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Abstract

Transthoracic echocardiography is the first-line imaging modality in the assessment of right-

sided valve disease. The principle objectives of the echocardiographic study are to determine 

the aetiology, mechanism and severity of valvular dysfunction, as well as consequences on 

right heart remodelling and estimations of pulmonary artery pressure. Echocardiographic data 

must be integrated with symptoms, to inform optimal timing and technique of interventions. 

The most common tricuspid valve abnormality is regurgitation secondary to annular dilatation 

in the context of atrial fibrillation or left-sided heart disease. Significant pulmonary valve 

disease is most commonly seen in congenital heart abnormalities. The aetiology and 

mechanism of tricuspid and pulmonary valve disease can usually be identified by 2-

dimensional assessment of leaflet morphology and motion. Colour flow and spectral Doppler 

are required for assessment of severity, which must integrate data from multiple imaging 

planes and modalities. Transoesophageal echo is used when transthoracic data is incomplete, 

although the anterior position of the right heart means that transthoracic imaging is often 

superior. Three-dimensional echocardiography is a pivotal tool for accurate quantification of 

right ventricular volumes and regurgitant lesion severity, anatomical characterisation of valve 

morphology and remodelling pattern, and procedural guidance for catheter-based 

interventions. Exercise echocardiography may be used to elucidate symptom status and 

demonstrate functional reserve. Cardiac magnetic resonance and computed tomography 

should be considered for complimentary data including right ventricular volume quantification, 

and precise cardiac and extracardiac anatomy. This British Society of Echocardiography 

guideline aims to give practical advice on the standardised acquisition and interpretation of 

echocardiographic data relating to the pulmonary and tricuspid valves. 
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Common abbreviations

2D/2DE Two-dimensional / 2D echocardiography
3D/3DE Three-dimensional / 3D echocardiography 
A4C Apical four chamber
BSE British Society of Echocardiography
CFM Colour flow mode
CMR Cardiac magnetic resonance
CS Coronary sinus
CW Continuous wave
EROA Effective regurgitant orifice area
HV Hepatic vein
IVC  Inferior vena cava 
LV Left ventricle / left ventricular
PA Pulmonary artery
PH Pulmonary hypertension
PHT Pressure half-time
PISA Proximal isovelocity surface area
PLAX Parasternal long axis
PR Pulmonary regurgitation
PS Pulmonary stenosis
PSAX Parasternal short axis
PV Pulmonary valve 
PW                                         Pulsed wave
RA Right atrium 
RV Right ventricle / right ventricular
RVOT  Right ventricular outflow tract
TAPSE Tricuspid annular plane systolic excursion
TOE Transoesophageal echocardiography 
TR  Tricuspid regurgitation
TS Tricuspid stenosis
TTE Transthoracic echocardiography
TV Tricuspid valve 
TVA Tricuspid valve annulus
VC Vena contracta
Vmax Maximum velocity 
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Introduction

Guidance for the echocardiographic assessment of the right side of the heart has historically 

been lacking when compared to the left heart. The British Society of Echocardiography (BSE) 

has recently published guidelines for the echocardiographic assessment of the right heart in 

adults.(1) Whilst the aforementioned document included assessment of the tricuspid valve 

(TV) and pulmonary valve (PV), it primarily focused on right ventricular (RV) dimensions and 

function. In recent years, the TV and PV have received greater scientific attention, in part due 

to the advent of percutaneous right heart interventions. Widespread adoption of three-

dimensional echocardiography (3DE) has seen its use extended more routinely to the right 

heart. This has allowed for more accurate quantification of RV morphology and dimensions 

than has previously been possible using conventional two-dimensional (2D / 2DE) and 

Doppler echocardiography. Advances in echocardiographic techniques have allowed novel 

insights into the mechanisms of valve disease and the progression of pathological processes 

such as secondary tricuspid regurgitation (TR), and improved quantification of valve disease 

severity. Concomitantly, longitudinal outcome data have consistently demonstrated that 

disease processes such as secondary TR are independently associated with a poor 

outcome.(2,3) Greater attention to the right-sided heart valves is therefore necessary, and 

refinement and validation of echocardiographic techniques for their assessment is timely. It 

was therefore the consensus of the BSE Education Committee that a separate guideline 

dedicated to the assessment of the TV and PV in adults was required. 

This guideline document aims to provide the reader with a theoretical background to the 

pathological processes involved in right-sided valve disease, and their consequences on 

cardiac remodelling. It also aims to serve as a didactic, hands-on guide for echocardiography 

practitioners, including practical advice on image acquisition and optimisation, as well as up-

to-date reference values for valve disease quantification. Whilst this will include guidance on 

grading of severity, we have not attempted to summarise thresholds for surgical intervention, 

for which the reader is referred to published international guidance on the management of 

Page 4 of 118Accepted Manuscript published as ERP-20-0033.R1. Accepted for publication: 18-Dec-2020

Copyright © 2019 the authors Downloaded from Bioscientifica.com at 02/05/2021 12:28:14PM
via free access



5

valve diseases.(4,5) We have also not attempted to comprehensively characterise congenital 

diseases affecting the right heart. Rather, the focus is on generic principles and practical 

techniques applicable in a range of different pathologies. Finally, it is beyond the scope of the 

present document to provide a detailed account of the use of echocardiography for the 

guidance of percutaneous structural right heart interventions. 

General principles and terminology

Valvular defects may broadly be classified as primary, where there is inherent pathology of 

the valve apparatus itself, or secondary (also known as functional), where a structurally normal 

valve is distorted by anatomical changes in the right atrium (RA), RV or outflow tract (RVOT), 

tricuspid valve annulus (TVA), or pulmonary artery (PA). Primary TV or PV lesions may be 

either congenital or acquired. Pure primary valve disease will in theory, at least initially, be 

characterised by a normal RV and RA. In reality however, for example in primary TR, the RV 

will progressively remodel, leading to the development of additional secondary TR.   

Echocardiographic assessment of any valve lesion involves a multi-parametric approach 

which includes 2D and 3D imaging, colour flow mode (CFM) and spectral Doppler, and should 

involve imaging from multiple acoustic windows. In all cases, decisions regarding lesion 

severity should not rely on information from any single view or modality. Qualitative data (e.g. 

leaflet motion pattern) should be integrated with semi-quantitative measures (e.g. colour flow 

jet size) and quantitative measures (e.g. calculated valve area or regurgitant orifice). However, 

it must be acknowledged that even quantitative measures of valvular dysfunction can have 

differing implications according to the specific aetiology, patient body size, ventricular 

compliance and function, degree of chronicity, and loading conditions at the time of 

assessment.(6)

Normal anatomy of the tricuspid and pulmonary valves

Tricuspid valve
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The TV is the largest and most apically-located valve in the heart. The normal TV orifice area 

is 7 – 9 cm2, which results in a low-pressure gradient between the RA and RV (<2mmHg). The 

TV consists of an annulus, leaflets, papillary muscles, and chordae tendinae.

 

The TVA is a D-shaped ellipsoid which has a saddle-shaped rather than planar profile. The 

superior portion of this saddle is located near the aortic valve and RVOT, whilst the inferior 

portion is near the coronary sinus (CS). The normal TVA area, circumference, long axis and 

short axis diameters respectively at end-diastole are 8.6±2.0cm2, 10.5±1.2cm, 36±4mm and 

30±4mm by 3DE.(7) Annular area however changes by approximately 30% during the cardiac 

cycle, being largest at end diastole.(8) The straight segment of the D-shape overlies the 

ventricular septum and forms the base of the septal leaflet of the TV. The remainder of the 

annulus is relatively unsupported by the free lateral and posterior RV walls. 

Using transthoracic echocardiography (TTE), the TV is typically imaged in the parasternal long 

axis (PLAX) RV inflow view (by tilting the probe inferiorly from the conventional PLAX window), 

in the parasternal short axis (PSAX) view, as well as the apical four chamber (A4C) view. 

However, quantification of TV and RV dimensions should be performed using the RV-focused 

A4C view. In order to obtain this view, the transducer may need to be moved slightly laterally 

from the conventional A4C position in order to bring the RV into the centre of the image, whilst 

ensuring that the LV outflow tract does not come into view, and that the LV apex remains 

central to the top of the image sector. The probe is then rotated to obtain the maximum RV 

basal diameter.(1) 

There are usually three TV leaflets of unequal size. All 3 leaflets cannot usually be imaged in 

a single echocardiographic view, and there is high variability in which leaflet is seen in any 

particular imaging plane (figures 1 and 2). The anterior leaflet extends from the RV 

infundibulum anteriorly to the inferolateral wall posteriorly, and is usually the largest and most 

mobile. The posterior leaflet attaches along the posterior margin of the TVA from the septum 
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to the inferolateral wall, is the shortest circumferentially, and often exhibits several scallops. It 

is not clearly demarcated from the anterior leaflet in 10% of individuals. The septal leaflet 

extends from the interventricular septum to the posterior RV. It is the shortest radially and is 

the least mobile. The commissure between the septal and posterior leaflets is usually located 

near the entrance of the CS into the RA. The commissure between the septal and anterior 

leaflets is typically the largest and is found near the non-coronary sinus of Valsalva. During 

interventional procedures, devices anchored in this region therefore risk aortic perforation. 

The right coronary artery, AV node and bundle of His are located close to the anterior leaflet, 

hence pressure on this area during invasive procedures may result in heart blocks. Coaptation 

of the TV usually takes place just below (i.e. just on the ventricular aspect) of the TVA. The 

normal coaptation length is 4-9mm, which creates some coaptation reserve in case of annular 

dilatation.(6) 

The TV tensor apparatus consist of an anterior, a posterior, and in most cases (80%) septal 

papillary muscle (PM), as well as the associated chordae. The large anterior PM arises from 

the lateral RV wall and supports the anterior and posterior TV leaflets. The moderator band 

may join the anterior PM. The posterior PM supports the posterior and septal leaflets. Any 

displacement of the RV free wall or septum, as seen for example in cavity dilatation or bundle 

branch blocks, therefore has the potential to promote TR by altering subvalvar geometry. 

Chordae arise from the PMs and also directly from the ventricular septum, attaching to the 

anterior and septal leaflets. There are usually around 25 chordae, which present a potential 

source of entrapment for intracardiac devices during percutaneous therapies. The TV chordae 

are in general less distensible than those of the mitral valve, which means that leaflet tethering 

easily occurs as a result of RV dilatation. 

permission from Hahn et al.(9)

Page 7 of 118 Accepted Manuscript published as ERP-20-0033.R1. Accepted for publication: 18-Dec-2020

Copyright © 2019 the authors Downloaded from Bioscientifica.com at 02/05/2021 12:28:14PM
via free access



8

Pulmonary valve

The PV is a tricuspid structure which is anatomically very similar to the aortic valve. The cusps 

are however thinner, in view of the lower right-sided pressures. The PV arises from the 

muscular RV infundibulum and lacks fibrous continuity with the TV, unlike the mitral-aortic 

continuity. The PV is imaged by TTE from the PSAX view or from the modified, superiorly tilted 

PLAX window. The subcostal window may also add information when parasternal views are 

inadequate. Echocardiographic visualisation of the PV is typically more difficult than for other 

valves, and usually only one or two cusps will be visualised simultaneously. It is sometimes 

possible to obtain a good quality 3DE dataset of the PV using either TTE or transoesophageal 

echocardiography (TOE). 

Causes of right-sided valve pathology

Tricuspid valve disease

Physiological TR in the context of a structurally normal valve, with a non-dilated RV and RA, 

is seen in the majority of normal individuals. It is characterised by a narrow, laminar jet in a 

small region close to the valve closure line. 

Primary disorders of the TV apparatus include congenital conditions such as Ebstein anomaly, 

and TV dysplasia. Ebstein anomaly involves apical and superior displacement of the TV, with 

atrialisation of the remainder of the RV. There is usually a large anterior leaflet, tethered septal 

leaflet, and significant, progressive TR. Acquired causes of primary TV disease include blunt 

chest trauma, rheumatic fever, endocarditis, myxomatous degeneration, carcinoid, radiation-

induced valve thickening, and certain serotonergic drugs (e.g. high-dose cabergoline, and 

pergolide).(10) Intracardiac devices such as catheters and endomyocardial biopsy needles 

can entangle the TV chordae, impinge on, or perforate leaflets. Pacemaker and defibrillator 

lead-associated TR is an increasingly recognised phenomenon, with a variety of possible 

mechanisms.(11) The predominant mechanism is probably direct, lead-associated disruption 

of TV coaptation, or damage to the leaflets or subvalvar apparatus (figure 3). Iatrogenic 
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causes of TV disease have become more relevant with the growth of percutaneous therapies 

for the right-sided heart valves. The aetiology of primary TV disease can usually be elucidated 

by identifying characteristic morphological changes on 2D, and particularly 3D, 

echocardiography. Carcinoid TV disease, for example, typically results in thickened leaflets 

with reduced motion in the absence of commissural fusion.(12) Rheumatic TV disease is 

characterised by commissural fusion, shortening and retraction of leaflets and chordae, and 

leaflet calcification, resulting in tricuspid stenosis (TS) and/or TR which is almost always seen 

concomitantly with rheumatic mitral valve disease.(10)

Secondary TV disease occurs when a structurally normal valve is disrupted by remodeling of 

the RV and/or RA. This includes some congenital conditions, for example TV leaflet tethering 

associated with ventricular septal defects or patches used to close them, causing secondary 

TR. Right ventricular pacing may promote TR by altering the normal cardiac contraction 

pattern and creating mechanical dyssynchrony.(11) This might in theory be ameliorated by 

minimising RV pacing, biventricular pacing, or RV septal lead positioning, although the 

evidence for this is lacking. Secondary TR is also common in conditions of RV volume 

overload including left-to-right shunts and pulmonary regurgitation (PR), as well as intrinsic 

RV myocardial diseases such as arrhythmogenic cardiomyopathy and RV infarction.(13)

It has become clear from the most recent literature that dilation of the RA, particularly in the 

setting of persistent atrial fibrillation, is one of the most frequent mechanisms of functional TR 

(‘atriogenic functional TR’).(14–16) As the TVA dilates, it loses its saddle shape, becomes 

more planar, and loses its sphincter function. Here the RV may be non-dilated, with normal 

papillary muscle geometry and no evidence of leaflet tethering or tenting.  Atriogenic functional 

TR is to be distinguished from ‘ventricular functional TR’, where there is RV remodeling due 

to pulmonary hypertension (PH), most commonly in the context of left-sided heart disease. In 

such cases, there is less TVA dilation, and more leaflet tethering than in atriogenic TR. 
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Approximately 30% of patients with mitral valve disease have significant concomitant TR due 

to the development of post-capillary PH.(9)

In secondary TR therefore, the dimensions of the TVA, RV and RA, and the extent of tricuspid 

leaflet tethering are the key determinants of regurgitation severity.(15) TR itself leads to 

progressive RV and RA remodelling, which in turn perpetuates TVA dilatation, papillary 

muscle displacement, and further leaflet tethering (‘TR begets TR’). RV volume overload leads 

to interventricular septal shift, reducing LV cavity size and impairing LV filling, further 

exacerbating PH. There is evidence that PH and RV impairment in this setting may not 

improve after left-sided valve surgery has reduced the RV afterload.(17,18) Current guidelines 

therefore advocate liberal use of undersized TV annuloplasty at the time of left-sided heart 

valve surgery, even for non-severe TR, particularly when the TVA is dilated.(5) In some 

studies, the presence of AF and/or PH have been the strongest predictors of progressive 

secondary TR(3). Other studies have revealed late, progressive TR in around a quarter of 

patients who had previously undergone left-sided heart valve surgery, with pre-operative AF 

being the strongest risk factor.(2) Current guidelines advocate consideration of surgical 

intervention for isolated secondary TR after previous left-sided surgery, in symptomatic 

patients or those with progressive RV dysfunction, provided that severe LV or RV impairment, 

or severe PH, have not already developed.(5) In addition, percutaneous TV interventions are 

rapidly evolving to address this problem in patients that do not meet these criteria (e.g. those 

with severe ventricular dysfunction).(9)

Pulmonary valve disease

A trace of PR is present on echocardiography in up to 75% of normal subjects.(6) Severe PR 

in adults is most commonly seen in repaired congenital heart disease, for example previous 

valvotomy or valvuloplasty for pulmonary stenosis (PS) and pulmonary atresia, and repaired 

tetralogy of Fallot. Acquired mild or moderate PR is most frequently seen in patients with 
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pulmonary arterial dilatation as a consequence of PH. Isolated valvular PS is seen in both 

children and adults and can be associated with syndromes, e.g. Noonan syndrome. Residual 

degrees of subvalvular, valvular and supravalvular PS can be seen in repaired tetralogy of 

Fallot.  Other, less common causes of acquired PS and/or PR include native or prosthetic PV 

endocarditis, blunt chest trauma, endocarditis, carcinoid, myxomatous degeneration, 

rheumatic heart disease, and drug-induced causes (e.g. pergolide).  

Assessment of severity of tricuspid and pulmonary valve disease

TV and PV lesions should be graded according to severity in a similar way to left-sided lesions, 

using a multimodal approach, with both quantitative and qualitative techniques (tables 1 and 

2, and appendix A). It is important to minimise observer variability, therefore a standardised 

approach is required. It is also important that the operator is aware of the inherent limitations 

of each technique. 

2D conventional imaging

The use of 2D imaging from multiple echocardiographic windows is required to determine the 

structural integrity, thickening, calcification and mobility of the valve leaflets. Optimisation of 

equipment settings, positioning of the transducer and patient, and respiratory manoeuvres 

should be undertaken to improve spatial resolution whilst maximising signal-to-noise ratio. 

This includes the use of zoom to focus on the valve, with complimentary adjustments of the 

dynamic range and gain settings. Careful visual assessment of the valve permits a qualitative 

assessment as to whether the appearances are consistent with significant disease. Valvular 

stenosis is generally associated with leaflet thickening with or without doming, restricted 

mobility and reduced separation at peak opening.(19) When assessing a regurgitant valve it 

is important to demonstrate any valvular thickening, prolapse, reduced coaptation, or 

increased tenting area.(6) 2D and 3D imaging additionally permit assessment of secondary 

RV, RA and inferior vena cava (IVC) remodelling.
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Colour Flow Doppler

The main determinants of the colour jet size are colour gain settings, momentum of the 

regurgitant jet, and its direction. A faster TR jet will entrain more blood in the receiving RA, 

such that a high velocity jet of mild TR may appear larger on CFM than it actually is. High RV 

systolic pressure will increase driving pressure and hence jet velocity, resulting in a larger jet. 

Similarly, severe TR may be of low velocity due to a large orifice area, reducing entrainment 

of flow in the RA, creating a misleadingly small colour jet.(20) As a result, for the same colour 

jet area, the regurgitant volume of TR will be larger than that of mitral regurgitation (figure 4). 

The appearance of a jet of TR is also dependent on the minimum detectable velocity (usually 

10% of the Nyquist limit) and this is even more apparent where jet propagation is constrained 

by chamber walls (e.g. eccentric TR).(6). The geometry and number of regurgitant orifices 

also significantly impacts on jet size, with multiple jets appearing collectively larger, without 

necessarily having the same haemodynamic consequences as a single large jet. It is important 

to note that the size of the distal jet in stenotic lesions does not help with grading severity, due 

to the complex interaction of these factors.

Instrumentation settings are equally important in determining jet size. A lower Nyquist limit and 

pulse repetition frequency will cause over-representation of lower velocity jets, such as those 

related to entrainment in the receiving chamber. It is recommended that the Nyquist limit 

should be set between 50 – 60 cm/s. High colour gain can cause noise to be misrepresented 

as blood flow. Conversely, low colour gain can eliminate important signals within the jet. It is 

therefore important to standardise practice by increasing the colour gain until saturation of the 

blood pool occurs, then gradually reducing until clutter is eliminated. In addition, any flow that 

is perpendicular to the beam will not be represented on the colour map. This is less apparent 

in turbulent flow such as in TS or PS, due to variance of flow direction. 

The vena contracta (VC) is the narrowest part of the jet at or immediately distal to the orifice, 

and is less influenced by the factors that impact on overall jet size. For the TV and PV, the 
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shape of the regurgitant VC is complex, and its linear measurement (particularly from a single 

view) should be interpreted with caution. A narrow region of interest should be used to permit 

greater temporal resolution when assessing the VC.  The assessment of flow convergence 

prior to the lesion can be used qualitatively in both the TV and PV, for regurgitation and 

stenosis. However, the ability to obtain stenotic orifice area has not been validated thoroughly, 

and is also not recommended for the assessment of PR.  Locating the flow convergence below 

the TV may utilise the standard Nyquist limit for qualitative assessment, but should be reduced 

to 28cm/s for calculation of the proximal isovelocity surface area (PISA) radius.(6,21) 

Calculation of TR effective regurgitant orifice area (EROA) using PISA has not been as 

robustly validated as mitral regurgitation EROA, and should not be interpreted in isolation. 

Contour flattening is also more apparent in TR than in mitral regurgitation, due to lower jet 

velocity and a less circular TR orifice, leading to underestimation of the EROA. Conversely, 

PISA will often overestimate EROA with eccentric TR jets. The high temporal resolution of 

colour M-mode can be used to assess the timing and duration of TR during RV systole. 

Regurgitant jets limited to early and/or end-systole are unlikely to be severe. 

is much lower than LV pressure, hence the TR is probably more significant than the mitral regurgitation. 

Spectral Doppler

Continuous wave (CW) and pulsed wave (PW) Doppler can be used to provide qualitative and 

quantitative indices for stenosis and regurgitation. The Doppler signal should be optimised to 

maximise signal-to-noise ratio using gain and scale settings, whilst ensuring a sweep speed 

of 100mm/s is used in stenosis. The ultrasound beam should be aligned with flow, hence the 

use of different imaging views is important. The CW signals provide quantitative information 

on jet velocity, pressure half-time, mean gradients and timing of regurgitation, whilst PW is 

used to assess tricuspid forward flow, as well as flow in the hepatic veins (HV) in the setting 

of TR.  Doppler profiles of right-sided flow are influenced by respiration (particularly TV inflow), 

which can be marked. This variability is more notable than with left-sided filling, hence 
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averaging should be performed over 3 cardiac cycles (5 cycles in atrial fibrillation).(22) 

Qualitative assessment of signal intensity is also important, with a dense signal suggesting 

more significant regurgitation. 

Doppler velocities are related to preload and afterload, hence the presence of multiple valve 

lesions is likely to impact on values. TV inflow velocity and mean gradient will be elevated in 

the presence of significant TR, due to increased preload, rather than actual TS. Indices such 

as pressure half-time may be challenging to calculate in tachycardic subjects, and should be 

assessed at heart rates <100bpm where possible. The calculation of valve area by pressure 

half time according to the formula used for the mitral valve (220/T1/2) is less accurate when 

applied to the TV, with some data suggesting the use of an alternative constant (190/T1/2).(19) 

This has, however, not been well validated. The continuity equation is an alternative technique 

for the assessment of valve area in TS, in the absence of significant TR.(23) TV area is 

calculated as ‘stroke volume / TV VTI’, with stroke volume measured from either the RV or LV 

outflow. This technique is time-consuming, cannot be applied in the presence of significant 

regurgitation from another valve, and requires further validation. 

Impact on the RV and pulmonary circulation

It is important to understand the nature of cardiac adaptation in chronic TV and PV disease, 

since it can assist in the assessment of lesion severity, and guide the timing of interventions. 

Impact of regurgitation on right-sided remodelling

Regurgitant flow causes an increased preload which is delivered to both the proximal and 

distal chambers, which must dilate to accommodate the increased blood. Therefore, chamber 

dilation is directly related to regurgitant severity. In significant TR, RA and RV dilatation will 

initially increase contractility through the Frank-Starling mechanism, making the ventricle 

appear hyperdynamic. The chronic impact of this however results in TVA dilatation, distortion 

of papillary muscle geometry, progressive valve tenting, and worsening regurgitation. As the 
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RV dilates further, irreversible myocardial damage may occur, leading to progressive 

dysfunction. RV diastolic pressure will increase, causing the septum to displace towards the 

left in diastole, resulting in a D-shaped left ventricle.(24) Therapeutic interventions should be 

performed prior to such advanced RV volume overload. It is imperative therefore that a full 

assessment of TVA, RA and RV dimensions, as well as functional indices, such as tricuspid 

annular plane systolic excursion (TAPSE), RV free wall longitudinal strain,(25) and tissue 

Doppler S’ velocity, are closely monitored in patients with TR or PR undergoing 

echocardiographic surveillance. These measurements have been shown to support 

intervention by ensuring timely referral, resulting in improved post-surgical survival, and lower 

rates of post-operative residual TR.(26,27)

This process of pathological remodelling is similar in PR, with RV dilatation and dysfunction 

being the final manifestation of severe disease. Significant PR rarely occurs in isolation, and 

is usually associated with other congenital anomalies. In general the pulmonary circulation is 

able to tolerate even severe PR, due to its low resistance and close proximity to the heart, 

which allows blood to flow readily into the pulmonary microvasculature in systole.(28) It follows 

therefore that PR may be worsened by any condition that elevates pulmonary artery pressure. 

Impact of stenosis on right sided remodelling

In PS, the RV must contract more forcefully to maintain stroke volume through the stenotic 

valve. The RV will remodel to overcome the elevated wall stress. The RV does not usually 

dilate in the early stages, but develops concentric hypertrophy.(29,30) Diastolic dysfunction 

and longitudinal systolic dysfunction are often the first manifestations of a cascade of RV 

deterioration, which can be detected using standard PW Doppler of trans-tricuspid filling, and 

tissue Doppler imaging of the RV lateral wall.(22)  RV dilatation and dysfunction are rare in 

PS, but may occur when the ventricle is unable to overcome progressive elevation of wall 

stress. Pressure overload on the RV can also impact on ventricular interdependence, with 

diastolic and systolic septal flattening which can in turn compromise LV filling. (31) Careful 
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assessment of RV size and function over time is important in determining the optimal timing 

of intervention. Conversely, the impact of tricuspid stenosis on the RV is negligible, with at 

most the appearance of a small cavity due to reduced preload. The elevated afterload however 

causes progressive RA dilatation. As a secondary downstream consequence, IVC 

engorgement and subsequent peripheral venous congestion may develop.(32) 

Transoesophageal echocardiography

TOE should be considered in TV or PV disease when TTE data are insufficient. However, due 

to the anterior position of the right heart in the chest, TTE imaging is often superior to TOE 

(for both 2DE and 3DE). In cases where TTE data are inconclusive, cardiac magnetic 

resonance (CMR) should also be considered as an alternative to TOE (see section ‘Role of 

other imaging modalities’). TOE can be particularly helpful for the diagnosis of right heart 

endocarditis, since it permits excellent visualisation of prosthetic material such as venous 

catheters and pacemaker leads in the caval veins and RA, from the mid-oesophageal bicaval 

and transgastric windows. A detailed protocol for a comprehensive TOE examination has been 

published previously by the BSE.(33) The views of relevance to the TV and PV are 

demonstrated in table 2. In each view, the examination should be performed in 2D and colour 

flow modes, followed by Doppler interrogation if there is adequate alignment of flow with the 

ultrasound beam. 3DE should be considered for elucidation of the anatomy of any 

abnormalities found. RV and RA dimensions should however be quantified in the transthoracic 

RV-focused apical view. Intra-operative TOE is routinely used at the time of left-sided cardiac 

surgery to decide whether TV annuloplasty should be performed concomitantly. However, 

perioperative imaging must be evaluated together with pre-operative data, since right heart 

physiology is heavily influenced by loading conditions that change with conscious level, blood 

pressure, and mechanical ventilation; TR severity will generally be underestimated during 

general anaesthesia. TOE is used to guide catheter-based right-sided valve interventions, 

since it permits clearer visualisation of catheter positions and interactions with valve 
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apparatus, can be performed continuously without hindering simultaneous x-ray fluoroscopy, 

and permits superior visualisation of left heart structures. 

Three-dimensional echocardiography

3DE has greatly enriched our understanding of right-sided valvular heart disease, and has a 

number of practical applications. It is particularly helpful in suspected intracardiac device-

related valvular disorders such as TR secondary to leaflet disruption, where volume rendered 

display of the dataset may precisely delineate the location and nature of interactions between 

prosthetic material (e.g. pacing leads) and various components of the valve apparatus (figure 

3).  In recent years, the transition of right heart 3DE into regular clinical practice has been 

accelerated by the advent of transcatheter TV interventions, during which 3DE has proven 

indispensable for procedural guidance. Detailed description of this latter indication is beyond 

the scope of the present document.  

3DE for right ventricular volume quantification

The complex structure of the RV renders it impossible to visualise all of its component parts 

simultaneously using 2DE. Quantifying the effects of right-sided heart valve lesions on RV 

remodelling has therefore been inconsistently performed using 2DE. Numerous studies have 

compared RV volumetric quantification by 3DE with the reference-standard of CMR. Even 

using the latest algorithms, there is a tendency to underestimate RV volumes with 3DE.(34) 

Conversely, RV ejection fraction by 3DE is comparable to CMR,(35) and has demonstrated 

prognostic value in addition to TAPSE and fractional area change.(36) Reference values for 

RV volumes and ejection fraction measured by 3DE, as well as threshold values for grading 

severity of RV dysfunction, have been published.(37) Intravenous contrast may be used to 

improve RV endocardial delineation, with improved reproducibility and a reduction in bias for 

RV volume underestimation.(38) 3DE RV dataset acquisition and post-processing has been 

comprehensively described in the recent BSE right heart guideline.(1)
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3DE of the pulmonary valve

Live TTE 3DE from the parasternal window can be effective in visualising en face PV short 

axis morphology and quantifying cusp number.(39) This information cannot in general be 

obtained using 2D TTE, since the PV can usually only be visualised in its long axis. However, 

by using 3DE biplane imaging formats allowing simultaneous 2D orthogonal views, a thorough 

interrogation of valve structure can be performed. Pulmonary annulus diameter derived by 3D 

TTE in patients with tetralogy of Fallot correlates more closely with surgical measurements, 

when compared to 2D TTE and cardiac CT.(40)

3DE of the tricuspid valve

Perhaps the greatest strength of 3DE in right heart assessment has been in furthering our 

understanding the anatomy of the TV, and the mechanisms, progression, and quantification 

of TR.(15) See figures 5-7.  

It is rarely possible to visualise all three leaflets of the TV simultaneously by 2D TTE or TOE. 

3D TTE permits the acquisition of datasets of the TV in 85-90% of patients (figure 5A, and 

table 1 ‘Variable view, 3D imaging’). Post-processing of the TV dataset using cross-

sectional and longitudinal cut-planes allows visualisation throughout the cardiac cycle of all 

three leaflets en face, their commissures and attachments to the TVA, and the subvalvar 

apparatus.(41) A standardised imaging display of the transversal cut-planes is recommended, 

with the LV outflow tract at 12 o’clock regardless of whether the perspective is from the RA or 

RV.(42) En face views of the TV can assist in understanding the precise localisation of defects 

such as prolapse, vegetations, and perforations, which may be particularly helpful for surgical 

colleagues. RV dimensions can be accurately quantified as discussed previously (figure 5B).

3DE has been particularly helpful in delineating the complex, saddle-shaped, non-planar 

structure of the TVA, and has provided novel insights into the process of annular dilatation 

leading to secondary TR.(43) We are now able to appreciate how the D-shaped, ellipsoid TVA 
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becomes more circular and planar as it dilates in the direction of the unsupported lateral and 

posterior RV free walls.(8,44) Quantification of TVA dimensions is superior using 3DE 

compared to 2DE, since the latter makes the geometric assumption that the annulus is circular. 

Using direct surgical measurements as the reference standard for TVA dimensions, 

intraoperative 3D TOE has been shown to be superior to intraoperative 2D TOE (45), whilst 

2D TTE has been shown to systematically underestimate TVA dimensions when compared to 

3D TOE.(46) 3D TTE assessment of TVA dimensions is also more accurate than 2D TTE 

when CMR-derived annular dimensions are used as the reference standard.(47), (figure 5C). 

3DE is also helpful in the accurate quantification of TR severity. The addition of 3D colour 

Doppler acquisition permits improved localisation of regurgitant jets, as well as assessment of 

the regurgitant orifice by cropping down and measuring the VC width and VC area (the latter 

in essence representing the EROA), (figure 5D, and table 1 ‘Variable view, 3D CFM 

imaging). Indeed, 3D VC area correlates well with 2D EROA calculated using the flow 

convergence technique.(48) The strength of 3D VC assessment lies in its non-reliance on 

geometric assumptions, unlike 2D VC measurements. Traditional 2DE approaches 

erroneously assumes a circular EROA. The TV regurgitant orifice morphology has been 

shown to be elliptical and rarely circular, given its trileaflet anatomy. Accurate depiction of the 

anatomic regurgitant orifice as described by the 3D VC avoids underestimation of TR severity. 

Consequently, the maximal VC diameter by 3DE is usually greater than the 2D measurement. 

3DE VC area >0.4cm2 is considered to indicate severe TR.(48,49) A novel sub-grading of 

severe TR itself into severe, massive and torrential categories using 3D TR VC area in addition 

to 2D EROA and biplane VC width has been postulated.(50) Finally, single heartbeat real-time 

TTE 3DE-derived PISA has been shown to be more accurate than 2D PISA, using 3D 

planimetered EROA as the reference.(49) Whilst TR regurgitant volume >45mL by 2D PISA 

is considered severe, the threshold for severe TR using 3D PISA is higher (>75mL).(51) 
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The practical aspects of acquisition and display of a 3DE dataset of the TV using TTE are 

shown in figure 7. To improve the quality of the dataset, an echo scanning cut-out bed should 

be used to allow positioning of the patient in a steeper lateral position than that used for 

conventional 2DE, and to permit more lateral probe placement for the apical 2D views. The 

probe should be directed towards the right shoulder in order to obtain a true RV-focused view. 

Respiratory manoeuvres should be used to optimise 2D images. Optimal gain settings are 

critical to avoid dropout artefacts that are common when imaging the thin TV leaflets. Usually, 

the time gain compensation slides should be aligned slightly higher than 50% in order to create 

homogeneous gain, whilst the general gain should be also be slightly higher than that used 

for 2DE. The initial focus should be on obtaining the best possible 2D images (best contrast 

and complete visualisation of the leaflets) independent of the probe position. It does not matter 

if the 2D view is foreshortened. Use of both the azimuthal and elevation planes, multi-slice 

and/or transversal cut planes using volume rendering display are used to ensure that the 

whole TV and TVA are included in the dataset throughout the cardiac cycle. Various display 

options are available. Transversal cut planes (both from the RV or the RA perspective) are 

used to assess the anatomy of the leaflets and the TVA, whilst longitudinal cut planes are 

used to assess the papillary muscles and the chordae. Multi-slices are used for linear 

measurements. 

Stress echocardiography

Current consensus recommendations suggest that stress testing may be useful in assessing 

exercise capacity in severe TR when there are no or minimal symptoms.(4) In most 

institutions, exercise is preferred over pharmacological stress for valve disease assessment, 

since it more closely recreates the conditions experienced by the patient during day-to-day 

exertion. The addition of echocardiography to exercise may permit assessment for occult or 

worsening valve dysfunction, detection of inducible myocardial ischaemia, and measurement 

of pulmonary pressure. Supine bicycle ergometry enables continuous scanning and is 

therefore preferable to treadmill stress, since indices such as pulmonary pressure may rapidly 
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normalise upon cessation of exercise. RV functional reserve may be assessed by measuring 

TAPSE, RVS’, and RV fractional area change at rest and during stress.(52) RV longitudinal 

strain may also be assessed during rest and stress, although this may become less reliable 

at heart rates > 100 beats per minute due to reduced frame rate.(53) A failure to augment 

these indices suggests impaired RV functional reserve, which has been associated with worse 

outcomes in patients with left-sided valve disease.(52) Data relating to right-sided valve 

disease and RV functional reserve are limited. One recent study utilised TAPSE at rest and 

stress to demonstrate impaired RV functional reserve in post-operative tetralogy of Fallot 

repair patients with RV dilatation, despite preserved resting TAPSE.(54) Normal resting RV 

longitudinal function may therefore be falsely reassuring in the context of RV dilatation. Other 

studies have utilised a variety of exercise measurements, including TAPSE, RV fractional area 

change, and RV longitudinal strain, to demonstrate impaired RV functional reserve in tetralogy 

of Fallot repair patients with residual PR.(55,56) Further studies such as these are needed to 

help refine surgical criteria, by identifying patients that will benefit from earlier intervention due 

to occult RV dysfunction seen only during stress, or conversely those with irreversible RV 

damage in whom operative risk might outweigh any potential gains.  

Role of other imaging modalities

Cardiac computed tomography has a role in the planning of transcatheter TV and PV 

interventions, including assessment of annular dimensions, calcification, as well as RV and 

RA dimensions.(57) CMR permits excellent visualisation of the right heart, which is not 

hindered by body morphological considerations such as obesity and artefact from surrounding 

tissues such as lungs and ribs. Any imaging plane can be selected in order to elaborate the 

region of interest. CMR is non-ionising and can be repeated serially without any harmful 

consequences, hence it is particularly appealing in the surveillance of young patients with 

congenital right heart lesions. CMR should be considered in TV or PV disease where the 

mechanism is not apparent on TTE, echo parameters are discordant, and in most cases where 

the aetiology relates to congenital heart disease. The addition of a gadolinium-based contrast 
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agent has the unique ability to demonstrate myocardial fibrosis, including its extent, 

distribution, and pattern (ischaemic vs. non-ischaemic). CMR is however relatively expensive 

and is less routinely accessible than echocardiography. Image quality can degraded by 

common arrhythmias such as atrial fibrillation, and in subjects who are unable to breath-hold 

adequately.(58)           

CMR is considered the gold standard for quantification of biventricular volumes and ejection 

fraction. In general, RV and RA volumes are larger on CMR compared with echo, since 

trabeculations are usually included in the blood pool during CMR post-processing, but 

excluded on echocardiography. It must be remembered, therefore, that data from these two 

techniques may be complimentary, but should not be considered interchangeable. 

CMR is of particular utility in the assessment of congenital PV disease. It is excellent for 

evaluating the anatomy and dimensions of the main PA and its branches, as well as surgically 

constructed shunts. The severity of stenoses in the main PA, its branches, or within surgical 

conduits can be quantified by means of through-plane phase contrast imaging. The same 

technique can be used to quantify PR regurgitant volume and regurgitant fraction (RF). PR 

RF > 40% by CMR is considered to indicate severe regurgitation.(59) Complimentary RV 

volume data can guide the appropriateness and timing of PV interventions. Post-operative RV 

reverse remodelling has been shown to be unlikely in patients who have previously undergone 

tetralogy of Fallot repair and have severe residual PR with significant RV dilatation (indexed 

end-diastolic volume >160mL/m2, or indexed end-systolic volume >82mL/m2).(60)

CMR may be used to assess TVA dimensions and TV morphology, although the thin TV 

leaflets in general limit the usefulness of this approach. TR severity can be indirectly calculated 

as the difference between the manually contoured RV and LV stroke volumes, in the absence 

of other significant regurgitant lesions or shunts. Alternatively, the pulmonary forward flow 

volume (by phase contrast imaging) subtracted from the contoured RV stroke volume should 
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equate to the TR regurgitant volume.(61) Whilst CMR thresholds have not been well validated, 

TR RF ≥ 50% is considered severe.(58) Similar to that seen for PR, RV dilatation on CMR 

(indexed RV end-diastolic volume >164mL/m2) has been associated with a low likelihood of 

RV functional recovery after re-intervention for severe residual TR in the context of previous 

left-sided valve surgery.(17)
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Key messages

 Significant PV disease is most often congenital. The most common form of TV disease is 

functional TR due to TVA dilatation in the context of conditions such as AF, PH and left-

sided heart disease. Significant TR is independently associated with adverse outcomes. 

 Comprehensive assessment of right-sided valve lesions requires a multi-faceted 

approach, utilising a variety of measurements and TTE modalities, which may be 

complimented by TOE, CT and CMR. 

 3D imaging has permitted significant advances in our understanding of the anatomy of the 

TV complex, as well as the aetiology and progression of secondary TR, and has helped to 

facilitate structural interventions for TV disease. 

 Exercise echocardiography is an emerging tool for the assessment of TV and PV disease, 

and has shown potential in unmasking subclinical disease and assessing functional 

reserve. 

Conclusions

Transthoracic echocardiography remains the first-line imaging modality for the assessment of 

the aetiology, mechanism and severity of tricuspid and pulmonary valve disease, including the 

impact on right heart structure and function. Comprehensive assessment requires integration 

of data from multiple echocardiographic views and modalities, and may include 3-dimensional, 

transoesophageal, and exercise imaging. Imaging data must be interpreted within the context 

of patient symptoms in order to optimise the timing and technique of interventions. The rapid 

growth in percutaneous therapies for right-sided valve disease has made this area of cardiac 

imaging more relevant than ever before.    
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Figure 1: Transthoracic PLAX RV inflow imaging planes through the TV. If the interventricular septum 

and CS can be seen, the image will most likely demonstrate the septal +/- anterior leaflets of the TV 

(panel A). If the septum and CS are not seen, it is likely to be the anterior and posterior leaflets that are 

imaged (panel B). Panel B also demonstrates the anatomical relationship between the TV and the 

anterior and inferior walls of the RV, the liver and the diaphragm. A indicates anterior leaflet of the TV; 

CS, coronary sinus; IVC, inferior vena cava; P, posterior TV leaflet. Adapted from Hahn et al.(9)

Figure 2: Transthoracic apical 4-chamber and 5-chamber views of the TV. If the LV outflow tract is 

visible, the septal and anterior TV leaflets are likely to be in view (panel A). If the LVOT and CS are 

not seen, the septal and anterior or posterior TV leaflets are most likely to be visualised (panel B). If 

the CS is in view, the septal and posterior TV leaflets are likely to be imaged (line C). A indicates 

anterior TV leaflet; P, posterior TV leaflet; S, septal TV leaflet.  Adapted with permission from Hahn et 

al.(9)

Figure 3:  Pacemaker lead-associated TR. Left image, 2D A4C view. An RV pacing lead can be seen 

crossing the TV (white arrow). Right image, TOE 3D live zoom image of the RA en face view of the TV. 

As the leaflets of the TV close in systole, the septal leaflet appears tethered and fixed to the pacing 

lead, with a large coaptation defect, with resultant severe TR. White dotted line, TV annulus; IAS, 

interatrial septum position; AV, aortic valve; A and S, anterior and septal TV leaflets.

Figure 4: The influence of driving pressure on apparent regurgitant jet area. The mitral regurgitation jet 

(top panels) and TR jet (bottom panels) both have a similar jet area. However, the RV driving pressure 

is much lower than LV pressure, hence the TR is probably more significant than the mitral regurgitation. 

Figure 5: The use of 3DE in the assessment of tricuspid regurgitation (TR). Panel A: The anterior (A), 

posterior (P) and septal (S) leaflets of the tricuspid valve (TV), the right ventricular outflow tract 

(RVOT), and mitral valve (MV) are displayed. Panel B: Volumetric analysis of the right ventricle (RV). 

Panel C: Characterisation of the complex structure of the TV annulus. Panel D: 3D colour flow 

analysis of TR severity.  

Figure 6: 3DE of tricuspid valve (TV) leaflet prolapse. The top two images show transthoracic echo 

biplane imaging of the TV. The top left image (off axis A4C view) is live. The white line represents the 

position of the scan plane generating a simultaneous view seen in the top right image. The posterior 

leaflet of the TV is prolapsing and has a chordal rupture resulting in a partially flail segment (red arrow). 

The bottom left image shows the TV in profile with the flail posterior leaflet (red arrow). The white arrows 
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depict the visible chordae tendinae. The bottom right image shows an en face view of the TV viewed 

from the right atrial surface. Posterior leaflet prolapse is seen (red arrow). A indicates the anterior TV 

leaflet; S, septal TV leaflet; RA, right atrium; RV, right ventricle. 

Figure 7: Acquisition and display of a three-dimensional transthoracic echocardiographic dataset of 

the tricuspid valve.  
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Figure 1 - Transthoracic PLAX RV inflow imaging planes through the TV 
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Figure 2 - Transthoracic apical 4-chamber views of the TV 
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Figure 3 - Pacemaker lead-associated TR 
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Figure 4 - The influence of driving pressure on regurgitant jet area 
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Figure 5 - The use of 3DE in the assessment of TR 
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Figure 6 - 3DE of TV leaflet prolapse 
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Figure 7 - Acquisition and display of the 3D dataset of the TV using TTE 
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Table 1 Figure 1 - PLAX RV Inflow 
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Table 1 Figure 2 - 3D live zoom 
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Table 1 Figure 4 - PLAX RV Inflow CFM 
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Table 1 Figure 6 - PLAX RV Inflow CW 
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Table 1 Figure 7 - PSAX TV 

252x197mm (96 x 96 DPI) 

Page 49 of 118 Accepted Manuscript published as ERP-20-0033.R1. Accepted for publication: 18-Dec-2020

Copyright © 2019 the authors Downloaded from Bioscientifica.com at 02/05/2021 12:28:14PM
via free access



 

Table 1 Figure 8 - PSAX PA 

254x190mm (96 x 96 DPI) 

Page 50 of 118Accepted Manuscript published as ERP-20-0033.R1. Accepted for publication: 18-Dec-2020

Copyright © 2019 the authors Downloaded from Bioscientifica.com at 02/05/2021 12:28:14PM
via free access



 

Table 1 Figure 9 - PSAX RVOT CFM 
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Table 1 Figure 10 - PSAX PR VC 
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Table 1 Figure 11 - PSAX PR diastolic flow reversal 
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Table 1 Figure 12 - PSAX RVOT CW restrictive physiology 
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Table 1 Figure 13 - PSAX RVOT CW PR and PS 
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Table 1 Figure 14 - PSAX RVOT CW PR Deceleration 
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Table 1 Figure 16 - A4C TVA Dimension 
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Table 1 Figure 17 - A4C TV Tenting 
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Table 1 Figure 18 - A4C TR 
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Table 1 Figure 19 - A4C TR VC and PISA 
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Table 1 Figure 20 - A4C TR jet area 
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Table 1 Figure 21 - A4C TV PW 
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Table 1 Figure 22 - A4C TV stenosis 
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Table 1 Figure 24 - A4C TR velocity 
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Table 1 Figure 25 - Subcostal TV CFM 
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Table 1 Figure 26 - Subcostal TR CW 
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149x108mm (150 x 150 DPI) 
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Table 1 Figure 28 - Subcostal hepatic vein flow 

254x190mm (96 x 96 DPI) 
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Table 1 Figure 29 - Subcostal TR HV systolic reversal 

337x252mm (72 x 72 DPI) 
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Table 2 Figure 1 - TOE MO A4C 0 degrees 

254x190mm (96 x 96 DPI) 
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Table 2 Figure 2 - TOE MO A5C 0-15 degrees 

254x190mm (96 x 96 DPI) 
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Table 2 Figure 3 - TOE MO inflow-outflow 45-60 degrees 

254x190mm (96 x 96 DPI) 
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Table 2 Figure 4 - TOE MO PV 90 degrees 

254x190mm (96 x 96 DPI) 
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Table 2 Figure 5 - TOE MO mod bicaval 80-130 degrees 

254x190mm (96 x 96 DPI) 
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254x190mm (96 x 96 DPI) 
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Table 2 Figure 7 - TOE TG basal SAX 90 degrees 

254x190mm (96 x 96 DPI) 
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Table 2 Figure 8 - TG RV inflow 80-120 degrees 

254x190mm (96 x 96 DPI) 
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Table 2 Figure 9 - TOE TG inflow-outflow 100-120 degrees 

254x190mm (96 x 96 DPI) 
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Table 2 Figure 10 - TOE deep TG inflow-outflow 100-120 degrees 

254x190mm (96 x 96 DPI) 
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Table 1: Transthoracic echocardiography for the assessment of the tricuspid and pulmonary valves

View 
(Modality)

Measurement Explanatory Notes Image

PLAX RV 
inflow (2D)

Qualitative inspection of the TV. The leaflet 
to the right of the image sector is usually the 
anterior leaflet. The image to the left of the 
sector may be the septal or posterior leaflet.

Note any leaflet thickening or calcification, 
prolapse or flail segments, large coaptation 
defect or vegetation. 

See figure 1 for illustration of different cut 
planes through the TV leaflets from this 
window.

Page 82 of 118Accepted Manuscript published as ERP-20-0033.R1. Accepted for publication: 18-Dec-2020

Copyright © 2019 the authors Downloaded from Bioscientifica.com at 02/05/2021 12:28:14PM
via free access



View 
(Modality)

Measurement Explanatory Notes Image

Variable view

(3D imaging)

3D live zoom images of the TV. The left 
image shows the RV en face view. The right 
image shows the RA en face view. 

The key landmarks are also shown. A, 
anterior TV leaflet; AV, aortic valve; AVN, 
atrioventricular node; CS, coronary sinus; 
LVOT, left ventricular outflow tract; P, 
posterior TV leaflet; RVOT, right ventricular 
outflow tract; S, septal TV leaflet

3D live zoom dataset acquired from the TTE 
parasternal tricuspid valve inflow view. 
Multi-plane reconstruction software allows 
rapid segmental analysis of the valve 
leaflets and associated landmarks.

Normal 8.6±2.0cm2
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View 
(Modality)

Measurement Explanatory Notes Image

TVA area 

TVA perimeter

TV tenting 
height

TV tenting 
volume

Normal 10.5±1.2cm

A tenting height >0.76cm is predictive of 
significant residual TR after TV surgery.[63]

3DE TV tenting volume ≥ 2.3mL predicts 
severe residual TR after TV annuloplasty for 
functional TR.[64]

PLAX RV 
inflow (CFM)

VC width

Assessment of TR severity 

See ‘A4C (CFM)’ for details
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View 
(Modality)

Measurement Explanatory Notes Image

Variable view

(3D CFM 
imaging)

See ‘A4C (CFM)’ for details of 2D VC 
assessment. 

Multiplane reconstruction of the live 3D 
colour Doppler dataset allows precise 
quantification of the VC through optimal 
alignment with its long and short axis, as 
well as tracing the VC area at this level. 

Red lines depict the level of the vena 
contracta in each view.
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View 
(Modality)

Measurement Explanatory Notes Image

VC area

By 3D echo, VC area >0.4cm2 is consistent 
with severe TR.[49,50]

PLAX RV 
inflow (CW)

TR Vmax See A4C CW for details.
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View 
(Modality)

Measurement Explanatory Notes Image

PSAX TV (2D) Qualitative inspection of the TV leaflets. The 
leaflet adjacent to the aorta is either the 
septal or anterior leaflet. The leaflet 
adjacent to the RV free wall is usually the 
posterior leaflet.  

PSAX RVOT 
(2D)

RVOT1 
(proximal 
RVOT)

Refer to BSE Right Heart guideline for 
details.[1]

PSAX RVOT 
(2D)

RVOT2 

(distal RVOT)

Refer to BSE Right Heart guideline for 
details.[1]
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View 
(Modality)

Measurement Explanatory Notes Image

PSAX PA (2D) Qualitative assessment of PV leaflet 
morphology, leaflet thickening, systolic 
doming, loss of coaptation, prolapse, or 
presence of subvalvar or supravalvar 
(including branch) PS. 

PA dimension is measured in end-diastole, 
halfway between the PV and bifurcation of 
main PA,[24] or 1cm distal to the PA. A 
diameter > 25 mm is considered 
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View 
(Modality)

Measurement Explanatory Notes Image

Pulmonary 
artery (PA) 
diameter

abnormal.[65] A dilated PA may indicate 
pulmonary hypertension as a cause for PR.

PSAX RVOT 
(CFM)

Qualitative assessment of PR. Physiological 
PR jets are usually small, central and 
spindle-shaped.(see image) Mild PR is likely 
if the jet has a narrow vena contracta and is 
<10mm in length.[6] Visual assessment of 
the level of any stenotic lesion by location of 
flow acceleration.

Severe PR is likely if the jet originates from 
or beyond the PA bifurcation. Caution: 
severe (‘free’) PR may be laminar, hence 
not easily seen on colour flow mode. 

Page 89 of 118 Accepted Manuscript published as ERP-20-0033.R1. Accepted for publication: 18-Dec-2020

Copyright © 2019 the authors Downloaded from Bioscientifica.com at 02/05/2021 12:28:14PM
via free access



View 
(Modality)

Measurement Explanatory Notes Image

PSAX RVOT 
(CFM)

PR jet width / 
RVOT width

PR vena 
contracta 
(VC)/PV annular 
ratio 

3D VC area 
(cm2)

Maximal jet width is measured in diastole 
immediately below the PV. Jet width >65% 
of the RVOT width (RVOT2) is an indicator 
of severe PR.[6] Caution: this measurement 
will vary according to the cut plane through 
the RVOT. 

VC/PV annulus ratio ≥ 50% is an indicator 
of greater than mild PR. A ratio ≥0.7 is a 
marker of severe PR.[66,67] See figure: red 
line indicates PV annulus diameter. The VC 
width is the distance between the 2 blue 
lines. 

3D VC area > 1.15cm2 is in keeping with 
severe PR.[68]

Visual assessment for diastolic flow reversal 
in a branch PA, which is a marker of severe 
PR. This has much greater specificity for 
CMR-derived severe PR than flow reversal 
in the main PA.[69] The figure shows severe 
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View 
(Modality)

Measurement Explanatory Notes Image

PR with large flow convergence, and flow 
reversal in the right pulmonary artery. 

PSAX RVOT 
(CW)

Qualitative inspection of the CW signal 
morphology. Right atrial contraction may be 
seen as late diastolic forward flow in the CW 
Doppler profile through the RVOT / PA (red 
arrows). This signal may be more prominent 
during inspiration and is a marker of 
restrictive RV physiology. 

Visual assessment of PR severity. Mild PR 
has a soft Doppler envelope with slow 
deceleration. Severe PR has a dense CW 
envelope with a triangular envelope (‘sine 
wave pattern’.

<3 m/s is consistent with mild, 3 – 4 m/s 
moderate, and >4m/s severe pulmonary 
stenosis.[21] Visual assessment (2D) and 
PW Doppler are used to differentiate 
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View 
(Modality)

Measurement Explanatory Notes Image

PA Vmax 

PR early 
velocity

PR end-diastolic 
velocity 

subvalvular, valvular and supravalvular PS. 
See red arrow on image. 

CW Doppler measurement through the 
pulmonary valve in line with the PR jet (red 
cross). An early PR velocity > 2.2 m/s is 
considered a marker of raised mean PA 
pressure.[65] See Pulmonary Hypertension 
protocol for details.[70]

Can be used to estimate PA diastolic 
pressure, as 4 × (velocity) 2 + RA pressure. 
RA pressure is estimated from IVC size and 
collapse (see below). See blue arrow on 
image. 

The time taken for the PR pressure to halve 
is equivalent to initial velocity divided by 
1.41. PR  PHT< 100ms is suggestive of 
severe PR.[71] Note that this measure will 
be shorter in restrictive RV physiology. See 
white line on figure. 

The time taken for the early PR velocity to 
fall to zero. PR DT < 260ms is in keeping 
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View 
(Modality)

Measurement Explanatory Notes Image

PR pressure 
half time

PR deceleration 
time

PR Index

with severe PR. The red line in the figure 
shows the deceleration slope. The blue line 
shows the deceleration time.  

The duration of the CW PR jet as a 
proportion of the whole of diastole. PR index 
< 0.77 is suggestive of severe PR.[7] 
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View 
(Modality)

Measurement Explanatory Notes Image

PSAX RVOT 
(PW)

Can be used to determine the level of 
obstruction (subvalvular, valvular or 
supravalvar) if PA Vmax is elevated.

Can also be used in the volumetric 
technique for calculating TR and PR 
regurgitant fractions (assuming only one 
significant regurgitant lesion exists):

RVOT area =  × (0.5 RVOT diameter)2

RV stroke vol = RVOT area × RVOT VTI

Regurgitant volume = RV SV – LV SV

Regurgitant fraction = (regurgitant volume / 
RV stroke volume) ×100

PSAX branch 
PA (PW)

Assessment for diastolic flow reversal in a 
branch PA, which as a marker of severe 
PR. See ‘PSAX RVOT (CFM)’ section 
above. 

RV-focused 
A4C (2D)

Right atrial area 
(RAA)

All measurements taken at end-diastole in 
the RV-focused view. Refer to BSE Right 
Heart guideline for details.[1]
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View 
(Modality)

Measurement Explanatory Notes Image

RV linear 
dimensions 
RVD1, RVD2, 
RVD3

RV Fractional 
Area Change 
(FAC)

RV-focused 
A4C (2D)

Tricuspid 
Annular 
Dimension

Qualitative inspection of the TV leaflets. The 
septal leaflet is adjacent to the septum and 
the anterior or posterior leaflet is seen 
adjacent to the lateral RV free wall. Visual 
inspection for reduced leaflet coaptation. 

TVA dilatation is a sensitive marker of 
severe TR. Septal-lateral annular dimension 
measured at end-diastole. The normal TV 
annulus should measure 28±5mm. Annular 
dimension >40mm (or >21mm/m2) is 
considered significantly dilated.[4] 

This measurement can be used in the 
volumetric technique for quantifying TR 
severity. 
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View 
(Modality)

Measurement Explanatory Notes Image

Patients with secondary TR and annular 
dimensions greater than these values 
should be considered for TV intervention 
(e.g. annuloplasty) at the time of left-sided 
cardiac surgery, even if there is only mild or 
moderate secondary TR.[5]

RV focused 
A4C (2D)

TV tenting area

TV tenting 
height

Measured at end-systole as the area 
between the tricuspid annulus and the atrial 
aspect of the leaflets (red triangle). A tenting 
area >1cm2 is predictive of more than mild 
secondary TR.[20] A tenting area >1.6cm2 is 
predictive of significant residual TR after TV 
surgery.[63]

Measured at end-systole between the plane 
of the TV annulus, and the leaflet coaptation 
point (blue line). A tenting height >0.76cm is 
predictive of significant residual TR after TV 
surgery.[63]

Page 96 of 118Accepted Manuscript published as ERP-20-0033.R1. Accepted for publication: 18-Dec-2020

Copyright © 2019 the authors Downloaded from Bioscientifica.com at 02/05/2021 12:28:14PM
via free access



View 
(Modality)

Measurement Explanatory Notes Image

A4C (M-mode) Tricuspid 

Annular Plane 
Systolic 

Excursion 
(TAPSE)

Refer to BSE Right Heart guideline for 
details.[1]

A4C (CFM) Visual assessment of TR severity. A very 
large central jet, or eccentric wall-impinging 
jet should alert to the possibility of severe 
TR. 

A large flow convergence at a Nyquist limit 
of 28cm/s alerts to the presence of 
significant TR.[72] A flow convergence 
visible throughout systole is more 
suggestive of severe TR than a brief flow 
convergence. 

Page 97 of 118 Accepted Manuscript published as ERP-20-0033.R1. Accepted for publication: 18-Dec-2020

Copyright © 2019 the authors Downloaded from Bioscientifica.com at 02/05/2021 12:28:14PM
via free access



View 
(Modality)

Measurement Explanatory Notes Image

TR VC width

Proximal 
isovelocity 
surface area 
(PISA) radius

The width of the TR jet at its narrowest point 
immediately after the regurgitant orifice 
(white line). 

VC ≥0.7cm is consistent with severe, 0.3-
0.69cm moderate, and <0.3cm mild TR.

Caution: in multiple jets, VCs of the 
respective jets are not additive.[6]

The Nyquist limit is adjusted in the direction 
of the TR jet. The PISA radius is measured 
from the centre of the TV to the furthest 
point of the proximal flow convergence zone 
(red line). PISA radius (at Nyquist limit 
28cm/s) <0.5cm is indicates mild, 0.5-0.9 
moderate, and >0.9cm severe TR.[7] 

A4C (CFM) TR jet area TR jet area > 10.0cm2 suggests severe 
TR.[7] A large, central jet occupying >50% 
of the RA is also suggestive of severe 
TR.[7].
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View 
(Modality)

Measurement Explanatory Notes Image

Caution: central jets generally appear larger 
than eccentric jets of equal severity. A 
swirling, eccentric, wall impinging jet 
(Coanda effect) reaching the posterior RA 
wall suggests severe TR. 

Caution: free-flowing severe TR may be low 
velocity and therefore non-aliaising. Jet area 
will underestimate TR severity in these 
circumstances. 

A4C (PW)

TV E wave 
velocity

The view should be optimised in order to 
align the ultrasound beam with tricuspid 
inflow. This may require an unconventional / 
oblique angulation. TV inflow velocities vary 
with respiration, hence averaging should be 
performed over 5 beats. 

E velocity is indicated by the red arrow. In 
the presence of a suggestive colour Doppler 
jet, TV E ≥ 1m/s is in keeping with severe 
TR (in the absence of tricuspid stenosis). 
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View 
(Modality)

Measurement Explanatory Notes Image

TV inflow 
pressure half 
time

TV area

TV inflow mean 
pressure 
gradient

The yellow line in the image shows the 
deceleration slope. The PHT (horizontal red 
line) is the time taken for the peak velocity 
(Vmax) to fall to Vmax / 1.4. TV PHT ≥ 
190ms suggests severe TS.[4]

TV area is calculated as 190/PHT. A value 
≤1.0cm2 indicates severe TS.[4]  

Mean gradient ≥ 5mmHg is considered to 
indicate severe TS.[73] See image. The 
mean gradient is calculated from the area 
under the red line. 

A4C (CW) Qualitative assessment of TR severity. Mild 
TR has a soft jet density and parabolic 
contour. Severe TR has a dense CW jet and 
early peaking or triangular CW envelope. 
See image – the TR jet density is similar to 
that of the forward tricuspid inflow signal 
density, and may appear like a ‘sine wave’ 

Page 100 of 118Accepted Manuscript published as ERP-20-0033.R1. Accepted for publication: 18-Dec-2020

Copyright © 2019 the authors Downloaded from Bioscientifica.com at 02/05/2021 12:28:14PM
via free access



View 
(Modality)

Measurement Explanatory Notes Image

Peak TR 
velocity

in very severe TR.  Caution: central jets 
may appear denser than eccentric jets of 
similar severity. 

TR Vmax is measured by CW Doppler across 
the tricuspid valve. Multiple views may need 
to be taken to obtain the optimal window. 

Notre that the TR velocity itself is not 
indicative of TR severity. TR velocity can be 
underestimated in severe TR and this issue 
should be stated in the report if present. TR 
Vmax may be <2m/s in very severe TR.[5]

See Pulmonary Hypertension protocol for 
details.[70]

Calculated from the PISA radius, aliaising 
velocity, and peak TR velocity. EROA ≥ 
0.4cm2 is consistent with severe, 0.2-
0.39cm2 moderate, and <0.2cm2 mild TR.[7] 

Caution: the PISA technique is not valid for 
multiple jets and is less accurate in 
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View 
(Modality)

Measurement Explanatory Notes Image

TR effective 
regurgitant 
orifice area 
(EROA)

TR Regurgitant 
Volume

eccentric jets.[7] Moreover, in TR it 
underestimates actual EROA due to the 
non-circularity of the regurgitant orifice and 
the flattened isovelocity surface.

Calculated from the EROA multiplied by the 
TR VTI (area inside the red outline in 
figure). Regurgitant volume ≥45mL is 
consistent with severe, 30-44mL moderate, 
and <30mL mild TR.[7] 

By 3D echo, regurgitant volume >75mL is 
consistent with severe TR.[52]

Note that for a similar EROA, TV regurgitant 
volume is lower than for the MV, due to the 
lower driving pressure from the RV across 
the TV. TR regurgitant volume is subject to 
the same limitations as EROA (see above).

A4C (tissue 
Doppler)

RV S’ Refer to BSE Right Heart guideline for 
details.[1]
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View 
(Modality)

Measurement Explanatory Notes Image

Subcostal 
(CFM)

Qualitative inspection of TR.

Subcostal 
(CW)

Assessment of 
TR severity and 
TR Vmax

See A4C (CW). May be performed if good 
Doppler alignment with TR jet.
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View 
(Modality)

Measurement Explanatory Notes Image

Subcostal (2D) IVC

diameter

Diameter is measured perpendicular to the 
IVC long axis, 1–2 cm from the IVC/RA 
junction at end-expiration.

Assess size and percentage reduction in 
diameter with sniffing or quiet 
inspiration.[24,65]

IVC diameter ≤ 21mm, with >50% collapse 
with sniff suggests normal RA pressure and 
indicates that severe TR is unlikely to be 
present. A dilated IVC with decreased 
respiratory variation is in keeping with 
severe TR

Subcostal 
(PW) of 
Hepatic Veins

Note that there is significant respiratory 
variation in these parameters, hence 
averaging over 5 beats should be 
performed. See BSE Right Heart guideline 
for explanation of different HV 
waveforms.[1]

S/D <1 may indicate increased RA 
pressure.
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View 
(Modality)

Measurement Explanatory Notes Image

HV S/D ratio 

HV systolic 
reversal waves 

As TR severity increase, there is 
progressive blunting of the HV S wave 
velocity. Systolic blunting may be seen in 
greater than mild TR. Note: this is a non-
specific finding which is also seen with 
impaired RV relaxation. Prominent systolic 
reversal waves (red arrows) are highly 
sensitive and more specific than systolic 
blunting for severe TR. 
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Table 2: Transoesophageal echo assessment of the tricuspid and pulmonary valves

View (Modality) Explanatory Notes Image
Mid oesophageal 
4-chamber at 0-15º
(2D, CFM, CW, 
PW)

The septal and anterior/posterior leaflets of the TV are 
imaged in this view (see also figure 2 for explanation of 
imaging planes). Septal-lateral annular dimension can be 
measured at end-diastole. 

Note that CW assessment of TR jet velocity, and PW 
assessment of TV inflow should be attempted from 
multiple windows, according to the optimal alignment of 
the jet/s with the Doppler beam. 

Mid oesophageal
5-chamber view at 
0-15º
(2D, CFM, CW, 
PW)

Demonstrates the septal and anterior leaflets of the TV 
(see also figure 2 for explanation of imaging planes)

Upper 
oesophageal at 0-
15º 
(2D, CFM)

If the probe is withdrawn slightly from the mid oesophageal 
window, the main PA and PA bifurcation can be visualised. 
Doppler may demonstrate holodiastolic flow reversal in a 
branch PA in severe PR.

Mid oesophageal, 
RV inflow-outflow 
view at 45-60º

Demonstrates the anterior or septal TV leaflets adjacent to 
the aortic valve, and the posterior leaflet laterally. The 
RVOT, PV and PA are also visualised in this view. 
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View (Modality) Explanatory Notes Image
(2D, CFM, CW, 
PW)

Mid oesophageal,  
at 90º
(2D, CFM)

The RVOT, PV and PA are well visualised in this view

Mid oesophageal 
modified bicaval 
view at 80-130º.
(2D, CFM, CW, 
PW)

Visualises the posterior and anterior leaflets of the TV. The 
TR jet is often well-aligned for CW Doppler assessment in 
this view. PW assessment of TV inflow is also often well-
aligned from this view. The superior vena cava (SVC) is 
seen to the right of the image. The CS is denoted by the 
red star. 
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View (Modality) Explanatory Notes Image

Distal 
oesophageal, near 
the gastro-
oesophageal 
junction at 0-15º
(2D, 3D, CFM, CW, 
PW)

From this lower plane only the RA and coronary sinus lie 
directly in the beam of the probe. This view is therefore 
ideal for acquiring 3D volumes of the TV without 
interference from intervening left heart structures. The CS 
is denoted by the red star.

Transgastric basal 
SAX view at 90º.
(2D, CFM)

This is the only 2D imaging plane in which all 3 tricuspid 
leaflets can be visualised simultaneously. The septal 
leaflet (S) is closest to the LV. The posterior leaflet (P) is in 
the near field, and the anterior leaflet (A) is in the far field. 
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View (Modality) Explanatory Notes Image

Trangastric RV 
inflow view, at 80-
120º.
(2D, CFM)

Images the anterior (ant) and inferior (inf) walls of the RV, 
as well as the papillary muscles, chordae, and TV. The 
posterior TV leaflet (P) is usually seen in the near field. 

Transgastric RV 
inflow-outflow view, 
at 100-120º
(2D, CFM) 

Images the RA, RV, RVOT and PA. The posterior TV 
leaflet (P) is usually seen in the near field, and the anterior 
leaflet (A) in the far field. 

Deep transgastric 
RV inflow-outflow 
view at 100-120º.

The PV is also well visualised in the deep trangastric 
window at 120°. Doppler measurements through the PV 
may be well-aligned in this view. 
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View (Modality) Explanatory Notes Image
(2D, CFM, CW, 
PW) 
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PULMONARY REGURGITATION

PARAMETER MILD MODERATE SEVERE LIMITATIONS
2D visualisation of the 
cusps

 Usually normal  Abnormal  Abnormal or may 
not be seen

- Sub-optimal 
acoustic windows

- Subjectivity 

2D assessment of 
chamber size

- RV is usually 
normal

- RV is usually 
normal or with mild 
dilatation

- RV is usually 
dilated

- Dilatation is not 
limited to PR , e.g.  
physiological 
adaptation, 
shunts, RV 
dysfunction, PHT 
or concomitant PS

Colour Doppler - Thin jet size with 
narrow origin 
(usually 
<10mm)[6]

- Intermediate jet 
size

- Broad origin. 
Variable RV 
penetrance

- PR jet width/RVOT 
diameter >50-
65%.[6]

- PR jet width/PV 
annulus ≥ 0.7.[67]

-

- No validation or 
range of VC

- Multiple Jets

- Underestimates in 
eccentric jets and 
overestimates in 
central jets

Pulsed Wave Doppler - Prominent 
diastolic flow 
reversal in the 
main PA, or 
branch PA (more 
specific)

- Brief flow reversal 
is normal

- Dependent on PA 
compliance
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- Slight increase in 
pulmonary VTI 
compared to aortic 
VTI 

- Intermediate 
increase in
pulmonary VTI 
compared to aortic 
VTI 

- Significant 
increase in 
pulmonary VTI 
compared to aortic 
VTI 

- Dependent on 
accurate 
measurement of 
outflow diameter

- In case of AR, 
need to use MV 
VTI

CW Doppler - Soft density - Dense / variable 
contour

- Dense, early 
termination of 
diastolic flow

- Deceleration time 
of PR signal 
<260ms[7]

- PHT of PR signal 
<100ms.[71]

- PR index (PR 
duration / diastolic 
filling time) 
<0.77.[7]

- Subjective

- Direction of jet – 
may 
underestimate in 
eccentric jets

- Overlap between 
moderate and 
severe PR

- Poor alignment of 
Doppler beam

- Affected by PA-RV 
pressure 
difference, e.g. RV 
dysfunction

- Influenced by RV 
diastolic 
dysfunction
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PULMONARY STENOSIS

PARAMETER MILD MODERATE SEVERE LIMITATIONS
2D visualisation of the 
cusps or subvalvular / 
supravalvular stenosis

- Mildly abnormal 
with minimal 
thickening

- Minimal narrowing 
of RVOT or PA

- Variable - Heavy thickening, 
systolic doming

- Significant narrowing 
of RVOT or PA

-

- Subjective

- Poor sensitivity

Colour Doppler - - - Evidence of flow 
acceleration and large 
area of flow 
convergence within 
the RV

- Narrow jet

- PISA calculations are 
not recommended

- Dependent on gain 
and pulse repetition 
frequency settings

Peak Velocity - <3m/s - 3-4m/s - >4m/s[21] - Dependent on RV 
function, however 
calculation of PV area 
is not recommended. 
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TRICUSPID REGURGITATION

PARAMETER MILD MODERATE SEVERE LIMITATIONS
2D visualisation of the 
leaflets and annulus

 Mildly abnormal 
leaflets e.g. 
rheumatic disease 
or mild prolapse

 Normal tenting 
area

 Normal diastolic 
annular diameter

 Thickened leaflets 
with or without 
prolapse

 Mildly increased 
tenting area – 0.5 - 
1cm2

 Normal or mildly 
increased diastolic 
annular diameter

 Flail, severely 
retracted, or 
papillary muscle 
rupture 

 Large coaptation 
defect

 Diastolic annular 
diameter > 40mm 
(>21mm/m2)[4]

 Tenting area > 
1cm2.[20]

- Sub-optimal 
acoustic windows

- Subjectivity 

2D assessment of 
chamber and vessel size

- RA and RV are 
usually normal

- Normal IVC size

- RA and RV are 
usually normal or 
with mild dilatation

- IVC 21-25mm

- RA and RV are 
usually dilated

- IVC >25mm.[7] 

- Dilatation is not 
limited to TR, e.g. 
physiological 
adaptation, 
shunts, RV 
dysfunction, raised 
PA pressures or 
concomitant 
stenosis

Colour Doppler - Small RA 
penetrance of TR 
jet

- Moderate RA 
penetrance or 
large penetrance 
and only late 
systolic TR jet

- Deep RA 
penetrance and 
holosystolic TR jet

- Dependent on 
driving pressure 
and direction of 
the jet 

- Multiple jets
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- Small flow 
convergence or 
PISA radius  
5mm

- PISA EROA 
<20mm2

- PISA regurgitant 
vol <30mL

- Jet area <5.0cm2

- Jet area:RA area 
10-20%

- Vena Contracta 
<0.3cm

- Intermediate size 
and duration of 
flow convergence, 
or PISA radius 6-
9mm

- PISA EROA 20-
39mm2

- PISA regurgitant 
vol 30-44mL

- Jet area 6-10cm2

- Jet area:RA area 
10-33%

- Vena Contracta 
0.3-0.69cm

- Large flow 
convergence 
throughout 
systole, or PISA 
radius 10mm.[7]

- PISA EROA 
40mm2.[7]

- PISA regurgitant 
vol 45mL.[7] 

- Jet area >10cm2[7]

- Jet area:RA area 
>33%.[74]

- Vena Contracta 
0.7cm.[7]

- Non hemispheric 
shape of PISA 
(contour flattening)

- Dependent on 
driving pressure 
and direction of 
the jet 
(overestimate with 
central jet or 
underestimate with 
eccentric jets)

- Inaccurate in 
multiple jets

Pulsed Wave Doppler - Tricuspid E wave 
<1m/s or dominant 
A wave 

- Hepatic vein flow – 
systolic 
dominance

- Variable tricuspid 
E wave

- Hepatic vein flow – 
systolic blunting 

- Tricuspid E wave 
≥1m/s.[7]

- Hepatic vein flow – 
systolic flow 
reversal

- Not reliable in AF 
or paced rhythms

- Influenced by 
concomitant TS

- Depends on RA 
compliance
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CW signal - Faint / partial 
contour

- Dense / variable 
contour

- Dense, triangular 
with early peaking

- Subjective

- Direction of jet – 
may 
underestimate in 
eccentric jets

- Overlap between 
moderate and 
severe TR
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Appendix A: Grading of right-sided valve lesions – summary of indices and limitations of techniques

TRICUSPID STENOSIS

PARAMETER SIGNIFICANT STENOSIS LIMITATIONS
2D visualisation of the leaflets - Immobile, retracted 

leaflets, diastolic doming 
and reduced separation 
at peak opening.

- Extensive thickening of 
the leaflets

- Sub-optimal acoustic windows

- Subjectivity and variable correlation to haemodynamics

Right Atrial Size - Moderate dilatation in the 
absence of ASD or 
pulmonary disease

- Dilatation is not limited to stenosis e.g. atrial fibrillation and 
TR

IVC size - > 21mm in the absence of 
ASD or pulmonary 
disease.[70]

- Dilatation is not limited to stenosis e.g. TR

Mean Gradient - ≥ 5mmHg.[4] - Respiratory variation

- Significant TR will cause falsely elevated values

Velocity Time Integral - > 60cm.[21] - Respiratory variation

- Significant TR will cause falsely elevated values

Pressure Half Time (190/T1/2) - ≥190ms.[4] - Not been adequately validated

- Difficult to obtain a deceleration time at higher heart rates
Tricuspid Valve Area (derived 
from continuity equation)

- ≤ 1.0cm2[4] - Errors in calculation of stroke volume

- Underestimates valve area in the presence of TR greater 
than mild

Colour Doppler  Evidence of flow  PISA calculations are not recommended
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acceleration and large 
area of flow convergence 
within the RA

 Narrow jet 

 Dependent on gain and pulse repetition frequency settings
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