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Abstract 

Ships’ engine rooms are areas with a high fire risk. Engine-room fires have a complex 

structure. Therefore, investigation and analysis of the impact of the human-factor effect on the 

occurrence of engine room fires is a challenging task. It is impossible to eliminate the factors 

that cause accidents. However, by taking precautions in each system, the risk of accidents can 

be minimised. The most effective way to achieve this goal is to identify the non-conformities 

that lead to the occurrence of accidents and to reveal the relationships between them. In this 

study, an analysis of fire-explosion accidents in ship engine rooms was conducted. For analysis, 

a hybrid method including the Human Factors Analysis and Classification System (HFACS) 

and fuzzy fault tree analysis (FFTA) was used. Using the HFACS method, the factors in the 

formation of engine-room fires were classified according to a hierarchical structure. The 

possible accident scenarios and probabilities were calculated using the FFTA method. In this 

study, it was observed that fire-explosion accidents were concentrated in ships over 20 years 

old and that mechanical fatigue affected accident formation. In particular, when the increased 

hot surfaces due to the operation of a ship’s engines while it is in motion are combined with 
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oil/fuel leakage, fire-related accidents become inevitable. Failure to provide proper insulation 

also triggers the occurrence of accidents. It has been observed that some of such accidents occur 

because the materials used in maintenance and repair work are not original to the ship. During 

this study, the causes of accidents were examined to prevent fire-related accidents from 

occurring in engine rooms, and suggestions were made to prevent similar accidents from 

happening in the future. 

 

Keywords: Fire and explosion; marine accident; HFACS; FFTA; human-factor analysis 

1. Introduction  

Ship fires, which often occur unexpectedly, may have even more destructive 

consequences than other types of marine accidents (Kuo and Chang, 2003; Salem, 2010; Hassel 

et al., 2011; Baalisampang et al., 2018). According to data from the IMO (2019), 270 of the 

1,400 accidents reported between 2000 and 2017 were fire- and explosion-related. This was the 

third most common accident category among marine accidents, accounting for 19.2% of those 

reported (IMO, 2019). It can be observed that the effect of such accidents on loss of life is about 

132% greater than that of other types (Weng and Yang, 2015). Ship fires not only result in 

injuries and fatalities but may also cause considerable damage to a ship, the cargo being 

transported, and the environment. According to an AGCS (Allianz Global Corporate & 

Speciality) report (2019), 13% of the financial insurance claims resulting from marine accidents 

between 2013 and 2018 involved fires. Fires are the second most expensive type of marine 

accident, resulting in insurance claims of $1.26 billion from 2013 to 2018. In shipbuilding and 

operation planning, safety measures to protect against fires have become important when 

designing ships (Themelis and Spyrou, 2012). Therefore, many researchers have conducted 

studies to reduce ship fires and the damage they create (Darbra and Casal, 2004; Salem, 2010; 

Uğurlu, 2016). 



 
 

 
 
 

Hakkarainen et al. (2009) emphasised that engine-room fires on ships account for 11% 

of ship fires. Ventikos (2013) examined 1,521 fire-related accidents that occurred between 2003 

and 2010. He found that 642 of them occurred in the engine room or galley. He defined these 

areas as the ship compartments where ship fires were the most common, accounting for 42.21% 

of ship fires. McNay et al. (2019) emphasised that engine-room fires often occur when ships 

are in motion. According to a report issued by ClassNK (2010), the percentage of vessels 

damaged by engine-room fires was 75%, and 52% of these vessels became incapable of 

navigation. The PMA (2011) found that a ten-minute delay in fighting an engine-room fire can 

cost $200,000, and a twenty-minute delay can cost $2,000,000. 

The engine rooms of ships are areas where additional safety measures are required 

because the main engine, generator, fuel tank, electrical units, and fuel circuits are located in a 

constricted area. The engine room is like the heart of the ship in terms of its power- and 

electricity-generating units. It is often difficult to extinguish fires in the engine room, and these 

fires can impair a ship’s manoeuvrability and may cause collision-contact or grounding 

accidents (Su and Wang, 2013). Therefore, it is important to conduct studies discover ways to 

prevent engine-room fires. When looking at the relevant studies from the past, we observed that 

fire-related accidents on ships had been examined using various methods (Table 1). 

 

Table 1. Similar studies related to ship fires 

 

Technology and innovative applications of it have changed the ways in which ship 

accidents occur today. Investigation and analysis of the impact of human error on ship accidents 

with a variable nature is a difficult task. Human error may play a significant, and sometimes 

overriding, role in accident causation (Abbassi et al., 2015; Keçeci and Arslan, 2014). For this 

reason, many studies on human factors and human reliability, to which the concept of human 



 
 

 
 
 

error is closely related, have been conducted by researchers from past to present. The Technique 

for Human Error Rate Prediction (THERP) method was developed for the quantitative and 

qualitative analysis of human reliability by Swain and Guttmann (1983). This method is 

considered one of the first-generation methods that are still valid today. The model evaluates 

human reliability by measuring human error probabilities as well as error definition and task 

analysis. THERPs have been widely used in maritime transport accident analysis (Amrozowicz 

et al., 1997; Allal et al., 2017). Zarei et al. (2019), to overcome the problem of human error, 

presented a hybrid dynamic human-factor analysis model, considering the Human Factors 

Analysis and Classification System (HFACS), intuitive fuzzy set theory, and Bayesian 

networks. Noroozi et al. (2014) developed the Human Error Assessment and Reduction 

Technique (HEART) method to evaluate the effects of cold working conditions on human 

performance. Islam et al. (2017) modified the HEART method and used it to evaluate and 

measure human errors in various marine, environmental, and operational conditions. Using this 

methodology, the aim was to make the maintenance and repair practices employed in maritime 

operations safer and more reliable.  

In this study, a hybrid method consisting of the HFACS and fuzzy fault tree analysis 

(FFTA) was used to analyse fire-explosion accidents in ships’ engine rooms. Investigation and 

analysis of the impact of the human-factor effect on the likelihood of occurrence of accidents 

is a challenging task. This type of analysis can entail a long process because human behaviour 

is not always easily predictable or interpretable (Uğurlu et al., 2020). Ship fires, especially ones 

that occur in engine rooms, have a complex structure (Beland, 1984). There is a high risk that 

evidence may be destroyed in engine-room fires. The HFACS is a sophisticated method that 

makes it possible to analyse the effect of human error on accidents (Mirzaei Aliabadi et al., 

2018; Uğurlu et al., 2018). This type of analysis not only reveals the apparent causes of an 

accident but also the latent factors contributing to it (Macrae, 2009; Chauvin et al., 2013; Uğurlu 



 
 

 
 
 

et al., 2018). Its reliability has been proven in many sectors, including maritime transport 

(Reinach and Viale, 2006; Patterson and Shappell, 2010; Olsen, 2011; Zhan et al., 2017). 

However, the HFACS is inadequate for conducting a quantitative analysis of accidents (Jiang 

and Han, 2018). In this study, the FFTA method was used for quantitative analysis. The FFTA 

method enables both qualitative and quantitative evaluations (Wang et al., 2013). In this study, 

a logical relationship has been established between the qualitative approach and the factors 

contributing to engine-room fires on ships (such as sources of combustible materials and heat-

source materials) caused by unsafe acts. Using a quantitative approach, the combinations of 

accident factors were examined, and a numerical analysis of this logical relationship was 

performed. 

2. Stages of the Study 

This study is limited to fire-explosion accidents occurring in the engine rooms of ships 

of 500 GRT and above between 2000 and 2017. In this study, a detailed analysis of fire-related 

accidents in ships’ engine rooms is conducted. The research consists of five stages (Figure 1). 

 

Figure 1. Flow chart of the study 

 

Step 1.  Gathering accident data 

The consistency and reliability of the results of a model depend on the data used. Access 

to reliable accident data forms the basis of accident analysis studies. Obtaining reliable data is 

the most important step in achieving reliable results. In this study, a total of 20 reliable accident 

databases, including those managed by the Marine Accident Investigation Branch (MAIB), 

European Maritime Safety Agency (EMSA), Australian Transport Safety Bureau (ATSB), 

Panamanian Maritime Authority (PMA), Bahamas Maritime Authority (BMA), and Marine 

Safety Investigation Unit (MSIU) were used. Forty-nine accident reports related to engine room 



 
 

 
 
 

fires, which constituted the basis of the study, were obtained. Seven of these accidents were 

considered ‘very serious’, and forty-two were ‘serious’. Such accidents resulted in loss of life, 

injury, structural damage to ships, or the loss of ships. The databases list the causes of the 

accidents as well as demographic information about them, such as ship names, ship flags, ship 

ages, and accident dates. 

Step 2. Identification of accident causes 

 For an accident-formation process to be modelled, the reasons underlying its outcome 

must be fully and clearly laid out (Khan and Abbasi, 1999). The next step is to classify the 

reasons within the appropriate taxonomy. Classification allows us to understand accident 

formation in the context of stages and interpret the data by establishing a relationship between 

the reasons for an accident’s occurrence (Uğurlu et al., 2020). At this stage of the study, the 

active causes and hidden defects related to the fire-explosion accidents occurring in the engine 

rooms of the ships were revealed, and they were made ready for classification using the system 

employed in the next stage, the HFACS. 

Step 3. Classification of accident causes using the HFACS structure 

The HFACS is a hybrid analysis method that enables the analysis of human errors within 

a systemic structure. Using this method allows the causes of accidents to be conceptualised as 

levels within a hierarchical structure (Chen et al., 2013). In this study, the factors caused by 

human error within the HFACS structure detailing the causes of machine-room fires were 

classified. The classification process allowed us to understand and analyse the accidents in the 

context of stages. In this study, the HFACS-PV structure was used as a reference point for the 

classification process. Thus, organisational influences, unsafe supervision, preconditions for 

unsafe acts, and unsafe acts were the factors at the level including ‘unsafe acts and operational 

conditions’ (Uğurlu et al., 2018). After the classification and analysis process of the HFACS 

structure was completed, FFTA applications were initiated. 



 
 

 
 
 

Step 4. FFTA applications 

In the last stage of the study, the relationships between the non-conformity factors at the 

level of ‘unsafe acts and operational conditions’ within the HFACS structure were analysed 

using the FFTA method. Fault tree analysis (FTA) is a logic-based method used to determine 

how non-conformities (basic events) are combined to formulate minimum ‘cut sets’ leading to 

the occurrence of the top event and how they affect the likelihood of the top event occurring 

(Miri Lavasani et al., 2011; Uğurlu et al., 2015a; Uğurlu, 2016). The top event of this study is 

‘engine room fire’. For a fire to occur, a source of combustible materials and heat-source 

materials must be present in an environment with sufficient oxygen. Since oxygen was found 

in every environment in the ship’s engine room and will be included in all combinations within 

the fault tree that was created, it will not be investigated further. FTA involves two stages: 

qualitative and quantitative analyses. In the qualitative analysis stage, the causes of engine-

room fires were classified, the occurrence probability values were determined (fuzzy logic 

applications with expert opinions), and the logical relationships (fault tree) between the causes 

were established. In the quantitative analysis stage, the minimum ‘cut sets’ (accident occurrence 

combinations) were determined, and the occurrence probabilities of engine room fires were 

evaluated. The experts in this study were selected from those who were relevant to the intended 

study. Experts may have different types of expertise and experience within a domain (Cheliyan 

and Bhattacharyya, 2018). Experts’ opinions were evaluated based on their experience and 

knowledge of engine rooms and ship fires. In this study, expert opinions were weighted 

according to the experts’ professional positions, qualifications, and ship-operation experience. 

In this study, a hybrid method derived from the HFACS and FFTA was employed, which 

enabled the analysis of fire-explosion accidents in ships’ engine rooms. Using this model, a 

detailed analysis of responses to engine-room fires was conducted. The application of the 

above-mentioned steps in the study’s model is described under the ‘Proposed Model (the 



 
 

 
 
 

HFACS & FFTA)’ heading, and the applications of the study are presented under the ‘Case 

Study’ heading. 

2.1. Proposed Model (the HFACS and FFTA) 

2.1.1. The HFACS 

In Reason’s ‘Swiss Cheese’ model, accidents are viewed as resulting from non-

conformities between system components, causing undesirable consequences (Reason, 1990). 

Reason (1990) argues that the deficiencies in the first three levels of accident formation are the 

basis for unsafe acts at level four; as a result, accidents are ultimately caused by operators’ 

unsafe acts and behaviours. Reason (1997) emphasises that latent factors in the system often go 

unnoticed until an accident occurs. The HFACS is an analytical method based on Reason’s 

‘Swiss Cheese’ Model, and it was created to determine the effect of human error on aviation 

accidents (Shappell and Wiegmann, 2000). It presents latent factors, active failures, and 

environmental factors within a hierarchical structure (Shappell and Wiegman, 2001; Uğurlu et 

al., 2018). This makes it possible to understand the formation of an accident from its beginning. 

It is considered an effective method of conducting human-factor analysis (Chauvin et al., 2013; 

Chen et al., 2013; Macrae, 2009; Uğurlu et al., 2018) and is adaptable to various industries. 

Many changes have been made in the structure of the HFACS from past to present, and it has 

been adapted to suit the industries to which it has been applied. A recent change was made by 

Uğurlu et al. (2018) to adapt it to maritime transport. They proved the accuracy of the HFACS 

structure they presented in two studies (Uğurlu et al., 2018; Uğurlu et al., 2020). In this study, 

the latent factors and active failures that cause engine-room fires on ships are coded according 

to a modified HFACS structure. 

2.1.2. FFTA  

 The proposed framework consists of eight stages, as follows: 

1. Fault tree development 



 
 

 
 
 

2. Domain expert evaluations 

3. Fuzzification 

4. Aggregation 

5. Defuzzification 

6. Occurrence probability generation 

7. Occurrence probability of the top event 

8. Importance ranking 

9. Validation 

2.1.2.1. Fault tree development 

The main elements of a fault tree can be classified as top events, basic events, 

intermediate events, and logical gates (Antao and Soares, 2006; Khan and Abbasi, 2000). In a 

fault tree, the ‘top event’ is an undesirable outcome, while the ‘basic events’ are the situations 

that lead to undesirable outcomes (Miri Lavasani et al., 2011). The FTA method is used to 

determine the relationships between a system’s non-conformities (Peeters et al., 2018). A fault 

tree diagram starts with ‘Top Event’. The ‘top event’ is connected to intermediate events, and 

the tree ends with basic events (Yuhua and Datao, 2005). 

The FTA method is based on Boolean logic (Cheliyan and Bhattacharyya, 2018). The 

probabilities and probability theorems of all logic gates used in a logical diagram are calculated 

using Boolean mathematics (Mukherjee, 2019) (Table 2). The combinations of basic events in 

a fault tree are expressed as the ‘minimum cut sets’ (MCSs), which are defined as the irreducible 

pathways consisting of the basic events that cause the top event to occur (Ramamoorthy et al., 

1977; Ericson, 2005; Trucco et al., 2008). 

 

Table 2. Basic rules of Boolean mathematics 



 
 

 
 
 

 

In the mathematical expression of logic gates, the top event (TE) indicated by T is 

connected to the basic events (BEs) indicated by X ( X1, … Xi, …XN). In this expression, N 

is the number of basic events and Xi (i = 1, 2, ..., N) is the ith basic event. The occurrence 

probability of Xi is Q(Xi). Then, for the connection gates of ‘AND’ or ‘OR’, the occurrence 

probability of the top event, Q(T) is given below: 

Q(T) = ∏ 𝑄(𝑋𝑖)𝑁
𝑖=1          (1)  

Q(T) = 1- ∏  (1 − 𝑄(𝑋𝑖))𝑁
𝑖=1         (2)  

The occurrence probability of a top event in a fault tree is evaluated by obtaining the 

minimum cut sets.  

Generally, the occurrence probability of the top event indicated by Q(T) is calculated as 

follows:  

Q(T) = 1- ∏  (1 − Q(Ci))Nc
i=1         (3)  

where Nc is the number of minimum cut sets, Ci is the minimum cut set i (i = 1, 2, … Nc), and  

𝑄(𝐶𝑖) is the occurrence probability of Ci. When the occurrence probability of each associated 

basic event is much smaller than 1 (Q(Ci) much smaller than 1), the above value of Q(T) is 

calculated as: 

Q(T) = ∑ 𝑄(𝐶𝑖)
𝑁𝑐

𝑖=1
         (4)  

A typical minimum cut set is a collection of basic events (MCSj). 

MCSj = X1, X2, …, XNj −1, XNj  where  Xi ∈ (X1, X2, ..., XN)    (5) 

‘X’ refers to basic events. ‘Nj’ is the number of basic events in ‘MCSj’. 

 



 
 

 
 
 

In a traditional FTA, the occurrence probabilities of basic events are numerical values. 

Using this structure, obtaining a precise estimation of the occurrence probabilities of basic 

events is often impractical due to insufficient data and a high level of uncertainty (Liang and 

Wang, 1993). In such ambiguous cases, the ‘fuzzy logic’ approach is used. ‘Fuzzy logic’ is a 

mathematical tool used to model the uncertainty of human thought in the real world (Suresh et 

al., 1996; Cheliyan and Bhattacharyya, 2018). In an FTA with a fuzzy approach, the probability 

value of each basic event is expressed in fuzzy numbers (Tanaka et al., 1983). Expert opinions 

can be given in fuzzy numbers. The fuzzy numbers obtained from expert views form the 

probability values of the basic events (Misra and Weber, 1990; Harrald et al., 1998; Rausand, 

2004). 

2.1.2.2. Domain expert evaluations 

The fuzzy set theory proposed by Zadeh (1965) aimed to eliminate uncertainty by using 

linguistic values in the decision-making process. The FFTA method was established to 

determine the probability values of the events within an FTA structure in the absence of 

statistical data or in the presence of inadequate data. As in other industries, in the maritime 

industry, this is a practical method of obtaining the probability values of events from experts 

when there are deficiencies in the data. Many studies of human error estimation include expert 

opinion-based techniques. However, a single expert’s view of an issue may be biased or 

incomplete. Therefore, expert opinions alone are not sufficient for constructing reliable human 

error estimates. A potential solution to this problem is to use multiple expert (multi-expert) 

knowledge and experience (Musharraf et al., 2013). The opinions of each expert about the root 

causes of an event may be different. Therefore, evaluations are influenced by the importance of 

each expert from various perspectives. The reasons that experts may hold different opinions 

about the same event can include education level, work experience, and differences in their 

fields of expertise. Therefore, researchers use a weighting factor to represent the relative quality 



 
 

 
 
 

of the opinions of various experts (Yuhua and Datao, 2005). Various justification weights from 

0 to 1 can be assigned to each expert to reflect differences in the impact of their assessments. 

2.1.2.3. Fuzzification 

In this study, a triangular fuzzy number (TFN) was used to determine the occurrence 

probability values of basic events. A TFN represents a triple set of fuzzy probability values 

(𝑎1, 𝑎2, 𝑎3) of a BE. For xϵA, µ
�̌�

(𝑥), A is a fuzzy number and R is in the range R→ [0,1]. 

Assuming that A is in the range [𝑎1, 𝑎3], the membership function µ�̌�(𝑥) is calculated as 

follows (Wang, 1997):  

µ�̌�(x) = { 

0                                       𝑥 ≤ 𝑎1

(𝑥 − 𝑎1)/(𝑎2 − 𝑎1)                  𝑎1 ≤ 𝑥 ≤ 𝑎2                             

(𝑎3 − 𝑥)/(𝑎3 − 𝑎2)              𝑎2 ≤ 𝑥 ≤ 𝑎3                       
0                                       𝑥 ≥ 𝑎3

  (7) 

2.1.2.4. Aggregation 

The various experiences and types of knowledge of experts within a heterogeneous group 

lead to multiple interpretations of, and decisions about, basic events. It is important to gather 

the data obtained from expert evaluations and reconcile the opinions. Hsu and Chen (1994) 

proposed an algorithm for combining views obtained from homogeneous and heterogeneous 

expert groups.  

𝑅1,̃  𝑅2̃: A pair of expert opinions 

𝑆𝑈𝑉(𝑅1̃, 𝑅2)̃: Degree of agreement (similarity) of two distinct expert opinions 

𝑆(�̃�1, �̃�2 ): Degree of similarity between two fuzzy numbers  

𝐴𝐴(𝐸𝑢): Average degree of agreement of experts  

𝑅𝐴(𝐸𝑢): Relative degree of agreement of experts  

CC(𝐸𝑢): Experts’ consensus coefficient 

�̃�𝐴𝐺: Aggregated results of expert opinions 



 
 

 
 
 

Step (i): Calculate the degree of agreement (similarity) 𝑆𝑈𝑉(𝑅1̃, 𝑅2̃ ) of the opinions 𝑅1̃ 

and 𝑅2̃ of a pair of experts 𝐸𝑈 (u =1 to M). 

According to this approach,  �̃�1 = (𝑎11, 𝑎12, 𝑎13) and �̃�2 = (𝑎21, 𝑎22, 𝑎23) constitute two 

triangular fuzzy numbers. Thus, the degree of similarity between these two fuzzy numbers can 

be obtained by using the defined similarity function. 

𝑆(�̃�1, �̃�2 ) = 1 − (1
3⁄ ) ∑ ∣ 𝑎1𝑖 − 𝑎2𝑖 ∣3

𝑖=1           (8) 

Step (ii): Calculate AA (average agreement) by M experts as follows: 

𝐴𝐴(𝐸𝑢) =
1

𝑀−1 ∑ 𝑆(�̃�1,�̃�2 )
𝑀
𝑈≠𝑉
𝑉=1

            (9) 

Step (iii): Calculate the degree of relative agreement (RA) by M experts as follows: 

𝑅𝐴(𝐸𝑢) =
𝐴𝐴(𝐸𝑈)

∑ 𝐴𝐴(𝐸𝑈)𝑀
1

           (10) 

Step (iv): Calculate the CC (consensus coefficient) of M experts as follows: 

𝐶𝐶(𝐸𝑈) = 𝛽. 𝑤(𝐸𝑈) + (1 − 𝛽). 𝑅𝐴(𝐸𝑈)        (11) 

β (0≤β≤1) is the relaxation factor of the proposed method. This shows the importance of 

w (Eu) (weight factor of expert u) on RA (Eu). When β = 0, the weight factor of the expert is 

ignored; there is a homogeneous distribution among the experts. When β = 1, the expert has the 

same consensus coefficient (CC) and weight significance. In this study, β = 0.5 was considered 

(Lavasani et al., 2015; Rajakarunakaran et al., 2015). 

Step (v): Finally, the aggregated result �̃�𝐴𝐺  value of the expert opinions is calculated as 

follows: 

�̃�𝐴𝐺 = 𝐶𝐶(𝐸1) × �̃�1 + 𝐶𝐶(𝐸2) × �̃�2+. . . +𝐶𝐶(𝐸𝑀) × �̃�𝑀      (12) 

2.1.2.5. Defuzzification 



 
 

 
 
 

The purpose of defuzzification is to obtain measurable results from fuzzy numbers. 

Clarifying fuzzy numbers is extremely important when making decisions regarding uncertain 

issues. When fuzzy ratings are included in a fault tree analysis problem, the resulting ratings 

are, again, fuzzy numbers. To discover the relationship between these numbers, the fuzzy 

number must be converted to a crisp score called the ‘fuzzy possibility score’ (FPS). The FPS 

number of each basic event is derived from the obtained membership function, which is 

calculated during the expert opinion consolidation phase of calculating an FPS. Defuzzification 

methods include the mean-max membership, centroid method, weighted average method, 

centre of largest area, and centre of sums (Wang, 1997). In this study, the fuzzy possibility 

values of each basic event were calculated using the most frequently used ‘centre of area’ 

method because of its simplicity and comprehensibility. This technique was developed by 

Sugeno (1985). 

Defuzzification equation: 𝑋∗ =
∫ µİ(𝑥) 𝑑𝑥

∫ µİ(𝑥)
      (13) 

For the triangular fuzzy number 𝐴 ̃ = (𝑎1, 𝑎2, 𝑎3) the equation is as follows: 

𝑋 =
∫

𝑥−𝑎1
𝑎2−𝑎1

𝑥 𝑑𝑥+∫
𝑎3−𝑥

𝑎3−𝑎2
𝑥 𝑑𝑥

𝑎3
𝑎2

𝑎2
𝑎1

∫
𝑥−𝑎1

𝑎2−𝑎1

𝑎2
𝑎1

𝑑𝑥+∫
𝑎3−𝑥

𝑎3−𝑎2

𝑎3
𝑎2

𝑑𝑥
=

1

3
(𝑎1 + 𝑎2 + 𝑎3)     (14) 

2.1.2.6. Occurrence probability generation 

In some cases, it is impossible to find the failure probability value due to uncertainties in 

the data. This problem can be resolved by converting the FPS to a ‘failure probability’ (FP) 

form. In this study, the function of converting an FPS to an FP form, which was proposed by 

Onisawa (1990), was used. 

𝐹𝑃 = {
1

10𝐾 , 𝐹𝑃𝑆 ≠ 0

0, 𝐹𝑃𝑆 = 0
, 𝐾 = [(

1−𝐹𝑃𝑆

𝐹𝑃𝑆
)]

1

3
× 2.301     (15) 



 
 

 
 
 

2.1.2.7. Occurrence probability of the top event 

The components that generate any fault tree are basic events, and the ‘cut sets’ are formed 

by a combination of these basic events and the top event generated by these ‘cut sets’. If the 

probabilities of all basic events in the fault tree are known, the occurrence probability of the 

undesired top event is obtained. 

 

 

2.1.2.8. Importance ranking 

The FTA method is used to calculate the probability value of the top event and analyse 

the importance of ‘cut sets’. In the FTA method, the FV-I (Fussell-Vesely Importance Measure) 

method is frequently used to determine the significance value of the BEs and MCSs forming 

the top event (Wang et al., 2016; Shafiee et al., 2019). In this study, the FV-I method was used 

for significance calculations. According to this method, 

𝐼İ
𝐹𝑉(𝑡) =

𝑄İ(𝑡)

𝑄𝑆(𝑡)
          (16) 

where Ii = the importance degree of minimum cut set i, 𝑄İ(𝑡) = occurrence probability of 

minimum cut set i, and 𝑄𝑆(𝑡) = occurrence probability of the top event. 

2.1.2.9. Validation  

Validation is defined as providing objective evidence that an item meets the specified 

requirements. The accuracy of a method is ensured by using another analysis method or by 

obtaining expert opinions. In this study, the formation of accidents (fire triangle) and expert 

opinions were used to verify the FTA. 

2.2. Case Study 

The proposed engine room fire-explosion analysis procedure can be briefly divided into 

two stages: (i) one in which engine-room fire-explosion identification and classification were 



 
 

 
 
 

conducted using the HFACS and (ii) one in which the FFTA was applied to fire-explosion 

accidents to conduct a comprehensive risk analysis. The model development and results are 

described as follows. 

2.2.1. Application of the HFACS  

A total of 275 factors were used in the classification process. The total frequency of 

these factors was 507. Figure 2 shows the distribution of these factors according to the main 

structure of the HFACS, and Figure 3 shows the distribution according to the HFACS sub-

categories. In the following section, the coding for each level of the HFACS is given in Tables 

3 - 6. 

 

Figure 2. General distribution of factors according to the main levels of the HFACS 

 

Figure 3. Distribution of fire-explosion accidents by HFACS sub-categories 

 

Organisational Influences: These include errors are made during the operation-planning 

process; non-conformities in the management of human resources; deficiencies in risk analysis 

procedures; and non-conformities caused by top-level management, such as ignorance of safety 

assessments prior to operation. This level is divided into three sub-categories: resource 

management, organisational climate, and organisational process. Table 3 indicates the non-

conformities and frequencies coded at the ‘organisational influences’ level in the HFACS 

structure created in this study. A total of 66 factors were coded at this level. These non-

conformities were seen 173 times in total. The average number of observations of non-

conformities per accident at the ‘organisational influences’ level was 3.53 (173/49). 

 



 
 

 
 
 

Table 3. Accident factors and their occurrence frequencies at the ‘organisational   

                 influences’ level 

 

Unsafe Supervision: This level includes the non-conformities related to the audit-control 

mechanism. When the audit-control mechanism fails, situations conducive to unsafe behaviours 

cannot be identified or prevented, creating favourable conditions for the formation of accidents. 

This level is divided into three sub-categories: inadequate supervision, inappropriately planned 

operations, and failure to solve a known problem. The non-conformities coded at this level for 

engine-room fires are indicated in Table 4. There were 36 non-conformities at this level. These 

non-conformities were seen (frequency) 70 times in total. Each engine-room fire had an average 

of 1.43 non-conformities at this level (70/49). 

 

Table 4. Accident factors and their occurrence frequencies at the ‘unsafe supervision’           

               level  

Preconditions for Unsafe Acts: This is the last level of latent factors. It includes situations and 

factors that negatively affect operators’ decision-making abilities, such as mental fatigue, 

physical fatigue, lack of communication, intoxication, and the failure of ship equipment. Table 

5 shows the non-conformities coded at this level. A total of 27 factors were coded at this level. 

These non-conformities were seen (frequency) 90 times in total. The average number of these 

factors per accident was 1.84. 

 

Table 5. Accident factors and their occurrence frequencies at the ‘preconditions for 

               unsafe acts’ level 

  



 
 

 
 
 

Unsafe Acts: This level is the visible face of ship accidents. When the negative effects of latent 

factors are combined with unsafe actions, the system’s defences are impaired, resulting in an 

accident (Reason, 1990; Reason et al., 2006). This level includes incorrect or erroneous 

decisions made intentionally or unknowingly by human operators. This level is divided into 

two sub-categories: errors and violations. The non-conformities coded at this level are presented 

in Table 6. A total of 47 non-conformities were coded at this level. These non-conformities 

were seen (frequency) 75 times in total. The average number of these non-conformities per 

accident was 1.53. 

Table 6. Accident factors and their occurrence frequencies at the ‘unsafe acts’ level 

 

Operational Conditions: The environmental factors that comprise the final level of the HFACS 

are related to the internal and external environment of the ship, which plays a role in the 

prevention of unsafe acts. This level includes factors that cannot be completely eliminated by a 

ship’s crew but can be controlled. Malfunctions, design failures, weather, and sea conditions 

are included in this level. In this study, the non-conformities at this level were classified 

according to FFTA and linked with accident occurrence. Therefore, the non-conformities under 

this heading are examined in the ‘Application of FFTA’ section. 

2.2.2. Application of FFTA 

2.2.2.1. Fault tree development 

In this study, the 27 basic events that were instrumental in the realisation of the top event, 

their definitions, and the relationships between them within the FTA were identified by 

considering the following items: 

 HFACS structure 

 Accident reports 

 Expert evaluations (a group of ten domain experts) 



 
 

 
 
 

 Similar studies in the literature (Vassalos et al., 2010; Schröder-Hinrichs et al., 2011; 

Ventikos, 2013; Uğurlu, 2016; Baalisampang et al., 2018; Puisa et al., 2019) (Table 

7). Definitions of the basic events are given below.  

 

Table 7. Basic events in engine-room fires  

 

Fuel Leakage (BE1): Fuel leakage is caused by malfunctions in fuel lines, fuel pumps, 

cylinders, and similar equipment connected to main engines or generators. Failures are mainly 

related to damaged flexible hoses, worn couplings, inappropriate filters, cracked lines, 

unsuitable bolts, loose studs, and the use of inappropriate parts (O-ring, pipe fitting, elbow, 

diaphragm, etc.). Because of insufficient maintenance or inspection practices, such parts may 

become fatigued under a load, stretch, and break, causing fuel leakage.  

Oil Leakage (BE2): Damage to the lubricating pump or thermal oil line and issues with 

bearings’ lubricating oils can cause oil leakage. 

Oily Surfaces (BE3): Inadequate inspection or cleaning practices after maintenance of the main 

engine, generator, boiler, etc. in the engine room may result in the formation of oily surfaces. 

In addition, a small number of oil-fuel leaks may cause oil and fuel contamination of the 

compartment or equipment. 

Bilge (BE4): ‘Oil bilge’ refers to oil, fuel, or leaked material accumulated on the floor near part 

of a ship’s machinery, auxiliary machinery, tanks, cofferdams, or boilers. If the necessary 

inspections and/or cleaning are not performed, particularly in the bilge wells of the engine room, 

oil accumulation occurs, and this situation leads to the occurrence of fires.   

Sludge (BE5): The waste left by the burnt oil or fuel sent to the sludge tank and the fuel sludge 

solidified at the bottom of a vessel’s fuel tank are called sludge. 



 
 

 
 
 

Non-Heat-Resistant Materials (BE6): This term refers to the materials in engine rooms that 

are not resistant to high temperatures. The most common non-heat-resistant materials 

encountered in engine-room fires on ships are the O-rings used in fuel lines. 

Garbage and Waste (BE7): This refers to the domestic and operational solid wastes that are 

produced during of the normal operation of a ship and fall under the scope of the MARPOL 

(International Convention for the Prevention of Pollution from Ships) 73/78 Annex V. Plastics, 

paper products, rags, greasy clothes, thread waste, and operational waste pose high fire risks. 

Soot (BE8): As is known, fuels such as gasoline, diesel, and fuel oil are hydrocarbon 

components, and, when they are burned in air, they form soot because of a chemical reaction. 

Incomplete combustion in the main and auxiliary machinery of a ship and the use of dirty fuel 

can cause soot accumulation within the exhaust system and turbo charger equipment. This soot 

is flammable. 

Fuel Vapour (BE9): This term refers to the high-temperature fuel used in the main and 

auxiliary machinery when it is in the vapour phase. The presence of fuel vapour leakage implies 

a high risk of fire. 

Gas Vapour (BE10): This term refers to the flammable vapour produced by gases such as 

oxygen, acetylene, and SF6 (sulphur hexafluoride), which are used in welding and cutting 

processes. 

Main Engine Hot Surfaces (BE11): The main engine is the equipment that enables the 

operation of ships. During the operation of the main engine, the temperature of the inner and 

outer surfaces of the engine increases due to movement and creates a fire-friendly environment. 

Main Engine Exhaust System Hot Surfaces (BE12): The exhaust system is called the ‘unit’ 

and ensures that hot exhaust gases formed because of the combustion of fuel in main machine 

cylinders are released into the atmosphere from the machine cylinders with minimum 

resistance. This creates a suitable environment for the formation of fires because of the high 



 
 

 
 
 

temperatures of the gases formed because of combustion and passage through the exhaust 

manifolds. 

Main Engine Turbo Charger (BE13): This equipment uses the energy from exhaust gases to 

send clean air to the intake manifold and then to the combustion chamber. It increases the 

efficiency and power of the main engine. 

Main Engine Hot Fuel Line (BE14): These are the circuits and connections that allow the fuel 

in the fuel tanks to be delivered to the main engine. The presence of high-temperature fuel in 

the circuits results in hot surfaces. 

Generator Hot Surface (BE15): These are the auxiliary engines that provide the energy needed 

for ships while they are at port and underway. Hot surfaces result from hot fuel circulating 

within the circuit, and the interaction between the two factors may cause a fire. 

Generator Exhaust System (BE16): This unit ensures that hot exhaust gases formed because 

of the combustion of fuel in the diesel generator (D/G) cylinders are removed from the cylinders 

with minimum resistance. 

Generator Turbo Charger (BE17): Turbo chargers are engine parts that increase the 

combustion efficiency and performance of an engine by ensuring that the generator is supplied 

with excess air. The hot exhaust gases, fuel, and lubricating oil contained in the turbo charger 

(T/C) create conditions that are suitable for fire formation. 

Boiler (BE18): Boilers are auxiliary engines used for the heating of cargo, fuel, bilge, water, 

and oil. The water or thermal oil in the boiler is heated with fuel. Because the combustion 

process takes place within the boiler, its surfaces become hot. 

Thermal Oil System (BE19): This is a heating plant consisting of a thermal oil heater, 

circulation pump, expansion tank, storage tank, ventilator, pipe, and control panel. Once oil 

reaches the desired temperature, it is sent through the pumps to the lines to be used (cargo, fuel, 



 
 

 
 
 

etc.). As hot oil and exhaust gases circulate within the lines, the resulting hot surfaces create a 

fire risk. 

Compressor (BE20): Compressors are auxiliary machines used to compress air or other gases 

at levels of pressure higher than the atmospheric pressure. Because of the hot oil they contain, 

they can result in a hot surface that is conducive to fire formation. 

Electric Arc (BE21): The electric arc is a bluish electrical discharge. High temperatures in arc 

explosions cause the air around the point where the explosion occurs to heat up quickly and 

create high air pressure. Arc bursts occur suddenly, with an uncontrolled release of fire, light, 

and pressure waves. This instantaneous event causes damage to equipment and leads to fires. 

Sparks (BE22): These are small particles in the fire phase that are caused by strong collisions 

and friction between metal parts. Hot sparks caused by improper use of the welding, cutting, 

and grinding motor become airborne, causing flammable materials in their vicinity to ignite. 

Spontaneous Combustion (BE23): This is expressed as the minimum heat value that must be 

reached before fuel vapour or other combustible gases can burn without a source of fire or 

flame. 

Hot Work (BE24): This type of work involves working with ignition sources or temperatures 

which can cause a flammable gas mixture to ignite. Some examples include welding and using 

burning or soldering equipment, blow torches, and some power-driven tools. 

Static Electricity (BE25): This is caused by the contact and separation of various surfaces. It 

may be seen on solid-solid, solid-liquid, and liquid-liquid surfaces. Static electricity-induced 

sparks are a serious source of ignition. 

Cigarette Smoking (BE26): Smoking by staff may cause a direct fire risk when a cigarette’s 

flame makes contact with combustible materials, such as solid waste or oily clothes. 

Naked Light/flame (BE27): This term refers to the fire or flame created by matches, lighters, 

and similar devices that are directly connected to flammable materials or containers. 



 
 

 
 
 

There are two main event sets in the fault tree which lead to the top event of an ‘engine-

room fire’. These are the sources of flammability and the sources of heat. Using these two main 

sets, the undesirable events previously described were classified among themselves and the 

relationships between them were established through ‘OR’ gates (Figure 4). The sources of 

flammable material and the heat sources are connected to each other by ‘AND’ gates in the 

fault tree. This means that when the basic events of the two main event sets come together, the 

top event (i.e. a fire) occurs. The fault tree formation for engine-room fires on ships is presented 

in Figure 4.  

 

Figure 4. a) Fault tree analysis structure of fire-explosion accidents, b) Flammable hot 

surfaces, and c) Sparks and heat sources 

2.2.2.2. Domain expert evaluation  

In this study, expert evaluations were constructed based on the opinions of ten experts. 

This expert group was a heterogeneous one that consisted of chief engineers, port state 

controllers, technical managers, accident investigators, and researchers. The experts assessing 

the effects of basic events on fire formation were professionals who had worked in the maritime 

sector for many years and had actively worked in various positions within the sector. At this 

stage, a weighting process considering the professional qualifications, operational experience, 

and training levels of the chosen experts was conducted. The weighting scores of the experts 

are presented in Table 8. To reflect the differences in the weight of their opinions, each expert 

was assigned a score from 0 to 5. Table 9 contains the data regarding the weighting calculations 

of the experts. 

 

Table 8. Weighting scores of experts 



 
 

 
 
 

 

Table 9. Total scores and weighting factors of the experts evaluating engine-room fire-

explosion accidents on ships 

 

The calculation of the weighting scores of the experts was based on Equation 6 

(Rajakarunakaran et al., 2015). 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑡 (𝑊µ) =
𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑡

𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑥𝑝𝑒𝑟𝑡𝑠′ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒𝑠
   (6) 

where µ stands for expert µ within the group. 

2.2.2.3. Fuzzification  

In this study, a linguistic scale consisting of seven terms was used to solicit expert 

opinions of basic events with unknown error rates (Table 10). The occurrence probability of 

each basic event was scaled from the lowest to the highest. The linguistic scale used to evaluate 

the probability distribution of faults included the terms ‘very high’, ‘high’, ‘medium high’, 

‘medium’, ‘medium low’, ‘low’, and ‘very low’ (i.e. VH, H, MH, M, ML, L, and VL). The 

results of the evaluation of the basic events in the fault tree by the expert group are given in 

Table 11. 

 

Table 10. Linguistic measurement scale (Rajakarunakaran et al., 2015) 

 

Table 11. Linguistic results of expert evaluations of basic events 

2.2.2.4. Aggregation  

In the aggregation stage, BE14 was selected as an example. The similarity function values 

of the BE14 basic event (Table 12) were calculated using Equation 8, the average and relative 



 
 

 
 
 

agreement (Table 14) were calculated using Equations 9 and 10, and the consensus coefficient 

(CC) values (Table 13) were calculated using Equation 11. As a result of these calculations, the 

fuzzy possibility value of the BE14 basic event was found to be 0.641 (Table 15).   

 

Table 12. Basic event BE14 similarity function value calculations 

 

Table 13. Consensus coefficient (CC) findings 

 

Table 14. The average and relative agreement values of experts 

 

Table 15.  BE14 expert opinion values in the ‘aggregation’ stage  

2.2.2.5. Defuzzification  

In accordance with the calculations, the fuzzy possibility scores of the basic events are 

presented in Table 16. The basic event with the largest fuzzy possibility value was BE1 (fuel 

leakage), with a value of 0.96. The basic events with the second and third most significant 

possibility values were BE11 (main engine hot surface) and BE12 (main engine exhaust system 

hot surfaces). 

 

Table 16. Fuzzy possibility values for basic events 

2.2.2.6. Occurrence probability generation 

If the occurrence probabilities of all basic events are known, the occurrence probability 

of the top event can be calculated. The results obtained by applying this equation to each of the 

basic events are shown in Table 17. 

 

Table 17. Calculations of fuzzy occurrence probability values of BEs 



 
 

 
 
 

2.2.2.7. Occurrence probability of the top event  

The probability values of the basic events obtained from the fuzzification to the 

probability-generation stages were placed in the fault tree, and the probability value of the top 

event was calculated. In this study, an open FTA program was used to calculate the probability 

value of the TE (Uğurlu et al., 2015a). The occurrence probability value of the top event was 

found to be 7.401E-002 per vessel under investigation. 

2.2.2.8. Importance ranking 

At this stage of the study, the degree of importance of a ‘cut set’ was calculated. The FV-

I values and rankings of the ‘cut sets’ are given in Table 18 according to Equation 16. In this 

study, there were a total of 170 ‘minimum cut sets’ for the top event. Table 18 shows the 20 

‘cut sets’ with the highest-ranking values. 

 

Table 18. Fuzzy occurrence probability and FV-I calculations for MCSs 

2.2.2.9. Validation 

The fault tree in this study was created based on a fire triangle. The MCSs (accident 

occurrence combinations) obtained using the fault tree summarise the formation of engine-room 

fires. These MCSs exist in parallel with the factors affecting the likelihood of the occurrence of 

engine-room fires, which were examined in the accident investigation reports. The MCSs and 

their probability values were evaluated by a group of experts whose judgements were taken into 

consideration during the study. The accuracy of the established fault tree was verified. 

 

3. Findings and Discussion 

In this study, 275 factors (in 507 occurrences) causing fire-explosion accidents in ships’ 

engine rooms were classified according to the HFACS structure. The prevalence of these factors 

according to the main levels of the HFACS was as follows: organisational influences (34.12%), 



 
 

 
 
 

operational conditions (19.53%), preconditions for unsafe acts (17.75%), unsafe acts (14.80%), 

and unsafe supervision (13.81%) (Figure 2). When the results were compared with those of the 

studies conducted by Baysari et al. (2008) and Schröder-Hinrichs et al. (2011), it was found 

that the results for ‘organisational influences’ and ‘preconditions for unsafe acts’ were similar. 

The sub-categories that stood out at the level of ‘organisational influences’ were equipment and 

facility resources (62), crew assignment (43), training and familiarisation (27), and oversight 

and control (22). The most important non-conformity in the ‘equipment and facility resources’ 

sub-category was uninsulated equipment (33 accidents). In this study, it was observed that 

engine-room fires that occurred due to lack of insulation were mostly caused by main engine 

surfaces, auxiliary engine surfaces, and fuel systems (Table 2). Most of the fuels used in ships 

are self-igniting when they make contact with surfaces at temperatures above 250°C. According 

to the requirements of SOLAS II-2 Reg. 4, 2.2.6, all surfaces above 220°C must be covered or 

insulated with protection shields. The results of this study showed that the isolation 

requirements of SOLAS II-2 were sometimes violated on merchant ships. Another important 

non-conformity at this level was ergonomic design flaws, which were observed 12 times. 

Kwiecińska (2015) emphasised that design flaws and equipment-related non-conformities have 

a significant impact on the likelihood of occurrence of fire-related accidents. The most common 

ergonomic design flaws are faulty/inappropriate design of the main engine’s fuel pump unit, 

auxiliary engine’s fuel line connections, thermal oil systems, and boiler systems. In many 

accident reports, it has been stated that the leakage that occurs in these lines resulting from 

oil/fuel lines directly connected to hot surfaces causes a fire. Another factor that stands out, 

with a frequency of 15 in the ‘crew assignment’ sub-category, is the presence of chief engineers 

who are unqualified to execute their duties effectively (Table 2). The chief engineer is 

responsible for all operations, routine maintenance, and the repair of the engine systems and 

equipment in accordance with the manufacturer’s schedule (within the safety management 



 
 

 
 
 

system) while simultaneously guiding the engine crew appropriately. A chief engineer who 

does not have the skills to execute such tasks effectively may misdirect the crew under his or 

her guidance, leading to erroneous, incomplete, or sloppy work being carried out in the engine 

room. In addition, many accident reports emphasise that this situation leads to a lack of 

communication or coordination between the engine crew. The importance of an effective 

leadership style in promoting maritime safety was also clearly stated in the study by Sætrevik 

and Hystad (2017). Human resource-based non-conformities involve crew members who do 

not meet the requirements of their ranks, inadequate or ineffective crew-training programs, and 

the ineffective introduction of ship-specific systems. 

Non-conformities are prominent at level 2, ‘unsafe supervision’, and include the latent 

factors of the HFACS, such as lack of internal audits (26) and lack of planned maintenance (19) 

in the sub-category of ‘inadequate supervision’. Both sub-categories refer to the routine 

maintenance and inspection of engines and equipment according to the Safety Management 

System (SMS) requirements (Table 3). The maintenance-repair of main engine fuel lines and 

equipment and D/G fuel lines and equipment has attracted attention as a source of non-

conformities. Maintenance and inspections that are not performed in a timely or effective 

manner can cause the equipment under a load to become fatigued and malfunction. Puisa et al. 

(2019) examined fire accidents in the engine room of a Le Boreal passenger ship and found that 

routine maintenance-repair procedures and insufficient/inappropriate insulation were the most 

important factors in the occurrence of fires. Compliance with the requirements of a safety 

management system is the most important factor in safe ship operations. In this study, 

significant non-conformities contributing to the formation of fires related to the planning of 

‘hot work’ in the sub-category of ‘planned inappropriate operations’ were found. The most 

frequently identified non-conformities related to ‘hot work’ included work areas that were not 

defined or cleaned, those where a lookout was not assigned, those where the lookout’s location 



 
 

 
 
 

changed during such work, and the use of equipment that generated sparks in an inappropriate 

area. Accidents become inevitable when a single non-conformity that is overlooked during ‘hot 

work’ is combined with other non-conformities. Baalisampang et al. (2018), in their study, 

stated that human errors that cause fire-explosion accidents generally occur during maintenance 

activities. In this study, it was observed that fires frequently occurred during maintenance 

activities, especially during ‘hot work’.  

The final level of the latent factors in the HFACS was ‘preconditions for unsafe acts’. 

Non-conformities at this level resulted from a lack of situational awareness or communication 

and management activities. The factors related to lack of situational awareness that fell into the 

‘adverse mental state’ sub-category referred to the current situation of the engine crew, 

developing conditions, and lack of awareness of environmental factors. In this study, 30 

(61.2%) of fire-explosion accidents were found to have occurred due to lack of situational 

awareness. 

Gruenefeld et al. (2018), in their study, stated that human error still has not been reduced 

in the last decade and that a lack of situational awareness prevails in most accidents caused by 

human error. In many accident reports examined in this study, it is emphasised that a lack of 

situational awareness causes accidents by contributing to poor decision-making processes (as 

in the M/V Thomson Majesty, M/V Arlott, M/V Arco Avon, and M/V Tai Shan fire-explosion 

accidents). Crew resource mismanagement in the sub-categories of ‘substandard practices of 

crew members’ stands out, with an occurrence frequency of 23. Crew resource mismanagement 

refers to non-conformities such as undisciplined team management, a chief engineer’s errors in 

guidance (authority and misdirection), and failure to manage emergency situations. Another 

important non-conformity related to these sub-categories was ‘lack of internal-external 

communication’, which was a factor in 12 accidents (Table 4). Effective ship (in-team and inter-

team) communication, which improves situational awareness, can be fostered by raising the 



 
 

 
 
 

awareness of the engine crew about the tasks and accident risks in the work area. For example, 

the third engineer, who noticed a fuel leak in the engine room of the Arco Avon, tried to stop 

the leak without notifying anybody else. Because of his faulty intervention, a fire occurred and 

he lost his life because of the fire spread to his coveralls (MAIB, 2016). The role of the team 

leader (chief engineer) is extremely important in ensuring effective communication between 

team members (Uğurlu et al., 2015b; Sætrevik and Hystad, 2017). The effectiveness of the 

relationships between the crew members and the reporting of non-conformities by them are 

directly proportional to the positive attitude and motivation skills of the team leader. 

The ‘unsafe acts’ at the last level of the HFACS were active failures that occurred because 

of interactions between the latent factors that caused accidents to occur. This level includes 

active failures, errors, and violations. Errors are undesirable behaviours, and violations are 

instances of deliberate non-compliance with rules and regulations. This study is focused on 

improper actions related to the main engines, auxiliary engines, and systems connected to them. 

The first sub-category under the level of ‘unsafe acts’ was the ‘errors’ category, and 48 non-

conformities were observed. These included operating errors related to the main engine, 

auxiliary engine, and fuel systems. The most common faults in the operation of the main engine 

were failure to tighten the bolts/nuts/plugs of the fuel line and its associated components with 

the proper torque (7 accidents) and incorrect connection of the fuel line and its components (2 

accidents) (Table 5). Kang (2017) examined the relationships between the levels of causal 

factors in his study, and the most prominent finding from the HFACS analysis was that latent 

factors were instrumental in the formation of all active failures. In most cases, the errors were 

found to have been due to inadequate supervision or organisational procedures, and the results 

obtained were found to be in line with this study when compared to similar studies from the 

past (Baalisampang et al., 2018). On the other hand, the errors that were observed consisted of 

problems such as delayed responses by engine crews in operational situations related to the 



 
 

 
 
 

main and auxiliary engines and systems, indecision, and incorrect interventions when fuel 

leakage was present. These types of errors can be viewed as faulty behaviours or failures to take 

the correct actions in a timely fashion. Another category at this level was ‘violations’ (observed 

27 times) (Table 5). The most common violations were related to procedures associated with 

‘hot work’, fuel exchange, and planned maintenance. Doing ‘hot work’ does not necessarily 

lead to unsafe actions, but when such work is combined with unsafe actions, an accident is 

inevitable. Efficiently implementing safety procedures and fostering understanding of their 

requirements and importance is only possible when training that is deemed appropriate by 

shipping companies and ships’ flag states is provided. Uğurlu (2016) obtained similar results in 

his study investigating fire-explosion accidents between 1999 and 2013 in tankers carrying 

dangerous liquid cargo. 

Active failures at the level of ‘unsafe acts’ in the HFACS reveal the causes of ship fires 

(fuel leakage, oil leakage, dirty and oily surfaces, and gas vapour accumulation). If these causes 

are combined with specific operational conditions (hot surfaces in the main engine or exhaust 

system, ‘hot work’, sparks, etc.), engine-room fires will occur. In this study, the relationship 

between these two categories was examined and evaluated using FFTA. It is impossible to 

eliminate the factors (accident-triggering factors and operational conditions) that cause 

accidents. However, by taking precautions in each system, the risk of accidents can be 

minimised. The most effective way to achieve this goal is to identify the non-conformities that 

lead to the occurrence of the top event and to reveal the relationships between them. The FFTA 

method makes it possible to analyse the interactions between fire-related non-conformities and 

operational conditions (accident occurrence combinations, or MCSs). According to the 

quantitative analysis in this study, BE1 (fuel leakage) was the most critical basic factor in the 

system. It was followed by BE12 (main engine exhaust system hot surfaces) and BE11 (main 

engine hot surfaces), respectively (Table 17 lists the other root factors and their rankings). 



 
 

 
 
 

According to the analysis of the relationships established between the basic factors that were 

instrumental in fire-explosion accidents in ships’ engine rooms, the most problematic accident 

scenario occurred when BE1 (fuel leakage) and BE12 (main engine exhaust system hot 

surfaces) were combined (Table 18). A good example of the outcome this combination is an 

engine-room fire caused by contact between a fuel leak and a hot surface (due to insufficient 

insulation), as occurred in the fire-explosion accident of the Ocean Star Pacific PMA (2011). 

In another similar accident, during the iron ore-loading operation at Port Hedland, Western 

Australia, fuel leakage caused by a fuel line failure (due to the use of non-original spare parts) 

was combined with the hot surface of a generator, and a fire occurred on the bulk carrier 

Marigold (ATSB, 2016). Other significant accident-friendly combinations include fuel or oil 

leakage (Table 18). This is consistent with the findings of previous studies, such as the one in 

which Paula et al. (1998) found that the majority of fire-explosion accidents occurred when fuel 

and/or lubricating oil leakage made contact with hot surfaces. Det Norske Veritas (DNV) found 

that 56% of fire-related accidents in engine rooms were due to a combination of oil/fuel leakage 

and hot surfaces (DNV, 2000). In many accident reports examined in this study, the factors 

leading to oil/fuel leakage were caused by damage to mechanical equipment or the use of 

inappropriate parts (such as hoses, couplings, filters, and pipe lines). This finding was in line 

with the safety bulletin issued by the DNV (2016). Oil/fuel leaks occurring in the engine room 

make contact with hot surfaces in the vicinity, causing fires. Insulation in the engine room is, 

therefore, a major issue. Thus, insulation materials damaged during maintenance-repair 

activities or after the passage of time should be replaced without delay, and adequate spare 

insulation materials should be kept on board. In addition, because fuel leakage in the main 

engine is close to a ship’s exhaust system, more attention should be paid to leaks that occur in 

this area. 



 
 

 
 
 

As in the study by Papanikolaou and Eliopoulou (2008), in this study, the prevalence 

(71.43%, or 35 accidents) of fire-explosion accidents occurring in ships with a hull structure 

over 20 years old showed that the risk of fire increases as a ship ages. The relationship between 

a ship’s age and its fire risk arises because of the fatigue of mechanical parts under loads over 

time, structural abrasion, and the deformation of fuel systems. 

 

 

4. Conclusions  

In addition to being a relatively inexpensive mode of transport, maritime transport stands 

out because it is relatively safe and environmentally friendly. Despite its advantages, maritime 

transport can cause marine accidents, which can damage cargo, marine environments, and ship 

structures, leading to human injuries and/or deaths. Ship fires often draw the public’s attention 

because they are one of the most common types of accidents, causing significant material losses 

and the loss of human lives. Many studies in the literature emphasise that fires in engine rooms 

are frequently involved in ship fires (Baalisampang et al., 2018; Schröder-Hinrichs et al., 2011; 

Uğurlu, 2016). Studies on marine accidents have indicated that fire-explosion accidents are 

concentrated in main and auxiliary engine systems. In this study, a hybrid model based on the 

HFACS and FFTA was presented, which enabled the analysis of engine-room fires on ships. 

The causes of engine-room fires were classified using the HFACS structure, and the formation 

process of accidents was revealed through the application of FFTA. The HFACS-based FFTA 

results showed that minor oversights in a ship’s engine room can lead to major disasters. As in 

the case of the M/V Sea Dream I fire, an unsuitable tightened bolt can flex with great force and 

cause a fire, and a fire may cause the loss of a ship. Important results obtained from the study 

are presented below.  



 
 

 
 
 

In this study, the accident-formation pattern for fire-explosion accidents is presented 

using fuzzy fault tree analysis based on an HFACS framework. This also reveals the 

relationships between the factors in such accidents. Thus, how accidents occur because of 

interactions between various factors can be discovered. The non-conformities discovered using 

the methods in the study can be used as a guide by accident investigators to understand the 

formation of accidents during the investigations carried out after engine-room fires. 

 This study shows that fire-explosion accidents are concentrated in ships over 20 years of age 

and in association with mechanical fatigue in the main engine, auxiliary engines, and connected 

systems. 

 Unqualified crew members and lack of training or familiarisation with equipment have been 

found to be the most important non-conformities underlying fire-explosion accidents. The 

engine rooms that are becoming modernised through the ongoing development of technology 

are designed to be equipped by specialists, and the systems that are housed in the machinery 

rooms today require qualified mechanical engineers and crew. It is impossible to maintain safe 

and secure engine rooms with an unqualified engine crew unfamiliar with ship-specific systems. 

The most common non-compliance factor in the category of ‘inappropriate crew assignment’ 

was found to be an unqualified chief engineer. 

 Another non-conformity that was instrumental in the formation of engine-room fires was the 

presence of hot surfaces in the main engine, auxiliary engines, and connected systems. In 

particular, owing to the operation of such machinery while the ship is in motion, it is inevitable 

that a fire will occur if these increasingly hot surfaces make contact with oil/fuel leaks.  

 There are too many potential sources in the engine room of fuel and oil leakage. In this study, 

it was found that the factors causing oil/fuel leakage were randomly distributed between flexible 

hoses, couplings, fractured pipes and broken studs, and worn gaskets. In most accidents, the 

materials used in maintenance and repair work were not original. Materials (bolts, nuts, pump 



 
 

 
 
 

diaphragm O-rings, copper pipes used in the fuel line, etc.) that did not meet the specifications 

of the manufacturer’s manual were more easily deformed when they made contact with cargo, 

hot fuel, or oil. These materials, which were not resistant to heat or chemicals, underwent 

mechanical deterioration, including abrasion, breakage, and fragmentation, causing fuel or oil 

leakage and facilitating the formation of fires. 

 This study reveals that the engine room is a constricted area with a high risk of fire and that 

it must be kept under constant surveillance. In unmanned engine rooms, the absence of engine 

officers in the engine room, except during watch-keeping hours, caused an increased risk of fire 

(the M/V Boudicca, M/V Maribella, and M/V Seadream I are good examples of this point).  

 Accurate analysis and evaluation of accidents are crucial to avoiding similar accidents 

in the future. Accidents often appear to be the result of a single event, but, with proper 

examination, it often becomes apparent that they are caused by several factors. Therefore, an 

analysis of each accident should be conducted, considering the environment and conditions in 

which it occurred.   

 

5. Recommendations 

 In the accident reports examined, it was observed that the procedures required by the 

International Safety Management (ISM) Code were either ignored or were not properly 

implemented. As shown by the results of the study, the existence of such procedures alone is 

not adequate to prevent accidents. The practitioners and ships’ administrators should pay 

maximum attention to the implementation of such procedures. Fires can be prevented if the 

existing procedural steps are properly followed and such procedures are implemented in 

practice. The elimination of some nonconformities is also possible if proper shore-based 

training is given to staff by ship owners. For example, to mitigate non-compliance caused by 

factors related to main engines and generators, personnel must receive special training for their 



 
 

 
 
 

ship and its equipment. In addition, the personnel who are appointed to positions of authority 

should be made aware of the risks that may arise according to their rank and the ship’s 

characteristics. ISM procedures, especially for planned maintenance, should be prepared with 

reference to manufacturers’ manuals. The goal of a ship’s operating company and staff should 

be not only to do what is required during inspections but to implement the ISM requirements 

adequately and effectively. Other recommendations based on this study are as follows: 

 In aged ships, it is inevitable that mechanical parts will become fatigued under loads, 

structural abrasions will occur, and fuel lines and systems will become deformed with time. In 

the planned maintenance systems created by companies, the aim must be to ensure that a ship’s 

materials can be used for the longest time and in the most efficient manner possible. Possible 

related non-conformities can be prevented by timely and effective maintenance-repair 

operations on ship equipment (in accordance with the requirements of the planned maintenance 

system). Therefore, it is necessary to establish policies that prevent the planned maintenance 

system and its requirements from being ignored by the ship’s crew. 

 Today, new environmentally friendly practices, such as the installation of exhaust emission 

systems and ballast water treatment equipment, are being implemented. These innovative 

applications have inspired new regulations, which often provide exemptions for old ships. To 

ensure the efficacy of new laws and their enforcement, the modified systems or new parts that 

must be installed do not generally work well on old ships. In addition, such equipment, which 

is incompatible and, in some cases, not produced by the original manufacturers of ships’ 

machinery, entails risks of accidents and malfunctions. Therefore, international maritime 

policies should be adopted, and ships that have reached a specific age should be removed from 

operation by providing appropriate incentives to ship owners to replace their existing ships with 

new ones. 



 
 

 
 
 

 Another non-conformity that attracts public attention in the category of ‘organisational 

influences’ is lack of insulation. The insulation materials on an engine’s equipment deteriorate 

with time (for reasons such as maintenance, repair, and overhaul). Such materials may not be 

suitable for reuse. Because most ships do not have spare insulation materials on hand, the 

continuity of insulation cannot always be ensured. Therefore, policies should be developed to 

ensure the continuity of insulation in ships’ engine rooms. If ships’ administrators meet the 

insulation requirements in accordance with the SOLAS II-2 requirements, it becomes possible 

to prevent fire-explosion accidents caused by a lack of proper insulation. 

 Owing to the design of engine rooms, the location of the equipment and rig is not always 

suitable for monitoring or surveillance. For this reason, infrared thermometers and cameras 

(with a measuring range of -50 to 1,000°C), which are used for the measurement and monitoring 

of hot surfaces in many areas in land facilities, should also be used in ships’ engine rooms. In 

this way, in places like engine rooms, where hot surfaces are too high to reach and space is 

limited, these thermometers and cameras can be used to regularly control and monitor 

temperatures. 
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Table 1. Similar studies related to ship fires 

Name of the study Methodology Journal name Author(s) - Year 

Accident investigation reporting deficiencies related to 

organizational factors in machinery space fires and explosions 
HFACS 

Accident Analysis and 

Prevention 

Schröder-Hinrichs et al., 2011 

 

Numerical computation and characteristic analysis on the centre 

shift of fire whirls in a ship engine room fire 
Fire Dynamics Simulator (FDS) Safety Science Shichuan  et al., 2012 

Safety in maritime oil sector: Content analysis of machinery 

space fire hazards 

Summative Content 

Analysis Approach, Computer 

Assisted Qualitative Data 

Analysis Software (CAQDAS) 

Safety Science 
Ikeagwuani and John, 2013 

 

Use of HFACS–FCM in fire prevention modelling on board ships 
HFACS, Fuzzy Cognitive 

Mapping (FCM) 
Safety Science 

Soner et al., 2015 

 

Analysis of fire and explosion accidents occurring in tankers 

transporting hazardous cargoes 

FTA, Fuzzy Extended Analytic 

Hierarchy Process (FAHP) 

International Journal of 

Industrial Ergonomics 

Uğurlu, 2016 

 

Fault Tree Analysis of fire and explosion accidents for dual fuel 

(diesel/natural gas) ship engine rooms 
FTA J. Marine Sci. Appl. 

Guan et al., 2016  

 

Effect of human behaviour in shipboard firefighting decisions: 

The case of fire in engine rooms 

Analytic Hierarchy Process 

(AHP) 

Journal of Contingencies 

and Crisis Management 

Karahalios, 2017 

 

A probabilistic model for fatality estimation of ship fire accidents 

FDS, Available Safe Egress 

Time  (ASET), Required Safe 

Egress Time (RSET) 

Ocean Engineering 
Wu et al., 2018 

 

Review and analysis of fire and explosion accidents in maritime 

transportation 
Review  Ocean Engineering 

Baalisampang et al., 2018 

 

Analysis of effectiveness of fire safety in machinery spaces 

Formal Safety 

Assessment(FSA), Dynamic 

Barrier Management 

Fire Safety Journal 
McNay et al., 2019 

 

Towards an explanation of why on board fires happen: The case 

of an engine room fire on the cruise ship “Le Boreal” 

Systems-Theoretic Accident 

Model and Processes (STAMP), 

Causal Analysis based on 

Systems Theory (CAST) 

Applied Ocean Research 
Puisa et al., 2019 

 



 
 

 
 
 

 

 

 

                    Table 2. Basic rules of Boolean algorithms 

 

 Associative Laws 
(A + B) + C = A + (B + C) 

(A· B) ·C = A  · (B  · C) 

 Commutative Laws 
A + B = B + A 

A  · B = B  · A 

 Distributive Laws 
A  · (B + C) = A · B + A · C 

A + (B · C) = (A + B) · (A + C) 

 Absorption Laws 
(A · B) + A = A 

(A + B) · B = B 

 Redundancy Laws  A · (A + B) = A 

 Idempotent Laws 
(A + A) = A    

A · A = A 

De Morgan Laws 
(A + B) = A · B 

(A · B) = (A + B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 
 

 

 

Table 3. Accident factors and their occurrence frequencies at the ‘organisational   

                 influences’ level 

 

  Factors Frequency 

R
es

o
u

rc
e 

M
an

ag
em

en
t 

H
u

m
an

 R
es

o
u

rc
es

 

Lack of Training and Familiarity with the Ship  
Level alarm system (main engine, auxiliary engine, fuel tanks) 4 

Filter replacement (fuel pump, lubricating oil) 2 

Planned maintenance of diesel generator 4 

Thermal oil system (maintenance and emergency response)  2 

Company International Safety Management (ISM)system and applications 5 

Main engine fuel pump 5 

Shipyard workers unfamiliar with the ship 1 

Ship-specific electrical system (electrical officer) 1 

Main engine turbo charge (T/C) maintenance-engine crew 1 

Steam boiler – engine crew 2 

Crew Assignment  

Minimum crew manning - 

Incompatible with the rank (insufficient) - master 2 

Incompatible with the rank (insufficient) - chief engineer 15 

Incompatible with the rank (insufficient) - 1.engineer 9 

Incompatible with the rank (insufficient) - 2. or 3.engineers 8 

Incompatible with the rank (insufficient) - electrical officer, oiler, fitter 6 

Unqualified non-ship personnel (Shipyard, service team) 3 

E
q

u
ip

m
en

t/
fa

ci
li

ty
 R

es
o

u
rc

es
 

Deficient Equipment and Facility  
Spare parts for main engine 1 

Spare parts for auxiliary engine - 

Purchasing of Unsuitable Equipment  

Engine Room  

Use of heat resistant hose in ventilation duct 1 

Main Engine  

Fuel line stop valves 1 

Heat and fuel non-durable gasket 1 

Turbo charger RPM counter 1 

Pressure relief equipment 1 

Non-original fuel supply line 1 

Insulation of insufficient Low sulphur diesel oil (LSDO) lines 1 

Lubricating oil filter air release screw 1 

Rubber diaphragm fuel pump 1 

Non-original fuel system flange connection protection caps 1 

Uninsulated main engine surface 3 

Uninsulated turbo charger 5 

Uninsulated exhaust manifold 8 

Uninsulated fuel line 1 

Auxiliary Engine and Diesel Generator  

Diesel Generator (D/G) manometer equipment 2 

D/G unsuitable hose 1 

D/O fuel line pressure and fuel non-durable gasket 1 

LSDO fuel line isolation valve gasket 1 

Uninsulated turbo charger 6 



 
 

 
 
 

Uninsulated exhaust manifold 7 

Uninsulated auxiliary engine and diesel generator surface 3 

Previously used O-ring in the fuel line 1 

R
es

o
u

rc
e 

M
an

ag
em

en
t 

E
q

u
ip

m
en

t/
fa

ci
li

ty
 R

es
o

u
rc

es
 

Ergonomic Design Flaws  

Engine Room  

Thermal oil system (pressure meter connection, line) 2 

Boiler (furnace cooling system, burner) 2 

Hydraulic oil tank ventilation line 1 

Main Engine  

Fuel pump (pressure relief valve, lubricating oil-filter handle) 2 

Fuel line (pipe connections, isolation valve) 2 

Auxiliary Engine and Diesel Generator  

D/G fuel line emergency system designed for low pressure 1 

D/G manometer connection (connecting directly to the T/C) 1 

D/G stop valves without non-return 1 

O
rg

an
iz

at
io

n
al

 C
li

m
at

e 

S
tr

u
ct

u
re

 

Communication and Coordination 
-  

Chain of Command 
- 

Delegation of Authority 
- 

P
o

li
ci

es
 Promotion 

- 

Drugs and Alcohol 
- 

C
u

lt
u

re
 

 
 
- 

 

O
rg

an
iz

at
io

n
al

 P
ro

ce
ss

 

O
p

er
at

io
n

s 

M
an

ag
em

en
t 

Failure to meet the spare parts demand on time by the company 1 

  

  

  

L
eg

al
 D

ef
ic

ie
n

cy
 

Procedure-Based  
Scavenge cleaning 1 

Lubricating oil filter change 2 

D/G and fuel lines maintenance 3 

Generator start (failure to determine the amount of load that should work) 1 

Maintenance of fuel line stop valves 1 

Fuel exchange 2 

Thermal oil system maintenance and emergency operation 2 

Routine alarm tests of the compressor (temperature) 1 

Hot work - use of grinding motor 1 

Main engine fuel line maintenance 1 

Legislation-Based  
LSDO line installation plans 1 

Unspecified training to introduce the ship-specific electrical system 1 

Use of spare parts is not enough explained in the user manual 1 

O
v

er
si

g
h

t 

an
d

 

C
o

n
tr

o
l Risk Analysis  

Planned maintenance - D/G, boiler, hydraulic line, main engine, fuel line, fuel 

Pump, fuel pump filter cleaning 

11 

Repair-boiler, D/G, fuel line 3 



 
 

 
 
 

Fuel transfer 2 

Hot work - welding, grinding motor 5 

Safety Assessment  

Ignored risk assessment 1 

 

Table 4. Accident factors and their occurrence frequencies at the ‘unsafe supervision’           

               level 

 

 Factors Frequency 

In
ad

eq
u

at
e 

S
u

p
er

v
is

io
n

 

                                                   Lack of Internal Audit 

 
 

Main engine working hours 1 

Line and valve pressures of the LSDO system 1 

Auxiliary engine working hours/working performance monitoring 4 

Main engine fuel lines and equipment 6 

D/G instrument panel and equipment 1 

Boiler working performance monitoring 1 

Compressor (instrument panel/operating performance) 2 

Auxiliary engine fuel lines and equipment 5 

Boiler water 1 

Engine room bilge wells 1 

Fuel tanks instrument panel 1 

Fuel filter isolation handle 2 

Lack of Planned Maintenance  
Main engine fuel lines and equipment, T/C 2 

Main engine fuel pump 3 

Auxiliary engine fuel line and equipment/ T/C 3 

D/G fuel line system and equipment 5 

Lubricating oil lines and equipment 1 

Thermal oil system 2 

Boiler system 1 

Scavenge cleaning 1 

Incinerator cleaning 1 

P
la

n
n

ed
 I

n
ap

p
ro

p
ri

at
e 

O
p

er
at

io
n

s 

Hot Work  

Workspace boundaries 3 

Work area cleaning 2 

Change of the location of the fire watcher 1 

Use of grinding motor 1 

Work Planning  

Inadequate Crew (lacking)  

Hot work 3 

D/G repair 5 

Repair of boiler 1 

Repair of fuel tank 1 

Working resting hours- port period workload 1 

Inappropriate  

Repair of boiler 1 

Task distribution  1 

Fuel exchange 1 

The main engine exhaust manifold covers are disassembled 2 

LSDO system installation planning 1 

F
ai

le
d

 

to
 

C
o

r

re
ct

 

K
n

o
w n
 

P
ro

b
le

m
s 

Unsafe storage of garbage in the engine room 1 



 
 

 
 
 

 Factors Frequency 

  

 

 

 

 
 

 

 

Table 5. Accident factors and their occurrence frequencies at the ‘preconditions for 

               unsafe acts’ level 

 

 Factors Frequency 

S
u

b
st

an
d

ar
d

 C
o

n
d

it
io

n
s 

o
f 

C
re

w
 M

em
b

er
s 

Adverse Mental States   

Lack of Situational Awareness   

Engine crew 22 

Chief engineer 3 

Engine officer 5 

Lack of Attention  

Engine crew 5 

Engine officer 1 

Repair team 1 

Overconfidence and Comfort  

Engine crew 4 

Chief engineer 4 

Engine officer 3 

Others  

Sleeplessness - engine crew 1 

Stress 1 

Mental fatigue of the officer 1 

Adverse Physiological States  
Physical fatigue-engine officer 1 

Physical fatigue-engine crew 1 

Physical/Mental Limitations  
Excessive workload - watchkeeping engineer  1 

Excessive workload due to lack of team members 1 

S
u

b
st

an
d

ar
d

 P
ra

ct
ic

es
 o

f 
C

re
w

 M
em

b
er

s 

Personal Readiness 
- 

 

Engine Resource Management  
Crew Resource Mismanagement  

Undisciplined team management (failure of leadership) 3 

Chief Engineer's error of guidance - working plan 6 

Chief Engineer's error of guidance - maintenance 10 

Chief Engineer's error of guidance - management of hot work 2 

Chief Engineer's error of guidance - feedback 1 

Chief Engineer's error of guidance - assignment 1 

Lack of Communication  

Chief Engineer - engine officers 5 

Between engine team members 4 

Shipyard - ship 1 

Fitter-lookout 1 

Company-ship 1 



 
 

 
 
 

 

 

 

 

 

Table 6. Accident factors and their occurrence frequencies at the ‘unsafe acts’ level 
                

 Factors Frequency 

E
rr

o
rs

 

Main Engine  
Faulty connection of the fuel line and components 7 

Fuel line and components - failure to tighten bolts/nuts/plugs with proper torque 2 

Incorrect response of the chief engineer to leakage in the manometer connection pipe 1 

Misinterpreting the operating principle of its and fuel system 2 

T/C maintenance-repair operations 1 

Manometer maintenance-repair operations 1 

Temporary stop of fuel leak detected in the fuel injector on the main engine 1 

Stopping the circulation pump without determining the cause of sudden low pressure in 

the fuel system and taking the necessary measures 
1 

The chief engineer loosening the air vent screw instead of the normal screw 1 

Chief Engineer loosening wrong screw due to failure to mark air release screw 1 

Failure to detect fuel tank alarm indicator malfunctions 1 

Auxiliary Engine  
Not to dominate the work done (Unfamiliarity to the task)  

Fuel line and components - failure to tighten bolts/nuts/plugs with proper torque 1 

Incorrect closing of the incinerator air flaps 1 

Loosening the D/O fuel pump cover bolts under pressure 1 

The chief engineer loosening the wrong screw (air release screw) 1 

Loosen the D/G fuel filter cover bolts without opening the relief valve 1 

Maintenance of ship hydraulic line 1 

All equipment connected to the thermometer was disconnected from the line 1 

Improper response to fuel leakage at D/G 1 

Intervention to hydraulic oil line on ship trimmed to aft 1 

D/G temporary- incorrect response to fuel leakage 3 

Re-commissioning of the D/G, although it has shut down several times 1 

Temporary response to fuel leakage from the copper connection pipe of the manometer 2 

Late decision on decommissioning of  D/G 1 

Temporary resolve of failure of  the flexible hose used in D/G 1 

Improper Maintenance-Repair Operations  

Boiler system 3 

Compressor 1 

D/G 3 

T/C 3 

Thermal oil system 2 

 

 

 



 
 

 
 
 

 

 

 

 

 

 

 

V
io

la
ti

o
n

s 

Violation of Regulations  

Complete removal of the protective covers of the main engine F/O fuel lines 

(unprotected against fuel leakage and fire) (Canada Shipping Act, Safe Working 

Practices Reg., item 9) 

1 

Use of non-original protective covers for flanged connections of the M/E fuel system 

(SOLAS II-2 Reg., item 4) 
1 

Use of unsuitable parts in the fuel isolation valve when installing the LSDO system 

(Flag State and Classification Society) 
1 

Directing fuel pipes and lines directly to heat sources (SOLAS II-2 Reg., 4 - Canada 

Shipping Act, Marine Machinery Reg., Schedule XII, item 21) 
1 

Manometer (SOLAS II-2 Reg., item 4 ) 1 

Violation of the Instruction Manual  

Failure to install the T/C oil thrower by the repair team 1 

Inappropriate used spare part - O-ring (pre-used material) 1 

Running the T/C at a higher speed than necessary 1 

The use of non-original material for maintenance and repair of A/E 3 

Violation of Company Safety Procedures  

Hot work 8 

Fuel exchange 2 

Scavenge cleaning 1 

Incinerator operation and cleaning 1 

Opening the main engine rotor cover while the main engine is running (maintenance) 1 

Boiler burner service 1 

Work permit before using the grinding motor 1 

Smoking in restricted areas 1 

 

 

 

 

 

 

 

 

 



 
 

 
 
 

 

 

 

 

 

 

Table 7. Basic events in engine-room fires 

 

Intermediate Events Basic Events Frequency 

Abbreviation 

of Basic 

Event 

S
o

u
rc

es
 o

f 
F

la
m

m
ab

le
 

M
at

er
ia

ls
 

Fluid 

material 

source 

Leakage 
Fuel-diesel leakage 31 BE1 

Lubricating oil leakage 6 BE2 

Waste 

product 

 Oily surfaces 1 BE3 

Oil/fuel 

residue 

Bilge 2 BE4 

sludge 1 BE5 

Solid material source 

Heat non-resistant materials 3 BE6 

Garbage and wastes 1 BE7 

Soot 1 BE8 

Gas material source 
Fuel vapour 2 BE9 

Gas vapour 1 BE10 

H
ea

t 
S

o
u

rc
e 

M
at

er
ia

ls
 

Hot surface 

Main engine 

Main engine hot surface 8 BE11 

Main engine exhaust 

system hot surfaces   
12 BE12 

Main engine turbo charger 6 BE13 

Main engine hot fuel line 1 BE14 

Auxiliary engine 

Generator hot surface 4 BE15 

Generator exhaust system 2 BE16 

Generator T/C 2 BE17 

Boiler 3 BE18 

Thermal oil 2 BE19 

Compressor 1 BE20 

Spark and 

fire (heat) 

source 

Inappropriate 

equipment 

Spark 1 BE21 

Electric arc 1 BE22 

Spontaneous combustion 1 BE23 

Inappropriate work 
Hot work 5 BE24 

Static electric - BE25 

Inappropriate crew 
Cigarette 1 BE26 

Naked light/flame - BE27 

 

 

 

        Table 8. Weighting scores of experts 

Constitution Classification Score 

Professional position (PP) Port State Control Officer 5 



 
 

 
 
 

Technical Manager 4 

Professor 3 

Lecturer 2 

Shipping company owner-engineer 1 

Competency (Comp.) Chief Engineer 5 

1st Engineer 4 

2nd Engineer 3 

Oceangoing Master 3 

Professional experience in years (PE) Greater than 15 years 5 

10 to 15 4 

5 to 10 3 

3 to 5 2 

1 to 3 1 



 
 

 
 
 

 

  Table 9. Total scores and weighting factors of the experts evaluating engine-room fire-explosion accidents on ships 

Expert 

no. Professional position Competency 

Operational 

experience 

(year) 

Weight score 

Total 

score 

Weight 

factor 

Professional 

position  

(Score)  

Competency  

(Score)  

Professional 

experience in years  

(Score)  

1 Professor Oceangoing master 19 3 3 5 11 0.096 

2 Lecturer 1st engineer 11 2 4 4 10 0.088 

3 Technical manager Chief engineer 14 4 5 4 13 0.114 

4 Lecturer Chief engineer 16 2 5 5 12 0.105 

5 Shipping company owner 1st engineer 12 1 2 4 7 0.061 

6 Technical manager Chief engineer 16 4 5 5 14 0.123 

7 2nd Engineer 2nd engineer 9 2 2 3 7 0.061 

8 Lecturer Chief engineer 11 2 5 4 11 0.096 

9 Port state control officer Chief engineer 27 5 5 5 15 0.131 

10 Port state control officer Chief engineer 12 5 5 4 14 0.123 

 

 

Table 10. Linguistic measurement scale (Rajakarunakaran et al., 2015) 

Measurement Scale 
TFN 

a1 a2 a3 
Very low (VL) 0.00 0.04 0.08 

Low (L) 0.07 0.13 0.19 

Medium low (ML) 0.17 0.27 0.37 

Medium (M) 0.35 0.50 0.65 

Medium high (MH) 0.63 0.73 0.83 

High (H) 0.81 0.87 0.93 

Very high (VH) 0.92 0.96 1.00 



 
 

 
 
 

Table 11. Linguistic results of expert evaluations of basic events 
 

  Experts 

BE No Basic Events 1 2 3 4 5 6 7 8 9 10 

1 Fuel leakage VH VH VH VH VH VH VH VH VH VH 

2 Oil leakage H MH MH H H H MH MH H MH 

3 Oily surfaces M M ML M L H ML M MH H 

4 Bilge MH L L MH L L VL ML M M 

5 Sludge MH VL L MH ML M L ML L M 

6 Heat non-resistant materials M MH ML M ML MH M H M H 

7 Garbage and wastes ML M M H L M ML H MH H 

8 Soot ML M L ML L M MH MH MH MH 

9 Fuel vapour ML M ML H M MH H MH ML L 

10 Gas vapour L L L L M L L L MH VL 

11 Main engine hot surface H VH MH H MH H H MH H VH 

12 Main engine exhaust system hot surfaces   VH VH VH VH VH VH VH VH VH H 

13 Main engine turbocharger MH MH H H MH H M H VH M 

14 Main engine hot fuel line ML MH L ML M H MH H H VH 

15 Generator hot surface MH L MH H ML M M M MH H 

16 Generator exhaust system MH M H VH M H VH H VH H 

17 Generator turbo charger M M MH H ML H M MH VH ML 

18 Boiler MH MH MH H M H MH H VH M 

19 Thermal oil system M H M M MH H MH MH H H 

20 Compressor L VL L L L VL VL VL VL L 

21 Spark ML MH M MH L H L MH MH VH 

22 Electric arc   M L ML H L ML VH MH VH MH 

23 Spontaneous combustion L L VL L VL L ML VL VL ML 

24 Hot work H MH VH H MH MH ML H H H 

25 Static electric L VL VL VL L VL L VL VL L 

26 Cigarette L M L L ML MH M MH M L 

27 Naked light/flame VL VL VL VL VL VL VL VL L VL 



 
 

 
 
 

Table 12. Basic event BE14 similarity function value calculations 

 

Expert 

No 

Membership 

Function 
Similarity 

Functions 

Similarity 

Functions 

Value 

Similarity 

Functions 

Similarity 

Functions 

Value 

Similarity 

Functions 

Similarity 

Functions 

Value a1 a2 a3 
E1 0.17 0.27 0.37 S(1,2) 0.540 S(2,9) 0.860 S(5,6) 0.630 

E2 0.63 0.73 0.83 S(1,3) 0.860 S(2,10) 0.770 S(5,7) 0.770 

E3 0.07 0.13 0.19 S(1,4) 1.000 S(3,4) 0.860 S(5,8) 0.630 

E4 0.17 0.27 0.37 S(1,5) 0.770 S(3,5) 0.630 S(5,9) 0.630 

E5 0.35 0.50 0.65 S(1,6) 0.400 S(3,6) 0.260 S(5,10) 0.540 

E6 0.81 0.87 0.93 S(1,7) 0.540 S(3,7) 0.400 S(6,7) 0.860 

E7 0.63 0.73 0.83 S(1,8) 0.400 S(3,8) 0.260 S(6,8) 1.000 

E8 0.81 0.87 0.93 S(1,9) 0.400 S(3,9) 0.260 S(6,9) 1.000 

E9 0.81 0.87 0.93 S(1,10) 0.310 S(3,10) 0.170 S(6,10) 0.910 

E10 0.92 0.96 1.00 S(2,3) 0.400 S(4,5) 0.770 S(7,8) 0.860 

    S(2,4) 0.540 S(4,6) 0.400 S(7,9) 0.860 

    S(2,5) 0.770 S(4,7) 0.540 S(7,10) 0.770 

    S(2,6) 0.860 S(4,8) 0.360 S(8,9) 1.000 

    S(2,7) 1.000 S(4,9) 0.400 S(8,10) 0.910 

    S(2,8) 0.860 S(4,10) 0.310 S(9,10) 0.910 

 

 

 

Table 13. Consensus coefficient (CC) findings 

Expert No CC 

E1 0.093 

E2 0.100 

E3 0.092 

E4 0.097 

E5 0.083 

E6 0.116 

E7 0.087 

E8 0.102 

E9 0.120 

E10 0.109 

 

 

 

                Table 14. The average and relative agreement values of experts 

 

Expert No 
Experts Average 

Agreement (AA) 

Expert 

No 

Experts Relative Agreement 

(RA) 

E1 0.580 E1 0.089 

E2 0.733 E2 0.113 

E3 0.456 E3 0.070 

E4 0.576 E4 0.089 

E5 0.682 E5 0.105 

E6 0.702 E6 0.108 

E7 0.733 E7 0.113 

E8 0.698 E8 0.108 

E9 0.702 E9 0.108 

E10 0.622 E10 0.096 



 
 

 
 
 

 

Table 15.  BE14 expert opinion values in the ‘aggregation’ stage 

 

 Aggregation of Basic Event14 
BE14 

 Fuzzy 

Possibility 

Score(FPS) 

 

BE14 

Occurrence 

Probability 

Generation 

Occurrence  

Probability 

BE14 FV-I 

Index  

BE14 

FV-I 

Ranking 

a1 a2 a3 

0.560 0.641 0.721 0.641 1.90 1.265E-02 1.709E-07 10 

 

 

 

 

                 Table 16. Fuzzy possibility values for basic events 

BE No 
Aggregation Results of Basic Events Fuzzy Possibility 

Score (FPS) a1 a2 a3 

BE1 0.920 0.960 1.000 0.960 

BE2 0.722 0.801 0.881 0.801 

BE3 0.425 0.534 0.644 0.534 

BE4 0.240 0.330 0.420 0.330 

BE5 0.248 0.341 0.435 0.341 

BE6 0.402 0.500 0.598 0.500 

BE7 0.134 0.202 0.269 0.202 

BE8 0.468 0.581 0.694 0.580 

BE9 0.472 0.574 0.675 0.574 

BE10 0.379 0.482 0.586 0.482 

BE11 0.782 0.849 0.916 0.849 

BE12 0.908 0.950 0.992 0.950 

BE13 0.690 0.775 0.860 0.775 

BE14 0.560 0.641 0.721 0.641 

BE15 0.505 0.608 0.712 0.608 

BE16 0.754 0.826 0.898 0.826 

BE17 0.538 0.638 0.737 0.638 

BE18 0.669 0.759 0.848 0.759 

BE19 0.625 0.723 0.820 0.723 

BE20 0.035 0.085 0.135 0.085 

BE21 0.529 0.618 0.707 0.618 

BE22 0.481 0.565 0.648 0.565 

BE23 0.060 0.120 0.179 0.120 

BE24 0.732 0.804 0.876 0.804 

BE25 0.026 0.073 0.121 0.073 

BE26 0.271 0.369 0.467 0.369 

BE27 0.008 0.050 0.092 0.050 

 

 

 

 



 
 

 
 
 

 

 

      Table 17. Calculations of fuzzy occurrence probability values of BEs 

BE 
Aggregated Fuzzy Numbers Fuzzy 

occurrence 

Probability 

 
Rank 

 a1 a2 a3 

BE1 0.920 0.960 1.000 1.593E-01  1 

BE2 0.721 0.801 0.881 3.582E-02  6 

BE3 0.425 0.534 0.644 6.340E-03  17 

BE4 0.240 0.330 0.420 1.220E-03  22 

BE5 0.248 0.341 0.435 1.363E-03  21 

BE6 0.402 0.500 0.598 4.992E-03  18 

BE7 0.134 0.202 0.269 2.286E-04  23 

BE8 0.468 0.581 0.694 8.640E-03  14 

BE9 0.472 0.574 0.675 8.231E-03  15 

BE10 0.379 0.483 0.586 4.411E-03  19 

BE11 0.782 0.849 0.916 5.076E-02  3 

BE12 0.908 0.950 0.993 1.379E-01  2 

BE13 0.690 0.775 0.860 2.996E-02  7 

BE14 0.560 0.641 0.721 1.265E-02  10 

BE15 0.505 0.608 0.712 1.031E-02  13 

BE16 0.754 0.826 0.898 4.275E-02  4 

BE17 0.539 0.638 0.737 1.242E-02  11 

BE18 0.669 0.759 0.848 2.686E-02  8 

BE19 0.625 0.723 0.820 2.128E-02  9 

BE20 0.035 0.085 0.135 8.306E-06  25 

BE21 0.529 0.618 0.707 1.097E-02  12 

BE22 0.481 0.565 0.648 7.769E-03  16 

BE23 0.060 0.120 0.179 3.337E-05  24 

BE24 0.732 0.804 0.876 3.657E-02  5 

BE25 0.026 0.073 0.120 4.330E-06  26 

BE26 0.271 0.369 0.467 1.771E-03  20 

BE27 0.008 0.050 0.092 7.312E-07  27 

 

 

 

 

 

 

 

 

 



 
 

 
 
 

 

 

Table 18. Fuzzy occurrence probability and FV-I calculations for MCSs 

MCs 

Fuzzy 

occurrence 

Probability 

FV-I Measure 

Index 
Rank 

BE1-BE12 2.197E+04 2.968E-01 1 
BE1-BE11 8.087E+03 1.092E-01 2 
BE1-BE16 6.811E+03 9.203E-02 3 
BE1-BE24 5.827E+03 7.873E-02 4 
BE2-BE12 4.940E+03 6.674E-02 5 
BE1-BE13 4.773E+03 6.449E-02 6 
BE1-BE18 4.280E+03 5.783E-02 7 
BE1-BE19 3.391E+03 4.582E-02 8 
BE1-BE14 2.016E+03 2.724E-02 9 
BE1-BE17 1.978E+03 2.673E-02 10 
BE2-BE11 1.818E+03 2.457E-02 11 
BE1-BE21 1.748E+03 2.362E-02 12 
BE1-BE15 1.642E+03 2.218E-02 13 
BE2-BE16 1.532E+03 2.069E-02 14 
BE2-BE24 1.310E+03 1.770E-02 15 
BE1-BE22 1.238E+03 1.672E-02 16 
BE8-BE12 1.191E+03 1.610E-02 17 
BE9-BE12 1.135E+03 1.533E-02 18 
BE2-BE13 1.073E+03 1.450E-02 19 
BE2-BE18 9.623E+02 1.300E-02 20 

 

 

 



 
 

 
 
 

 

 

 

                              Figure 1. Flow chart of the study 

 



 
 

 
 
 

 

 

 

Figure 2. General distribution of factors according to the main levels of the HFACS 

 

 

 

 

 

 

 

 
 

Figure 3. Distribution of fire-explosion accidents by HFACS sub-categories
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c) 

Figure 4. a) Fault tree analysis structure of fire-explosion accidents, b) Flammable hot surfaces, and c) Sparks and heat sources 

 

 


