock speed of 921814.624 Hz. This value was
chosen as it was the highest frequency observed, and it occurred at approxi-
mately zero degrees Celsius. Therefore the drift rates in our experiment were
relative to a reference node operating at that temperature.

Figure 7 shows the e�ect on synchronization between two nodes when one
node is at zero degrees Celsius, and a second node is at a varying ambient tem-
perature between −12.48 degrees Celsius and 30.48 degrees Celsius. It can
be seen that the steady-state probability never drops below 0.999151067, and
decreases with increased di�erence in temperature between the two nodes.
The shape of the curve closely matches that in Figure 5, as expected.

7. Performance Evaluation and Design Choices

In the previous sections we showed how probabilistic model checking can
be used to establish that a communications protocol for a wireless sensor
network satis�es key requirements concerning reliability. In this section we
show how probabilistic model checking can also be used to investigate per-
formance trade-o�s. For example, a key parameter in the implementation of
FiGo is the refractory period; a period during which the node does not mod-
ify its clock in response to messages from other nodes. The refractory period
is based on observations of �re�y synchronization, in which �re�ies do not
receive messages from other nodes within a period of time after `�ring', i.e.,
sending a message. The FiGo algorithm in Figure 2 uses a refractory period
of 50 within a duty cycle of 101 clock ticks, meaning that the algorithm will
not receive messages for half of its duty cycle.

Our �rst experiment investigated the steady-state probability of synchro-
nization using the property shown in the previous section.

S=?[s1Clock = s2Clock] (11)

This property was examined for a Prism model with a duty cycle of 20 steps,
clock drift of 0.000004339, refractory period between 0 and 15, s1NextBroadcast
between 0 and 5, and s2NextBroadcast between 6 and 11. Verifying with re-
spect to these parameters took over 19 hours. The results, shown in Figure 8,
show how the median probability of synchronization decreases as the refrac-
tory period increases. This was expected, as a longer refractory period causes

23



the sensor node to be non-responsive to other messages for a longer period
of time, causing the node to spend more time unsynchronized.

The relationship between the amount of time required to synchronize for
di�erent refractory periods can be investigated further using reward-based
properties in Prism. Reward structures in Prism allow values to be asso-
ciated with particular states or transitions of interest. For example, in the
case of time, a reward can be associated with every time step in the model
as follows:

rewards
[] true : 1;

endrewards

This reward structure tells the model checker to associate the value 1 with
every state in the model (as the proposition true is true in every state). A
reward-based property is then de�ned as follows:

R=?[p]

This property returns the average, or expected, total reward for a path lead-
ing up to states where p is true. For example, we could count the number
of times that the Prism modules synchronize on the tick label by using the
following rewards structure:

rewards
[ tick ] true : 1;

endrewards

We can also �nd the time taken for a sensor node to synchronize with another
node. The �rst step is to set p to be the synchronization condition:

R=?[s1Clock = s2Clock] (12)

Using this reward-based property with the reward structure above, we can
�nd the average amount of time taken to reach the synchronization state.
However, the structure will assign a reward of 1 to every state in the model.
This will include states in which other nodes are active. We would like to
only pay attention to states in which a particular node is active. Therefore
the reward structure above had to be modi�ed in order to measure the time
taken for a single node. To do this we add the label x to each transition in
a single node's module, e.g.:

[x] s1Phase=clockCycleCheck & s1Clock<cycleLength → (s1Phase'=synchronize);
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Three transitions already contain a label, tick, which is used for synchro-
nization of the clock updates (as described in Section 5.1). A few transitions
that update global variables could not have a reward label, as Prism assumes
that all labels denote synchronization, and synchronized transitions are not
allowed to modify global variables. In this case, `dummy' transitions were
inserted into the model to follow directly after the transitions which update
global variables. These dummy transitions were then labeled to allow a re-
ward to be assigned to them. (As this technique involves adding transitions
to the model, the amount of time used to build and verify the model increases
slightly.)

The following reward structure was then used:

rewards
[x] true : 1;
[ tick ] true : 1;

endrewards

This assigns a reward of 1 to every transition for a single node. The reward
was assigned to a transition, rather than a state, as it was simpler to pick
out states of a single model using labels on transitions, rather than using
conditions on states.

The average time required for synchronization was investigated for di�er-
ent refractory periods. The results can be seen in Figure 9. The graph shows
that the mean synchronization time increases with the refractory period.
(Standard deviation is shown via error bars.) This was expected as increas-
ing the refractory period prevents the node from responding to messages for
a greater period of time, meaning that the time taken for synchronization to
occur will increase.

Rewards can also be used to investigate the approximate energy consump-
tion of a node [29, 42]. Manufacturer speci�cations state that the MicaZ
platform draws 19.7 mA of current in receive mode, and 11 mA when send-
ing at −10 dBm [52]. These values can be added to a reward structure as
follows:

rewards
[ rx ] true : 19.7;
[ tx ] true : 11;

endrewards

The action labels rx and tx refer to receiving and transmitting respectively.
Transitions in the model are then labelled accordingly. (The MicaZ node uses
half-duplex communication, so sending and receiving are mutually-exclusive.)
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The implementation of the algorithm requires that the MicaZ node is always
in receive-mode, except when it is transmitting. For simplicity, we assume
that receiving a message takes the same amount of time as transmitting, but
it is equally possible to model situations where receiving and transmitting
require di�erent amounts of time. We can also add more detail to the model,
e.g., to take into account idle periods when the microprocessor does not draw
as much current.

Verifying the model with respect to Property 12 then reveals the average
energy consumption for synchronization. The refractory period can then be
varied (in the same manner as before) to determine the e�ect on energy
consumption. The results are shown in Figure 10. It can be seen that the
average energy consumed to reach synchrony increases with the refractory
period. Again, this is expected as increasing the refractory period increases
the amount of time to synchronize (Figure 9) and this, in turn, means that
more energy is consumed.

The results in Figures 8�10 indicate that a refractory period of 3 leads
to better results for this version of the algorithm: the least synchronization
time, the least energy usage and the greatest stability of synchronization.
The signi�cance of this precise value is not clear; however examination of
related work on �re�y synchronization protocols may give us some clues.
Please see Section 8 for more information.

It is possible that the refractory period could be better used, however.
For example, if the algorithm was set to enter a low-power mode during its
refractory period, then energy could be saved. In fact, the ATmega128L
microcontroller used on the MicaZ sensor node has such a low-power mode,
known as, `extended standby' [53], which uses an average current of 0.25 mA,
compared to 8.65 mA [56].

This can be represented within the Prism model by an updated rewards
structure:

rewards
[ rx ] s1Clock>refractoryPeriod : 19.7;
[ tx ] true : 11;

endrewards

For simplicity, the minimal current of 0.25 mA is treated as zero. The reward
for receiving (rx) is now only applied when the clock is outside its refractory
period. The e�ect on the energy consumed for di�erent refractory periods is
shown in Figure 11, which shows that the average energy consumed decreases
as the refractory period increases. This indicates a trade-o� between (i)
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energy consumption, and (ii) stability and synchronization time when the
low-power mode is used. (The results in Figures 8 and 9 are still valid as the
model of the algorithm has not changed.) While energy consumption can be
minimized by increasing the refractory period, stability and synchronization
time are best when the refractory period is equal to 3.

8. Discussion

We have shown how formal methods, in particular probabilistic model
checking using Prism, can be used to model and verify wireless sensor net-
works that use synchronization/distribution algorithms such as the Fire�y�
Gossip algorithm. Models were developed based on a straightforward trans-
lation from a pseudocode-style language into the Prism modelling language.
Key requirements of the FiGo algorithm were then encoded using probabilis-
tic computation tree logic which were then veri�ed formally using Prism.
These requirements included clock synchronization, metadata synchroniza-
tion and steady-state probability of synchronization, verifying that the FiGo
algorithm can be used reliably in WSN to synchronize clock and metadata
values. Due to the nature of model checking, this veri�cation is based an ex-
haustive analysis showing that the models satisfy properties based on those
requirements. In turn, this gives a high level of assurance that the system
has been designed correctly.

Environmental e�ects, such as temperature, can a�ect a WSN node's
hardware and cause clock drift. We have explored the use of formal veri�-
cation to quantify the extent to which clock drift a�ects the synchronization
of WSN nodes. Results such as these can be extremely useful for system
designers who may wish to adjust the parameters of FiGo, or even develop
new algorithms, to better cope with sources of unreliability such as clock
drift. These new synchronization algorithms can then be veri�ed formally in
a similar way to that described in this paper.

We have also demonstrated that the state space explosion is a key chal-
lenge in the formal veri�cation of WSN. State space explosion issues are
common when using model checkers like Prism [54], and the results in Fig-
ure 4 are typical. However, it is often possible to alleviate state space issues
through the use of abstraction and re-modelling. For example, rather than
modelling the algorithm completely for each sensor, we could model it in
detail for a single sensor, and model the rest of the network of n nodes with
a second module in Prism. In doing so the module size would be kept to a
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minimum, but would still allow for veri�cation of the behaviour of the node
in response to a network. One possible application of this approach would
be to verify how long a particular sensor node takes to synchronize with
an already-synchronized network. Another possibility is to use a population
model (e.g., [29, 30]), in which no one sensor is modelled in detail, but rather
the whole network, or several sub-networks, are modelled in order to verify
properties concerning overall sensor network behaviour. These approaches,
which could also be applied to investigate di�erent sensor network topologies,
are outside the scope of this paper and are intended for future work.

Another way to compensate for the state space explosion is to complement
formal veri�cation with other veri�cation methods, e.g., simulation. Simu-
lation can provide a greater level of detail. For example, sensor networks
consisting of thousands of nodes can be analyzed by simulation software [46].
Of course, the disadvantage of simulation is that it does not allow exhaustive
examination of the state space, and is therefore prone to missing highly im-
probable events that can be detected using model checking: so-called `black
swans' [57]. (A more detailed comparison of simulation and model checking
can be found in Section 5.4.) Naturally, we advocate the use of a range of
available methods of veri�cation for critical IoT systems, as their di�erent
characteristics are often complementary. An holistic approach including, but
not limited to, algorithmic analysis, simulation, experimentation, �eld re-
ports, as well as formal veri�cation, can be used to provide a high level of
con�dence in critical systems [55].

In Section 5.1 we described how the Prism model was improved by in-
troducing synchronization between the modules. This had the dual e�ect
of increasing the accuracy of the model (as the actual hardware systems on
which FiGo is implemented is homogeneous) and increasing the e�ciency of
model checking by reducing the number of the states in the model by a signif-
icant margin. A similar approach was taken by Dixon et al. [58] when model
checking swarm robotic systems. Initially, they investigated a few di�erent
approaches to synchronization, from full synchrony, through strict and non-
strict turn-taking between modules/robots and ending at fair asynchrony in
which robots were allowed to operate at di�erent speeds up to a certain point.
The latter case would be analogous to modelling a wireless sensor network
where clock speeds are allowed to vary within a particular margin. After
some analysis the authors concluded that full sychrony allowed the most ac-
curate modelling of their homogeneous robot swarm. Additionally, it was
found that this had a positive e�ect on the e�ciency of model checking. Of
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course, this abstraction is more di�cult to use when heterogeneous networks
or swarms are used. However it may still be possible to use fair asynchrony
as a compromise between model accuracy and e�ciency.

In Section 7 we showed how the FiGo algorithm works best with a refrac-
tory period of 3 across a range of possible refractory periods from 0 to 20.
Speci�cally, we found that the probability of synchronization, synchroniza-
tion time, and energy consumption were optimal at that point. (This result
is distinct from the case where the low-power mode was used. In that case
the energy consumption decreased as the refractory period increased.) As
mentioned in that section, the reasons for this are unclear. However, similar
results were presented by Gainer et al. [30] in their analysis of �re�y-like
synchronization in networks of pulse-coupled oscillators. The authors used a
population-model within Prism and observed that the optimal refractory pe-
riod with respect to synchronization time and stability is observed at around
half the cycle length (analogous to the duty cycle length of the FiGo algo-
rithm). A similar result for networks of pulse-coupled oscillators was reported
by Degesys et al. [59]. The corresponding value for FiGo with a duty cycle
length of 20 steps would be at approximately 10 steps. Clearly this is dif-
ferent from the optimal refractory period of 3 seen with FiGo. However the
placement of the optimal refractory period at a point midway between the
two extremes of the duty cycle appears to be a common theme.

9. Conclusion

We have shown how formal methods, in particular probabilistic model
checking using Prism, can be used to model and verify the performance of
WSN protocols under the in�uence of environmental conditions, like temper-
ature, that a�ect their hardware.

We have also shown that formal veri�cation can provide an important
basis for investigation and analysis of WSN protocol design choices. For-
mal veri�cation can therefore be productively used as a design tool in the
development of WSN algorithms and protocols. By formally modelling the
algorithms a designer can assess various parameters and options before turn-
ing to either detailed simulation or even practical implementation. Further-
more. we showed how the performance of algorithms for WSN can be an-
alyzed quantitatively using probabilistic model checking, providing insights
into trade-o�s between key performance indicators, such as stability, time
e�ciency and energy consumption.
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Our intention is to extend applicability beyond just speci�c synchroniza-
tion and distribution algorithms, through the generation of a more general
approach to WSN design. This will incorporate simulation, algorithm anima-
tion, testing and a range of formal veri�cation elements, to provide a strong
and useful tool for the exploration and analysis of a range of design decisions.
While there is much work still to be done to facilitate this, the research re-
ported in this paper shows how certain design choices can be explored in a
more precise, formal way.
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Appendix A. PRISM Model of FiGo

An excerpt of the code for the PRISM model of the example described
in Section 4 is reproduced here. This excerpt contains the code for a module
called sensor1. All models also contained a similar module called sensor2 in
which references to �sensor1� and �s1� are replaced by �sensor2� and �s2�.
In the three- and four-sensor models described in Section 5 there are addi-
tional modules for sensor3 and sensor4. The full modules, together with �les
containing properties veri�ed, are provided online 4.

4http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/1118
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1 module sensor1
2 s1Phase : [0..9] init transmit ;
3 s1Clock : [0.. cycleLength] init 5;
4 s1LocalMetadata : [0..1] init 1;
5 s1SameCount : [0..2] init 0;
6
7 // if local clock = next broadcast and same count < same threshold then
8 // transmit local clock and local metadata
9 [] s1Phase=transmit & (s1Clock=s1NextBroadcast | s1Clock=(mod(

s1NextBroadcast+refractoryPeriod,cycleLength))) & s1SameCount<sameThreshold
→ (s2InboxClock'=s1Clock) &(s2InboxMeta'=s1LocalMetadata) &(s2InboxFull '=
true) & (s1SameCount'=0) & (s1Phase'=updateClock);

10 [] s1Phase=transmit & !(( s1Clock=s1NextBroadcast | s1Clock=(mod(
s1NextBroadcast+refractoryPeriod,cycleLength))) & s1SameCount<sameThreshold)
→ (s1Phase'=clockCycleCheck);

11
12 // if clock ≤ cycle length then listen
13 [] s1Phase=clockCycleCheck & s1Clock<cycleLength → (s1Phase'=listen) ;
14 [] s1Phase=clockCycleCheck & !(s1Clock<cycleLength) → (s1Phase'=updateClock);
15
16 // if a message is overheard, then synchronize
17 [] s1Phase=listen & s1InboxFull → ( s1InboxFull '=false ) & (s1Phase'=

synchronise1);
18 [] s1Phase=listen & ! s1InboxFull → (s1Phase'=updateClock);
19
20 // if local clock > refractory period then adjust local clock to average
21 // of local clock and time in message
22 [] s1Phase=synchronise1 & s1Clock>=refractoryPeriod & di� ≤ �oor (cycleLength

/2) → (s1Clock'=s1avg1) & (s1Phase'=synchronise2a);
23 [] s1Phase=synchronise1 & s1Clock>=refractoryPeriod & di� >�oor(cycleLength/2)

→ (s1Clock'=s1avg2) & (s1Phase'=synchronise2a);
24 [] s1Phase=synchronise1 & !( s1Clock>=refractoryPeriod ) → (s1Phase'=

synchronise2a);
25
26 // if metadata > local metadata then local metadata := metadata
27 [] s1Phase=synchronise2a & s1InboxMeta>s1LocalMetadata → (s1LocalMetadata'=

s1InboxMeta) &(s1Phase'=updateClock);
28 [] s1Phase=synchronise2a & !(s1InboxMeta>s1LocalMetadata) → (s1Phase'=

synchronise2b);
29
30 // else if metadata < local metadata AND same count < 1 then transmit data now
31 [] s1Phase=synchronise2b & s1InboxMeta<s1LocalMetadata &s1SameCount<1 → (

s2InboxClock'=s1Clock) &(s2InboxMeta'=s1LocalMetadata) & ( s2InboxFull '=true)
& (s1Phase'=updateClock);
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32 [] s1Phase=synchronise2b & !(s1InboxMeta<s1LocalMetadata &s1SameCount<1) →
(s1Phase'=synchronise2c);

33
34 // else if the metadata and the time are unchanged then increment sameCount
35 [] s1Phase=synchronise2c & s1InboxMeta=s1LocalMetadata &s1InboxClock=s1Clock

& (s1SameCount<1) → (s1SameCount'=s1SameCount+1) &(s1Phase'=
updateClock);

36 [] s1Phase=synchronise2c & s1InboxMeta=s1LocalMetadata &s1InboxClock=s1Clock
& (s1SameCount>=1) → (s1Phase'=updateClock);

37 [] s1Phase=synchronise2c & !(s1InboxMeta=s1LocalMetadata &s1InboxClock=
s1Clock) → (s1Phase'=updateClock);

38
39 // local clock = local clock + 1
40 [] s1Phase=updateClock & s1Clock=1 → (1−pClockDrift): (s1Clock'=s1Clock+1) & (

s1Phase'=transmit)
41 + pClockDrift: (s1Clock'=s1Clock+2) & (s1Phase'=transmit);
42 [] s1Phase=updateClock & s1Clock<cycleLength & s1Clock!=1 → (s1Clock'=s1Clock

+1) & (s1Phase'=transmit);
43 [] s1Phase=updateClock & s1Clock=cycleLength → (s1Clock'=0) & (s1SameCount

'=0) & (s1Phase'=transmit);
44 endmodule
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Figure 2: Phases of the FiGo Gossip�Synchronization Algorithm.
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Figure 3: Nine MicaZ sensor nodes running the FiGo algorithm.

Figure 4: Total time for formal veri�cation of Property 2 for 2� and 3�sensor networks.
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Figure 5: Hardware clock frequency for a Mica2 node for di�erent ambient tempera-
tures [41].

Figure 6: Clock re-synchronization. Ticks are shown as black circles.

Figure 7: Steady-state probability of FiGo synchronization for varying temperatures of a
second node.
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Figure 8: Median probability of synchronization for di�erent refractory periods.

Figure 9: Mean synchronization time for di�erent refractory periods.
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Figure 10: Mean energy consumption for di�erent refractory periods.

Figure 11: Reduced mean energy consumption with low-power mode.
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