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Abstract

Whilst both cardiac output (CO) and total peripheral resistance (TPR) determine mean arte-

rial blood pressure (MAP), their relative importance in the pressor response to isometric

exercise remains unclear. This study aimed to elucidate the relative importance of these two

different factors by examining pressor responses during cardiopulmonary unloading leading

to step-wise reductions in CO. Hemodynamics were investigated in 11 healthy individuals

before, during and after two-minute isometric exercise during lower body negative pressure

(LBNP; -20mmHg and -40mmHg). The blood pressure response to isometric exercise was

similar during normal and reduced preload, despite a step-wise reduction in CO during

LBNP (-20mmHg and -40mmHg). During -20mmHg LBNP, the decreased stroke volume,

and consequently CO, was counteracted by an increased TPR, while heart rate (HR) was

unaffected. HR was increased during -40 mmHg LBNP, although insufficient to maintain

CO; the drop in CO was perfectly compensated by an increased TPR to maintain MAP. Like-

wise, transient application of LBNP (-20mmHg and -40mmHg) resulted in a short transient

drop in MAP, caused by a decrease in CO, which was compensated by an increase in TPR.

This study suggests that, in case of reductions of CO, changes in TPR are primarily respon-

sible for maintaining the pressor response during isometric exercise. This highlights the rela-

tive importance of TPR compared to CO in mediating the pressor response during isometric

exercise.
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Introduction

Isometric handgrip exercise is known to elicit increases in mean arterial blood pressure

(MAP) [1–3]. Although MAP is well-regulated during resting conditions, the increased intra-

muscular pressure during isometric exercise causes an increased circulation to the working

muscle. The cardiovascular response to isometric exercise is the outcome of an interaction

between several factors, including central command, afferent input from skeletal muscle recep-

tors, and arterial and cardiopulmonary baroreceptors [4]. Despite the powerful response of

this mechanism being observed a decade ago, its hemodynamic mechanisms remain to be fully

elucidated. It remains debatable whether the pressor response is due to increases in cardiac

output (CO) [5–9], total peripheral resistance (TPR) [10–14] or both [15–18]. CO changes

during IHG is primarily driven by an elevated heart rate (HR), whilst the stroke volume (SV)

is slightly reduced due to the tachycardia and increased afterload, or even maintained follow-

ing both augmented ventricular contractility [19, 20] and constant or elevated preload via cen-

tral blood volume mobilization [21].

Interestingly, the blood pressure response to a single session of isometric exercise relates to

the future risk of developing hypertension [22, 23] and the magnitude of resting blood pres-

sure lowering following chronic exposure [24, 25]. Knowledge of acute blood pressure regula-

tion is therefore clinically important in e.g. hypertensive individuals with abdominal

aneurysms who are advised to avoid activities causing a high blood pressure [26]. Nevertheless,

studies indicate that isometric exercise may be used for the prevention and treatment of car-

diovascular disease [27, 28].

Several studies have shown that the exercise pressor response [29–31], the sympathetic

nerve response [29, 32, 33] and the increase in MAP [11] in response to isometric exercise are

essentially unchanged following cardiopulmonary unloading as induced by lower body nega-

tive pressure (LBNP). It is generally agreed that mild LBNP (-20mmHg) reduces central

venous pressure (CVP) and SV while HR remains unaffected. Despite a fall in CO due to a

reduced SV, MAP is normally well-maintained through an increased TPR [11, 34–39]. During

moderate LBNP -40mmHg, CVP is decreased even further and HR normally increased by 20–

30% compared to rest [39, 40].

The present study was designed to elucidate in detail the circulatory mechanisms by which

the pressor response is maintained during cardiopulmonary unloading with different levels of

reduced SV induced by LBNP, both prior to and during isometric muscle contraction. To illu-

minate the role of SV, HR and TPR in the blood pressure response to isometric exercise, we

have followed beat-by-beat all these hemodynamic parameters involved in the regulation of

MAP during isometric handgrip, during continuous and transient application of –20 and –40

mmHg LBNP, during an ongoing contraction as well as reduction in preload with –20 and –40

mmHg LBNP prior to isometric exercise (Fig 1).

We hypothesized that in situations with reduced CO due to reduced preload and SV, the

pressor response is maintained through an increase in TPR.

Materials and methods

Subjects

Eleven healthy volunteers (five males) were recruited for this study (mean (SD), age 23.6 (5.6)

years, height 171.1 (9.0) cm, weight 67.8 (10.3) kg). All subjects were non-medicated, non-

smokers, normotensive (BP<140/90 mmHg), and had no history of cardiovascular or pulmo-

nary disease. All participants were asked to refrain from drinking coffee/tea on the experimen-

tal day, and exercising or eating in the two hours before the start of the experiment.
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The procedures were in accordance with institutional guidelines and conformed to the dec-

laration of Helsinki. The study was approved by the regional ethics committee (Reference-116-

03042; REK sør-øst, Pb 1130, Blindern, 0318 Oslo, Norway; https://rekportalen.no/). Partici-

pants gave written and verbal informed consent before participation.

Experimental design

In this experimental study, each subject participated in five different protocols (P1-P5; Fig 1).

The start of the first experiment was preceded by individual familiarization with the experi-

ment, weight and height determination, and 30 min acclimation in supine position. The exper-

iments were carried out in the order P1 to P5, and to avoid any influence of the major

hemodynamic effects of LBNP on the results of subsequent protocols, each protocol was fol-

lowed by 5–7 minutes of intermission. Each protocol was repeated four times, and consisted of

four minutes, divided into one-minute baseline, two-minute isometric handgrip and one-min-

ute recovery. Isometric handgrip was accompanied by either transient (P2, P3) or continuous

(P4, P5) mild LBNP (-20mmHg) or moderate LBNP (-40mmHg), with P1 being the control

with a normal preload. In P4 and P5, LBNP was applied 1 min before the recording started.

Subjects were lightly clothed and lay comfortably on a bench in supine position during the test

Fig 1. Handgrip and application of LBNP during the different protocols.

https://doi.org/10.1371/journal.pone.0243627.g001
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runs. The ambient temperature in the room was between 23–24˚C and the subjects were in

their thermoneutral zone [41]. All experiments were performed at the same time of day to con-

trol for diurnal variation.

Lower body negative pressure

LBNP (-20 mmHg and -40 mmHg) was applied by a custom-built chamber and pressure con-

trol system (E. Stranden) designed to introduce precise and rapid changes in LBNP, as previ-

ously described elsewhere [42]. The lower body was inside the LBNP chamber and sealed at

the level of the iliac crest. During rapid onset and release, LBNP was both reduced and

returned to ambient pressure in less than 0.3 s. The onset and release of LBNP were induced so

that the pressure profile in the LBNP chamber was identical for all tests. Fig 1 shows the cham-

ber pressure during the different protocols.

Handgrip

A custom made handgrip aperture was used to record and display the force exerted by the test

subjects as they gripped the handle with their right hand. A visual display gave the subjects

continuous information, enabling them to maintain the intended force. Throughout all proto-

cols, the test subjects were asked to exert a force corresponding to 40% of their individual and

previously calculated maximal voluntary contraction force (MVC). MVC was determined

approximately 10 min prior to the experimental session by asking the test subject to press with

maximal force around the handgrip aperture for a three-second period. The mean force

exerted in three such sessions was calculated and used as MVC. During the two-minute iso-

metric exercise periods, the participants were instructed to avoid the Valsalva manoeuvre and

to relax all the muscles not primarily involved in contraction to avoid recruitment of accessory

muscle mass.

Measurements

Beat-to-beat stroke volume (SV) was recorded by the ultrasound Doppler method (SD-50; GE

Vingmed Ultrasound, Horten, Norway) using a 2 MHz suprasternal probe [43]. Instantaneous

HR was obtained from the duration of each R-R interval of the ECG signal (SD-50). Beat-to-

beat CO was calculated from the corresponding HR and SV values. Blood flow velocity in the

brachial artery of the left (resting) arm (BBFV) was measured using ultrasound Doppler with

an operating frequency of 10 MHz. The circular transducer was held by the operator over the

cubital fossa with the ultrasound beam directed towards the brachial artery. The instantaneous

cross-sectional mean velocity was calculated by the SD-50 and transferred online to the com-

puter for beat-by-beat time averaging, gated by the R waves of the electrocardiogram.

Laser Doppler (Periflux PF 4000; Perimed AB, Järnfälla, Sweden) was used to measure acral

skin blood flow perfusion (ASBF) in the pulp of the left index finger at a sampling frequency of

2 Hz. The laser Doppler probes were fastened to the skin with narrow double-sided tape (Kon-

tron Instruments, Ltd, UK). Finger arterial pressure of the left middle finger was continuously

recorded by a photoplethysmographic device (2300 Finapres BP monitor; Ohmeda, Madison,

Wis., USA). Care was taken to adjust the arm so that the finger was at heart level. The instanta-

neous pressure output was transferred online to the recording computer where beat-to-beat

MAP was calculated by numerical integration. This method has shown to provide MAP values

in good accordance with intra-arterial pressure [44, 45].

Local peripheral resistance (LPR) was calculated as (MAP/BBFV). TPR was calculated as

(MAP/CO), where MAP was used as an approximation to the perfusion pressure across the

systemic circulation and CO as an estimate for averaged flow through the resistance vessels.
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For ethical considerations, we did not measure central venous pressure. However, the effect of

different levels of LBNP on CVP is previously described [40].

Data analysis

Blood flow velocity in the ascending aorta and the brachial artery were sampled at 50 Hz. HR

was sampled beat-by-beat, while SV, CO, MAP, TPR and LPR were calculated for each heart-

beat. To allow for analysis, all recorded variables were converted into a 2-Hz sampled signal by

interpolation. Throughout the recording period, considerable beat-to-beat variation was pres-

ent in the recorded variables. This variation has been reported by other authors [46, 47] and is

partly due to the influence of respiration [46, 48]. For each subject, variations in the recorded

variables not related to the pressor response or to the onset and release of LBNP were partly

eliminated by the coherent averaging technique, comprising the calculation of the average

response from four identical runs for every test protocol. Finally, the individual average curves

from all 11 subjects were pooled and used to calculate the inter-individual averaged responses

for the five protocols by finding the mean value in each set of synchronous samples for each

2-Hz time step, presented in Figs 2 and 3.

Statistical analysis

Values are reported as mean (standard deviation), unless otherwise stated. To explore the

effect of IHG during continuous LBNP, the median of the first minute (0 s to 60 s; baseline,

without IHG) was compared to that of the last 30 s of IHG (150 s to 180 s) in P1, P4 and P5. To

explore the effect of transient LBNP, the first minute was compared to the last 20 s of transient

LBNP (130 s to 150 s) during IHG in P1, P2 and P3. Calculations were performed by entering

the median values as response variables in linear mixed regression models with subject as a

random effect. LBNP-level (0, 20 and 40 mmHg) and IHG/ no-IHG were entered as explana-

tory factors with interaction effects to describe effects of different LBNP on the response to

IHG and vice versa. Calculations were performed in R 3.6.3 [49] and RStudio 1.2.5042 [50]

using the nlme [51] and multcomp [52]-packages. Regression model assumptions were checked

by visually inspecting Q-Q-plots and standardized residuals vs. predicted values. P-

values< 0.05 were considered statistically significant.

Results

Detailed development of the pooled average responses of the different cardiovascular variables

in protocol P1, P4 and P5 is depicted in Fig 2. No significant differences were observed in the

blood pressure response (interaction effects in Table 1) during reduced preload induced by

mild (-20mmHg) or moderate LBNP (-40mmHg) prior to the exercise period despite a signifi-

cant reduction in CO (Table 1). In addition, a decrease in SV during IHG was offset by an

increase in HR, thereby maintaining CO in the absence of LBNP. Based on the interaction

effects, LBNP did not significantly affect the response to IHG in MAP or CO (Table 1). The

observed gradual increase in blood pressure can primarily be explained by the gradual increase

in TPR. During application of mild (-20mmHg) and moderate LBNP (-40mmHg), resting SV

dropped with 17% (from 59 to 49 ml/beat) and 32% (from 59 to 40 ml/beat) respectively. With

the addition of isometric handgrip, SV showed a similar decrease in both mild (-20mmHg)

and moderate LBNP (-40mmHg) compared with isometric handgrip during normal preload

(no significant interaction effects). As expected, mild LBNP (-20 mmHg) did not affect HR

either before, during or after isometric handgrip, while moderate LBNP (-40 mmHg)

increased HR with about 7.2% in rest. The HR response to isometric handgrip during mild

LBNP (-20 mmHg) showed a similar trend as during isometric handgrip without application
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of mild LBNP (-20 mmHg). During moderate LBNP (-40 mmHg), there was a significant

interaction effect indicating that heart rate increased 6.3 beats/min (95%CI 2.0 to 11;

P = 0.005) more than without LBNP. During isometric handgrip, CO was reduced by 18% dur-

ing mild LBNP (-20 mmHg) and 30% during LBNP (-40 mmHg) compared to isometric con-

traction alone. The reduction in CO was perfectly compensated for by an increased TPR that

facilitated the maintenance and development of the pressor response to isometric exercise.

When preload was transiently reduced during an ongoing isometric handgrip contraction

(P2 and P3; Fig 3 and Table 2), we observed a reduction in stroke volume of about 15% during

application of mild LBNP (-20mmHg) and 28% during moderate LBNP (-40 mmHg), accom-

panied by an initial brief drop in MAP. During mild LBNP (-20mmHg) the drop was immedi-

ately and solely compensated by a rapid increase in TPR. During moderate LBNP (-40mmHg)

the drop was also partly compensated by an increase in heart rate although mainly by a signifi-

cant increase in TPR during the CO-reduced period.

Fig 2. Pooled average trends of the individual cardiovascular responses (n = 11) to 2 minutes of isometric

handgrip contraction (40% of maximal voluntary contraction force). Bold lines show mean arterial pressure (MAP),

stroke volume (SV), heart rate (HR), cardiac output (CO), blood flow velocity in the brachial artery (BBFV), acral skin

blood flow perfusion (ASBF), local peripheral resistance (LPR) and total peripheral resistance (TPR) during isometric

handgrip in supine position (P1). Dotted lines show the responses during reduced preload induced by mild lower body

negative pressure (LBNP -20 mmHg, P4)), and hairlines the responses during LBNP (-40 mmHg, P5).

https://doi.org/10.1371/journal.pone.0243627.g002
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Discussion

The present study reveals a considerable flexibility in the cardiovascular control mechanisms

used to maintain the pressor response to isometric exercise. The main finding is that a gradual

increasing TPR is the most important factor contributing to the observed increase in MAP

during isometric exercise, both in supine position and during different levels of reduced

preload.

CO during isometric exercise

The results show that in supine position SV gradually decreases at a slope around -4 mL/min

during isometric handgrip. This is in accordance to what we previously have recorded [11]. A

gradually increasing HR maintains CO, while TPR is the main factor contributing to the

Fig 3. Pooled average trends of the individual cardiovascular responses (n = 11) to 2 min isometric handgrip

contraction (40% of maximal voluntary contraction). Bold lines show mean arterial pressure (MAP), stroke volume

(SV), heart rate (HR), cardiac output (CO), blood flow velocity in the brachial artery (BBFV), acral skin blood flow

perfusion (ASBF), local peripheral resistance (LPR) and total peripheral resistance (TPR) during isometric handgrip in

supine position (P1). Dotted lines and hairlines show the responses during a transient reduction in preload induced by

onset of lower body negative pressure during the ongoing contraction. Dotted lines show the responses to application

of mild LBNP (-20mmHg, P2) and hairline the response to moderate LBNP (-40mmHg, P3).

https://doi.org/10.1371/journal.pone.0243627.g003
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increase in MAP (Fig 2). This is in agreement with some [10–14], while others are referring

towards solely CO [5–9] or a contribution of both CO and TPR [15–18]. Interestingly, several

studies have depicted that the pressor mechanism during the first minute of handgrip exercise

is mainly reliant on CO, whereas that response is blunted afterwards [8, 16]. Similarly, the

pressor response switches to TPR if the ability to increase CO is compromised [53–55]. How-

ever, the current study shows no increase in CO during the first minute and it also seems

Table 1. Hemodynamic response to IHG during continuous LBNP.

Estimates (95% CI) Main effects Interaction effect (IHG:

LBNP)

Before IHG During IHG IHG LBNP

Mean arterial pressure (mmHg)

LBNP 0, P1 84 (76 to 93) 109 (100 to 117) 24 (18 to 30; P < 0.001)

LBNP-20, P4 85 (76 to 93) 111 (102 to 120) 0.03 (-6.3 to 6.4; P = 0.99) 2.3 (-6.6 to 11.3; P = 0.61)

LBNP-40, P5 85 (76 to 94) 114 (105 to 123) 0.4 (-6.0 to 6.8; P = 0.91) 5.0 (-4.1 to 14.0; P = 0.28)

Cardiac output (l/min)

LBNP 0, P1 4.0 (3.5 to 4.4) 4.4 (3.9 to 4.9) 0.40 (0.16 to 0.64;

P = 0.001)

LBNP-20, P4 3.3 (2.8 to 3.8) 3.6 (3.1 to 4.0) -0.69 (-0.93 to -0.46;

P < 0.001)

-0.12 (-0.46 to 0.21;

P = 0.47)

LBNP-40, P5 2.9 (2.4 to 3.3) 3.1 (2.6 to 3.5) -1.11 (-1.35 to -0.87;

P < 0.001)

-0.21 (-0.55 to 0.13;

P = 0.23)

Heart rate (beats/ min)

LBNP 0, P1 69 (62 to 75) 84 (78 to 90) 15.6 (12.6 to 18.6;

P < 0.001)

LBNP-20, P4 68 (62 to 74) 87 (81 to 93) -0.6 (-3.6 to 2.4; P = 0.71) 3.5 (-0.7 to 7.8; P = 0.11)

LBNP-40, P5 74 (67 to 80) 96 (89 to 102) 5.1 (2.0 to 8.1; P = 0.001) 6.3 (2.0 to 10.6; P = 0.005)

Stroke volume (ml)

LBNP 0, P1 59 (52 to 66) 53 (46 to 60) -6.7 (-9.9 to -3.5; P

<0.001)

LBNP-20, P4 49 (42 to 56) 42 (35 to 49) -10.2 (-13.4 to -7.1;

P < 0.001)

-0.6 (-5 to 3.9; P = 0.80)

LBNP-40, P5 40 (33 to 47) 34 (27 to 41) -19.2 (-22.4 to -16; P = <

0.001)

0.1(-4.4 to 4.6; P = 0.96)

Total peripheral resistance (mmHg

min/ l)

LBNP 0, P1 21.9 (16.7 to

27.2)

26.4 (21.2 to

31.7)

4.5 (1.4 to 7.6; P = 0.005)

LBNP-20, P4 26.4 (21.2 to

31.6)

32.9 (27.7 to

38.1)

4.5 (1.4 to 7.6; P = 0.004) 2.0 (-2.3 to 6.3; P = 0.37)

LBNP-40, P5 30.9 (25.6 to

36.1)

38.9 (33.6 to

44.1)

8.9 (5.8 to 12; P < 0.001) 3.5 (-0.9 to 7.9; P = 0.12)

Local peripheral resistance (a.u.)

LBNP 0, P1 2298 (1473 to

3124)

2001 (1175 to

2826)

-298 (-797 to 201;

P = 0.24)

LBNP-20, P4 2607 (1779 to

3436)

2266 (1437 to

3094)

309 (-193 to 810; P = 0.23) -44 (-753 to 665; P = 0.90)

LBNP-40, P5 2835 (2003 to

3667)

2636 (1804 to

3468)

536 (32 to 1041; P = 0.038) 99 (-614 to 813; P = 0.79)

First two columns are estimates and 95% confidence intervals of the first minute (before IHG) and last 30 s of IHG (during IHG) for continuous LBNP 0, -20 and -40

mmHg (P1, 4 and 5), respectively. Last three columns are main effects of IHG (compared to before IHG) and LBNP -20 and -40 mmHg (compared to LBNP 0 mmHg)

and their interaction effects with confidence intervals and P-values from the mixed effects regression models.

https://doi.org/10.1371/journal.pone.0243627.t001
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unlikely that the CO would be compromised as it addresses healthy and young subjects during

moderate intensity exercise. It may be rational to look at differences in the sympathetic nerve

activity response to isometric exercise and even though several responder profiles (i.e. positive,

negative and non-responders) have been identified, they did not correlate with differences in

hemodynamics [56]. The lack of consistency leads one to speculate about individual differ-

ences in the mechanism of the pressor response. Watanabe et al. demonstrated a large inter-

individual variability in CO and TPR that contributed to the exercise pressor response during

isometric exercise [57]. Potential explanations for the large inter-individual variety in the

response to isometric exercise include variations in posture during exercise [58], ß-adrenergic

receptor activity [59, 60], muscle metaboreflex-mediated cardioaccelerator and peripheral

vasoconstriction responses [57], sympathetic outflow direction to vascular beds [61], as well as

an offset of peripheral vasoconstriction by ß2-adrenergic vasodilation via circulating epineph-

rine and local nitric oxide production [62]. Future research is warranted to elaborate on these

individual differences in the pressor response mechanism.

Isometric handgrip and mild LBNP (-20mmHg)

While mild LBNP (-20mmHg) reduces CVP and SV, HR normally is not affected [39, 40]. The

results of the present study show that application of mild LBNP (-20mmHg) prior to isometric

handgrip reduces SV with about 17% while HR is not affected. MAP is maintained through an

increase in TPR. Despite the reduction in SV prior to the isometric handgrip, SV continues to

Table 2. Hemodynamic response to IHG and transient LBNP.

Estimates (95% CI) Main effects

Before IHG During IHG IHG LBNP

Mean arterial pressure (mmHg) 84 (78 to 91) 19.5 (15.1 to 23.9; P < 0.001)

LBNP 0, P1 104 (96 to 112)

LBNP-20, P2 103 (95 to 111) -0.7 (-6 to 4.7; P = 0.81)

LBNP-40, P3 104 (97 to 112) 0.6 (-4.8 to 6.1; P = 0.82)

Cardiac output (l/min) 4.0 (3.6 to 4.4) 0.4 (0.2 to 0.6; P < 0.001)

LBNP 0, P1 4.5 (4.0 to 4.9)

LBNP-20, P2 3.7 (3.2 to 4.1) -0.8 (-1.0 to -0.5; P < 0.001)

LBNP-40, P3 3.3 (2.9 to 3.7) -1.2 (-1.4 to -0.9; P < 0.001)

Heart rate (beats/ min) 68 (62 to 73) 14.8 (12.5 to 17.1; P < 0.001)

LBNP 0, P1 83 (77 to 88)

LBNP-20, P2 82 (76 to 88) -0.5 (-3.3 to 2.4; P = 0.75)

LBNP-40, P3 86 (80 to 92) 3.5 (0.6 to 6.4; P = 0.018)

Stroke volume (ml) 60 (53 to 67) -5.6 (-8 to -3.1; P < 0.001)

LBNP 0, P1 54 (47 to 61)

LBNP-20, P2 46 (39 to 53) -8.7 (-11.7 to -5.7; P < 0.001)

LBNP-40, P3 39 (32 to 46) -15.2 (-18.2 to -12.2; P < 0.001)

Total peripheral resistance (mmHg min/ l) 22 (18 to 26) 2.5 (-0.2 to 5.3; P = 0.071)

LBNP 0, P1 24 (20 to 29)

LBNP-20, P2 30 (25 to 35) 5.8 (2.4 to 9.1; P < 0.001)

LBNP-40, P3 36 (31 to 40) 11.3 (7.9 to 14.7; P < 0.001)

First two columns are estimates and 95% confidence intervals of the first minute (before IHG) and last 20 s of LBNP (during IHG) for intermittent LBNP 0, -20 and -40

mmHg (P1, 2 and 3), respectively. Last two columns are main effects of IHG (compared to before IHG) and LBNP -20 and -40 mmHg (compared to LBNP 0 mmHg)

with confidence intervals and P-values from the mixed effects regression models.

https://doi.org/10.1371/journal.pone.0243627.t002
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decrease and HR increases gradually during isometric handgrip, following the same pattern as

observed without application of LBNP. The main difference between the series with and with-

out application of mild LBNP (-20mmHg), is a marked reduction in SV and CO, leading to a

constantly elevated TPR throughout the period (Fig 2). Rapid application of mild LBNP

(-20mmHg) during an ongoing contraction leads to a transient drop in SV while HR is not

effected, except from a transient increase in the first few seconds, probably due to a startle

response [63]. Again, the results show that the drop in MAP due to the reduction in SV is

immediately compensated for by a rapid increase in TPR (Fig 3).

Isometric handgrip and LBNP (-40mmHg)

A more marked reduction of CVP during application of LBNP (-40mmHg) normally leads to

an increased HR [38–40]. The increased HR maintains CO by compensating the large fall in

SV. The results from this study support earlier findings [38–40], as we observed a marked

increase in HR during the period when LBNP (-40mmHg) is applied before isometric hand-

grip. When handgrip was combined with reduced preload induced by LBNP (-40mmHg), HR

rose following the same pattern as during LBNP (-40mmHg) alone, but from a higher baseline.

But again, the main factor contributing to the gradual increase in MAP is a gradual increase in

TPR (Fig 2). Despite a transient increase in HR, a rapid onset of LBNP (-40mmHg) during an

ongoing contraction leads as expected to a rapid reduction in CO and a transient fall in MAP

that within a few seconds is perfectly compensated for by an increased TPR (Fig 3).

The mechanisms behind increased TPR

TPR cannot be recorded directly, but can be calculated provided that perfusion pressure

(MAP-CVP) and blood flow (CO) are known. For ethical considerations we did not measure

CVP in this study, so TPR was defined as MAP divided by CO (mmHg min/L) where MAP

was used as an approximation to the perfusion pressure across the systemic circulation. Leven-

hagen et al. observed an average CVP of around 4 mmHg in rest, 0 mmHg during mild LBNP

(-20mmHg) and -4mmHg during LBNP(-40mmHg) [40]. In the present study, TPR is there-

fore slightly overestimated in rest, while it is almost correct during mild LBNP (-20mmHg)

and underestimated during application of LBNP (-40mmHg). However, in this study, it is the

relative changes in TPR between the different situations that are of interest and the underesti-

mation of TPR during LBNP (-40mmHg) will not significantly affect our conclusions.

As an indicator of blood flow to the muscle and skin in the resting arm, we measured the

blood flow velocity in the brachial artery (BBFV). Since BBFV in the resting arm gradually

increases during isometric exercise in P1, it seems that the part of the vascular bed supported

by the brachial artery does not contribute much to the observed increase in TPR. On the other

hand, we observed significantly lower BBFV in the resting arm during application of LBNP

both prior to (Fig 2) and during (Fig 3) an ongoing isometric contraction. In the regression

model, we found a significant increase in local peripheral resistance in the resting arm during

LBNP -40mmHg, but no increase with IHG. This finding indicates that muscles in the resting

arm contribute to the increase in TPR and blood pressure in situations where CVP is reduced

as a result of the reduced preload. Blood flow in the brachial artery reflects the vascular resis-

tance bought through muscles and skin in the resting arm. To differentiate the potential con-

tribution from the resting arm to the increased TPR during isometric exercise, we measured

the blood flow in acral skin (ASBF) in the resting arm in addition to blood flow in the brachial

artery. Blood flow in acral skin increased during isometric exercise in the same way as in the

brachial artery, indicating that acral skin does not make a major contribution to the increase

in TPR during isometric exercise (Fig 2). Rapid onset of LBNP was induced during an ongoing
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contraction, where we observed a large transient drop in acral skin blood flow, indicating

strong transient vasoconstriction. During both mild LBNP (-20mmHg) and moderate LBNP

(-40mmHg), the initial vasoconstriction at the onset of LBNP attenuated after a few seconds,

and blood flow in acral skin was restored, indicating that this part of the vascular bed does not

play a vigorous part in increasing TPR during isometric handgrip (Fig 3).

It is believed that the purpose of the nervous response to isometric exercise is to ensure ade-

quate blood flow and oxygen delivery to working muscle, and increasing MAP intuitively

seems reasonable to perfuse an isometrically contracting muscle. Increased muscle sympa-

thetic nerve activity (MSNA) is believed to mediate vasoconstriction and reduced conductance

in skeletal muscle, and although the mechanisms may differ from that of working muscle, it is

also believed to increase in non-contracting muscle [64]. Our results indicate that the muscles

and skin in the resting arm do not play an important role in increasing TPR during isometric

handgrip in supine position, but do make a contribution during reduced preload caused by

application of LBNP. This seems to contradict the notion that increased MSNA leads to

increased vascular resistance in non-contracting skeletal muscle. In the present study, we did

not measure blood flow in other large arteries, but it may seem that other parts of the vascular

bed play the most vigorous role in the upregulation of TPR during isometric handgrip. Further

investigations on blood flow and vascular resistance in different vascular beds (e.g. cerebral,

splanchnic and renal) during IHG are warranted.

Methodological considerations

We were not able to perform a sample size calculation, as we did not find adequate data for

our research question and study design. The subjects in the present study were a convenience

sample with a number within the range of what is usual in this kind of experimental study.

Although the number of subjects is low, the within-subject repeats narrowed the confidence

intervals of the estimates.

In the present study, we did not measure MSNA which is often performed in mechanistic

studies on IHG. However, MSNA is a mediator of the circulatory effects of IHG. As we mea-

sured these circulatory effects, we evaluated a more downstream effect of IHG.

Conclusions

According to our findings, the increased TPR is the most important factor contributing to the

increase in MAP during isometric handgrip. The results reveal that MAP is maintained by

changes in TPR even in situations where CO is reduced both prior to but also transiently dur-

ing an ongoing isometric contraction. During isometric handgrip in supine position, the rest-

ing arm does not play an important role to increase of TPR. During reduced preload we also

observed an increased resistance in the resting arm contributing to the increased TPR. This

highlights the relative importance for peripheral resistance, compared to CO in mediating the

pressor response during isometric exercise.
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