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A B S T R A C T

This paper focuses on the flexural impact behaviour of steel I-beams with rectangular web
openings. Published studies on impact resistance and design requirements of perforated
steel beams are limited. To shed light such a topic, detailed non-linear three-dimensional
finite element models (FEMs) were developed using ABAQUS. Rigorous validation process
was employed to verify the FEMs built against published experimental tests in terms of
force and displacement time histories. Reasonably good agreement was obtained between
the numerical results and the corresponding experimental ones. Then, the validated FEMs
were exploited to investigate the flexural impact resistance of perforated steel beams with
rectangular openings. The factors examined in the current study were the area, depth,
number and reinforcement of web openings under different impact velocities ranged
between 2.214–7 m/s to provide comprehensive understanding on the flexural impact
response of steel beams perforated with rectangular openings. It was observed that
increasing the number of narrow web openings negligibly effected the flexural impact
resistance of steel beams. Moreover, using wide openings significantly reduced the
dynamic flexural resistance of such beams. Besides, slight effect on the flexural impact
resistance and mid-span deflections were obtained if the depth of openings increased.
Moreover, a considerable improvement was observed by providing perforated beams by
horizontal steel reinforcement particularly for those with wide openings. The perforated
steel beams showed similar mode of failure by generating four plastic hinges around the
edges of an opening, which is the failure mode produced for perforated beams under quasi-
static loading.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Providing web openings in steel and concrete beams has significant importance in structural building frames. Such
openings work as appropriate access for services like ducts and cables to pass through such openings. Besides, the entire
weight of the beam compared with solid beams is reduced. Also, high stresses produced in the beam to column connections
may be alleviated if the perforated beams replace the solid ones. Furthermore, the provision of openings in the beams has
also been considered for architectural requirements. Generally, the stiffness of beams with different shapes of web openings
is lower than those for solid beams, which leads to producing higher deflections. The existence of the web openings in a beam
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lso reduces its shear and flexural strength. Thus, stiffeners may be welded horizontally and/or vertically around the
penings to enhance the shear and flexural capacity in the opening sections as shown in Fig. 1.
Different studies were conducted to investigate the behaviour of perforated steel beams under static loading conditions.

ome studies concluded that providing web openings may lead to significant disadvantages in terms of load-carrying
apacity [1–3]. Theoretical study on steel beams having rectangular and circular openings has been performed by Chung et al.
2] and a design procedure was proposed. The effect of moment to shear ratio on the resistance of the opening section was
ealised, therefore, an empirical shear to moment interaction curve at the circular perforated section was proposed. More
ecently, Sweedan [3] developed a simplified approach based on experimental and numerical investigations to predict a
oment modification factor for cellular beams. The complex behaviour accompanied by the combined effect of shear and
oment of perforated steel beams resulted in expanded the studies to the recent time. However, experimental tests were

ecently performed by Al-Dafafea et al. [4] to evaluate the behaviour of stiffened and unstiffened web openings on the beam
ubjected to shear and bending. The results showed that significant improvement in the ultimate carrying capacity of the
eam was obtained using sufficient anchorage length of stiffeners. Feng et al. [5] presented an experimental tests to
nvestigate the high-strength H-shaped steel beam perforated with circular openings with different configurations. The test
esults were compared with the current design guidelines and it was found that the Eurocode 3 is non-conservative while
oth Australian and Chinese guidelines were conservative. Recently, the work on providing analysis procedures and design
uidelines to predict the behaviour of perforated steel beams under quasi-static loading is continuous [6–8]
In addition to static loading, steel frames should be designed to resist seismic loading. Goel et al. [9] used the web

penings to create a ductile zone in the beams of moment resisting frame to absorb the energy induced by ground motion.
he beneficial effect of providing a steel beam with web openings was concluded by Erfani et al. [10] when subjected to
eismic loading. It was found that seismic resistance of moment-resisting steel frames was enhanced by the presence of
penings in beams web, due to alleviation in stress concertation of beam-to-column connections of such frames.
During the service life, structural frames may experience dynamic loadings such as impact and blast, in which a force is

roduced within a short time such as vehicle impact or explosions. However, researches were intensively presented to
nvestigate the response of beams and other structural members to such loading regimes [7–16]. Limited studies were
arried out to investigate the response of metal beams under high loading rates. The earliest study was carried out by Menks
t al. [21], in which a clamped solid aluminium beams were investigated against explosion. The tested specimens
xperienced tearing at the extreme fibres and shear near the support. Some studies were carried out to investigate the effect

Fig. 1. Steel I-section beam with (a) Horizontally and vertically reinforcement and (b) without reinforcement.

able 1
etails of the specimens tested by Antimo et al. [20].

Impact test
Test CODE h (mm) m (kg)

1st specimen ITB01 M1 H250 250 211
ITB02 M1 H500 500 211
ITB03 M1 H500 500 211
ITB04 M1 H1000 1000 211
ITB05 M1 H1000 1000 211
ITB06 M1 H3000 3000 211

2nd specimen ITB07 M2 H250 250 460
ITB08 M2 H500 500 460
ITB09 M2 H1000 1000 460
2
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of different parameters on the aforementioned failure modes such as type of beam material and impact location [18,19].
Recently, Antimo et al. [24] investigated the impact resistance of a solid steel beam subjected to multiple impact loading. Two
simply supported beams were tested and the results were obtained then finite element models were developed for further
investigation. It was found that using an appropriate strain rate model enhanced the validation of FE models against the test
results.

The previous studies indicated that the focus has been made on investigating the behaviour of perforated beams under
static and seismic loading. Also, it showed that the attention was paid to understand the response of solid steel beams under
impact loading. However, in the current study, it will be beneficial to investigate the impact behaviour of steel beam with
web openings to cover this gap of knowledge. The methodology adopted to achieve this task is based on developing Finite
Element (FE) models then verifying such models against the available experimental results of solid beams. After that the
verified FE models of solid beams could be provided by rectangular openings with different cases to investigate the impact
resistance of perforated beams. This methodology seems to be efficient in terms of accuracy and cost. It was used in different
studies and acceptable results were obtained. For example, finite element models were developed by Degteyareva et al. [25]
for cold-formed steel slotted channel sections then validated against experimental results of solid channel sections.

It should be mentioned that the current study represents a part of a project to investigate the response of perforated steel
beams under impact loading. It was started by investigating the impact response of steel beams with circular web openings.
The results indicate that providing circular openings lead to a reduction in the impact force and increase in the displacement
measured at mid-span [26].

In this study, published experimental tests were used to verify the numerical modelsdeveloped, which were built using
the finite element pakage ABAQUS. The developed FE models were used to investigate the impact response of steel beams
with rectangular web openings and the effect of several parameters on such response.

2. Experimental studies

The FE models developed were verified against the experimental test results of two previous studies. The first study was
conducted by Antimo et al. [24] and the second one by Cho et al. [27]. The beams in both aforementioned studies were tested
under repeated impact. However, the results of only the first of four tested specimens were considered for validating the FE
models. Then, the geometrical and material properties of the beam tested by Reference [24] were considered to perform the
parametric studies.

An experimental study was carried out by Antimo et al. [24]. The tests included two specimens with IPE 220 section,
which has dimensions of (220 � 110 � 5.9) mm. The beams were simply supported and exposed to multiple impact loading
and the details of the tested specimens are listed in Table 1. The first and second specimens were exposed to six and three
multiple impacts, respectively. The applied impact energy was generated using a range of height from 250 to 3000 mm
corresponding to two different values of mass, i.e. 211 and 460 kg. The grade of steel for both specimens was S275. During the

Fig. 2. Test setup for the experimental work conducted by Antimo et al. [24].

Table 2
Tensile test results of steel profiles used in experimental tests of Cho et al. [27].

Profile Yield stress (MPa) Ultimate stress (MPa) Modulus of Elasticity (GPa)

Flange 356.8 526.9 189.3
Web 390.1 527.0 220.4
stiffener 399.9 530.6 221.1
3
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ultiple impact tests, the global deflection was measured at the mid-span of the specimens regardless of the local
eformation of the beams. The instrumentation and the test setup used in this study is shown in Fig. 2.
Another test results carried out by Cho et al. [27] were also selected to enhance the accuracy of the validation of FE models

btained against tests of Antimo et al. [24]. Four steel beams with T-section were fabricated and tested as indicated in [27].
wo of them were impacted under room temperature, while the others were tested under combined elevated temperature
nd impact loading. Only those beams impacted under room temperature were used in the current study to validate the FE
odels. The beams tested have equal web and flange thickness of 10.2 � 0.1 mm, while the web height was 50 mm and the
ange width was 100 mm. The span length of the beam was 1.068 m, fixed at its both ends to a ground rigid frame using steel
tiffeners, bolts and plates. The tensile tests were carried out to obtain the engineering stress-strain relationships of steel
rofiles involved and the summary of the test results can be seen in Table 2. A drop hammer machine was used to apply the
mpact loading using knife-edge impactor configuration. The first specimen was impacted by a mass of 193.8 kg with an
nitial velocity of 4.85 m/s while the mass and the initial velocity of the second specimen tested were 295.7 kg and 3.96 m/s,
espectively.

Fig. 3. FE model details of the solid beam.
Fig. 4. Triaxiality-plastic strain envelope proposed by Ribeiro et al. [29].

4
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3. FE modelling and verification

This Section presents the numerical procedures and techniques that are used to simulate the reference beams tested by
Antimo et al. and the cases selected for beam with web openings under impact load. Here, ABAQUS was employed to develop
numerical models using the explicit procedure, which is more appropriate to simulate a dynamic event. Also, convergence
issues could be avoided using such procedure [28]. Geometry, boundary conditions, element type, meshing, contact
interaction, material properties in addition to the verification of the FE models are presented in this Section.

3.1. Geometry and boundary conditions

Fig. 3 (a) shows the geometrical details of a FE model and boundary conditions utilized in the current study. Translational
movements were prevented in x and y directions to simulate the simply supported conditions. The impactor was simulated
as a rigid body and all its degrees of freedom was restrained, except for the vertical movement (y-axis) to allow for vertical
impact. The projectile was modelled with a mass of 211 and 460 kg and different initial velocities of 2.214, 5 and 7 m/s were
employed.

Fig. 5. The validation of FE models against tests carried out by Antimo et al. [24] (M: Mass, V: Velocity).
5



3

n
m
t
u
f
t
a

3

r
s
C

H
T
c
d
A
l

U

d
a
a

3

3

[
h

A. Al-Rifaie, A.S. Al-Husainy, T. Al-Mansoori et al. Case Studies in Construction Materials 14 (2021) e00509
.2. Element type, mesh size and contact interactions

C3D8R element with reduced integration was used due to its efficiency to model the impact events. Fig. 3 (b) shows the
umerical model of the beam with the selected element type. A mesh sensitivity study was performed to identify the proper
esh size. It was found that using the element size of 20 � 20 � 5 mm gives reliable results with appropriate computational

ime. The rigid quadrilateral element (R3D4) was used to model the impactor with finer mesh size compared to the mesh size
sed for the impacted beam. This is to avoid contact penetration of the impactor into the impacted beam. Normal hard and
rictionless contact was assumed for the contact surfaces of the impactor and the beam. Whilst, tie constrain was employed
o model the weld used to connect horizontal stiffeners to the web of the beam. It was also considered using the stiffer part as

 master surface and the other part as a slave surface [28].

.3. Constitutive models of steel material

Both elastic and plastic properties of steel materials were obtained from the experimental engineering stress-strain
elations provided by Antimo et al. [24] and Cho et al. [27]. Then, such stress-strain relations were converted to the true
tress-strain relations, which in turn were used as input data in ABAQUS. Strain rate effect was considered using Johnson-
ook dynamic magnification approach as follows:

ðDIFÞJC ¼  1 þ C ln  _ENTITY NOT DEFINED !!!
� ð1Þ

ere, C is a constant; _ENTITY NOT DEFINED !!!
�
is the ratio of the current strain rate to the reference quasi-static strain rate.

he constant C was assumed to be 0.039 as recommended by Ribeiro et al. [29]. Beyond the strain hardening stage, damage
riteria need to be modelled to allowing for strength degradation and avoiding overestimation of such strength. The onset of
uctile damage was modelled using the envelope of triaxiality-plastic strain proposed by Ribeiro et al. [29] as shown in Fig. 4.
fterwards, the damage evolution stage begins producing the stiffness degradation of the element until the total failure. A
inear relationship was then assumed between the element size (Le) and the equivalent plastic strain ℇpl as follows:

pl= Le ℇpl (2)

Also, shear damage of steel beam was modelled by assuming a value of the equivalent plastic strain at the onset of shear
amage. Such strain is a function of strain rate and shear stress ratio. Hence, the value of equivalent plastic strain, strain rate
nd shear stress ratio was taken as 0.172, 120 and 1.8 as proposed by Al-Thairy [30]. These values were validated by the
forementioned study against experimental tests [22] for a solid rectangular mild steel beam under impact load.

.4. Verification of FE models

.4.1. Test carried out by Antimo et al. [24]
To perform a parametric study, the FE models were calibrated against four experimental tests presented by Antimo et al.

24]. Fig. 5 shows the convergence between the experimental and numerical displacement-time histories obtained. The
ighest discrepancy between the experimental displacement and the predicted one among the four cases was less than 8.5%,

Fig. 6. The validation of FE models against tests carried out by Cho et al. [27].
6
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which reflects a very good correlation between the FE models and test results. Such correlation can be exploited to perform a
parametric study in which different parameters effect can be examined.

3.4.2. Cho et al. Tests
As mentioned in Section 2.2, these tests were selected to enhance the validation of the FE models developed to predict the

impact response of the steel beams with rectangular perforations. Here, the predicted traces were correlated reasonably well
to the corresponding experimental tests. The maximum deflections measured for the two specimens selected were 30 and
33 mm, while the corresponding predicted deflections acquired from FE models were 29.15 and 32.05 mm, respectively. The
predicted results were compared also in terms of force-time histories and strain time histories for the experimental data
provided by Cho et al. very good correlations were obtained as can be seen in Fig. 6 for a sample impacted under a mass of
295.7 kg and a velocity of 3.96 m/s. However, a considerable difference can be noticed between the peak force obtained from
the experimental and FE model as can be seen in Fig. 6a. It is attributed to the assumption of the rigid projectile that has much
higher contact stiffness than the deformable steel projectile used in the test. Besides, peak forces are difficult to be measured
precisely as stated by Birch et al. [31] as it has a short duration. Such difference in peak force has a negligible effect on the
flexural impact behaviour of the specimens selected in the current study as the beams reach their maximum bending
moment and maximum deflection in a time different than that of peak forces.

Fig. 7. Typical steel beam with rectangular web openings.
Fig. 8. Effect of impact velocity (two openings with the size of (155 � 100) mm).
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. Parametric study

To study the impact behaviour of steel beams with rectangular web openings, numerical FE models were developed with
ifferent parameters based on the verified ones. Rectangular openings with different numbers and areas were provided into
he solid steel beams. The dimensions and boundary conditions of the steel beams which utilized by Antimo et al. were kept
onstant to study the influence of the depth, number and reinforcement of the openings under impact loading. The impactor
ass was not changed and kept at the value of 211 kg.
The effect of impact energy was also examined by employing a range of impact velocities increased from 2.214–7 m/s. The

arametric study details with the corresponding numerical results are tabulated in Table 2. Typical steel beam with
ectangular web openings is shown in Fig. 7. The details of web openings such as the distance between the support and the
earest web opening, the distance between two openings, dimensions of openings and height of top and bottom tees were
elected as per SCI-P355, which was in accordance with Eurocode and the UK National Annexes [32]. Such details are
equired to design steel beams with web openings under static loading. Finally, it should be mentioned that the terms
narrow openings” and “wide openings” have been used in the current parametric study to refer to openings of size
155 � 100) and (310 � 100) mm, respectively.

.1. Effect of impact velocity

Three different values of impact velocity were selected to study its influence on the impact response of the steel beams
ith rectangular web openings, i.e. 2.214, 5, and 7 m/s. The other parameters such as the impactor mass and boundary
onditions were kept constant. The samples were divided into five groups. The first three groups were for beams with narrow
penings while the others were with wide openings. The first, second and third groups included beams with two, four and six
penings, respectively while the beams in the fourth and fifth groups were perforated with two and three openings,
espectively.

Figs. 8, 9 and 10 show the effect of the impact velocity for the first three groups. In general, the figures reveal that
ncreasing the impact velocity has approximately the same trend regardless of the number of openings. Within the models’
onditions, the impact force, displacement and moment at the mid-span section of the beam increased using higher impact
elocity. It could be noted that the difference in the bending moment and the force-time curves when the impact velocity
aised from 5 to 7 m/s is relatively smaller than that increase from 2.214 to 5 m/s. This could be attributed to the plastic
esponse of the beam under velocities of 5 and 7 m/s. As the beam started its plastic deformation, the change in the strength
Fig. 9. Effect of impact velocity (four openings with the size of (155 � 100) mm.

8
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will be slight because the beam experienced stress hardening, in which low increase in stress is produced. Whilst, a
considerable change in displacement can be noticed as the beam supposed to experience higher displacement in the plastic
stage compared with elastic stage.

For the steel beam with two openings, raising the impact velocity from 2.214–7 m/s led to increase the impact force,
displacement and moment by 152%, 357% and 38%, respectively. However, the beams with different number of openings
show almost the same increasing percentage when the impact velocity increased from 2.214–7 m/s. The considerable
reduction in the moment of inertia of the perforated beam induced the beam to dissipate more energy in terms of local and
global deformation as shown in Fig.11. Clearly, increasing the impact energy influenced the response of the beam and caused
higher stress at edges of the openings and higher deformation as shown in Fig. 11(b).

Again, Figs. 12, 13 and 14 manifest that the impact velocity has the same effect on the steel beams with different number
of wide openings. The impact force, mid-span moment and mid-span displacement increased with the rise of the velocity.
With increasing the impact velocity from 2214 to 7 m/s, the mid-span moment increased from 58.1–83.3 kN.m for the beams
with two openings for wide openings beams, whilst it raised from 53 to 85.5 kN.m for the models with three openings with
the same size.

The mode of failure for the perforated steel beams with two wide openings is shown in Fig. 13. Vierendeel plastic hinges
started to develop by applying impact velocity of 5 m/s and such failure mode magnified by applying a velocity of 7 m/s. Also,
the upper and bottom edges of the openings were highly affected in the same manner of the beams with narrow openings,
which could refer to the same failure scenario as for the same sample conditions adopted in the current study under quasi-
static loading. It could be noticed that all beams with wide web openings experienced only one peak force followed by a
plateau force while two peak forces were propagated in the beams with narrow ones and also followed by a plateau force.
This reflects the higher stiffness that beams with narrow openings have compared with others with wide ones. Such a high
stiffness plays important role in generating multiple peak forces during an impact event [33].

4.2. Effect of number of openings

The effect of the number of web openings was examined in this section. Only the number of openings was increased,
while the impact velocity, boundary conditions, impactor mass and material properties were kept constant. For the beams
impacted by a velocity of 5 m/s, the results showed that the impact force reduced by 20% when the beams were perforated

Fig. 10. Effect of impact velocity (six openings with the size of (155 � 100) mm).
9
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ith six narrow openings as shown in Fig. 15 (a). Fig. 15 (b) illustrated that the displacement of the beam was increased by
3% when the beam provided with six narrow openings. The mid-span moment is also affected by increasing the number of
penings. Fig. 15 (c) illustrates that the trend of the mid-span moment-time trace for the solid and perforated beams with
ifferent number of openings are almost the same. Increase the number of openings from zero to six leads to reduce the
oment from 99.7–85.2 kN.m.
Impacting the perforated steel beams with three wide openings, i.e. (310 � 100) mm with impact velocity of 7 m/s led to

educe the impact force and mid-span moment by 61% and 30%, respectively compared to solid beam. As in narrow openings,
he displacement increased as the number of wide openings increased. However, the specimens provided with three wide
penings under impact velocity of 5 and 7 m/s exhibited less global displacements compared with solid beams and the ones
ith narrow openings. This can be attributed to formation of high local deformation underneath the impactor in addition to
he global one as can be seen in Table 3.

Cleary, providing web openings reduced the load-carrying capacity of the beams and the impact force due to the
eduction of the web area which in turn reduced the beam strength. In general, those results are similar to the outcomes of
he behaviour of the steel beams with openings under static flexural loadings presented by Abdo et al. [34] who concluded
hat the increasing the number of opening induced the beam to exhibit higher deflection. The only difference between the
esults obtained here under impact loading and the results obtained by reference [34] under quasi-static loading was the
igher local deformation that perforated beams exhibited under impact loading compared with that under quasi-static

Fig. 11. Deformation shape of the steel beam with six openings with the size of (155 � 100) mm.
10
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loading. This could be attributed to the dynamic effect in which higher forces are produced within short period leading to
provide the local deformation.

4.3. Effect of area of openings

The effect of area of openings were investigated by comparing results of beams having different number of openings with
similar area. However, each two narrow openings of size (155 � 100) mm was replaced by one wide opening of size

Fig. 12. Effect of impact velocity (two openings with the size of (310 � 100) mm).

Fig. 13. Deformation shape of the steel beam with two openings with the size of (310 � 100) mm.
11
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310 � 100) mm. Then, the total opening area in both samples was equivalent. The results obtained can be shown in Fig.16 for
orce, displacement and moment-time histories up to a time of 0.015 s. The mid-span moment reduced from 89.5–83.3 kN.m
hen the area of openings increased from 31,000 to 62,000 mm2. Fig. 16 (b) shows that increasing the opening area slightly
ffected the displacement of the beams. This is because of the number and depth of openings are the same regardless of the
pening area. In contrast, the impact force reduced by 11% with increasing the opening area from 31,000 to 46,500 mm2.
The area of four (62,000 mm2) and six (93,000 mm2) narrow openings is equal to the area of two and three wide openings,

espectively. In general, the comparison between the specimens with an equivalent area manifests that increasing width of
he opening significantly affected the impact response of the beams. For the specimens with openings area of 62,000 mm2

nd subjected to impact velocity of 2.214 m/s, the impact force and mid-span moment reduced by 14% and 8%, respectively,
nd the displacement increased by 8.5% when the opening width increased from 155 to 310 mm. Under impact velocity of

 m/s, the reduction of the impact force was 50%, while the mid-span moment decreased from 89.4–70.4 kN.m for the beams
erforated with wide openings are of 93,000 mm2 in comparison with the ones provided with narrow openings with same
rea of openings. However, the comparison between the above specimens showed that the overall displacement which
epresents the displacement of the bottom fibre at the mid-span of the beam decreased from 28 to 10.8 mm and from 47.4–
4.4 mm for the specimens under impact force of 5 and 7 m/s, respectively. This is due the high local deformation at the
mpactor area.

Within the conditions of the study, the obtained results from the numerical models reveal that the area of the opening
lays a vital role on the impact response of the steel beam and increasing the opening area lead to decreasing the stiffness
nd load-carrying capacity of the steel beam. Besides, the beams perforated with narrow openings exhibited better impact
esponse than those with the wide ones having an equivalent area.

.4. Effect of depth of openings

The top and bottom tee depth (See Fig. 7) were considered in the previous studies [1,4,35] to estimate the static flexural
apacity of steel beams. However, the flexural capacity of perforated beams is significantly affected if the beam perforated

Fig. 14. Effect of impact velocity (three openings with the size of (310 � 100) mm).
12



A. Al-Rifaie, A.S. Al-Husainy, T. Al-Mansoori et al. Case Studies in Construction Materials 14 (2021) e00509
with deeper openings. In this section, the results obtained was used to show the effect of opening depth on the flexural
impact capacity. Under impact loading, the results reveal that the corner of the rectangular openings is critical and the area
around the corners exhibited higher stress concentration as shown in Figs. 11 and 13. However, four plastic hinges were
started to develop leading to Vierendeel failure mode. The moment of inertia is a very important parameter affecting the
stiffness of the beam, and therefore, reduction the depth of the beam lead to reduce the moment of inertia and then the load-
carrying capacity and beam strength. Three different values of opening height were examined, i.e. 100, 125 and 150 mm.
When the opening height increased from 100 to 150 mm the displacement increased by 24%, whilst the mid-span moment
reduced from 89.5–80 kN.m. The impact force was also affected by the depth of the opening as it reduced from 455.9 kN to
406.3 kN with increasing the opening height from 100 to 150 mm, respectively. It can be observed that increasing the depth
height from 125 to 150 mm led to raise displacement by only 13% and reduce the mid-span moment by 6.5%. The impact
results obtained reveal that increasing the depth of opening up to around 70% of the total depth of the beam has a slight effect
on the flexural impact strength of steel beams with rectangular web openings. More studies may be required to further
investigate such results considering different cases to evaluate such slight effect obtained under impact loading compared to
the higher one under quasi-static loading.

4.5. Effect of reinforcement of openings

Steel beams with rectangular web openings are usually strengthened by horizontal stiffeners to enhance their statically
flexural capacity. Here, such stiffeners were used to examine whether it can improve the impact of flexural capacity. Hence,
three perforated beams were strengthened by horizontal stiffeners with two thicknesses of 8 and 10 mm. Constant width of
40 mm with appropriate anchorage length were used for stiffeners. In order to investigate the effect of reinforcing the
perforated beams horizontally, four models were used for this comparison. Solid beam, perforated beam (with small two
openings) and two reinforced perforated beams impacted under a velocity of 5 m/s were selected. Both the reinforced and
unreinforced perforated beams exhibited lower flexural characteristics than solid beam as can be seen in Fig. 17. The effect of
using different reinforcement thicknesses has a negligible effect on the maximum displacement and moment capacity.
Whilst, an improvement can be observed by providing such reinforcement to perforated beams. It was found that the
maximum deflection and bending resistance were enhanced by 6.8 and 5%, respectively as shown in Fig. 17. (a, b). Another

Fig. 15. Effect of the web openings number on the impact behaviour of steel beam.
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Table 3
Summary of the parametric variation for the steel beam with rectangular web openings.

No. Sample ID Number
of
openings

Size of
openings
(mm)

Velocity
(m/s)

Opening
Reinforcement

Reinforcement
thickness
(mm)

Maximum
Impact force
(kN)

Maximum
displacement
(mm)

Maximum moment
at midspan (kN.m)

1 SB-V1 0 0 2.214 none none 217.8 9.8 72
2 SB-V2 0 0 5 none none 529.6 24.8 99.7
3 SB-V3 0 0 7 none none 590.1 41.5 100.2
4 O1�2-V1 2 155*100 2.214 none none 180.7 10.2 65
5 O1�2-V2 2 155*100 5 none none 402.9 27.2 90.3
6 O1�2-V3 2 155*100 7 none none 455.9 46.6 89.5
7 O1�4-V1 4 155*100 2.214 none none 210.8 10.5 63
8 O1�4-V2 4 155*100 5 none none 393.6 27.7 85.6
9 O1�4-V3 4 155*100 7 none none 456.8 47.1 89.4
10 O1�6-V1 6 155*100 2.214 none none 211.4 10.7 61.1
11 O1�6-V2 6 155*100 5 none none 426 28 85.2
12 O1�6-V3 6 155*100 7 none none 457.0 47.4 89.4
13 O2�2-V1 2 310*100 2.214 none none 180.8 11.4 58.1
14 O2�2-V2 2 310*100 5 none none 395.6 32.5 75.3
15 O2�2-V3 2 310*100 7 none none 455.1 56 83.3
16 O2�3-V2 3 310*100 5 none none 113.1 24.4 71.7
17 O2�3-V3 3 310*100 7 none none 228.9 46.4 78.5
18 O3�2-V3 2 155*125 7 none none 404.8 51 85.5
19 O4�2-V3 2 155*150 7 none none 406.3 57.8 80
20 O1�2-V2-HR10 2 155*100 5 horizontal 10 430.5 25.5 94.9
21 O1�2-V2-HR08 2 155*100 5 horizontal 8 424.9 25.6 94.4
22 O2�2-V2-HR08 3 310*100 5 horizontal 8 262.0 18.4 84.5

SB: Solid beam.

Fig. 16. Effect of the web openings area on the impact behaviour of steel beam.
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comparison was made using beams with three large openings. Again, lower bending moment resistance produced in
perforated beams compared with the solid one. Besides, providing the reinforcement enhanced the impact bending
resistance by about 20%. Moreover, high local deformation was noticed on the perforated beams under the impactor, which
show the vulnerability of impacting such beams in the centre of an opening, see Fig. 17. (c). The local deformation can be
justified by the higher concentration of impact wave in the top tee of the openings compared to the bottom one as the
reinforcement plays a significant role to push the stresses away from the bottom tee. Therefore, the mid-span opening
behaves to some extent as a simply supported beam producing such local failure. Under quasi-static loading, the deflection at
mid-span for a tested steel beam with three horizontally reinforced web openings (each one 50 � 100 cm) was about 51% of
the corresponding unreinforced one [34] while it was 75% under impact load but with considerable local deformation as
mentioned above in this section.

5. Conclusions

The experimental results of the response of steel beams under impact loadings were used to verify the FE models of steel
solid beams and then those models were utilized to investigate the impact behaviour of steel beams with rectangular web
openings. The strain rate effect, ductile and shear damage were considered in the modelling. Several parameters were
examined to study their effect on the impact response of steel beams with rectangular web openings. However, for simply
supported steel beams with rectangular web openings under low velocity impact loading located in the mid-span of the
beam, the conclusions below can be drawn.

� Very good correlations between the numerical results and the corresponding experimental ones were obtained. The
difference in the maximum displacement did not exceed 8.5% corresponding to the compatibility between the numerical
and experimental results of force and strain-time history. This provides strong evidence that the materials and damages
properties are well modelled and the models are robust and can be utilized to conduct pragmatic study to investigate the
impact behaviour of steel beams with openings.

� The beams having narrow web openings offered better flexural impact resistance than those with the wide ones having an
equivalent area.

Fig. 17. Effect of providing horizontal reinforcement to web openings.
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 Changing the depth of opening up to around 70% of the total depth of the beam has slight effect on the flexural impact
response of steel beams with rectangular web openings.

 The effect of using different reinforcement thicknesses has a negligible effect on the maximum displacement and moment
capacity. Whilst, an improvement was observed by providing such reinforcement to perforated beams.

 Regardless of the openings area, depth and number as well as the impact velocity, the steel beams showed similar mode of
failure in which four plastic hinges were generated around the opening’s corners due to the stress’s concentration in this
area.
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