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Abstract: The information about ships’ fuel consumption is critical for 

condition monitoring, navigation planning, energy management and 

intelligent decision-making. Detailed analysis, modelling and 

optimisation of fuel consumption can provide great support for 

maritime management and operation and are of significance to water 

transportation. In this study, the real-time status monitoring data and 

hydrological data of inland ships are collected by multiple sensors, and 

a multi-source data processing method and a calculation method for 

real-time fuel consumption are proposed. Considering the influence of 

navigational status and environmental factors, including water depth, 

water speed, wind speed and wind angle, the Long Short-Term Memory 

(LSTM) neural network is then tailored and implemented to build 

models for prediction of real-time fuel consumption rate. The validation 

experiment shows the developed model performs better than some 

regression models and conventional Recurrent Neural Networks 

(RNNs). Finally, based on the fuel consumption rate model and the 

speed over ground model constructed by LSTM, the Reduced Space 

Searching Algorithm (RSSA) is successfully used to optimise the fuel 

consumption and the total cost of a whole voyage.  

 
Key words: inland ship; fuel consumption; data-driven modelling; optimisation; LSTM; 
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1 Introduction 

Ships’ fuel consumption occupies a major part of ship operating costs (Leifsson et al., 2008). It also 

reflects the operating status of ship engines (Schaub et al., 2019), which makes it an important monitoring 

variable in modern intelligent ship systems (Li et al., 2019) and a key parameter to control in unmanned ship 

navigation systems (Wright, 2019). On the other hand, the ship fuel consumption is also closely related to 

exhaust emissions and is an important indicator for pollution research and environmental monitoring (Van et al., 

2019; Hansen et al., 2020). Therefore, the ship fuel consumption has become an important research topic for 

many scholars and practitioners. 

Over the past decade, ship speed optimisation has been considered as an effective approach to improve the 

energy efficiency and reduce the fuel consumption. Therefore, some researchers have focused on the speed 

optimisation of the whole voyage for reducing the fuel consumption (Fagerholt et al., 2010; Wang and Meng, 

2012; Psaraftis et al., 2014; Fagerholt et al., 2015; Wen et al., 2017; Li et al., 2018; Du et al., 2019). However, 

the speed of a ship depends to a large extent on the speed of the ship engines, the engines’ running conditions 

and the environmental conditions. All of these factors have a significant effect on the ship fuel consumption and 

fleet cost during the voyage. Wang et al. (2016) established an approach for real-time optimisation of ship 

energy efficiency during the working condition in a short distance ahead of the ship and achieved real-time 

optimisation under different navigation conditions. Sheng et al. (2019) developed a mixed-integer convex cost-

minimisation method for determination of optimal vessel speeds and fleet size. However, they all took the ship 

speed as the decision variable, where the ship speed is provided by the output power of engines, and is also 

closely related to navigational conditions. To achieve a suggested speed of a ship in the varying navigational 

conditions, one may need to constantly change the engine running speed, which may cause more fuel 

consumption than expected. 

In recent years, intelligent sensing devices with high acquisition rates are more and more widely used in 

modern ships, and many real-time and continuous data collection systems have been developed. Using the new 

systems, a large number of multi-source monitoring data, including longitude, latitude, Speed Over Ground 

(SOG), Course Over Ground (COG), engine speed, engine temperature, voyage mileage, reserve fuel and 

bunker fuel, have been collected. This provides abundant fundamental data for fuel consumption prediction, 
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energy efficiency optimisation and emission reduction (Satpathi et al., 2017; Huang et al., 2018; Wang et al., 

2019).  

For fuel consumption prediction, there have been some methods and models in the existing literature. 

Beşikçi et al. (2016) tried to reduce the ship speed and predict ship fuel consumption for various operational 

conditions through employment of an Artificial Neural Network (ANN), where seven input variables, including 

ship speed, revolutions per minute, mean draft, trim, cargo quantity on board, wind and sea effects, were used. 

Coraddu et al. (2017) compared three different approaches, a White Box Model, a Black Box Model and a Gray 

Box Model (GBM), in the prediction of the fuel consumption based on data measured by on-board automation 

systems. Wang et al. (2018) proposed a prediction model for the ship fuel consumption on the basis of the Least 

Absolute Shrinkage and Selection Operator (LASSO) regression algorithm. It used the dataset of ship reports, 

which includes the information about length of overall, beam, SOG, Beaufort scale and swell height. Yuan and 

Nian (2018) developed a Gaussian Process (GP) meta-model to predict the ship fuel consumption for different 

scenarios in consideration of the operational conditions’ effects, which involves speed, draft, trim, wind speed, 

wind direction, wave height and wave direction. Yang et al. (2019) proposed a genetic-algorithm-based GBM 

for the ship fuel consumption prediction using ship speed and Beaufort number. Gkerekos et al. (2019) 

presented a comparison of multiple data-driven regression algorithms for predicting the main engine fuel oil 

consumption, including Support Vector Machines, Random Forest Regressors, Extra Trees Regressors and 

ANNs. They considered vessel speed, engine speed and sea conditions as input variables. 

However, the existing research has some limitations. (1) Limited input variables were used for fuel 

consumption prediction. There is a lack of some important variables, such as engine temperature, water speed 

and wind direction. (2) There is a lack of detailed analysis about the trajectory characteristics and geographic 

environment when predicting fuel consumption. (3) In the optimisation of fuel consumption and total cost, only 

the vessel speed was used as the decision variable, while the more directly-related and controllable variable, 

engine speed, was not employed. (4) The environmental factors were not taken into consideration when 

optimising the fuel consumption and the total running cost. 

To solve the above problems, this work collects various monitoring data of ship sailing by multi-source 

sensors. After specific data processing and analysis, the real-time fuel consumption rate of ships is calculated 
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and the feature variables that are most correlated with fuel consumption are obtained. The prediction model for 

real-time fuel consumption rate is then constructed based on the Long Short-Term Memory (LSTM) network, 

which is verified by the measured data and compared with some traditional regression methods, Back 

Propagation Neural Networks (BPNNs) and other Recurrent Neural Networks (RNNs). The prediction model of 

SOG will be used for fuel consumption and cost optimisation, which is also built by the LSTM network. Finally, 

an optimisation algorithm Reduced Space Searching Algorithm (RSSA) is used to minimise the fuel 

consumption and the total cost of a voyage. RSSA is a nature-inspired heuristic technique that tries to switch 

and zoom in/out the targeted search space to speed up the searching process and jump out from local optima. It 

has been verified to be able to find optimal solutions fast and accurately, and outperform some other well-

known heuristic optimisation algorithms (Zhang and Mahfouf, 2010). The whole research framework is as 

shown in Fig. 1. 
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Fig. 1. The framework for fuel consumption prediction and optimisation 

The rest of the paper is organised as follows. First, the detailed multi-source data processing and analysis 

are presented in Section 2, where a real-time fuel consumption calculation method is proposed and the 

correlation between multiple variables is analysed. Then, the prediction model of real-time fuel consumption 

rate is constructed in Section 3. Detailed experiments are carried out to optimise the fuel consumption and the 

total voyage cost of inland ships in Section 4. Finally, conclusions are drawn in Section 5. Table 1 summarises 

the abbreviations used in the paper. 
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Table 1. A list of abbreviations 

Abbreviation Meaning Abbreviation Meaning 

AIS Automatic Identification System GPS Global Positioning System 

ANN Artificial Neural Network IMO International Maritime Organization 

BPNN Back Propagation Neural Networks IR Interaction Linear Regression 

BRNN Bidirectional RNN LR Linear Regression 

COG Course Over Ground LSTM Long Short-Term Memory 

CYN China Yuan MAE Mean Absolute Error 

DBPNN BPNN with two hidden layers PQR Pure Quadratic Regression 

DRNN Deep RNN PSO Particle Swarm Optimisation 

ES Engine Speed RLR Robust Linear Regression 

ET Engine Temperature RMSE Root Mean Square Error 

FCRM Fuel Consumption Rate Model RNN Recurrent Neural Network 

FTR Fine Tree Regression RSSA Reduced Space Searching Algorithm 

GA Genetic Algorithm SOG Speed Over Ground 

GBM Gray Box Model  SOGM SOG model 

 

2 Multi-source data analysis 

2.1 Data collection 

The data studied in this work came from the cargo ship sailing on the Yangtze River trunk, which was 

equipped with two engines rated at 735 kW. The main parameters of the ship are shown in Table 2. The raw 

data were collected by the multi-source sensors installed on the ship, such as Global Positioning System (GPS), 

Automatic Identification System (AIS), fuel sensor, speed sensor, temperature sensor and others. The collected 

data include IMO, ship name, date, time, longitude, latitude, SOG, COG, voyage mileage, engine speed, engine 

temperature, bunker fuel, tank fuel, and hydrological data such as water depth, water speed, wind speed and 

wind direction, as shown in Fig. 2. The multi-source data set includes 32,143 data records, collected from the 

Yangtze River trunk from Wusongkou to Chongqing, between September 11, 2019 (11:00:58) and October 7, 

2019 (23:59:23), which belongs to the dry season. The example of original data during September 11, 2019 is 

shown in Table 3. 

Table 2. Main parameters of the ship 

Parameter name Value Unit 

Designed length 110.00 m 

Moulded breadth 19.20 m 

Moulded depth 5.60 m 

Deadweight 7028 Mt 

Designed draught (full load) 4.65 m 

Designed speed (calm water) 18 km/h 

Main engine rated power 735 × 2 kW 

Main engine rated speed  830 rpm 

Propeller diameter 2.50 m 
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Fig. 2. Multi-source monitoring data collection 

 

Table 3. Original monitoring data of the ship (during 2019/09/11) 

Time Longitude Latitude 
SOG 

(km/h) 

COG 

(°) 

Reserve fuel (L) Barge 

oil (L) 

Engine speed (rpm) Engine temper(°C ) 
… 

Left Right Left Right Left Right 

11:00:58 121.5690 31.4025 0.078 0 1428.6 1562.9 0 0 0 36.4 35.4 … 

11:02:08 121.5690 31.4025 0.085 0 1428.6 1562.7 0 0 0 36.1 35.8 … 

11:03:15 121.5690 31.4025 0.067 0 1429.1 1562.9 0 0 0 36.2 35.7 … 

11:04:24 121.5690 31.4025 0.057 0 1429.0 1562.2 0 0 0 36.4 35.7 … 

…… …… …… …… …… …… …… …… …… …… …… …… … 

17:00:11 121.1897 31.6794 7.456 300.16 1274.9 1395.7 0.0294 438.8 459.3 60.5 56.6  

17:01:41 121.1880 31.6801 7.734 299.41 1273.2 1394.3 0.0294 438.9 459.2 60.7 56.4  

17:03:01 121.1870 31.6806 7.658 298.94 1274.4 1391.2 0.0294 437.6 459.6 60.9 56.8  

17:04:08 121.1860 31.6812 7.549 296.70 1272.2 1393.4 0.0294 439.3 459.6 60.7 56.6  

…… …… …… …… …… …… …… …… …… …… …… …… … 

2.2 Data pre-processing 

The multi-source monitoring data were obtained by continuous time sampling. Therefore, the raw data 

usually includes some errors and anomalies due to ship docking and swaying, data transmission delay and/or 

other reasons, as shown in Fig. 3. For example, the normal range of the engine speed is from 350 to 780 rpm, 

while in the collected data set there are some abnormal engine speed readings between 100 and 350 rpm; for 

longitude, the data samples with value 0 are obviously erroneous data. 
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(a). SOG (b). Right engine speed

(c). East Longitude (d). Reserve Fuel  

Fig. 3. Anomalies and errors in raw data: (a) SOG with anomalies caused by ship docking; (b) right engine 

speed with several erroneous data; (c) longitude with a large number of erroneous data; (d) reserve fuel of the 

left and right tanks with outliers caused by ship shaking. 

 

It should be noted that the raw data containing errors and noise were collected by different sensors. That is 

to say, for the data collected at the same time, if the longitude is wrong, it does not mean that the engine speed 

is also wrong. Moreover, not both engines work all the time. Therefore, we propose a data processing method, 

as shown in Method 1 to clean the original monitoring data. 

Method 1.  Multi-source data processing 

Input: 𝑅𝑎𝑤𝐷𝑎𝑡𝑎𝑆𝑒𝑡 (Raw data set) 

Output: 𝐶𝑙𝑒𝑎𝑛𝐷𝑎𝑡𝑎𝑆𝑒𝑡 (Data set after processing) 
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[1] Initialise, 𝐶𝑙𝑒𝑎𝑛𝐷𝑎𝑡𝑎𝑆𝑒𝑡 ←  ∅ 

[2] Sort 𝑅𝑎𝑤𝐷𝑎𝑡𝑎𝑆𝑒𝑡  by 𝑇𝑖𝑚𝑒 

[3] Delete the records of time duplication in 𝑅𝑎𝑤𝐷𝑎𝑡𝑎𝑆𝑒𝑡 

[4] Find records with 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 is wrong 

[5] Repair the wrong longitude value using spline interpolation 

[6] Find records with 𝑆𝑂𝐺 is zero, 𝐼𝐷_1 = 𝑓𝑖𝑛𝑑 (𝑅𝑎𝑤𝐷𝑎𝑡𝑎𝑆𝑒𝑡 [𝑆𝑂𝐺] == 0) 

[7] Find records with 𝐶𝑂𝐺 is zero, 𝐼𝐷_2 = 𝑓𝑖𝑛𝑑 (𝑅𝑎𝑤𝐷𝑎𝑡𝑎𝑆𝑒𝑡 [𝐶𝑂𝐺] == 0) 

[8] Find records with 𝐿𝑒𝑓𝑡𝐸𝑆 is below 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

 𝐼𝐷_3 = 𝑓𝑖𝑛𝑑 (𝑅𝑎𝑤𝐷𝑎𝑡𝑎𝑆𝑒𝑡 [𝐿𝑒𝑓𝑡𝐸𝑆] < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐸𝑆) 

[9] Find records with 𝑅𝑖𝑔ℎ𝑡𝐸𝑆 is below 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

 𝐼𝐷_4 = 𝑓𝑖𝑛𝑑 (𝑅𝑎𝑤𝐷𝑎𝑡𝑎𝑆𝑒𝑡 [𝑅𝑖𝑔ℎ𝑡𝐸𝑆] < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐸𝑆) 

[10] Find records with engine speed abnormal, 𝐼𝐷_5 = 𝐼𝐷_3 ∩ 𝐼𝐷_4 

[11] Find records with abnormal data, 𝐼𝐷_6 = 𝐼𝐷_1 ∪ 𝐼𝐷_2 ∪ 𝐼𝐷_5 

[12] Delete abnormal data, 𝐶𝑙𝑒𝑎𝑛𝐷𝑎𝑡𝑎𝑆𝑒𝑡 ← 𝑅𝑎𝑤𝐷𝑎𝑡𝑎𝑆𝑒𝑡 [𝐼𝐷_6] = [ ] 

 

In Method 1, 𝐿𝑒𝑓𝑡𝐸𝑆 and 𝑅𝑖𝑔ℎ𝑡𝐸𝑆  are left and right engine speeds. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐸𝑆 is the threshold of 

engine speed, which is set to 350 rpm. 𝐼𝐷_1, 𝐼𝐷_2, 𝐼𝐷_3, 𝐼𝐷_4, 𝐼𝐷_5 and 𝐼𝐷_6 are temporary index variables. 

First, the data are sorted by time, where the raw data are sampled at one-minute intervals. Then, according to 

the characteristics of SOG, COG and engine speed, one finds out the indices of their outliers. Then, one finds 

out the indices of the abnormal engine speed samples by intersection operation. Finally, all the abnormal data 

found by union operation are deleted. After the data processing by Method 1, a clean and ready-to-use data set 

is obtained. 

2.3 Calculation of real-time fuel consumption rate  

Normally, the collected multi-source monitoring data only include the amount of fuel in different fuel 

containers, including the bunker fuel, left reserve fuel and right reserve fuel of the ship, during navigation. 

There is no real-time fuel consumption rate, which needs to be calculated using the recorded fuel information. 

However, there are three difficulties in the calculation. First of all, during a voyage, the bunker fuel is 

irregularly refilled for many times, and the change in the amount of bunker fuel directly relates to the reserve 

fuel, which can be seen from Fig. 4. Fig. 4 (b) is an enlarged view of the black-boxed area in Fig. 4 (a). As 

shown in Fig. 4 (b), when the volume of bunker fuel remains unchanged, the left and right reserve fuel 

gradually decrease, which reflects the normal fuel consumption of ship sailing. When the volume of bunker fuel 

increases, the volume of the left and right reserve fuel increase rapidly, because the cumulative amount of 

banker fuel is the amount of fuel added to the left and right tanks. When the refuelling process is over, the 
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reserve fuel returns to its normal charge. Second, the ship may dock for many times during the voyage, but the 

data during the docking time are not stopped recording, which has a great impact on the calculation of time and 

rate. Third, the ship sways during the voyage, which causes large fluctuations in the readings of the reserve fuel. 

Considering these issues, we propose a method to calculate the real-time fuel consumption rate as Method 2. 

(a). Reserve fuel and Bunker fuel (b). Enlargement of the black box in figure (a)  

Fig. 4. Raw reserve fuel and bunker fuel.  

 

In Method 2, 𝑖  and 𝑗  are loop variables; 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡, 𝑇𝑖𝑚𝑒𝐸𝑛𝑑  and 𝑇𝑖𝑚𝑒𝐹𝑖𝑟𝑠𝑡  are time variables. 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑂𝐺 is the threshold of SOG and we set it to 0.5 km/h, where a SOG less than 0.5 km/h indicates 

that the ship may be in the starting state before sailing; 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑇𝑖𝑚𝑒 is the threshold of time used to 

identify if a continuous sampling is interrupted and we set it to 10 minutes; 𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒 is the time difference 

between adjacent data records; 𝑇𝑒𝑚𝑝𝐷1 and 𝑇𝑒𝑚𝑝𝐷2 are the temporary data. 𝐷𝑒𝑙𝑡𝑎𝐵𝑢𝑛𝑘𝑒𝑟𝐹 is the difference 

between adjacent bunker fuel; 𝐿𝑒𝑓𝑡𝑅𝐹 and 𝑅𝑖𝑔ℎ𝑡𝑅𝐹 are fuel of left and right tanks; 𝑅𝐹 is the total reserve fuel; 

𝐹𝑢𝑒𝑙  is fuel consuming; 𝐷𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙  is the difference between adjacent 𝐹𝑢𝑒𝑙 ; 𝐹𝑢𝑒𝑙𝐶𝑅  is the real-time fuel 

consumption rate (L/min). First, we delete the SOG less than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑂𝐺 to ensure the validity of the data 

set. Then, two judgments are made and the two cases of each judgment are treated differently. The first 

judgment is to determine whether there is an increase in the amount of bunker fuel according to its difference 

value. The second judgment is to determine whether there is berthing during the period, so as to calculate the 

fuel consumption according to the time period. In addition, before calculating the real-time fuel consumption 

rate, it adds the smooth processing for the total reserve fuel, eliminating the reading fluctuations of fuel caused 

by ship shaking and improving the accuracy of the calculation results. 
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Method 2.  Real-time fuel consumption rate calculation 

Input: 𝐶𝑙𝑒𝑎𝑛𝐷𝑎𝑡𝑎𝑆𝑒𝑡 (Data set after processing) 

Output: 𝐹𝑢𝑒𝑙𝐷𝑎𝑡𝑎𝑆𝑒𝑡 (Fuel consumption data set) 

[1] Initialise: 𝐹𝑢𝑒𝑙𝐷𝑎𝑡𝑎𝑆𝑒𝑡 ← ∅, 𝑖, 𝑗, 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡, 𝑇𝑖𝑚𝑒𝐸𝑛𝑑, 𝑇𝑖𝑚𝑒𝐹𝑖𝑟𝑠𝑡 = 1 

[2] Delete the records with 𝑆𝑂𝐺 is below 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑂𝐺 

[3] Calculate the 𝐷𝑒𝑙𝑡𝑎𝐵𝑢𝑛𝑘𝑒𝑟𝐹 

[4] for 𝐷𝑒𝑙𝑡𝑎𝐵𝑢𝑛𝑘𝑒𝑟𝐹 do 

[5] if 𝐷𝑒𝑙𝑡𝑎𝐵𝑢𝑛𝑘𝑒𝑟𝐹(𝑖) > 0 

[6] Record current time: 𝑇𝑖𝑚𝑒𝐸𝑛𝑑 = 𝑖 

[7] Extract data from 𝐶𝑙𝑒𝑎𝑛𝐷𝑎𝑡𝑎𝑆𝑒𝑡(𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡: 𝑇𝑖𝑚𝑒𝐸𝑛𝑑) to 𝑇𝑒𝑚𝑝𝐷1 

[8] Extract 𝑇𝑖𝑚𝑒 from 𝑇𝑒𝑚𝑝𝐷1, and calculate the 𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒1 

[9] for 𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒1 do 

[10] if 𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒(𝑗) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑇𝑖𝑚𝑒 

[11] Record current time: 𝑇𝑖𝑚𝑒𝐿𝑎𝑠𝑡 = 𝑗 

[12] Extract data from 𝑇𝑒𝑚𝑝𝐷1(𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡: 𝑇𝑖𝑚𝑒𝐸𝑛𝑑) to 𝑇𝑒𝑚𝑝𝐷2 

[13] Extract 𝐿𝑒𝑓𝑡𝑅𝐹 and 𝑅𝑖𝑔ℎ𝑡𝑅𝐹 from 𝑇𝑒𝑚𝑝𝐷𝑎𝑡𝑎_2 

[14] Calculate 𝑅𝐹, 𝑅𝐹 =  𝐿𝑒𝑓𝑡𝑅𝐹 +  𝑅𝑖𝑔ℎ𝑡𝑅𝐹 

[15] Smooth the  𝑅𝐹, 𝑅𝐹 = 𝒎𝒐𝒗𝒊𝒏𝒈(𝑅𝐹)  

[16] Calculate 𝐹𝑢𝑒𝑙 and 𝐷𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙, 𝐹𝑢𝑒𝑙 = 𝐵𝑢𝑛𝑘𝑒𝑟𝐹 − 𝑅𝐹 

[17] Extract 𝑇𝑖𝑚𝑒 from 𝑇𝑒𝑚𝑝𝐷2, and calculate the 𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒2 

[18] Calculate 𝐹𝑢𝑒𝑙𝐶𝑅: 𝐹𝑢𝑒𝑙𝐶𝑅 = 𝐷𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙/𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒2 

[19] Save 𝐹𝑢𝑒𝑙𝐶𝑅, obtain the 𝐹𝑢𝑒𝑙𝐷𝑎𝑡𝑎𝑆𝑒𝑡 

[20] Update the 𝑇𝑖𝑚𝑒𝐹𝑖𝑟𝑠𝑡, 𝑇𝑖𝑚𝑒𝐹𝑖𝑟𝑠𝑡 = 𝑗 + 1 

[21] else 

Update the 𝑇𝑖𝑚𝑒𝐿𝑎𝑠𝑡, 𝑇𝑖𝑚𝑒𝐿𝑎𝑠𝑡 = 𝑗 

[22] end if 

[23] Repeat the steps [12] to [19] 

[24] end for 

[25] Update the 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡, 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑟𝑡 = 𝑖+1 

[26] else 

Update the 𝑇𝑖𝑚𝑒𝐸𝑛𝑑, 𝑇𝑖𝑚𝑒𝐸𝑛𝑑 = 𝑖 

[27] end if 

[28] Repeat the steps [7] to [24] 

[29] end for 

 

2.4 Trajectory segmentation 

By the use of Method 1 and Method 2, we successfully obtained high-quality real-time fuel consumption 

data. However, the whole voyage has a long mileage and spans many waterways, which may cause troubles in 

real-time fuel consumption prediction. In addition to the geographical location of these waterways, the biggest 

difference is the water depth. In fact, the environmental factors have an impact on the fuel consumption. 

Generally, the wind and waves in inland rivers are relatively stable, and the water depth of the waterway is one 
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of the biggest influential factors on the fuel consumption of ships. Therefore, we divided the trajectory of whole 

voyage into 27 segments by (1) referring to the geographical characteristics information of the Yangtze River 

trunk line, (2) analysing the water depth and water speed of the main waterways, (3) considering the restrictions 

from navigation rules and the navigation experience of shipmasters. The segmentation is shown in Fig. 5. As 

shown in Fig. 5 (b), the waterway from Yuanshi to Yichang is divided into 4 segments, due to the existence of 

Three Gorges Dam and Gezhouba Dam, which cause large changes in water depth in a relatively short distance. 

As a consequence of segmentation, a new variable segment number is added to the fuel consumption data set. 

 

(a). The waterway of the Yangtze River

(b). The actual trajectory of the ship

Shanghai

Nanjing

WuhanYichang

Chongqing

Jiujiang
Yueyang

WuhuWanzhou

18-21 Segments

 
 

(c). The waterway of Segments 18-21 

 

Fig. 5. The waterway of the Yangtze River, the ship trajectory and segments division 

 

2.5 Correlation analysis 

It is worth noting that many feature variables may affect the real-time fuel consumption. Wang et al. (2016) 

selected the engine speed as the input variable of a fuel consumption model, and Coraddu et al. (2017) used the 

ship speed and direction as inputs of a fuel consumption model. In fact, the fuel consumption of inland ships is 

not only related to navigation state variables such as SOG, COG, engine speed and engine temperature, but also 

affected by the environmental factors such as water depth, water speed, wind speed and wind direction. 

In this study, we collected another important variable, engine temperature, which reflects the running state 

of the engine. We fully consider the comprehensive impact of the ship’s real-time navigation status variables 

and environmental factors on the real-time fuel consumption rate. The angle between COG and the wind 
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direction is calculated and named the wind angle, which ranges from -180° to 180°. 0° means that the heading 

of ship is consistent with the wind direction and the ship is sailing downwind. -180° or 180° means that the ship 

is sailing upwind. Furthermore, the Pearson correlation coefficient r was used to analyse the correlation 

between each variable and the real-time fuel consumption, as shown in Equation (1). 

𝑟 =
∑ (𝑉𝑖 − �̅�)(𝐹𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑉𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝐹𝑖 − �̅�)2𝑛

𝑖=1

 
(1) 

where 𝑉 indicates different feature variables, 𝐹 indicates real-time fuel consumption, �̅� and �̅� represent their 

mean values respectively, and 𝑛  represents the length of variables. The correlation coefficient r and the 

corresponding significance value p values between multi-source variables and the real-time fuel consumption 

rate were obtained, as shown in Table 4. For wind angel, we take its absolute value which makes sure it is from 

0° to 180°; for wind speed, we take its component in the ship's heading direction, that is, the wind speed 

multiplied by the cosine of the wind angle. We then divide the correlation into 5 grades: very strong (r > 0.65), 

strong (0.5 < r < 0.65), moderate (0.35 < r < 0.5), weak (0.2 < r < 0.35) and very weak (r < 0.2). It is not 

difficult to find that, except for the engine speed, the engine temperature has the highest correlation with the 

fuel consumption, and it will play an important role in the subsequent experiments in real-time fuel 

consumption prediction. The significance levels of these correlations are all above 99%. 

 

Table 4. Correlation between real-time fuel consumption rate and multi-source variables 

Variable name r p Grade 

SOG 0.4918 0.0008 Moderate 

COG  0.1398 0.0012 Very weak 

Left ES (Left engine speed) 0.7930 0 Very strong 

Right ES (Right engine speed) 0.6643 0 Very strong 

Left ET (Left engine temperature) 0.5993 0 Strong 

Right ET (Right engine temperature) 0.5574 0 Strong 

WaD (Water depth) -0.3817 0.0003 Moderate 

WaS (Water speed) 0.4191 0.0002 Moderate 

WiS (Wind speed) 0.1359 0.0005 Very weak 

WiA (Wind angle) 0.2349 0.0002 Weak 
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3 Modelling for fuel consumption 

3.1 Modelling method 

The LSTM (Long Short-Term Memory) network is an advance RNN model, which was proposed to solve 

the problem of gradient dispersion in the conventional RNN model. As shown in Fig. 6, LSTM has two 

transmission states 𝐶𝑡 and ℎ𝑡, one gate control signal 𝑍 and three gate control states 𝑍𝑖, 𝑍𝑓 and 𝑍𝑜, where 𝑖, 𝑓 

and o represent three different control gates: input gate, forget gate and output gate. 𝑡 is time variable, 𝑥𝑡 is the 

input vector and 𝑦𝑡 is the output vector. 𝐶𝑡 is named “cell state”, which memorises information; ℎ𝑡 is named 

“hidden state”, which is the output of the hidden node. 𝐶𝑡−1 is the state of 𝐶𝑡 at time 𝑡 − 1 and ℎ𝑡−1 is the state 

of ℎ𝑡 at time 𝑡 − 1. 𝑍, 𝑍𝑖, 𝑍𝑓 and 𝑍𝑜 are obtained by transforming the operation results of vector and weight 

matrix 𝑊 , 𝑊𝑖 , 𝑊𝑓  and 𝑊𝑜  using activation functions “sigmoid” and “tanh”. The operation equations are 

shown as Equations (2)-(5). Fig. 7 shows the structure of the LSTM network, where 𝑈 is the weight matrix 

from the input layer to the hidden layer, 𝑉 is the weight matrix from the hidden layer to the output layer, and 𝑊 

is a self-looping weight matrix in the hidden layer. 

𝑍 = tanh (𝑊 𝑥𝑡 + 𝑊 ℎ𝑡−1) (2) 

𝑍𝑖 = tanh (𝑊𝑖 𝑥𝑡 + 𝑊𝑖 ℎ𝑡−1) (3) 

𝑍𝑓 = tanh (𝑊𝑓𝑥𝑡 + 𝑊𝑓 ℎ𝑡−1) (4) 

𝑍𝑜 = tanh (𝑊𝑜𝑥𝑡 + 𝑊𝑜 ℎ𝑡−1) (5) 

 

Zf Zi Z Zo

ht-1 xt

Ct-1 Ct

yt

�

� �

ht

� Hadamard Product

Matrix addition

 

Fig 6. The four gate control states of the LSTM module 
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Fig. 7 The diagram of LSTM network 

 

Because of the strong self-learning capabilities (Alahi et al., 2016; Zhao et al., 2017), the LSTM network 

is suitable for constructing predictive models for monitoring data. It has been widely used in data processing 

and modelling in water transport. Lin et al. (2019) proposed a RNN with convolution for online obstacle 

avoidance in unmanned underwater vehicles. Mu et al. (2019) proposed Hybrid RNNs that use unidirectional 

and bi-directional LSTMs to handle different sensor data. In this paper, an improved LSTM network is used to 

build a predictive model of real-time fuel consumption for an inland ship. The specific modelling steps are 

designed as follows. 

Step 1: Feature variables selection. The feature variables of the fuel consumption model needs to be 

analysed and selected using the correlation analysis described in Section 2.5. 

Step 2: Data normalisation. In order to eliminate the dimensional influence between multi-source 

variables, the data are normalized to be between 0 and 1. 

Step 3: Data set partitioning. In this step, the data set is randomly divided into a training set and a testing 

set.  

Step 4: Input and output data reshaping. In the LSTM network, the input of each network layer must be 

three-dimensional, which needs the original data to be reshaped according to the total number of samples and 

the number of feature variables. The format is [samples, time steps, features]. 

Step 5: Network initialisation. This step is to set the parameters of the LSTM network, such as the number 

of neurons, activation functions, loss functions, the number of epochs (training times), the batch size (the size 

of each input data sample) and the number of hidden layers. 

Step 6: Model training. The LSTM network is trained according to the reshaped data and parameters. 
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Step 7: Result analysis. The prediction result needs to be denormalised, and the prediction accuracy is 

then analysed by calculating some performance measures, such as Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE) and R-square (R2), as shown in Equations (6)-(8). 

𝑅𝑀𝑆𝐸 = (
1

𝑇
∑(𝑦𝑡 − 𝑦�̂�)2

𝑇

𝑡=1

)

1 2⁄

 (6) 

𝑀𝐴𝐸 =
1

𝑇
∑|𝑦𝑡 − 𝑦�̂�|

𝑇

𝑡=1

 (7) 

𝑅2 = 1 −
∑ (𝑦𝑡 − 𝑦�̂�)2𝑇

𝑡=1

∑ (𝑦𝑡 − 𝑦�̅�)2𝑇
𝑡=1

 (8) 

where 𝑡 represents the index of a datum and 𝑇 represents the number of data; 𝑦𝑡 and 𝑦�̂� are the real values and 

the predicted values of the 𝑡th datum, respectively; 𝑦�̅� is the mean of 𝑦𝑡, where 𝑡 = 1,2,3 … 𝑇. 

3.2 Case study 

In this study, the host platform was a desktop computer, of which the Central Processing Unit was Intel (R) 

Core (TM) i5-8500, the main memory was 16GB memory and the operating system was 64-bit Windows 10. 

The programming language was Python 3.7 and MATLAB 2019a, where a Python Integrated Development 

Environment Spyder and an open-source ANN library Keras were employed. 

Using the methods of multi-source data processing and fuel consumption calculation proposed in Section 2, 

we obtained a high-quality fuel consumption data set, which contains 15,521 valid records. Then, we use the 

modelling method proposed in Section 3.1 to predict the real-time fuel consumption rate of an inland ship. 

First of all, we select 𝐿𝑒𝑓𝑡𝐸𝑆 (left engine speed) and 𝑅𝑖𝑔ℎ𝑡𝐸𝑆 (right engine speed) with the strongest 

correlation (as shown in Table 4) as input feature variables to select and optimise the parameters of the 

prediction model. The original data set is randomly divided into two parts, 80% as the training set and the 

remaining 20% as the testing set. Two-dimensional matrix of input data {𝐿𝑒𝑓𝑡𝐸𝑆, 𝑅𝑖𝑔ℎ𝑡𝐸𝑆}  and one-

dimensional of output data {𝐹𝐶𝑅} (real-time fuel consumption rate) are presented to the LSTM network with 

the time step being 1. The number of epochs is set to 3000; the “mae” (mean absolute error) function is selected 

as the loss function; the “tanh” function is selected as the activation function and the “rmsprop” (root mean 

square propagation optimiser) is selected as the optimisation function. After a number of preliminary 
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experiments as shown in Table 5, the following parameter settings are found to be appropriate and are used: the 

number of neurons is set to 150 and the batch size is set to 100. 

Table 5. Some training experiments with different parameter settings 

 

Variable Neurons number Batch size Epochs RMSE MAE R
2
 

Neurons 

number 

120 80 3000 0.2071 0.1183 0.8861 

130 80 3000 0.2094 0.1219 0.8836 

140 80 3000 0.2083 0.1209 0.8848 

150 80 3000 0.2062 0.1176 0.8872 

160 80 3000 0.2091 0.1230 0.8839 

Batch size 

150 90 3000 0.2009 0.1089 0.8928 

150 100 3000 0.1994 0.1066 0.8945 

150 110 3000 0.2097 0.1228 0.8832 

150 120 3000 0.2010 0.1090 0.8928 

 

In the modelling experiments, we developed several LSTM network models, which used different 

combination of feature variables as inputs according to the correlation in Table 4. The details of models’ inputs 

and the prediction accuracy against training data and testing data are shown in Table 6. It is easy to see from 

Table 6 that the engine temperatures as input variables greatly improve the accuracy of the fuel consumption 

model. Moreover, considering the environmental factors, including the water depth, water speed, wind speed 

and direction, can improve the prediction performance to some extent. In particular, when monitoring attributes 

and hydrological factors are combined as system inputs, the prediction result reaches the best. 

Table 6. Prediction accuracy of models with different input variables 

 

Input 
Training Testing 

RMSE MAE R
2
 RMSE MAE  R

2
 

2 0.2040±0.0007 0.1145±0.0009 0.8895±0.0008 0.2140±0.0006 0.1171±0.0009 0.8794±0.0007 

4 0.1890±0.0019 0.1083±0.0034 0.9052±0.0019 0.2012±0.0024 0.1105±0.0035 0.8934±0.0026 

6 0.1674±0.0015 0.0919±0.0014 0.9256±0.0013 0.1838±0.0032 0.0975±0.0014 0.9110±0.0031 

7 0.1685±0.0039 0.0937±0.0043 0.9232±0.0037 0.1847±0.0047 0.1009±0.0045 0.9102±0.0048 

10 0.1437±0.0016 0.0827±0.0028 0.9452±0.0012 0.1806±0.0080 0.0930±0.0032 0.9182±0.0076 

2 inputs: Left ES and Right ES. 

4 inputs: Left ES, Right ES, Left ET and Right ET. 

6 inputs: Left ES, Right ES, Left ET, Right ET, SOG and COG. 

7 inputs: Left ES, Right ES, Water depth, Water speed, Wind speed, Wind angle and Segment ID. 

10 inputs: Left ES, Right ES, Left ET, Right ET, SOG, Water depth, Water speed, Wind speed, Wind 

angle and Segment ID. 

 

Figures 8-9 demonstrate the prediction performance of two example models under different input variables. 

The above prediction results show that: (1) the multi-source monitoring data we processed can be well used for 
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fuel consumption modelling; (2) the models we constructed have good performance in prediction; (3) the 

navigation environment and state of a ship affect the ship’s fuel consumption, and considering these factors in 

modelling can effectively enhance the accuracy of the predictive model. 

     
(a) Training data                                                         (b) Testing data 

Fig. 8. The measured data vs. predicted data with 4 inputs 

 

          
(a) Training data                                                         (b) Testing data 

Fig. 9. The measured data vs. predicted data with 7 inputs 

 

To verify the advantages of the constructed model, we compare it with multiple traditional regression 

models, including Linear Regression (LR), Robust Linear Regression (RLR), Interaction Linear Regression 

(IR), Pure Quadratic Regression (PQR) and Fine Tree Regression (FTR) (Yang, 2018; Goebel and Plötz, 2019; 

Acharya et al., 2019), BPNN (Back Propagation Neural Network) and DBPNN (BPNN with two hidden layers), 
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and some common RNN networks, including general RNN, Bidirectional RNN (BRNN) and Deep RNN 

(DRNN) (Cui et al., 2018; Mu et al., 2019). In the comparison experiments, we select 10 feature variables as 

inputs of models and use the same training (12416 data records) and testing data (3105 data records). In the 

regression methods, the time step in each input is set to 1. The prediction performance (mean and standard 

deviation of 10 experiments) of different methods is shown in Table 7. From Table 7, we can find that, 

compared with the LSTM network, all regression models and basic RNN networks have relatively high 

prediction errors. DBPNN has higher errors than BPNN, because the training was stopped early to prevent 

network overfitting. Although FTR, BPNN and DRNN show good performance in modelling, but they are still 

not as good as the LSTM network. Also, BPNN takes much more training time. 

Table 7. Comparison of different methods in fuel consumption rate prediction 

Method 
Training Testing 

RMSE MAE R
2
 RMSE MAE R

2
 

LR 0.2224±0 0.1301±0 0.8688±0 0.2342±0 0.1324±0 0.8592±0 

IR 0.2175±0 0.1268±0 0.8794±0 0.2243±0 0.1278±0 0.8702±0 

PQR 0.1934±0 0.1021±0 0.8997±0 0.2021±0 0.1141±0 0.8916±0 

RLR 0.2156±0 0.1273±0 0.8786±0 0.2221±0 0.1301±0 0.8692±0 

FTR 0.1993±0 0.1072±0 0.8947±0 0.1904±0 0.1114±0 0.8936±0 

BPNN 0.1868±0.0122 0.1010±0.0121 0.9012±0.0113 0.1973±0.0126 0.1142±0.0131 0.8971±0.0114 

DBPNN 0.1986±0.0114 0.1079±0.0096 0.8964±0.0104 0.2039±0.0101 0.1154±0.0103 0.8896±0.0142 

RNN 0.2020±0.0043 0.1120±0.0041 0.8916±0.0046 0.2102±0.0032 0.1139±0.0037 0.8836±0.0035 

BRNN 0.1996±0.0031 0.1087±0.0029 0.8942±00033 0.2095±0.0025 0.1112±0.0029 0.8844±0.0028 

DRNN 0.1795±0.0059 0.1073±0.0083 0.9143±0.0056 0.1943±0.0071 0.1116±0.0091 0.9005±0.0073 

Proposed LSTM 0.1437±0.0016 0.0827±0.0028 0.9452±0.0012 0.1806±0.0080 0.0930±0.0032 0.9182±0.0076 

The parameters of three RNN networks are consistent with our proposed LSTM network, and the DRNN uses a 

two-layer RNN network with 150 and 15 neurons. The neurons number of BPNN is 150, and the DBPNN uses two 

hidden layers with 150 and 15 neurons. 

 

4 Optimisation of fuel consumption and voyage cost 

On the basis of the developed models, optimisation of fuel consumption and voyage cost of inland ships is 

then conducted, considering different environmental conditions. In this work, two optimisation problems are 

targeted, to minimise the fuel consumption of the whole voyage and to minimise the total cost of the whole 

voyage. 

4.1 Cost calculation 

It is worth noting that fuel consumption is the accumulation of fuel consumption rate during the travel time, 

and the travel time can be calculated from travel speed SOG. Therefore, if a voyage is divided into a number (i) 

of segments, the fuel consumption of each segment can be calculated by Equations (9) and (10). The total cost 
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of the whole voyage includes fixed cost, fuel consumption cost, personnel cost and maintenance cost. The fixed 

cost mainly includes the fixed rent, port fee and insurance. The personnel cost refers to the remuneration of 

crews and their living expenses and the maintenance cost mainly contains the cost of wear and repair fee, which 

are calculated on a daily basis. The calculation is shown in Equations (11)-(14). 

𝐹𝐶𝑖 = 𝐹𝐶𝑅𝑖 × 𝑇𝑖 (9) 

𝑇𝑖 =
𝑆𝑀𝑖

𝑆𝑂𝐺𝑖
 (10) 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑓𝑖𝑥𝑒𝑑 + 𝐶𝑓𝑢𝑒𝑙 + 𝐶𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 + 𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 (11) 

𝐶𝑓𝑢𝑒𝑙 = 𝐹𝐶𝑡𝑜𝑡𝑎𝑙 × 𝑃𝑓𝑢𝑒𝑙 = ∑ 𝐹𝐶𝑖

𝑖

× 𝑃𝑓𝑢𝑒𝑙 (12) 

𝐶𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 =
𝑇𝑡𝑜𝑡𝑎𝑙

24
× 𝑃𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 =

∑ 𝑇𝑖𝑖

24
× 𝑃𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 (13) 

𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 =
𝑇𝑡𝑜𝑡𝑎𝑙

24
× 𝑃𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 =

∑ 𝑇𝑖𝑖

24
× 𝑃𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 (14) 

where 𝑖  is the index of a short segment, within which the trajectory characteristics and environmental 

conditions keep the same; 𝐹𝐶𝑖  is the fuel consumption of segment 𝑖,  𝐹𝐶𝑅𝑖  is the fuel consumption rate in 

Segment 𝑖, 𝑇𝑖 is the travel time passing through Segment 𝑖, 𝑆𝑀𝑖 represents the navigation mileage of Segment 𝑖, 

𝐶𝑡𝑜𝑡𝑎𝑙 is the total cost, 𝐶𝑓𝑖𝑥𝑒𝑑 is the fixed cost of the whole voyage, 𝐶𝑓𝑢𝑒𝑙 is the fuel-related cost, 𝑃𝑓𝑢𝑒𝑙 is the 

price of fuel consumption per litre, 𝐶𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 is the crew-related cost, 𝑃𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 is the crew-related cost per 

day,  𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 is the maintenance cost, and 𝑃𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 is the maintenance cost per day. 

4.2 Optimisation problems 

In this paper, we studied two optimisation problems, (1) minimising the fuel consumption of the whole 

voyage and (2) minimising the total cost of the whole voyage. These two problems are different in objectives, 

but have the same decision variables and constraints. More details are described as follows. 

Objective of Problem 1: Minimise the fuel consumption of the whole voyage: 

𝐹𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐹𝐶𝑅𝑖 ×
𝑆𝑀𝑖

𝑆𝑂𝐺𝑖
× 60

𝑖

 (15) 

Objective of Problem 2: Minimise the total cost of the whole voyage: 
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𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑓𝑖𝑥𝑒𝑑 + ∑ 𝐹𝐶𝑅𝑖 ×
𝑆𝑀𝑖

𝑆𝑂𝐺𝑖
× 60

𝑖

× 𝑃𝑓𝑢𝑒𝑙 +
∑

𝑆𝑀𝑖

𝑆𝑂𝐺𝑖
𝑖

24
× (𝑃𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 + 𝑃𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒) (16) 

Decision variables: Left ES and Right ES. According to the correlation analysis in Table 4, it is known 

that the greatest impact on the fuel consumption rate comes from the Left ES and the Right ES, which are also 

the observable and controllable variables. Considering the manoeuvrability of the optimisation results, we set 

the speed of the left engine and the speed of the right engine to be equal, because they are of the same type and 

have the same output power. 

Constraints: Environmental conditions include Water depth (WaD), Water speed (WaS), Wind speed 

(WiS) and Wind angle (WiA) and they are different along the voyage. The Left ES and Right ES should be 

within the working range of the engines. 

4.3 Models and optimisation algorithm 

In order to solve the above two optimisation problems, two prediction models are constructed and utilised. 

First, a Fuel Consumption Rate Model (FCRM) is used to predict the real-time fuel consumption rate, which 

contains 7 input variables as shown in Table 6. Furthermore, using the LSTM network, a SOG model (SOGM) 

is established to predict the SOG under various conditions. For both the FCRM and the SOGM, the input 

variables are Left ES, Right ES, WaD, WaS, WiS, WiA and Segment ID. It should be noted that the input 

variables do not include engines temperatures, which are difficult to be accurately controlled in the actual 

manipulation and can be largely reflected by engines speeds’ values. Their performance is shown in Table 8. It 

can be seen that both models have good performance. The performance of FCRM is slightly better than SOGM, 

as the SOG data have bigger variation than the fuel consumption data, which makes SOG more difficult to 

model.  

Table 8. The performance of the developed FCRM and SOGM 

Model 
Training Testing 

RMSE MAE R
2
 RMSE MAE R

2
 

FCRM 0.1685±0.0039 0.0937±0.0043 0.9232±0.0037 0.1847±0.0047 0.1009±0.0045 0.9102±0.0048 

SOGM 0.7308±0.0378 0.5017±0.0280 0.8443±0.0172 0.7005±0.0390 0.5022±0.0270 0.8602±0.0172 

 

In this paper, the Reduced Space Searching Algorithm (RSSA) is employed to solve the optimisation 

problems. RSSA is a nature-inspired algorithm that switches and zooms in/out the targeted search space to 
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speed up the searching process and jump out from local optima. The algorithm focuses on dividing and 

transforming the search space to allocate the best sub-space while most of the other optimisation algorithms 

focus on generation of solutions using proper operators. RSSA has been verified to outperform some salient 

heuristic optimisation algorithms, such as Covariance Matrix Adaptation Evolution Strategy, Differential 

Evolution and Generalised Generation Gap model (Zhang and Mahfouf, 2010). It has also been successfully 

applied to some engineering problems (Zhang et al., 2015; Datta et al., 2016). The Pseudo code of the 

optimisation algorithm based on RSSA is shown in Method 3. 

 

Method 3.  Optimisation algorithm based on RSSA 

Input: 𝐷𝑖𝑚, 𝑋𝑣𝑎𝑟, 𝑂𝑏, 𝑁𝑡, 𝐸𝑚𝑎𝑥, 𝐸𝑟𝑟𝑜𝑟 

Output: 𝑃𝑏, 𝑋𝑝𝑏, 𝐸𝑣𝑎 

1.  Initialisation of setting. 

2.  Randomly select one candidate solution in the original search space, and record it as 𝑋𝑝𝑏. Set 𝑛 = 0, 

which is used to control the bounds of the search space. 

3.  Randomly select the candidate solutions in the current search space, record it as 𝑋𝑏. 

If C1-continuous 𝑋𝑏 satisfies 𝑓(𝑋𝑏) < 𝑓(𝑋𝑝𝑏) and 𝑛 > 1, then 𝑋𝑝𝑏 = 𝑋𝑏 and 𝑛 = 𝑛 − 1. 

If C2-continuous 𝑋𝑏 satisfies 𝑓(𝑋𝑏) > 𝑓(𝑋𝑝𝑏), then 𝑛 = 𝑛 + 1. 

If non-continuous 𝑋𝑏 satisfies 𝑓(𝑋𝑏) < 𝑓(𝑋𝑝𝑏), then 𝑋𝑝𝑏 = 𝑋𝑏. 

4.  Change the size of the search space using the ratio 𝐾 (0 < 𝐾 < 1). 𝑋𝑝𝑏 is located at the new space. Set 

𝑌𝑚𝑖𝑛𝑖
 being the lower bound of the 𝑖th decision variable in the new search space and 𝑌𝑚𝑎𝑥𝑖

 being the upper 

bound: 

𝑌𝑚𝑖𝑛𝑖
= max (𝑋𝑚𝑖𝑛𝑖

, 𝑋𝑝𝑏(𝑖) − 𝐾𝑛𝐿(𝑖), 𝑌𝑚𝑎𝑥𝑖
= min (𝑋𝑚𝑎𝑥𝑖

, 𝑋𝑝𝑏(𝑖) + 𝐾𝑛𝐿(𝑖). 

5.  Repeat Steps 3 and 4 until 𝑛 = 𝑚. 

6.  Perform the variation operator on 𝑋𝑝𝑏 and obtain 𝑋𝑐. 

If 𝑓(𝑋𝑐) <  𝑓(𝑋𝑝𝑏), then 𝑋𝑝𝑏 = 𝑋𝑐, 𝑛 = 0, and repeat Steps 3 to 5. 

7.  Repeat Step 6 until the ‘optimal’ solution is found or the termination criterion is reached. 

 

In Method 3, 𝑓() is the fitness function. 𝐷𝑖𝑚 is the dimension of the decision variables. 𝑋𝑣𝑎𝑟 includes the 

bounds of the decision variables, which has two columns. The first column is the lower bound and the second 

column is the upper bound. In this work, the lower and upper bounds of the Left ES and Right ES were set 350 

and 750. 𝑂𝑏 is the preconceived optimum value of the target problem, which was set to 0 in this paper. 𝑁𝑡 is 

the times of division for RSSA, which was set to 50. 𝐸𝑚𝑎𝑥 is the max number of evaluation for termination, 

which was set to 3000. 𝐸𝑟𝑟𝑜𝑟 is the accepted error rate for termination, which was set to 0.0001 in this paper. 
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4.4 Optimisation results 

Based on the developed FCRM and SOGM, RSSA is employed to optimise the Left ES and Right ES to 

reduce the fuel consumption of each segment under given environmental conditions. It is worth noting that the 

environmental conditions vary from segment to segment, but it keeps the same in a single segment. The results 

are compared with measured fuel consumption. We also add a comparative experiment, which uses the average 

Left ES and Right ES of the measured data as input values and calculates the fuel consumption of each segment 

through FCRM and SOGM under the same environmental conditions. The results are shown in Table 9. 

Similarly, we have optimised and compared the cost of each segment, and the results are shown in Table 10. In 

these two optimisation cases, we assume that 𝐶𝑓𝑖𝑥𝑒𝑑 is 8000.00 China Yuan (CYN), 𝑃𝑓𝑢𝑒𝑙 is 5.50 CNY per litre, 

𝑃𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 is 5000.00 CNY per day and  𝑃𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 is 1500.00 CNY per day. These costs assumption comes 

from the data in the ship benefit report of historical voyages provided by the ChangJiang Shipping Science 

Research Institute CO. Ltd. 

 

Table 9. Optimisation results of fuel consumption for each segment under given environmental conditions 

 

SID 

Environmental conditions 
Optimised ES 

(rpm) 

Comparable ES 

(rpm) 
Fuel Consumption (L) 

WaD 

(m) 

WaS 

(m/s) 

WiS 

(BS) 

WiA 

(°) 
Left ES Right ES Left ES Right ES Optimised Comparable Measured 

1 12.50 3.4 2 90 401.1 401.1 432.8 441.3 553 927 1270 

2 12.50 3.3 2 10 454.0 454.0 464.1 497.9 418 625 809 

3 10.50 3.4 3 60 410.0 410.0 457.3 489.9 554 943 817 

4 10.80 3.4 3 -3 486.8 486.8 476.9 497.0 324 337 563 

5 10.20 3.3 3 55 414.7 414.7 511.6 511.6 321 824 850 

6 10.50 3.4 3 -10 521.0 521.0 517.1 523.4 900 985 1557 

7 8.00 3.3 3 -25 537.0 537.0 516.8 518.4 1626 1738 2054 

8 7.86 3.2 2 20 412.7 412.7 413.1 424.7 805 816 1028 

9 6.15 3.3 3 15 399.0 399.0 412.1 422.8 1832 2141 2387 

10 6.65 2.1 4 90 435.7 435.7 450.4 469.1 1764 2992 2509 

11 6.14 2.0 3 28 410.8 410.8 481.6 508.3 884 2085 2073 

12 5.17 2.2 3 -1 401.1 401.1 447.3 459.5 114 175 931 

13 5.34 2.2 3 15 500.0 500.0 494.8 499.2 1309 2551 3244 

14 4.72 1.9 2 126 500.0 500.0 611.5 605.6 2152 2870 2575 

15 4.48 1.7 2 75 470.5 470.5 504.0 506.4 2160 2969 2610 

16 4.27 1.7 2 -160 472.6 472.6 491.6 495.7 1344 1517 1693 

17 4.11 1.8 2 -160 535.0 535.0 617.5 601.8 936 1391 1103 

18 4.07 1.8 2 90 500.0 500.0 569.5 570.3 498 538 616 

19 24.18 1.7 2 -80 470.0 470.0 521.4 503.9 360 372 433 

20 48.48 1.6 2 -72 496.0 496.0 604.5 518.0 361 400 787 

21 95.67 1.7 2 10 425.0 425.0 525.4 524.8 745 906 996 

22 97.81 1.6 2 -115 386.0 386.0 400.0 403.6 207 223 334 

23 97.98 1.7 1 -8 390.0 390.0 411.2 413.0 121 156 256 
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Table 10. Optimisation results of cost for each segment under given environmental conditions 

 

SID 

Environmental conditions 
Optimised ES 

(rpm) 

Comparable ES 

(rpm) 
Cost (CNY) 

WaD 

(m) 

WaS 

(m/s) 

WiS 

(BS) 

WiA 

(°) 
Left ES Right ES Left ES Right ES Optimised Comparable Measured 

1 12.50 3.4 2 90 520.0  520.0  432.8 441.3 5455  8621  11414  

2 12.50 3.3 2 10 545.5  545.5  464.1 497.9 3578  5388  6707  

3 10.50 3.4 3 60 414.2  414.2  457.3 489.9 5598  8107  7033  

4 10.80 3.4 3 -3 510.0  510.0  476.9 497.0 2793  2855  4717  

5 10.20 3.3 3 55 419.4  419.4  511.6 511.6 3166  6640  6852  

6 10.50 3.4 3 -10 532.0  532.0  517.1 523.4 7500  7899  12368  

7 8.00 3.3 3 -25 540.7  540.7  516.8 518.4 12558  13789  15037 

8 7.86 3.2 2 20 452.4  452.4  413.1 424.7 7886  8030  9783  

9 6.15 3.3 3 15 402.2  402.2  412.1 422.8 18634  20466  22720  

10 6.65 2.1 4 90 435.7  435.7  450.4 469.1 15801  26197  21727  

11 6.14 2.0 3 28 411.1  411.1  481.6 508.3 8658  17252  17087  

12 5.17 2.2 3 -1 406.2  406.2  447.3 459.5 1138  1543  8092  

13 5.34 2.2 3 15 560.0  560.0  494.8 499.2 13090  20687  26354  

14 4.72 1.9 2 126 536.5  536.5  611.5 605.6 16847  20210  18093  

15 4.48 1.7 2 75 510.1  510.1  504.0 506.4 20094  24917  20823  

16 4.27 1.7 2 -160 476.1  476.1  491.6 495.7 11996  12789  13811  

17 4.11 1.8 2 -160 580.0  580.0  617.5 601.8 7416  9720  7704  

18 4.07 1.8 2 90 550.4  550.4  569.5 570.3 3716  3731  4491  

19 24.18 1.7 2 -80 536.5  536.5  521.4 503.9 2912  3027  3434  

20 48.48 1.6 2 -72 540.5  540.5  604.5 518.0 2949  3054  6144  

21 95.67 1.7 2 10 581.5  581.5  525.4 524.8 6097  7008  7682  

22 97.81 1.6 2 -115 406.0  406.0  400.0 403.6 2072  2139 2374  

23 97.98 1.7 1 -8 390.0  390.0  411.2 413.0 1496  1772  2612  

 

It can be observed from Table 9 that the optimal engine speed which makes the fuel consumption lower 

than the measured value has been found in every segment. The optimised solution also performs better than the 

comparative experiment which uses a moderate and constant engine speed. Similar results also appear in the 

total cost optimisation, which can be seen in Table 10. It is worth noting that in the optimisation of fuel 

consumption and cost, the degree of improvement is much different in each segment. This reflects the 

complexity of the inland navigation environment, and also highlights the need of trajectory segmentation. On 

the other hand, there may still be some errors in the developed models, which may lead to some improper 

solutions generated for certain segments. 

The total fuel consumption and the total cost are further calculated for the whole voyage, as shown in 

Table 11. It can be seen that the optimised solutions show lower fuel consumption and cost, compared to the 

measured and comparable cases. Optimisation Problem 1 focuses on reducing the fuel consumption and the 

optimised solution addressing it shows the best performance in fuel consumption. Problem 2 considers the total 

cost of the voyage, which leads to a solution that balances the fuel cost and other time-dependent costs. 
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Table 11. Comparison of total fuel consumption and total cost for the whole voyage 

 𝑇𝑡𝑜𝑡𝑎𝑙 (h) 𝐹𝐶𝑡𝑜𝑡𝑎𝑙 (L) 𝐶𝑡𝑜𝑡𝑎𝑙 (CNY) 

Measured case 381 36100 / 309678 / 

Comparable case 354 32619 9.64% less 283181 8.56% less 

Optimised Solution 1 342 23994 33.53% less 232612 24.89% less 

Optimised Solution 2 295 25140 30.36% less 226218 26.95% less 

 

Moreover, we compare RSSA with some other well-known optimisation algorithms, including Genetic 

Algorithm (GA) (Subramanian and Jyothish, 2020) and Particle Swarm Optimisation (PSO) (Kaloop et al., 

2020). The optimisation results of the total fuel consumption and total cost for the whole voyage are shown in 

Table 12. From Table 12, one can find that, compared with GA and PSO, RSSA finds the solutions with 

relatively low fuel consumption and cost. 

 

Table 12. Comparison of different algorithms in optimisation of total fuel consumption and total cost 

Algorithm 
Optimised Solution 1  Optimised Solution 2 

𝑇𝑡𝑜𝑡𝑎𝑙 (h) 𝐹𝐶𝑡𝑜𝑡𝑎𝑙 (L) 𝐶𝑡𝑜𝑡𝑎𝑙 (CNY)  𝑇𝑡𝑜𝑡𝑎𝑙 (h) 𝐹𝐶𝑡𝑜𝑡𝑎𝑙 (L) 𝐶𝑡𝑜𝑡𝑎𝑙 (CNY) 

GA 349 26724 250123  309 28017 242141 

PSO 352 27335 256423  315 28246 246096 

RSSA 342 23994 232612  295 25140 226218 

 

5 Conclusions  

In this paper, based on the multi-source data composed of monitoring data and hydrological data, the real-

time fuel consumption of inland ships has been analysed and modelled, and the optimisation of fuel 

consumption and the total cost for a whole voyage has been performed. The multi-source monitoring data have 

been processed to delete abnormal data and retain the ship’s fuel information to the maximum extent. A method 

has been proposed to calculate the accurate real-time fuel consumption rate from data. Correlation analysis of 

multiple variables has been made, which facilitates the selection of input feature variables for predictive models. 

In modelling, the LSTM network has been tailored and utilised in building the fuel consumption rate models. 

Specifically, the engine temperature was used for the fuel consumption prediction for the first time. Compared 

with some representative regression methods (LR, RLR, IR, PQR and FTR) and recurrent neural networks 

(RNN, BRNN and DRNN), the constructed LSTM model consistently outperforms the other methods. Finally, 

the developed models have been implemented in optimisation of the engine speed to minimise the total fuel 

consumption and the total cost of the whole voyage, considering different environmental conditions. The 
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optimal solutions have been compared with experience-based scenarios and it shows that through the 

optimisation the total fuel consumption is reduced by 33.54 % and the total cost is reduced by 26.95%. 

In future, more sophisticated methods will be designed for dynamic trajectory segmentation, such as 

employing unsupervised clustering analysis. In addition, to enhance the applicability of the proposed 

prediction and optimisation techniques in different operational scenarios, a multi-objective optimisation 

framework that considers varying environmental conditions will be developed, where similar research has 

been carried out in other transport mode (Chen et al., 2016). 
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