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A B S T R A C T   

With current progress in science, there is growing interest in developing and applying Physiologically Based 
Kinetic (PBK) models in chemical risk assessment, as knowledge of internal exposure to chemicals is critical to 
understanding potential effects in vivo. In particular, a new generation of PBK models is being developed in 
which the model parameters are derived from in silico and in vitro methods. To increase the acceptance and use 
of these “Next Generation PBK models”, there is a need to demonstrate their validity. However, this is chal-
lenging in the case of data-poor chemicals that are lacking in kinetic data and for which predictive capacity 
cannot, therefore, be assessed. The aim of this work is to lay down the fundamental steps in using a read across 
framework to inform modellers and risk assessors on how to develop, or evaluate, PBK models for chemicals 
without in vivo kinetic data. The application of a PBK model that takes into account the absorption, distribution, 
metabolism and excretion characteristics of the chemical reduces the uncertainties in the biokinetics and 
biotransformation of the chemical of interest. A strategic flow-charting application, proposed herein, allows users 
to identify the minimum information to perform a read-across from a data-rich chemical to its data-poor 
analogue(s). The workflow analysis is illustrated by means of a real case study using the alkenylbenzene class 
of chemicals, showing the reliability and potential of this approach. It was demonstrated that a consistent 
quantitative relationship between model simulations could be achieved using models for estragole and safrole 
(source chemicals) when applied to methyleugenol (target chemical). When the PBK model code for the source 
chemicals was adapted to utilise input values relevant to the target chemical, simulation was consistent between 
the models. The resulting PBK model for methyleugenol was further evaluated by comparing the results to an 
existing, published model for methyleugenol, providing further evidence that the approach was successful. This 
can be considered as a “read-across” approach, enabling a valid PBK model to be derived to aid the assessment of 
a data poor chemical.   

1. Introduction 

Internal dose metrics are considered more predictive of biological 
responses than external doses when assessing and managing risks of 
chemicals to human health and the environment [1]. Physiologically 
Based Kinetic (PBK) models are mathematical models based on ordinary 
differential equations, which can be used to predict internal dose metrics 
by taking into account the physicochemical properties of the substance 
of interest along with the physiological and biochemical processes in a 
species of interest. These processes determine the fate of a chemical in an 
organism by means of its absorption, distribution, metabolism and 

excretion (ADME) characteristics. A PBK model includes both chemical- 
independent parameters (anatomical and physiological), as well as 
chemical-dependent parameters (physicochemical and ADME proper-
ties). However, the regulatory uptake of these models has been slow, due 
to lack of understanding and/or trust in the models [2,3]. 

With current progress in science and risk assessment, there is 
growing interest in developing, reporting, evaluating and applying PBK 
models, accompanied by a shift towards next generation PBK models. 
The difference between traditional and next generation PBK models is as 
follows; on the one hand, a traditional PBK model is calibrated and 
evaluated using in vivo data - the model structure reflects a balance 
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between the principles of parsimony (minimal but essential elements 
characterising the system) and plausibility (reflective of physiological 
reality and consistent with the current state of knowledge). A “familiar 
uncertainty” based on the conceptual model parameters used, as well as 
the dose metrics applied is present in the traditional model (for example 
uncertainty arising from inter- and intra-species biological variability). 
On the other hand, a next generation PBK model is developed relying on 
in vitro or in silico methods. Model structure reflects a more detailed 
mechanistic understanding of biology and biochemistry, but this is 
accompanied by more “unfamiliar uncertainties” (for example, uncer-
tainty relating to the relevance, reliability and variability of the in vitro 
and in silico methods from which model parameters are generated). 
These next generation PBK models, in the ideal situation, promise 
increased predictive potential, as well as mechanistic insights due to 
inclusion of mechanistic processes and emerging (human-relevant) data, 
but introduce additional challenges for risk assessors attempting to re-
view and use these more detailed and complex models in support of 
regulatory decision making. This is especially true where experimental 
in vivo kinetic data are not available for comparison and evaluation of 
the model predictions. Conversely, in current practice, where PBK 
models are developed without incorporating mechanistic knowledge, 
these are associated with greater uncertainty and do not have the po-
tential to provide improved predictivity or mechanistic insights; hence 
next generation PBK models have distinct advantages. To address the 
lack of uptake of PBK models by the regulatory sector, a group of experts 
in the field proposed a way forward for model evaluation, establishing a 
list of elements that could be used to assess the validity of next gener-
ation PBK models [3]. Among these elements the read-across approach 
was proposed and is further illustrated here. This has also been 
described in the recently published Organisation for Economic Coop-
eration and Development (OECD) PBK model guidance document [4]. 

As introduced above, traditional model parameterisation, calibration 
and validation relies heavily on comparing model simulations with in 
vivo data i.e. blood/plasma or tissue concentrations. The availability of 
in vivo kinetic data is limited to a few well-studied (data-rich) chemicals 
and only for certain species of interest. This impedes the validation and 
use, in a regulatory context, of PBK models for chemicals that lack such 
data. Therefore, for those chemicals without toxicokinetic (TK) infor-
mation (data-poor), other lines of evidence are required to evaluate the 
suitability of PBK models for the intended purposes. 

Read across, one such line of evidence, is a technique for predicting 
endpoint information for one substance (the target substance) by using 
data for the same endpoint from (an)other substance(s), referred to as 
(a) source substance(s) [5]. This approach is increasingly being applied 
for data gap filling in chemical hazard assessment. In the case of PBK 
modelling, for those cases in which in vivo data exist for one chemical, a 
read-across approach may be applied to parameterise models for other 
similar chemicals [6–9]. For example, if a valid PBK model exists for 
chemical A (source chemical), whereas chemical B (target chemical) 
lacks any in vivo data, but has been shown to be similar in structure, 
and/or other relevant properties, to chemical A, then the same para-
meterised PBK model structure/code and in vivo data for chemical A 
may be suitable to derive a model for chemical B. Alternatively, if 
parameterisation of the PBK model using available in vitro or in silico 
data for chemical B is possible, predictions can be compared to the 
output from the model for chemical A based on in vivo data, in order to 
evaluate the PBK model for chemical B. When using such a model based 
on similarity between different chemicals, the influence of chemical- 
specific properties mediating ADME behaviour (such as logarithm of 
the octanol:water partition coefficient (log P/ log Kow), presence of 
specific functional groups etc) should also be carefully considered. As 
mentioned above, developing PBK models for data-poor chemicals relies 
on in vitro and in silico methods for deriving ADME relevant parameters. 
Therefore, there is an increasing need for a more systematic character-
isation of these alternative methods for evaluating ADME predictions 
without the use of in vivo data. Ellison et al. report one of the first 

attempts in this direction, testing the hypothesis that an adequately 
developed PBK model for a target chemical (chemical with no in vivo 
kinetic data) can be evaluated using PK data from a source chemical 
(chemical with existing in vivo kinetic data) [7]. These authors 
compared PK profiles and model simulations from PBK models that were 
developed using in vivo data. Recently the PK analogue approach was 
applied to a PBK model built only on in vitro and in silico data, using 
caffeine and diphenhydramine as examples [8]. 

In 2016 Lu et al. published a Knowledgebase of 307 chemicals for 
which existing PBK models were available [6]. The authors demon-
strated that it was possible to use an existing PBK model for one 
chemical (the source chemical) to inform the development of a PBK 
model for a similar (target) chemical, by adjusting chemical-specific 
model parameters. No chemical can be considered as being absolutely 
similar to another, only similar in terms of specific properties; Lu et al. 
established similarity on the basis of physico-chemical properties. The 
approach described here can be considered as a read-across approach for 
PBK models where a data-rich analogue is used to infer information for a 
data-poor chemical; as with all read-across approaches, it is essential to 
fully justify the choice of the analogue(s). 

Similarity can be considered in terms of structural similarity (using 
fingerprint methods) physico-chemical properties, functional/mecha-
nism of action or metabolite similarity. In this analysis, structural sim-
ilarity (ascertained using fingerprints) was used to select potential 
analogues with existing PBK models, from which the final selection was 
based on expert judgement. Fingerprint methods search for specific 
structural features or “keys” (e.g. functional groups) within molecules. If 
the feature is present in a chemical structure a value of “1” is recorded; if 
absent “0” is recorded. In this way, bit-strings are generated comprising 
a series of 1 s or 0 s for the presence or absence of particular features. The 
number of features in common can be compared, resulting in an overall 
similarity score, for example a Tanimoto coefficient. These values range 
from 0 to 1, where 1 indicates highly similar or identical chemicals [10]. 
As different types and numbers of structural features are used in the 
different similarity assessment methods available, many different simi-
larity scores can be generated for any given pair of chemicals; there is no 
consensus yet as to which method is most appropriate [11]. 

In this paper we describe a strategy for deriving a PBK model for a 
data-poor chemical using a read-across approach, which can be applied 
where in vivo kinetic data are not available for validation. 

2. Methodology 

2.1. Case study selection 

The alkenylbenzene family of chemicals was selected for the present 
analysis as a pertinent case study. The alkenylbenzene methyleugenol 
was selected as the target chemical for this case study because of current 
interest in the carcinogenic potential of chemicals in this group and the 
availability of relevant toxicokinetic data. Potential analogues of 
methyleugenol that could be used to parameterise and evaluate a PBK 
model for this target chemical were selected according to the method 
described below. 

In the following illustrative example methyleugenol was used as the 
target chemical in a proof-of-principle analysis where it was hypothet-
ically posited there were no kinetic data to validate the PBK model. 
However, it is known that such information is available for this chemi-
cal, and this was used post analysis to demonstrate the validity of the 
approach. 

2.2. Strategy for the identification of appropriate analogues 

The recently published OECD PBK model guidance document elab-
orates a workflow that can be used to identify analogues for PBK model 
development or evaluation. Analogues are sought with existing bio-
kinetic data and/or an existing PBK model that can be used to fill data 
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gaps in chemical safety assessment. The workflow from the OECD 
document is reproduced in Fig. 1. The first step in this workflow is the 
identification of potential analogues [4]. 

2.2.1. Preliminary investigation of existing PBK models and identification 
of potential analogues 

A thorough literature search for PBK models for alkylbenzenes was 
conducted to identify candidate analogues, using a wide range of 
available electronic resources [12]. The group of Professor Ivonne 
Rietjens in the Department of Toxicology (Wageningen, The 
Netherlands) is noted for investigations into many chemicals, providing 
in vitro biokinetic data to develop PBK models - amongst these the 
alkenylbenzene family are the most studied. Publications from this 
group were considered a good source of PBK model code for potential 
analogues of methyleugenol for use in this study. Potential analogues 
were also sought using the OECD QSAR Toolbox (https://www.oecd. 
org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm; ver 4.4). 
In this instance the Tanimoto coefficient was used to assess the level of 
similarity between the target chemical and potential source analogues. 
A cut-off value of 0.6 was used to determine if the chemicals were 
structurally similar. Cut-off values for similarity are chosen arbitrarily 
and the chemicals identified as “similar” will be dependent on both the 
similarity metric and the cut-off value chosen (as discussed above). The 
value of 0.6 for the Tanimoto coefficient has previously been demon-
strated to be a suitable cut-off for identifying toxicologically similar 
chemicals [13]. The mammalian metabolism simulators in the Toolbox 
were also used to assess the potential of analogues to form the 1′-hy-
droxy metabolite – relevant to the known toxicity of these chemicals. 

In parallel, the Knowledgebase, developed by Lu et al., is a ready- 
made database of chemicals for which it is known that PBK models 
exist [6]. Therefore, this database was searched for any chemicals 
“similar” to the target methyleugenol. The Knowledgebase was supple-
mented with additional models that had been identified during the 
literature search, to ascertain which chemicals were most similar. 
Although it was anticipated that the models obtained specifically when 
searching for alkylbenzenes would be the most suitable, incorporating 
the more extensive Lu et al. Knowledgebase into the similarity search 

ensured that no existing, potentially relevant, models were overlooked. 
As already stated, the selection of similar chemicals depends on the 
similarity metric and cut-off value selected, hence, a novel workflow, 
developed in-house using the KNIME platform (ver 4.1.4; available on 
request from the authors) was used to identify potential analogues. 
Using the KNIME workflow, nine different fingerprints were applied 
(Morgan, feat Morgan, Torsion, Avalon, Layered, AtomPair, RDKit, 
MACCS and Pattern), the chemicals that were ranked as the top five 
most similar chemicals, according to each of the similarity metrics were 
exported. Molecular weight (MW) and the logarithm of the octanol: 
water partition coefficient (log Kow, as predicted by EPISUITE version 
1.69) were also recorded for comparison. In this manner several po-
tential analogues were identified. 

2.2.2. Strategic flowchart to assist in the selection of PBK analogues 
Step 2 of the workflow in Fig. 1 is the selection of analogues. A 

strategic flow-chart application was developed to assist selection of 
suitable analogues, incorporating a decision tree (Fig. 2) that links to the 
workflow shown in Fig. 1. The decision tree starts by asking “is there a 
PBK model for your source chemical?” If yes, the PBK model for the 
source chemical should include a similar biological basis and biokinetic 
processes (ADME properties) and parameterisation to the target chem-
ical. If this is the case, the model can be applied to make predictions 
using available in vitro ADME data from the target chemical, exiting the 
decision tree into the workflow for identifying and using analogues for 
PBK model development/evaluation as shown in Fig. 1 (at step 3). If the 
PBK model found is not sufficiently similar, the PBK model should be 
refined and the model code checked for validity. Finally, if in both steps 
the option is not possible the advice is to search for a new source 
chemical or conduct a conventional read across. The workflow was built 
for identification of analogues, enabling the user (a risk assessor) to 
identify the best analogue for the assessment purpose, the context of use 
(problem formulation) should be taken into account. 

Fig. 1. Workflow for identifying and using analogues for PBK model development and evaluation, as reported in the OECD PBK model guidance document [4].  
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2.3. Using information from selected analogues for PBK model 
development 

Using the procedures outlined in Section 2.2, estragole and safrole 
were selected as appropriate source chemicals for building a PBK model 
for the target – methyleugenol. 

The source codes for the human PBK models for estragole and safrole 
are available as Supplementary information (appendix I). The PBK 
model for estragole was first published by Punt et al. [14] and revisited 
by Ning et al. [15]. The PBK model for safrole was published by Martati 
et al. [16]. The validation of both models was done using historical data 
from test subjects. Punt et al. [14] evaluated model performance by 
comparing the predicted formation of 4- allylphenol and 1′-hydrox-
yestragole glucuronide to literature reported levels of these metabolites 
in humans exposed to estragole, using information available in Sangster 
et al. [17]. For the evaluation of the safrole model performance, a 
comparison was made between the predicted total amount of urinary 
metabolites of safrole and the reported total levels of metabolites in the 
urine of humans exposed to safrole [16]. 

The PBK model codes were used with the following alterations:  

1. The molecular weight (MW) for parent and hydroxy-metabolite 
(known to be the active metabolite) of the source chemicals were 
substituted with the values of the target chemical, methyleugenol, as 
were the partition coefficients, predicted using the approach of 
Brown et al. [18] and the chemical specific log Kow value (obtained 
from EPISUITE ver 1.69).  

2. In addition to the above changes, the Vmax and Km, values measured 
in vitro, for the formation of several metabolites formed in phase I 
and phase II were also substituted from those relevant to estragole to 
those relevant for methyleugenol. These values were available for 
estragole, safrole and methyleugenol [14,19,20]. 

Model equations were coded and numerically integrated in Berkeley 
Madonna version 8.3.18. (Macey and Oster, UC Berkeley, CA, USA; 
https://berkeley-madonna.myshopify.com/) using the Rosenbrock’s 
algorithm for stiff systems. Model codes can be found in Supplementary 
information (appendix I). 

2.3.1. Alkenylbenzenes model parametrisation 
In order to run the PBK models, the parameters for estragole, safrole 

and methyleugenol were used, as shown in Table 1 with the human 
physiology described in Punt et al. [14] and fixed values applied (blood 
flow and scaling factors) to all the PBK models as shown Table 2. 

Sensitivity analysis was performed to identify which parameters 
have the greatest impact on the PBK model predictions on the formation 
of 1′-hydroxyestragole and 1′-sulfooxyestragole. The sensitivity analysis 
was performed for the source chemicals as reported by the original au-
thors [14,16], by using normalised sensitivity coefficients (SC) deter-
mined using the following equation: 

SC = (C′

− C) / (P′

− P)*(P/C)

where C is the initial value of the model output; C′ is the modified model 
output resulting from a 5% increase in the parameter value; P is the 
initial parameter value; and P′ is the modified parameter value [25]. A 
5% increase in parameter values was chosen to analyze the effect of a 
change in parameter values on formation of 1′-hydroxyestragole and 1′- 
sulfooxyestragole at a dose 0.07, mg/kg bw/day for 24 h exposure, 
representing a realistic daily intake [26]). Each parameter was analysed 
individually, while other parameters were kept as their initial value. 
Sensitivity analysis was conducted on the estragole PBK model, to 

Fig. 2. Schematic representation of the strategic decision tree to assist selection of analogues in the context of developing a PBK model for a chemical that has no in 
vivo data for validation. 

Table 1 
Physiological parameters and scale-up factors used in the source PBK models 
(estragole and safrole).  

Parameter name Value Unit 

Body weight 60 Kg 
Cardiac output 15 (L/hr/-1kg) 
Fractional blood flow to fat - QFC 0.052  
Fractional blood flow to liver 

–QLC 
0.227  

Fractional blood flow to richly 
perfused tissues QRC 

0.70-QLC  

Fractional blood flow to slowly 
perfused tissues - QSC 

0.30-QFC  

Fraction fat tissue VFC 0.214  
Fraction of liver – VLC 0.026  
Fraction richly perfused tissue - 

VRC 
0.076- 
VLC  

Fraction slowly perfused tissue – 
VSC 

0.81-VFC- 
VBC  

Fraction of blood [21] VBC =
0.079  

Scaling Factors Liver   
S9PL 143 Liver S9 protein yield (mg/gram 

liver) [22] 
MPL 32 Liver microsomal protein yield 

(mg/gram liver) [23] 
Simulation time 24 H 
Oral dose given 0.07 Mg/kg BW  
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identify the most sensitive parameters, which were identified as the 
Vmax and Km kinetic constants (results not shown). 

2.3.2. Alkenylbenzenes analysis using derived PBK models 
In order to provide evidence of this proof-of-concept, the analysis 

was carried out in three steps.  

1. Using only the original model of estragole (ES), safrole (SA) and 
methyleugenol (ME). The results were named with the following 
label ES_original, SA_original and ME_original; 

Table 2 
Kinetic parameters for phase I and phase II metabolism in liver of source and target chemicals.   

MW/ Hydroxyl 
metabolite MW 

Vmax/Km Partition coefficient (PC) 

Estragole source  
[14,15,20,24] 

148.2/164.2 
LogKow = 3.47 

{Phase I} 
Max rate of metabolism (nmol min-1(mg protein)-1) 
VmaxLHEc = 0.7 ± 0.04; HE = 1′-hydroxyestragole, 
VmaxLAPc = 0.4 ± 0.02; AP = 4-allylphenol, 
VmaxLEEc = 0.9 ± 0.07; EE = estragole-2′,3′-oxide, 
VmaxLHAc = 1.4a ± 0.05; HA = 3′-hydroxyanethole, 
Vmax5 = 0.18 ± 0.02 
Affinity constant (umol/L) 
KmLHE = 21 ± 6; 
KmLAP = 290 ± 28 
KmLEE = 83 ± 17 
KmLHA = 350 ± 20 
Km5 = 618 ± 164 
{Phase II} 
Max rate of metabolism (nmol min-1(mg protein)-1) 
VmaxLHEGc = 0.29; HEG = 1′-hydroxyestragoleglucuronide, 
VmaxLHESc = 0.006 ± 0.005; AHE = 1′-sulfooxyestragole, 
VmaxLOEc = 3.2 ± 0.88 
Affinity constant (umol/L) 
KmLHEG = 708; 
KmLHES = 727 ± 185 
KmLOE = 345 + 151 

PFE = 105; Fat/blood PC; 
PRE = 6.5;Richly perfused tissues/blood PC 
PSE = 4.0;Slowly perfused tissues/blood PC 
PLE = 6.5;Liver/blood PC 
{1′-hydroxy-met} 
PLHE = 1.6; Liver/blood PC 

Safrole [16] 162.19/ 178.18 {Phase I} 
metabolites of safrole, unscaled maximum rate of metabolism (nmol min-1 
(mg protein)-1) 
VmaxLDHSc = 0.07 ± 0.004; DHS = dihydroxysafrole 
VmaxLHSc = 0.15 ± 0.008; HS = 1′-hydroxysafrole 
VmaxLHISc = 0.11 ± 0.01; HIS = 3′hydroxysafrole 
VmaxLCHAVc = 0.85 ± 0.05; CHAV = Dihydroxychavicol 
metabolites of safrole, affinity constants (umol/L) 
KmLDHS = 41 ± 10 
KmLHS = 35 ± 10 
KmLHIS = 255 ± 99 
KmLCHAV = 172 ± 30 
{Phase II} 
metabolites of 1′-hydroxysafrole, unscaled maximum rate of metabolism 
(nmol min-1 (mg protein)-1) 
VmaxLHSGc = 0.1 ± 0.006; HSG = 1′-hydroxysafrole glucuronide 
VmaxLHSSc = 0.017 ± 0.005; HSS = 1′H1-sulfooxysafrole 
VmaxLHSOc = 7.5 ± 0.4; HSO = 1 oxo safrole 
metabolites of 1′-hydroxysafrole, affinity constants (umol/L) 
KmLHSG = 1322 ± 208 
KmLHSS = 3828 ± 1801 
KmLHSO = 549 ± 84  

PKS = 6.65; kidney/blood partition 
coefficient 
PLS = 6.65; liver/blood partition coefficient 
PFS = 106; fat/blood partition coefficient 
PRS = 6.65; richly perfused tissues/blood 
partition coefficient 
PSS = 4.2; slowly perfused tissues/blood 
partition coefficient; 
1′-hydroxysafrole 
PLHS = 1.65 ;liver/blood partition 
coefficient 

Methyleugenol target  
[19] 

178.2/194.2 
LogKow = 3.03 

{Phase I} 
Max rate of metabolism (nmol min-1(mg protein)-1) 
VmaxLHEc = 1.38 ± 0.38; HE = 1′-hydroxymethyleugenol, 
VmaxLAPc = 0.15 ± 0.02; AP = eugenol, 
VmaxLEEc = 0.66 ± 0.11; EE = Methyleugenol-2′,3′-oxide, 
VmaxLHAc = 0.39 ± 0.08; HA = 3-(3,4-dimethoxyphenyl)-2-propen-1-ol, 
VmaxL5 = 0.21 ± 0.02; 3-hydroxy-4-methoxyallylbenzene, 
VmaxL6 = 0.10 ± 0.02; 2-hydroxy-4,5-dimethoxyallylbenzene 
Affinity constant (umol/L) 
KmLHE = 404 ± 195; 
KmLAP = 13.6 ± 12.3 
KmLEE = 23.7 ± 5 
KmLHA = 161 ± 90 
KmL5 = 1097 ± 142 
KmL6 = 415 ± 84 
{Phase II}Max rate of metabolism (nmol min-1(mg protein)-1 
VmaxLHEGc = 0.66 ± 0.087; HEG = 1′-hydroxyestragoleglucuronide,) 
VmaxLHESc = 0.0009 ± 0.0002; AHE = 1′-sulfooxyestragole, 
VmaxLOEc = 2.1 ± 1.83 
affinity constant 
KmLHEG = 2393 ± 486 (umol/L) 
KmLHES = 139 ± 82 
KmLOE = 1774 ± 2997 

PFE = 103; Fat/blood partition coefficient 
PRE = 6.2; Richly perfused tissues/blood 
partition coefficient 
PSE = 3.9; Slowly perfused tissues/blood 
partition coefficient 
PLE = 6.2; Liver/blood partition coefficient 
{1′-hydroxy-met} 
PLHE = 1.4; Liver/blood partition 
coefficient  

A. Paini et al.                                                                                                                                                                                                                                    



Computational Toxicology 18 (2021) 100159

6

2. In the second step, only the molecular weight (MW) and partition 
coefficient (PC) was changed to that of the target chemical (ME); the 
model and results are referred to as ES_ME_MW_PC or 
SA_ME_MW_PC.  

3. The third step of the analysis was to change also the biochemical 
(biotransformation) parameters to those of the target chemical, such 
as, Vmax and Km of each metabolite. The model code and results 
were named ES_ME_all and SA_ME_all. 

The PBK model codes of the source chemicals are reported in ap-
pendix I (supplementary information) along with the original PBK 
model code for methyleugenol (based on Al-Subeihi et al. [19]), used in 
the present proof-of-concept evaluation of the model. 

The PBK model predictions for methyleugenol were based on the 
proposed biotransformation pathways of the source chemicals. The 
difference in metabolism between estragole, safrole and methyleugenol 
is that methyleugenol has an additional two metabolites formed, 3,4 
dimethoxyphenyl)-2-propen-1-ol (3DMPOH) and 2-hydroxy-4,5-dime-
thoxyallylbenzene (2HDME), that do not appear in estragole and 
safrole pathways so far published in the literature [14,16,20] probably 
due to the instrument analytical sensitivity. Recently, an additional 
metabolite formed in phase I for estragole was quantified and intro-
duced in a newly revised version of the estragole PBK model [15]. This 
last PBK model code was used for the final analysis since it was available 
as supplementary information [15]. However, the main pathway leading 
to the adverse outcome is via DNA adduct binding by hydroxylation, and 
is common for the three chemicals. Using the human PBK models for 
estragole, a comparison could be made between the model predictions in 
formation of the 1′-hydroxy metabolite (Fig. 3). 

3. Results 

3.1. Identification of potential analogues 

Step 1 of the workflow shown in Fig. 1 is the identification of po-
tential analogues. Literature searching, using a range of electronic re-
sources, was undertaken to identify potential analogues of 
methyleugenol, belonging to the family of alkenylbenzenes, for which 
suitable PBK models were available. This included searching for 

analogues within the OECD QSAR Toolbox (ver 4.4) and in the Knowl-
edgebase of Lu et al. [6] that had been enriched with additional models 
found in the literature. An in-house KNIME workflow was used to 
identify chemicals from within the enriched Lu et al Knowledgebase [6] 
that were ranked most frequently in the top five most similar chemicals. 
For chemicals that appeared most frequently in the top five most similar 
chemicals (i.e. identified by at least four similarity metrics), an average 
similarity value was calculated. Table 3 shows the potential analogues 
that were identified, along with additional information regarding where 
these were obtained from, similarity scores and the availability of PBK 
models associated with the chemicals (more information on this analysis 
is reported in the excel document as Supplementary information – ap-
pendix II). 

Characterisation of the target chemical and analogues was per-
formed by using a matrix similar to the ones used within the OECD IATA 
Case Studies project (see excel document in Supplementary material – 
appendix II). The information was retrieved from available e-resources 
and tools such as OECD QSAR Toolbox. 

3.2. Selection and justification of analogue choice 

Step 2 of the workflow shown in Fig. 1 is the selection and justifi-
cation of analogue choice from the list of potential analogues obtained in 
step 1. The two following criteria were used to determine the most 
appropriate analogues for the present work, according to the strategic 
flowchart depicted in Fig. 2.  

1. Similar ADME processes and known, relevant mode of toxic action  
2. Availability of an existing PBK model that has been validated against 

in vivo data 

Table 3 shows that five chemicals namely, eugenol, elemicin, estra-
gole, safrole and myristicin have been identified as potential analogues 
based on structural similarity (all others having a similarity score < 0.6). 
The structural similarity scores are based on presence of common 
structural features. On the other hand, mechanistic similarity is sup-
ported by potential formation of a common 1′-hydroxy metabolite for all 
of these chemicals as predicted by the mammalian metabolism simula-
tors in the OECD QSAR Toolbox (ver 4.4). The PBK model simulations 

Fig. 3. Proposed metabolic pathways of the alkenylbenzenes: estragole (right [14]), safrole (middle [16]) and methyleugenol (left [19]).  
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for eugenol were predicted using Gastroplus [27]; however, insufficient 
information regarding the model code were available to enable it to be 
reproduced and no evaluation was performed against in vivo data, hence 
this chemical was excluded. The PBK models for myristicin and elemicin 
were parametrised using in vitro measured data and evaluated by 
comparing to other alkenylbenzene in a read across approach [28,32] 
and were therefore also excluded since they did not have specific eval-
uation against in vivo data for the specific chemical. Thus, after applying 
the above selection criteria, the shortlisted potential analogues were 
estragole and safrole. Therefore, in this analysis both were used to in-
crease the weight of evidence of the approach. 

3.3. Use of analogues in PBK modelling 

Step 3 of the workflow uses the selected analogues to derive a PBK 
model for the target chemical. Both safrole and estragole had an avail-
able human PBK model, evaluated against literature data. The PBK 
models were run to check that the mass balance was stable. The mass 
balance did not report any error reflecting that the models were properly 
built. Fig. 3 demonstrates the known similarity in metabolism for 
estragole, safrole and methyleugenol (which is pertinent to the proposed 
mechanism of toxic action), hence the PBK model code of these two 
chemicals were used to run simulations for methyleugenol. The full PBK 
model description and evaluation can be found in the supplementary 
material of the OECD PBK model guidance document [4]. Description of 
the model and development of the case study was performed following 
the required criteria [35], recorded using the established template and 
evaluated using the available checklist [4]. 

The PBK model developed here for methyleugenol was based on the 
proposed biotransformation pathways of estragole and safrole. Fig. 3 
shows the different pathways for the chemicals highlighting the differ-
ence in metabolism between estragole, safrole and methyleugenol. 
Methyleugenol has an additional two metabolites formed in phase I (3,4 
dimethoxyphenyl)-2-propen-1-ol (3DMPOH) and 2-hydroxy-4,5-dime-
thoxyallylbenzene (2HDME)), that do not appear in the safrole and 
estragole pathway so far published in the literature. Recently a fifth 
metabolite for estragole was identified and measured by Ning et al. [15] 
and introduced in the estragole PBK model. On the other hand the 
safrole PBK model was complete with additional metabolism also 
occurring in the kidney, which was not the case in the estragole model. 
However, the main pathway leading to the adverse outcome, DNA 
adduct binding, is via hydroxylation; this pathway is common for all 
alkenylbenzene chemicals due to their genotoxic action. 

Fig. 4 reports the predictions of the amount of the chemical that 
reaches the liver (at 24hrs using an external dose of 0.07 mg/kg BW). 

The predictions were run for estragole (Fig. 4A-C) and safrole (Figure 
Fig. 4D-F) and using chemical information for the target methyleugenol. 
The results show that the peak of methyleugenol in the liver, when input 
values were altered to those relevant for methyleugenol, gave similar 
Cmax values - around 1 µmol. While when changing only the MW and 
PC, the amount in liver predicted by the safrole model was 2 µmol 
compared to the amount predicted by the estragole model which was 
1.2 µmol. All the values are very close but using the safrole model a 
slight overestimation could occur. In order to see which model was 
closest, a model for methyleugenol was built using the information re-
ported in Al-Subeihi et al. [19]; results are shown in Fig. 4G). The pre-
dictions using the PBK model from the selected source chemicals were 
very close to the original ME model. Evaluation of the prediction 
compared to in vivo data was performed according to the method of Al- 
Subeihi et al. [19] using methyleugenol concentrations in serum blood 
of human volunteers at different time points following intake of meth-
yleugenol from cookies [36]). A dietary dose of 0.00075 mg methyl-
eugenol/kg bw was used for simulations with a timeframe of two hours 
to mimic the in vivo study; results are shown in Fig. 4H. 

Fig. 5 depicts the results of the simulation carried out using the 
estragole PBK model but changing the chemical specific input infor-
mation, MW and partition coefficient, to the one of the target chemical. 
The results show the external dose response of chemical versus the 
formation of the hydroxyl (AMLHME), sulfoxy (AMLSME) and glucu-
ronide (AMLGME) metabolites (where AMLH is the amount in liver of 
the metabolite and ME = methyleugenol). Each line represents simula-
tion of the increasing external dose in mg/kg BW of the parent com-
pound versus the concentration of the internally formed metabolites, 
hydroxyl, glucuronide and sulfate. At the top (Fig. 5A) are the simula-
tions based on the original PBK model for estragole, without any 
changes in the input parameters; in the middle (Fig. 5B) are the simu-
lations using the estragole model but changing the MW and partition 
coefficient values to those of methyleugenol and its metabolite; Fig. 5C 
reports simulations when also the in vitro kinetic constant for metabolite 
formation are changed in the model to the one of methyleugenol 
metabolite, but still based on the proposed biotransformation pathways 
of estragole (values available in Table 2). Finally, the predictions ob-
tained for the three main metabolites formed (hydroxyl, sulfoxy and 
glucononidation) were compared to the original methyleugenol (ME) 
model predictions using the ME code described in Al-Subeihi 2011 [34] 
(Fig. 6). All simulations were run with a 24hrs window and an external 
dose given to the model of 0.07 mg/kg bw of the chemical. The PBK 
model predictions for each chemical and specific code can be identified 
by the following label ES-ME-SA_original (predictions using the original 
code); by changing the Molecular Weight (MW) and partition coefficient 

Table 3 
Potential analogues of methyleugenol, similarity scores and availability of human or rodent PBK models.  

Chemical Tanimoto similarity score 
(OECD QSAR Toolbox) 

Average similarity score 
(KNIME workflow) 

Reference for human PBK 
model 

Reference for rodent PBK 
model 

Validity / reproducibility 
of PBK model 

Eugenol  0.82 (excluded as full model 
unavailable) 

[27] – Irreproducible - full model 
not reported. 

Elemicin  0.80 0.78 [28] PBK model developed 
using read across approach 

[28] PBK model developed 
using read across approach 

Not validated with in vivo 
data 

Estragole  0.70 0.66 [14,15,20] [29,30,31] Valid and reproducible 
Safrole  0.64 0.69 [16] [16] Valid and reproducible 
Myristicin  0.66 0.58 [32] PBK model developed 

using read across approach 
[32] PBK model developed 
using read across approach 

Not validated with in vivo 
data 

Apiol  < 0.6 0.49 [33] [33] Not validated with in vivo 
data 

Isosafrole  < 0.6  Not available Not available – 
Anethole  < 0.6  Not available Not available – 
Ally benzene  < 0.6  Not available Not available – 
Methyleugenol*  1.00 1.00 [19] [34] Valid and reproducible*  

* Reference to methyleugenol is for completeness; this model was used to validate the approach, demonstrate the proof-of principle after characterisation and 
parameterisation of the model derived from analogues. 
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(PC) the label is ES-SA_MW_PC (to the original code of ES or SA the 
values of ME were inputted) and by changing Vmax and Km it is labelled 
ES-SA_all (in addition to the MW, PC also the Vmax and Km for ME were 
introduced). 

The same analysis was carried out using the safrole model; when 
changing only the MW and PC, this resulted in a higher amount of the 
glucuronide metabolite to be formed (Fig. 7A and 8A). When changing 

also the biokinetic information (Fig. 7B, 8C) this resulted in a similar 
representation as predicted with the estragole model (Figs. 4 and 5). 

3.4. Reporting 

The final step of the workflow shown in Fig. 1 is adequate reporting 
of the model. The OECD PBK model reporting template and evaluation 

Fig. 4. PBK model predictions of the amount of the chemical reaching the liver and venous blood (at 24hrs using a dose of 0.07 mg/kg BW) for estragole (4A-C) and 
safrole (4D-F) and when the parameters are changed to those for the target chemical – methyleugenol. Fig. 4G PBK model predictions of the amount of methyleugenol 
reaching the liver (at 24hrs using a dose of 0.07 mg/kg BW) using the original PBK model described in Al-Subeihi et al. [19]. 
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checklist were applied to report and assess the PBK model for methyl-
eugenol using the model code from estragole [4]. Model validity was 
established using the principles outlined in the OECD guidance docu-
ment [35,4]) 

4. Discussion 

The present study provides a strategy to identify suitable “data-rich” 

analogues (source chemicals) for a “data-poor” chemical of interest 
(target chemical) for which there is a need to develop and apply a new 
PBK model. The study also provides an example of PBK model evalua-
tion, using in vivo biokinetic data from (structural) analogues of a 
chemical of interest. A strategic flowchart is described that complements 
the workflow presented in the OECD guidance document [4]. The four 
steps in the workflow are: Identification of potential analogues; selection 
and justification of analogues; use of analogues in PBK modelling; and 
reporting. 

The purpose of this study was to provide a means to develop and 
evaluate a PBK model for a chemical for which no in vivo reference data 
were available. Existing information, not only on ADME and TK pa-
rameters, but also on effect data such as toxicity data (in the present case 
- formation of DNA adducts, as a biomarker of effect), from the ana-
logues were also used to make a prediction for the target. The present 
workflow was applied using methyleugenol as the target chemical. 
Methyleugenol is an alkenylbenzene that occurs naturally in various 
herbs such as tarragon, basil, and nutmeg and occurs at low levels in 
oranges, bananas, and grapefruit juices [37]. It is of interest as it is 
known to be genotoxic at high doses in rodent studies. The safety of 
human exposure to methyleugenol at low dietary intake levels is rele-
vant under the food safety law. It should be noted that this was a hy-
pothetical scenario as a PBK model is available for methyleugenol; this 
was used to validate the proof-of-principle. 

4.1. Identification of potential analogues 

The principle of read-across (i.e. using data rich (source) analogues 
to make inferences regarding similar chemicals that are data poor (tar-
gets) is well-established. Success of the approach (for example, 

Fig. 4H. Simulation of the amount of methyleugenol in blood, predicted using 
the source PBK models (safrole and estragole) adapted to use input data rele-
vant to methyleugenol versus the original PBK model for methyleugenol and 
the in vivo data from Schecter et al. [36]. The dose was adapted to a dietary 
intake of 0.00075 mg/Kg bw. 

Fig. 5. External dose response of chemical versus the formation of the hydroxyl (AMLHME), sulfo (AMLSHE) and glucuronide (AMLGME) metabolites in liver. 
AMLH = amount in liver of the metabolite; ME = methyleugenol. Each line represents simulation of the increasing external dose of the parent compound (0 – 300 
mg/kg BW) versus the concentration of the internally formed metabolite, hydroxyl, glucuronidation, sulfation. Fig. 5A is the predictions based on the original PBK 
model for estragole; Fig. 5B was achieved using the estragole model but changing the MW and partition coefficient values to those of methyleugenol and its 
metabolite; Fig. 5C, changing also the in vitro kinetic constant in the model to the one of methyleugenol metabolite, but still based on the proposed biotransformation 
pathways of estragole. 
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regulatory acceptance) is dependent on the strength of the supporting 
arguments, rationalisation of analogues and provision of adequate in-
formation, as discussed by Ball et al. [38]). Read-across for the purposes 
of assisting safety assessment is strengthened by incorporating tox-
icokinetic information into the justification of analogue selection. 
Laroche et al., reporting the results from a European Partnership for 
Alternative Approaches to Animal Testing (EPAA) Partners’ Forum, 
provide several examples where toxicokinetic information has been 
used, across a range of industries, to support read-across predictions 
[39]. The report also identified several areas where more research is 

needed; one area identified is the need to establish appropriate simi-
larity metrics for identifying analogues. There is no absolute, universally 
accepted, criteria by which the “similarity” of one chemical to another 
can be unequivocally determined. This means that in selecting appro-
priate analogues to use as source chemicals there are several criteria to 
consider. The criteria by which one chemical may be considered similar 
to another includes similarity in physicochemical properties, chemical 
structure, ADME processes, metabolite formation, mode of toxic action 
etc. One constraint, in terms of selecting a suitable analogue for read- 
across, is ensuring that the analogue has sufficient, relevant data 

Fig. 6. Taking Fig. 5A and C which now represents Fig. 6A and 6B respectively. Comparison of the external dose-response formation of three metabolites formed, (1) 
hydroxylation (AMLHME), (2) sulfation (AMLSME), (3) glucuronidation (AMLGME), using the estragole model in a read across manner versus the original meth-
yleugenol (ME). Part A = estragole model but changing the MW and PC values of methyleugenol and its metabolites; Part B changing also the kinetic constant of 
methyleugenol metabolite based on the proposed biotransformation pathways of estragole. 
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associated with it. This is a particularly limiting constraint in terms of 
finding analogues for which a PBK model is available, as there are 
relatively few - in comparison to the number of chemicals for which 
safety assessment is required. Lu et al. proposed the use of a PBK model 
from a data rich chemical to inform development of a new PBK model for 
a data poor chemical [6]. In their analysis, similarity was determined by 
the construction of a correlation matrix between target and source 
chemicals, relating to eight molecular properties associated with phar-
macokinetic behaviour: MW, hydrogen bond acceptor count, hydrogen 
bond donor count, number of rotatable bonds, polar surface area, 
partition coefficient, solubility and surface area. The work of Ellison 
et al. [7,8] demonstrated that both structural and functional TK ana-
logues were suitable for providing TK information that could be used to 
evaluate a PBK model for a data poor chemical. Structural analogues 
were identified by considering similarity in chemical scaffold, functional 
groups, metabolism and physico-chemical properties and similarity 
score; functional analogues were identified by considering Bio-
pharmaceutics Drug Disposition Classification System (BDDCS) class, 
Extended Clearance Classification System (ECCS) class, potential for 
being a p-glycoprotein substrate, oral bioavailability, volume of distri-
bution and systemic clearance [7]. 

In this analysis potential analogues and relevant PBK models were 
sought using extensive literature searching, investigation of the OECD 
QSAR Toolbox (ver 4.4) and identification of similar chemicals from an 
enriched version of the Lu et al. Knowledgebase, using an in-house 
KNIME workflow. A small number of potential candidates were identi-
fied at this stage. 

4.2. Selection and justification of analogues 

In the scenario described in this paper, analogue selection is signif-
icantly constrained, as only chemicals for which a valid PBK model, 
evaluated against in vivo data, exists can be considered. As outlined in 
Section 3.2, potential analogues are identified on the basis of structural 
similarity (here determined using a combination of similarity metrics) 
and then must meet two additional criteria in order to be selected. These 
are: similarity in ADME processes and mechanism of toxic action (cri-
terion 1); and the availability of a valid and reproducible human PBK 
model evaluated with in vivo data (criterion 2). This demonstrates that 
structural as well as mechanistic similarity formed the key criteria for 
the selection of analogues. The structural similarity was based on pres-
ence of common structural features; mechanistic similarity was based on 
metabolic pathways. The mammalian metabolism simulators present in 
the OECD QSAR Toolbox (ver 4.4) predicted formation of a common 1′- 
hydroxy metabolite for each of the candidate analogues. This mecha-
nism is characteristic of this class of compounds and it involves initial 

hydroxylation of the benzylic carbon of the alkenyl side chain catalyzed 
by cytochrome P450 followed by formation of an electrophilic carbo-
cation that binds to DNA [40]. Application of both structural and 
mechanistic similarity criteria resulted in two potential analogues: 
estragole, and safrole. Estragole and safrole were selected with the 
highest structural similarity score (0.70 and 0.68), and with available 
valid human PBK models [14,16] with similarity in ADME processes to 
the target chemical, methyleugenol. The model structure reflected the 
WHO principle of ensuring that models are as simple as practicable [41] 
but takes into account metabolism formation as the main pathway to the 
adverse effect; thus underlining the toxicological relevance (leads to 
DNA adduct formation) of the model structure and parameters. The 
internal consistency (robustness) was achieved by reporting what is 
plausible, reflecting the mechanistic understanding of biology and 
biochemistry; the mass balance of the model reported no error and the 
results were consistent. 

4.3. Use of analogues in PBK modelling 

Using the valid human PBK models for estragole and safrole [14–16], 
the input parameters were changed to those of methyleugenol, simula-
tions were carried out for the main phase I metabolite (1′-hydroxy) and 
the two main metabolites formed in phase II (sulfation and glucur-
onidation). Fig. 5A reports simulations (at the same external conditions, 
time and dose) of these three metabolites for the source chemical 
(estragole). Fig. 5B and C depict the source chemical model when the 
input parameters are changed to those of the target chemical. This step 
(of changing the input parameters) was done in two stages, to show the 
difference obtained when a minimal data set (of only Log Kow –partition 
coefficients- and MW) is available and when additional input values 
(Vmax and Km representing metabolites formed) are available. The 
simulations of metabolites formed, showed a 2-fold difference (for the 
two phase II metabolites) between the two scenarios (Fig. 5B and C) 
however, for the 1-hydroxymetabolite there was 4-fold difference. 
Comparing the two simulations (Fig. 5B and C) shows that metabolism 
information of the target chemical plays a key role in the fate of the 
chemical in the body and can influence its kinetics and dynamics. It is 
therefore recommended, wherever possible, to include information 
relating to the metabolism. However, if information on metabolism is 
not available, then (as in the present case) incorporating information 
only relating to the MW and Log Kow provides a reasonable result. 

To demonstrate the proof-of-concept for the principle underlying this 
work (i.e. that a valid PBK model from an analogue (source) chemical 
could be used as a template for a target chemical) the original PBK 
model built for methyleugenol [19]) was used and the simulation results 
obtained by the two models were compared. In addition the predictions 

Fig. 7. External dose response of chemical versus the formation of the hydroxyl (AMLHME), sulfo (AMLSHE) and glucuronide (AMLGME) metabolites in liver. 
AMLH = amount in liver of the metabolite; ME = methyleugenol. SA = Safrole. Each line represents simulation of the increasing external dose of the parent 
compound (0 – 300 mg/kg BW) versus the concentration of the internally formed metabolite, hydroxyl, glucuronidation, sulfation. Fig. 7A was achieved using the 
safrole model but changing the MW and partition coefficient values to those of methyleugenol and its metabolite; Fig. 7B, changing also the in vitro kinetic constant 
in the model to the one of methyleugenol metabolite, but still based on the proposed biotransformation pathways of safrole. 
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were evaluated using the in vivo data for methyleugenol as reported 
[19]. All the simulations (Fig. 5A and B) showed overestimation of the 
metabolite formation using the estragole model with the methyleugenol 
input parameters. The overestimation was lower or slightly above the 2- 
fold considered reasonable by WHO [41]. However, when changing the 
MW and PC values to those of methyleugenol, the prediction of the 
phase II metabolites, sulfation and glucuronidation, were under-
estimated as compared to the original PBK model code for methyl-
eugenol. When changing in the PBK model code of estragole all the input 
values, MW, PC, and Vmax and Km, the 1′-hydroxy metabolite simula-
tion was consistent between the methyleugenol model developed using 
the estragole code as a template and the original model. This shows that 
the current approach of using a valid PBK model from a source chemical 

to provide information to develop a PBK model for a target chemical, of 
sufficient similarity, can be carried out. The read-across approach 
showed external consistency, demonstrating a consistent quantitative 
relationship of the model simulations achieved using the estragole 
model versus the original methyleugenol model. In addition the 
approach could be used to identify and understand, qualitatively, the 
biokinetic processes of a data poor chemical. 

4.4. Reporting 

Detailed and accurate reporting of PBK models is essential for their 
uptake and acceptance, particularly in the regulatory context, as the 
models need to be transparent and reproducible. Here, we have 

Fig. 8. Taking Fig. 7A and B which now represents Fig. 8A and B respectively. Comparison of the external dose-response formation of three metabolites formed, (1) 
hydroxylation (AMLHME), (2) sulfation (AMLSME), (3) glucuronidation (AMLGME), using the safrole model in a read across manner versus the original methyl-
eugenol (ME). Part A = safrole model but changing the MW and PC values of methyleugenol and its metabolites; Part B changing also the kinetic constant of 
methyleugenol metabolite based on the proposed biotransformation pathways of safrole. 
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completed the PBK model reporting format as proposed in the OECD 
guidance document [4]. The detailed report is available as Supple-
mentary information (Appendix III). 

5. Conclusions 

In conclusion, the validity of the estragole and safrole human PBK 
models has already been established [14,16]; herein their applicability 
for the kinetic modelling of methyleugenol has been demonstrated. On 
the basis of the results obtained from this study, it was concluded that 
using kinetic data from a source chemical (estragole or safrole) to make 
a read across argument for a target chemical (methyleugenol) is a 
reasonable approach to inform a safety assessment. This uses all infor-
mation available, on hazard and toxicokinetics, in the absence of in vivo 
data to validate the methyleugenol PBK model. Furthermore, the 
application of a PBK model that takes into account the biokinetics and 
biotransformation of the chemical of interest reduces the uncertainties 
in the absorption, distribution, metabolism and excretion characteristics 
of the chemical. This approach can be thought of as a “read-across” 
approach to rapidly use a valid PBK model to obtain predictions that 
could support and provide mechanistic insight for the assessment of a 
data-poor chemical. 
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