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ABSTRACT 
The Plio-Pleistocene of East Africa marks a crucial yet poorly understood period for 

hominin evolution. To better understand hominin activities from this time, the 

environmental substrate on which they resided must first be understood, as changes 

in the environment most likely influenced hominin evolutionary developments. 

Detailed palaeoenvironmental reconstructions throughout East Africa have been 

implemented using multi-proxy approaches to address this. Such records thus far 

are spatially and temporally limited. This thesis aims to rectify this by producing a 

multi-proxy palaeoenvironmental reconstruction of two sites on the Homa 

Peninsula, western Kenya – a novel palaeoenvironmental setting which hosts Plio-

Pleistocene sedimentary sequences containing traces of hominin activity. These 

sites include Nyayanga (~ 2.6 Ma) and Sare River (~ 1.77 Ma).  

The multi-proxy approach implemented in this research encompasses analyses of 

stratigraphy, particle size and phytoliths to reconstruct site sedimentary dynamics, 

depositional environment and palaeovegetation. End-member mixing analysis is 

additionally utilised to ‘unmix’ multimodal particle size distributions and provide more 

detailed information on sedimentary dynamics.  

Nyayanga is interpreted as an alluvial plain environment upon which deposition 

occurred via episodic hyperconcentrated flows and intermittent unconfined fluvial 

flows. During flow hiatuses, secondary processes including fluvial runoff and aeolian 

deposition occurred, as well as stable land surface development. Higher energy 

hyperconcentrated flows became absent from the record throughout time, whilst 

unconfined fluvial activity became more infrequent. This was likely caused by a 

migration of the active sector of the alluvial plain. Bushy grasslands and grassy 

bushlands with infrequent sedges and woodland characterised the landscape during 

this time.  

An alluvial plain is also identified as the depositional environment for sediments at 

Sare River. Intermittent unconfined fluvial activity deposited sediments on gentle 

slopes. This activity became more infrequent throughout time and flow hiatuses, 

characterised by the occurrence of secondary processes and stable land surface 

development, became more frequent. This could be attributed to a migration of the 
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active sector of the alluvial plain, or to aridification at the site. Bushy grasslands with 

infrequent woodland characterised the landscape here. Cosmogenic nuclide dating 

suggests sediments here could be younger than previously thought.  

An interplay of both regional and local tectonics as well as climate drove 

palaeoenvironmental change at both sites. The development of the East African Rift 

System created extensive space for the accumulation of sediment, whilst also 

altering base-level through the formation and destruction of palaeolakes. A variable 

climate regime influenced variations in deposition at Nyayanga. Both sites 

experienced an overall trend towards greater aridity throughout deposition. 

Changes in palaeoclimate at Nyayanga are attributed to the intensification of the 

Northern Hemisphere Glaciation, whilst the development of an intensified Walker 

Circulation is identified as the cause of aridification at Sare River.  

Environmental preferences of Paranthropus at Nyayanga ~ 2.6 Ma are similar to 

those presented at other East African sites. This suggests these hominins inhabited 

or frequented similar depositional settings in open landscapes characterised by 

bushy grasslands with infrequent wooded vegetation. Evidence from Nyayanga 

provides support for the pulsed-climate hypothesis linking environmental change to 

hominin evolution, which suggests that the long term drying trend observed in East 

Africa was punctuated by periods of extreme climate variability in which large lakes 

appeared and disappeared. During these periods evolutionary changes in hominins 

are suggested to have occurred. 

Sediments from Sare River provide support that hominin activity ~ 1.5 Ma thrived in 

open environments characterised by alluvial/fluvial deposition much like other East 

African sites. A trend towards greater aridity and an increase in hominin activity 

throughout the sediments at this site is interpreted. This suggests that hominin 

activity here might provide support for the aridity hypothesis linking 

palaeoenvironmental change to hominin evolution, which suggests progressive 

aridity across Africa initiated grassland expansion and the novel adaptations 

associated with these environments.
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CHAPTER 1.   INTRODUCTION 
1.1. Rationale 

By 2.6 Ma the first widespread hominin use of stone tools, otherwise termed 

Oldowan technology, marked an important evolutionary milestone. With this came 

large mammal butchery, dietary changes and lithic raw material transportation 

(Plummer et al., 1999; 2009a; 2009b; Bishop et al., 2006; Braun et al., 2008; 2009a; 

2009b; Ditchfield et al., 2018; Plumer and Bishop, 2016; Plummer and Finestone, 

2018; Finestone, 2019). Despite this, our understanding of hominin activities and 

behaviour at this time is lacking, due to the existence of only a handful of 

archaeological sites containing both plentiful artefacts and well-preserved fauna 

(Ditchfield et al., 2018). In order to better understand hominin activities and 

behaviour, the environmental substrate on which they resided must first be 

understood, as changes in the environment most likely influenced hominin 

evolutionary developments (Potts, 1994; Plummer et al., 1999; Albert et al., 2015). 

To achieve this, multi-proxy approaches are often employed to form a more robust 

and accurate reconstruction of the palaeoenvironment by utilising an array of 

palaeoenvironmental proxies in conjunction (Ashley & Driese, 2000; Hay & Kyser, 

2001; Albert et al., 2006; 2015; Bamford et al., 2006; Ashley et al., 2009; Deocampo 

et al., 2009). 

Well known sites such as Olduvai Gorge in Tanzania and the Turkana Basin in 

Kenya and Ethiopia, currently act as the main sources of palaeoanthropological data 

from the late Pliocene of East Africa. This has been highlighted as one of the most 

important time periods for evolutionary developments of Hominids (Leakey, 1971; 

Bonnefille, 1984; Fernandez-Jalvo et al., 1998; Ditchfield et al., 1999; Plummer et 

al., 1999; 2009b; Blumenschine et al., 2003; Hernández Fernández & Vrba, 2006; 

Bamford et al., 2006; 2008; Ashley et al., 2010a; Albert et al., 2015). During this 

period, hominins adapted to a shift from C3 (wooded) habitats to larger amounts of 

C4 (grasses) vegetation, most likely caused by global cooling and tectonic uplift 

(Plummer et al., 1999). This information is based on the use of multi-proxy 

approaches at the previously mentioned sites (Kibunjia et al., 1992; Rogers et al., 

1994; Plummer & Bishop, 1994; Behrensmeyer, 1997; Fernandez-Jalvo et al., 1998; 

Andrews & Humphrey, 1999; Potts et al., 1999; Hay & Kyser, 2001; Blumenschine 
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et al., 2003; Hover & Ashley, 2003; Schoeninger et al., 2003; Wynn, 2004; 

Hernández Fernández & Vrba, 2006; Bamford et al., 2006; 2008; Sikes & Ashley, 

2007; Harris et al., 2008; Deocampo et al., 2009; Magill et al., 2013a; 2013b; 2016; 

Albert et al., 2015; Uno et al., 2016b; 2016a). Other localities in East Africa outside 

of Olduvai Gorge and the Turkana Basin have by comparison received considerably 

less attention from palaeoanthropologists. In terms of understanding the behaviour 

of Oldowan tool using hominins, their activities need to be investigated in different 

environmental settings (Potts, 1994; Plummer et al., 1999). 

To learn more about Oldowan hominin activities in a new geographic setting, 

research on the Homa Peninsula, western Kenya was initiated as part of an 

interdisciplinary palaeoanthropological project — the Homa Peninsula 

Paleoanthropological Project (HPPP) (Plummer et al., 1999). By comparing hominid 

activities at different spatial locations, behavioural variability in hominins can be 

assessed (Plummer et al., 1999). As part of the HPPP, significant archaeological 

traces of our hominin ancestors have been uncovered within sedimentary contexts 

coupled with well-preserved fauna. These date back to at least ~ 2.6 Ma BP and 

record novel behaviours in an open environment, rather than in the more wooded 

Oldowan sites (Plummer et al., 1999; Bishop et al., 2006; Plummer & Bishop, 2016; 

Ditchfield et al., 2018). Included within these are traces of Paranthropus sp. and 

abundant lithics spanning the range of the Oldowan Industrial Complex (Finestone, 

2019). 

However, the palaeoenvironment in this region is not well understood, owing to the 

focus on mainly one archaeological site, Kanjera South, where palaeoenvironmental 

interpretations are limited to field-based sedimentary investigations, isotopic 

analysis of pedogenic carbonates, and more recently, particle size analysis 

(Behrensmeyer et al., 1995; Plummer et al., 2009a; Plummer & Bishop, 2016; 

Ditchfield et al., 2018;). Thus there is a clear need to further develop and refine 

palaeoenvironmental reconstructions in this geographical area. 

1.2. Research aims and objectives 

The Homa Peninsula contains significant Oldowan archaeology in a novel 

palaeoenvironmental setting, which is positioned within a poorly understood 

temporal period in East Africa. For this reason, it is essential that hominin activities 
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and their associations with the environment here are better understood. To achieve 

this, the palaeoenvironment must first be reconstructed. 

As part of the HPPP, the role this thesis is to improve the understanding of the 

palaeoenvironment in which archaeological occurrences are found across the Homa 

Peninsula. The research here specifically aims to build a palaeoenvironmental 

reconstructions of two new sites, Nyayanga and Sare River, through the utilisation 

of a multi-proxy approach. This encompasses analyses of stratigraphy, particle size 

and phytolith assemblages. By refining the resolution of reconstructions here, our 

understanding of hominin behaviours and activities in different environmental 

settings will be enhanced, and the palaeoenvironment of the Homa Peninsula will 

be comparable with better known East African sites (Ditchfield et al., 1999; Plummer 

et al., 1999; 2009a; Blumenschine et al., 2003; Ashley et al., 2010a). This will be 

achieved through completion of the following objectives: 

1. Reconstructing the sedimentary dynamics and depositional environment at 

both sites 

2. Reconstructing the palaeovegetation at both sites 

3. Identifying the driving mechanisms of palaeoenvironmental change on the 

Homa Peninsula by analysing changes in (1) and (2)  

4. Resolving the environmental factors driving palaeoenvironmental evolution 

and determining the relationship between hominin activity and 

palaeoenvironmental change. 

1.3. Thesis structure 

In Chapter 2, the geographical location of the study sites is introduced and their 

climatic, environmental and geological settings are described. Research findings 

from previous work on the Homa Peninsula are synthesized.  

Chapter 3 reviews literature surrounding East African palaeoenvironmental records 

from the Miocene to the Pleistocene and its relationship with hominin activity. 

Reconstructive techniques are identified and evaluated. Driving mechanisms of 
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palaeoenvironmental change are also outlined and evaluated, as well as major 

climate transitions.  

Chapter 4 outlines the methods/proxies that are used to reconstruct the 

palaeoenvironment of the study sites. Each method is reviewed in terms of its 

usefulness to palaeoenvironmental reconstructions and specifically to this study. 

Methodological approaches are detailed for each technique, as well as the 

laboratory technique and data analysis.  

In Chapter 5, the results for each method applied in this research are presented 

and described. Based on these results, sediments are divided into different units 

based on their lithofacies. Some of these units are further divided into subunits. 

Subsequently, a table of lithology is presented summarising the characteristics of 

each sedimentary unit based on the results. Results are first presented for the 

Nyayanga study site and subsequently for the Sare River site.  

Chapter 6 makes interpretations based on the results presented in the previous 

chapter, beginning with the Nyayanga study site and followed by the Sare River site. 

It begins by attributing end-members to transport/depositional mechanisms and 

sediment sources, based on the end-member characteristics and evidence from the 

other methods applied at each site. Following this, the palaeoenvironment is 

interpreted for each sedimentary unit identified at the two sites. 

Palaeoenvironmental evolution at each site is then discussed subsequently to this, 

based on the changes observed through each of the sedimentary units. Driving 

mechanisms for palaeoenvironmental change at each site are then discussed. To 

conclude, the relationship between hominin activity and the palaeoenvironmental 

substrate at both sites on the Homa Peninsula is discussed, as well as the impact 

that changes in palaeoenvironmental settings may have had on such activity. 

The overall findings of this thesis are presented in Chapter 7.
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CHAPTER 2.   STUDY SITES 
2.1. Introduction 

Within this chapter, the geographical location of the study sites will be introduced, 

including their climatic, environmental and geological settings. Research findings 

thus far on the Homa Peninsula will also be synthesized herein. 

2.2.  Location, Geology and Geoarchaeology 
2.2.1.  The Homa Peninsula 

The Homa Peninsula is located in western Kenya on the southern shores of the 

Winam Gulf of Lake Victoria (Figure 2.1) in the Nyanza Province of the East African 

Rift Valley (EARV), an elongate EW to NE – SW fault bounded rift-system which 

emanates from the Kenya dome (Pickford, 1982; Behrensmeyer et al., 1995; 

Ditchfield et al., 1999; Plummer et al., 1999; Bishop et al., 2006). The rift stretches 

133 km long east of Lake Victoria, with a width of approximately 25 – 50 km 

(Behrensmeyer et al., 1995). Located on this peninsula are the two study sites that 

form the basis for this research: Nyayanga (0º 23’ 55.597” S, 34º 27’ 5.767” E) and 

Sare River (0º 24’ 33.239” S, 34º 37’ 4.580” E), as well as the previously studied site 

of Kanjera South (Figure 2.1). 

The geologic context of the Homa Peninsula is described extensively by various 

authors (Pickford, 1984; Plummer & Potts, 1989; Behrensmeyer et al., 1995; 

Plummer et al., 1999; Ditchfield et al., 1999). The peninsula is dominated by the 

Homa Mountain carbonatite complex (Figure 2.1), formed of intrusive volcanic 

masses on a foundation of shattered and fenitized Nyanzian rocks (Behrensmeyer 

et al., 1995). Doming of Homa Mountain began between 10 – 11 Ma and continued 

until ~ 5 Ma, with the latest dated episode being at 1.3 ± 0.1 Ma (Le Bas, 1977; 

Pickford, 1984; Behrensmeyer et al., 1995) . Contemporary thermal activity is limited 

to hot springs at various sites on the peninsula (Behrensmeyer et al., 1995).  

The geology in the immediate vicinity of Homa Mountain includes Homa carbonatite, 

Homa phonolite, Homa ignimbrite, Homa limestone, and fenitized Nyanzian (Braun 

et al., 2008; Finestone, 2019). Homa Mountain acts as a radial drainage system for 

the peninsula, and from 6 Ma throughout the Pleistocene, fluvial-lacustrine 

sediments were deposited on its flanks (Behrensmeyer et al., 1995; Ditchfield et al.,  
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Figure 2.1:The Homa Peninsula, located in western Kenya on the southern shores of the Winam Gulf of Lake Victoria. 

The position of the two study localities (Nyayanga and Sare River) and Kanjera South (focus of previous work) are 

highlighted, as well as Homa Mountain. A 30 m digital elevation model (DEM) is overlayed to illustrate topographic 

variations across the peninsula (DEM data source credited in figure) 

1999; Plummer et al., 1999; Braun et al., 2008). Extensive geological mapping, 

geochemical analyses (Energy Dispersive X-ray Fluorescence [ED XRF]) and 

conglomeratic surveys revealed that the drainage system across the peninsula is 

predominantly comprised of material from the carbonatite complex, indicating this is 

the primary sediment source (Braun et al., 2008; Finestone, 2019).  

The geology associated with the carbonatite complex on the peninsula as well as 

its drainage system is divided from the surrounding geological provinces by the 

Samanga fault (Figure 2.2), which has existed since the Pliocene (Le Bas, 1977; 

Braun et al., 2008; Finestone, 2019). These provinces include Nyanzian rhyolites, 

Oyugis granite, Nyanzian chert, Bukoban quartzite, Bukoban felsite, and Bukoban 

basalt (Braun et al., 2008; Finestone, 2019). Material from these sources are found 

in the Awach drainage system which flows towards the peninsula from the east 

before being diverted either side of the peninsula due to faulting and uplift 

associated with the doming of Homa Mountain (Braun et al., 2008; Finestone, 2018).  
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Figure 2.2:The geological provinces surrounding the Homa Peninsula. Figures from Braun et al. (2008). Figure A shows 

the provinces surrounding Homa Mountain. Figure B shows the provinces to the east of the Samanga fault, which is also 

displayed on both images 

2.2.2. Nyayanga 

The Nyayanga study site is located west of Homa Mountain (Figure 2.1), 

characterised by faulting and fluvial incision into clays, silts and sands which has 

shaped a 40,000 m2 westward facing amphitheatre, where well-stratified beds can 

be observed in a ~ 16 m thick sequence. Elevation can be seen to steeply decrease 

from east to west here (Figure 2.3), with Homa Mountain acting as the only sediment 

source for the site. Vegetation here can be described as an open wooded grassland. 

Shrubs and grasses are most common, although wooded vegetation is present. 

Much of the surrounding vegetation is now farmland.  
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Figure 2.3: Geological trenches (GT) and excavations (EXC) at Nyayanga (satellite imagery credited in figure). The 

position from which the site photograph displayed in Figure 2.4 is also highlighted.. A difference in elevation of ~ 600 m 

can be observed between Homa Mountain and Nyayanga  

Current chronology at the site is based upon biostratigraphy and 

magnetostratigraphy, placing the deposits at 3.05 – 2.595 Ma in age (Finestone, 

2019). Resultantly, evidence of hominin activity here is of great significance 

(Plummer, pers. comms.). From 2015 to 2017 six excavations and nine geological 

trenches were laid out at Nyayanga (Figure 2.3 & Figure 2.4). 402 artifacts were 

discovered across the site as well as fossil taxa with cut marks and percussion 

damage. Of these, 227 artifacts were found on the surface, whilst 175 were found 

in situ in excavations. Two hominin teeth were also uncovered at the site, 

determined to be Paranthropus sp. molars based on size and overall morphology 

by Professor Shara Bailey. Identification to species level was unavailable based on 

the isolated teeth alone.  

Excavation 3 (25 m2) (Figure 2.5) yielded the largest abundance of artifacts and 

fauna, including 116 artifacts spatially associated with fossil taxa. Notably, a 

Paranthropus sp. molar (Figure 2.6) and a fossil Hippopotamidae were part of the 

assemblage and were found in close proximity to stone tools. These included flakes,  



 

 9 

 
Figure 2.4: A ~ 150 m panoramic site photograph taken by the author in 2016 from the point displayed in Figure 2.3 

facing southwest (0° 23' 54.384'' S, 34° 27' 8.273'' E). Geological trenches and excavations placed in the main 

amphitheatre of the Nyayanga locality are highlighted. Geological trenches placed further up the canyon cannot be seen 

in this picture. Vegetation here can be described as an open wooded grassland 

cores, a hammerstone and several manuports (Figure 2.7). Excavation 1 (9 m2) and 

Excavation 2 (10 m2) revealed no artifacts, whilst Excavation 4 (4 m2), 5 (10 m2) and 

6 (3 m2) uncovered further artifacts in association with fauna.  

Artifacts from Nyayanga include both fresh and weathered specimens, and are 

composed of Bukoban quartzite (27.4%), vein quartz (23.6%), fenitized rhyolite 

(22.9%) and Nyanzian rhyolite (17.7%) (Finestone, 2019). Durable lithologies were 

selected for flake production here, some of which were not locally available, 

suggesting that hominins travelled a distance of at least 2 – 4 km to access the 

lithologies to the southeast unrelated to the Homa Mountain carbonatite complex 

 
Figure 2.5:Photograph of Excavation 3 (0° 23' 54.384'' S, 34° 27' 8.2728'' E) at Nyayanga taken by the author facing 

east. A fossil Hippopotamidae can be seen the bottom left of the image 
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Figure 2.6:Photograph of a Paranthropus sp. molar retrieved from Excavation 3 at Nyayanga taken by Prof. Tom 

Plummer in 2016 

(Finestone, 2019). This might be explained by the comparably soft/flawed lithologies 

available in local conglomerates, which is why hominins travelled further to procure 

higher quality materials (Finestone, 2019). However, this record indicates greater 

selectivity and transport than existing knowledge from other early Oldowan 

occurrences (Finestone, 2019).  

 
Figure 2.7:Photograph of the examples of in situ artifacts surrounding a fossil hippopotimidae in Excavation 3 at 

Nyayanga taken by Prof. Tom Plummer in 2016 
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2.2.3. Sare River 

The Sare River study site (Figure 2.1 & Figure 2.8) is located ~ 55 km east of Homa 

Mountain and most likely dates to the Early Stone Age of East Africa based upon 

the fossil assemblage. The sedimentary sequence here reaches up to 7 m in 

thickness and is exposed for over 2 km with no evidence of disturbance. The 

highlands to the southeast at Nyamira act as the primary sediment source for Sare 

River.  

Highly weathered granite bedrock makes up the base of this sequence, which is 

overlain by a ~ 1 – 2 m thick palaeosol, a ~ 1 – 2 m volcanic tuff, and capped by a 

further palaeosol (Figure 2.9). Magnetostratigraphy has indicated a normal to 

reversed polarity in the lower unit, with reversed polarity persisting through the upper 

units (Finestone, 2019). The overlying tuff, termed the 'Orio tuff', has been 

suggested to coincide with the late Pliocene/early Pleistocene depositional events 

that occurred in the vicinity of Homa Mountain (Le Bas, 1977). This places the upper 

palaeosol just above the Olduvai subchron, indicating they are just younger than ~  

 
Figure 2.8: The Sare River study site (satellite imagery credited in source). Excavation locations and the number of 

artifacts uncovered in each are highlighted. The location of sampling for cosmogenic nuclide dating is also displayed. 

The position from which the site photograph shown in Figure 2.9 is also shown. Elevation surrounding Sare River can be 

seen to steeply decrease from southeast to northwest in the DEM (data source credited in figure) 
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1.77 Ma (Sier et al., 2017; Finestone, 2019). Analysis of stable isotopes of 

pedogenic carbonates is ongoing here, and has suggested that the 

palaeoenvironment may have been that of a heterogeneous landscape consisting 

of dense woodlands and wooded grasses (Plummer, pers. comms.). 

Between 2015 and 2017, five excavations were laid out at Sare River across a 250 

m transect primarily targeting the upper palaeosol (Figure 2.9), although the lower 

palaeosol also contains a conglomerate in which artefacts and quartzite cobbles can 

be found in a sandy matrix. Excavations 2 – 5 were 2 m2 in size, whilst excavation 

1 was 12 m2 in size. Together these excavations yielded nearly 2000 in situ artifacts 

(Figure 2.10) which were all fresh, whilst no faunal remains were uncovered 

(Finestone, 2019). Artifact density was variable between excavations, with 

excavation 1 preserving a considerably denser accumulation of artifacts (143.3/m2) 

than excavations 2 (5.5/m2), 3 (5.5/m2), 4 (30/m2) and 5 (21/m2). This suggests that 

this location was a hotspot for hominin activity and that they favoured specific 

locations for activities utilising stone tools (Finestone, 2019). Stone tools at Sare 

River were primarily composed of quartz (84%), which was readily available from 

local conglomerates (Finestone, 2019). The differences between transport 

difference of raw materials at Nyayanga and Sare River likely relates to the quality 

and availability of high quality raw materials, which were more abundant at Sare 

River (Finestone, 2019).  

 
Figure 2.9:Site photograph displaying the upper palaeosol at Sare River taken by the author in 2017 from the position 

shown in Figure 2.8 facing south (0° 24' 33.2388'' S, 34° 37' 4.5804'' E). The contemporary vegetation here is notably 

denser, with trees being much more frequent than Nyayanga. 
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Figure 2.10: Photograph taken by Prof. Tom Plummer in 2017 displaying an example of artifact scatter in Excavation 1 

at Sare River 

2.2.4. Previous work: Kanjera South 

Kanjera South (Figure 2.1) hosts the only other record of Oldowan archaeology on 

the Homa Peninsula aside from Nyayanga and Sare River (Oswald, 1914; Leakey, 

1935; Boswell, 1935; Plummer & Potts, 1989; Behrensmeyer et al., 1995; Plummer 

et al., 1999; 2009a; Bishop et al., 2006; Plummer & Bishop, 2016;). It is home to the 

recovery of the first monkey fossils found in East Africa (Oswald, 1914), as well as 

the recovery of modern hominin fossils (Leakey, 1935; Behrensmeyer et al., 1995; 

Ditchfield et al., 1999). Based on the artefactual and faunal assemblage in the 

sequence, the hominin fossils were suggested to be of a middle Pleistocene age 

(Leakey, 1935; Behrensmeyer et al., 1995). However, this age was contested by 

claims that sediment slumping had caused bones and artefacts of different ages to 

become mixed (Boswell, 1935; Kent, 1942), thus adding controversy to the 

provenance of the hominin finds (Behrensmeyer et al., 1995).  

The sediments at Kanjera South were first described as a tripartite series of beds, 

with a greenish tuff with ash at the base, overlain by a middle group of clays with 

limestone and an upper bed of clay, believed to be middle Pleistocene in age (Kent, 

1942). Following this, a number of studies refined the geology and palaeontology of 

the locale and sampling for magnetostratigraphy was initiated (Saggerson, 1952; 
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Pilbeam & Gould, 1974; Le Bas, 1977). Five units were outlined and were suggested 

to be early/middle Pleistocene in age (Pickford, 1984; 1987). 

Later work defined six units (Table 2.1) within the sequence at Kanjera South (KS1 

– 6) (Behrensmeyer et al., 1995). Sampling for magnetostratigraphy and 

biostratigraphy identified that deposition of sediments occurred ~ 2.3 Ma in the late 

Pliocene (Plummer & Potts, 1989; Ditchfield et al., 1999; Plummer et al., 1999). 

Moreover, evidence of sediment slumping previously identified (Boswell, 1935) was 

not observed; sediments were shown to be preserved in good stratigraphic context 

(Behrensmeyer et al., 1995; Ditchfield et al., 1999). Subsequently, taphonomically 

controlled excavations have taken place here as part of the HPPP (Bishop et al., 

2006), with a number of excavations and geological trenches being placed, on which 

an interdisciplinary team of archaeologists, palaeontologists and geologists have 

since worked (Behrensmeyer et al., 1995; Ditchfield et al., 1999; Plummer et al., 

1999; 2009a; Bishop et al., 2006; Braun et al., 2008; 2009b; 2009a; Ferraro et al., 

2013; Lemorini et al., 2014; Plummer & Bishop, 2016). 

Over 4400 artifacts as well as thousands of faunal remains have been uncovered at 

the site across three excavations: Excavation 1 (169 m2), Excavation 2 (15 m2), and 

Excavation 5 (4 m2) (Plummer et al., 2009a; 2009b; Finestone, 2019). Artifacts are 

composed of durable materials including quartz, quartzite, basalt, felsite, chert and 

granite and reflect hominin preference for hard and easily-flaked materials (Braun 

et al., 2008; 2009a; 2009b; Finestone, 2019). Although much of the assemblage is 

composed of locally sourced materials (70%), exotic artifacts also make up a 

noteworthy proportion (30%). This again points to hominins selecting for high-quality 

durable materials and travelling greater distances to acquire them (Braun et al., 

2008; 2009a; 2009b; Finestone 2019). 

Reconstructions of the palaeoenvironment at Kanjera South have been based on 

field investigations and isotopic data from pedogenic carbonates, palaeosol 

carbonates and tooth enamel (Behrensmeyer et al., 1995; Ditchfield et al., 1999; 

2018; Plummer et al., 2009a; Plummer & Bishop, 2016). Deposition generally took 

place in alluvial and lake marginal environments on a grassy plain, between wooded 

slopes and a permanent water body (Behrensmeyer et al., 1995; Ditchfield et al., 

1999; 2018; Plummer et al., 2009a; Plummer & Bishop, 2016). More detailed 



 

 15 

descriptions of the palaeoenvironment for each bed at Kanjera South have been 

made (Behrensmeyer et al., 1995; Ditchfield et al., 1999; Plummer et al., 2009a; 

Plummer & Bishop, 2016); this information is summarised in Table 2.1. 

 
Table 2.1: Bed descriptions and palaeoenvironmental interpretations published previously for Kanjera South, including 

Behrensmeyer et al. (1995), Ditchfield et al. (1999; 2018), and Plummer et al. (2009)  

 

2.3. Contemporary climate and vegetation 
2.3.1.  Climate 

East African climate is complex and influenced by a variety of factors; Kinyanjui 

(2012) gives a detailed overview of these. The main influences on East African 

climate appear to be: the movement of the Inter-Tropical Convergence Zone (ICTZ); 

the El Niño-Southern Oscillation (ENSO); disturbances in monsoon trade winds; 
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changes in Sea Surface Temperature (SST); and large scale atmospheric weather 

patterns (Kinyanjui, 2012). 

The ITCZ (a low-pressure belt) migrates from south to north and vice versa, forming 

sub-tropical high pressure cells. Consequently, high rainfall belts are created 

corresponding to the area of maximum insolation and spanning the distance of the 

tropics, causing significant climate variation within this area, due to latitude, distance 

from the coast, and topography (Mutai & Ward, 2000; Marchant et al., 2007; 

Kinyanjui, 2012). The migration of the ITCZ is most likely also the cause for the two 

rainy seasons that characterise the eastern Rift Valley, occurring from March to 

June and from October to December. The intervening climate is arid/dry. Periods of 

maximum rainfall follow the latitudinal position of the ITCZ with a lag of ~ 4 weeks, 

although maximum surface temperatures appear to follow periods of maximum solar 

radiation (Kinyanjui, 2012; Nicholson, 2018). 

Additionally, disturbances in the monsoon and trade winds, changes in the sea 

surface temperature (SST) and large scale atmospheric weather patterns all cause 

variability in inter-annual rainfall variability (Mutai & Ward, 2000; Kinyanjui, 2012; 

Nicholson, 2018). Moist westerly winds originating from the South Atlantic through 

the Congo basin during the austral winter also influence rainfall variability in the 

western part of East Africa, as well as the rainy seasons (Bergner et al., 2003). 

The El Niño-Southern Oscillation (ENSO) also influences climate, particularly in the 

eastern rift valley. Periods of high rainfall are most likely associated with warm 

ENSO events, and vice versa (Mutai & Ward, 2000; Kinyanjui, 2012). The complex 

topography of this region also results in a highly diverse set of mean rainfall totals, 

with highlands receiving ~ 1000 – 1500 mm of mean annual rainfall, and lowlands 

receiving only ~ 250 – 500 mm. The mountain ranges surrounding the central rift 

valley also act as an orographic barrier producing a rain shadow effect that results 

in irregular rainfall throughout the long rainy season between March and May ( Mutai 

& Ward, 2000; Kinyanjui, 2012). 

The Homa Peninsula receives an average of ~ 11,400 mm of precipitation annually, 

and has a temperature of 24⁰C (Le Bas, 1977; Behrensmeyer et al., 1995). Although 

classified as a tropical climate, rainfall in the region is erratic and prolonged droughts 
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are a common feature of the climate, which can result in widespread fires (Edwards, 

1940). 

2.3.2.  Vegetation 

Edwards (1940) provides an overview of the vegetation throughout Kenya. Edwards 

characterises the area surrounding Nyayanga as an ‘Acacia-tall grass savannah 

and open grassland’. However, Nyayanga has been subject to agricultural practice, 

and so the vegetation in the immediate vicinity of this locality differs slightly from the 

wider description. Despite this, the vegetation here and in the surrounding area is 

described as having an even cover of grass approximately 120 cm in height, with 

trees widely spaced apart (~ 15 m) and varying in height (~ 3 – 15 m), or even non-

existent. The most frequently occurring trees are species of Acacia, but Euphorbia 

and other succulents are also present of which are seen frequently. The most 

characteristic species include: A. stenocarpa, A. abyssinica, A. hebecladoides, A. 

drepanolobium, A. lahai, A. pennata, A. seyal and A. xanthophloea.  

At higher altitudes, Acacia become less important to the vegetative composition, 

and their place is most commonly taken by sclerophyllous bush. The grass 

component of the vegetation is made up of tall grass that appears to have almost 

complete cover, but is relatively open at its base. Grasses are comprised mainly of 

Themeda trianda, Pennisetum masaicum, Eragrostis spp., Hyparrhenia spp., 

Andropogon spp., Setaria spp., Panicum spp., and more commonly in drier areas, 

Pennisetum stramineum and Digitaria sp. aff. D. nodosa. In localised areas such as 

near streams and on ancient lake beds, species of Cynodon also occur. Legumes 

are particularly infrequent, occurring mainly as Indigofera and Crotalaria. Burning 

has also significantly altered the vegetation throughout the region; burning is 

performed by pastoral tribes, degrading large portions of evergreen thicket and 

allowing species of Acacia to invade. On the upper slopes of the Homa Mountain 

however, evergreen woodland and bushes are largely undisturbed by human 

activity. 

The vegetation at Sare River differs to that of the vegetation found near Nyayanga 

(Figure 2.9). Edwards (1940) characterises this area as a high moisture savannah, 

forming under higher rainfall amounts. Thickly scattered trees ~ 3 – 5 m in height 

along with tall grasses ~ 1.5 – 2.5 m high. Similar to the previous vegetation type 
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described, Acacia are a frequently important feature of the vegetation, although 

broad-leafed trees appear more often. Of these, frequently appearing types include 

Combretum, Terminalia, Ficus, and Faurea. The herbage is made up primarily of 

Themeda triandra, Hyperrhenia spp., and Cymbopogon spp.. Some of the most 

common grasses in this vegetation type are Chloris gayana, Setaria trinervia, 

Trichopteryx kagerensis, Digitaria diagonalis, Beckeropsis uniseta, Paspalum 

scrobiculatum, and Cynodon spp.. 

2.4. Summary 

This chapter has presented an overview of the study sites, including their 

geographical, geological and archaeological characteristics. Additionally, the 

contemporary climate and vegetation has also been overviewed. Previous research 

in the study region has also been summarised here. 



 

 19 

CHAPTER 3.   LITERATURE 
REVIEW 
3.1. Introduction 

To fully understand the complex nature of hominid activities and behaviour, it is 

essential that the environmental substrate and general character of the landscape 

they occupied is fully understood ( Plummer et al., 1999; Albert et al., 2015). Such 

an understanding is paramount when determining how changes in the environment 

shaped human evolution and the emergence of key hominin traits, if at all ( Reed, 

1997; Potts, 1998; 2013). For this reason, hominid activities in varied geographic 

settings have been, and remain under investigation by palaeoanthropologists (Potts, 

1998; 2013; Plummer et al., 1999). The East African Rift System (EARS) has been 

the focus of such investigations, owing to its extensive stratigraphic sequences that 

preserve records of human evolution, as well as a suite of palaeoenvironmental 

indicators (Potts, 2013) spanning from the late Miocene to the early Pleistocene.  

This chapter reviews literature surrounding East African palaeoenvironmental 

records from the Miocene to the Pleistocene and its relationship with hominin 

activity. The effect of palaeoenvironmental change on hominin evolution in East 

Africa is first reviewed. Reconstructive techniques are then identified and evaluated. 

Driving mechanisms of palaeoenvironmental change are also outlined and 

evaluated, as well as other major climate transitions. 

3.2. The effect of palaeoenvironmental change on 
Hominin evolution in East Africa 

At present, it is widely accepted that all the main stages in human evolution occurred 

primarily in East Africa, despite the existence of the World Heritage Site in South 

Africa, the Cradle of Humankind (Dirks and Berger, 2013) and the appearance of 

the genera Sahelanthropus (Brunet et al., 2002). The earliest specimens for each 

of the main genera were found in the EARS. Four stages of human evolution are 

apparent in the fossil record. These include: 1) the appearance of the first proto 

hominins around 7 – 4 Ma, attributed to the genera Sahelanthropus, Orrorin and 

Ardipithecus, 2) the appearance of the Australopithecus genus at ~ 4 Ma and of the 

robust Paranthropus genus ~ 2.7 Ma, 3) the appearance of the genus Homo 
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between 2.5 and 1.8 Ma and 4) the appearance of anatomically modern humans 

around 300 ka (Stern & Susman, 1983; Hopf et al., 1993; Leakey et al., 1995; Senut 

et al., 2001; Antón, 2003; Bramble & Lieberman, 2004; Haile-Selassie et al., 2004; 

White et al., 2009; Cerling et al., 2010; 2013; Roach et al., 2013; Maslin et al., 2014; 

Gibbons, 2017). These are summarised in Figure 3.1. 

The notion that human evolutionary changes have been caused by extrinsic forces, 

which in this case are changes in their surrounding environment, is one that has 

received much attention (Vrba, 1985; deMenocal, 1995; Potts, 1996; 1998; 2013; 

Trauth et al., 2005; 2010; Maslin et al., 2014). A number of hypotheses have been 

proposed to explain this relationship; the most prominent of these include: 1) the 

turnover-pulse hypothesis (Vrba, 1985), 2) the aridity hypothesis (deMenocal, 

1995), 3) the deep-lakes hypothesis (Trauth et al., 2005; 2010), 4) the variability 

selection hypothesis (Potts, 1996; 1998; 2013), and 5) the pulsed variability 

hypothesis (Maslin et al., 2014). These are summarised in Table 3.1: The differing 

hypotheses linking hominin evolution to palaeoenvironmental change in East Africa. 

An explanation for each theory is given as well as the authors that have proposed 

them; a more detailed review of each of the hypotheses is provided by Maslin et al. 

(2014).  

An environmental theory of hominin evolution not discussed above is that of the 

savannah hypothesis (Lewin and Foley, 2004; Maslin et al., 2014). This suggests 

that with the reduction in tree cover and the emergence of savannahs, hominins 

were forced to descend from the trees of their preferential wooded habitats and 

adapt to life on the savannah (Lewin and Foley, 2004; Bender et al., 2012; Maslin 

et al., 2014). The primary adaptation associated with this is the emergence of 

bipedalism (Lewin and Foley, 2004). This theory later developed into the aridity 

hypothesis (discussed above), in which the long-term trend towards aridity and the 

expansion of the savannah associated with this was the major driver hominin 

evolution (deMenocal, 1995; 2004; Reed, 1997; Maslin et al., 2014). Moreover, the 

savannah hypothesis has been challenged since the discovery of Orrorin, which 

displays features suggesting that it was a part time tree-dweller, but was also 

bipedal when on the ground prior to the expansion of open savannah environments 

(Senut et al., 2018). 
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Figure 3.1:Timeline of significant developments in human evolution throughout East Africa (Stern & Susman, 1983; Hopf et al., 1993; Leakey et al., 1995; Senut et al., 2001; Antón, 2003; 

Bramble & Lieberman, 2004; Haile-Selassie et al., 2004; White et al., 2009; Cerling et al., 2010; 2013; Roach et al., 2013; Maslin et al., 2014) 
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Table 3.1: The differing hypotheses linking hominin evolution to palaeoenvironmental change in East Africa. An explanation for each theory is given as well as the authors that have proposed 

them 

Hypothesis Theory Sources 

Turnover-

Pulse 

The idea that global cooling between 2.8 – 2.4 Ma had a significant influence on habitat change across Africa. 

This coincides with the emergence of Homo, Paranthropus, stone toolmaking, and other African mammalian 

evolutionary changes (eg. speciation pulse in bovids). The hypothesis refers to a concentration of speciation 

and extinction events within a narrow temporal window, forced primarily by changes in the environment. 

 

Vrba, 1985 

Aridity Progressive aridity across Africa initiated grassland expansion and the novel adaptations associated with these 

environments. Fragmentation of pre-existing habitats also promoted directional selection and population 

vicariance, which in turn resulted in speciation. 

 

deMenocal, 

1995; 2004 

Deep-Lakes Occurrence of deep expansive lakes during major humid periods, more specifically at 2.7 – 2.5 Ma, 1.9 – 1.7 

Ma and 1.1 – 0.9 Ma, within which key events in hominin evolution took place. The periodic formation of these 

lakes is thought to have been precessionally-driven, causing the dispersal of hominins, which resulted in 

speciation and adaptive changes, as well as an increase in cranial capacity. 

 

Trauth et al., 

2007; 2010 

Variability Environment instability resulted in its temporal and spatial variability, consequently shaping the adaptations 

observed in hominins and other biota. This is because adaptable behavioural and morphological mechanisms 

may have been selected for during periods of extreme environmental variability, explaining how organisms 

developed the capacity to adjust to novel habitats that were introduced as a result of environmental variability 

or population dispersal. 

 

Potts, 1996; 

1998; 2013 

Pulsed 

Climate 

Hypothesis that the long term drying trend observed in East Africa was punctuated by periods of extreme 

climate variability, much like a combination of the variability selection hypothesis and the aridity hypothesis. 

During these periods, large deep lakes appeared and disappeared, with their fluctuations controlled by 

precessional forcing. It is during these periods that evolutionary change is suggested to occur, including 

speciation and dispersal events. 

 

Maslin & 

Trauth, 2009 
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It has also been hypothesised that active tectonics have been a key driving factor 

in hominin evolution (King and Bailey, 2004). With the EARS being one of the largest 

and most consistently active tectonic structures in the world, as well as being the 

home to some of the most extensive fossiliferous and archaeological material 

associated with hominin evolution, a relationship between the two has been subject 

to closer investigation (King and Bailey, 2004). It is suggested that active tectonics 

created topographically complex landscapes which allowed hominins to seek refuge 

or gain tactical advantages against predators or prey in largely open environments, 

where they would otherwise be considered as relatively defenceless species (King 

and Bailey, 2004). Moreover, active tectonics shaped widely variable landscapes, 

and so it is proposed that these differing environments encouraged the development 

of adaptational behaviors and potentially speciation (King and Bailey, 2004). 

Tectonic activity is widely considered to be one of the primary drivers of 

environmental change throughout East Africa and is discussed later in section 

3.4.1.. 

3.3. Palaeoenvironmental records throughout East Africa 
(Miocene – Pleistocene) 

Extensive research has been carried out to provide detailed palaeoenvironmental 

evidence from hominin occupation areas (Table 3.2). Although lacking in spatial 

extent, the number of such palaeoenvironmental records is increasing (Maslin et al., 

2014). Some of the most detailed palaeoenvironmental records are from Omo-

Turkana, Olduvai Gorge, Laetoli, Hadar, Olorgesaillie and the Homa Peninsula 

(Table 3.2 and references therein). East African palaeoenvironment change from 

the Miocene to Pleistocene is extremely complex, undergoing changes in 

characteristic environments, vegetation structure and climate (Table 3.2). This will 

be discussed in this section, as well as the methods of palaeoenvironmental 

reconstruction utilised at different geological formations. 

3.3.1. Palaeoenvironmental interpretations 

Table 3.2 shows that the most common environment of deposition amongst sites is 

generally represented by alternating phases of both lacustrine and fluvial deposition 

in floodplain and marginal lacustrine environments. Alluvial deposition is also 

apparent in some formations (Mursi fm., Nachukui fm., Kanjera South fm.), although 
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this is less frequent than other modes of deposition. Variations in these 

environments are most likely owed to the extreme climate variability experienced in 

East Africa throughout the Plio-Pleistocene, which is observed in isotopic and lipid 

biomarker records (Cerling & Hay, 1986; Cerling et al., 1988; Wynn, 2004; Levin et 

al., 2004; 2011; Sikes & Ashley, 2007; Cerling et al., 2011a; Magill et al., 2013a; 

2013b), pollen records (Bonnefille, 1976; 1984; 2010; Bonnefille & Dechamps, 

1983; Bonnefille & Riollet, 1987) and other sources (Bamford, 2005; 2011b; 2011a; 

2012; Owen et al., 2008; 2009; Andrews & Bamford, 2008; Deocampo et al., 2009; 

Deocampo & Tactikos, 2010; Rossouw & Scott, 2011; Albert et al., 2015;). 

Lake level fluctuations are also apparent in many formations, indicating frequent 

transgressions and regressions, further highlighting the variability in wet/dry phases 

experienced throughout the Plio-Pleistocene (Brown & Feibel, 1991; Hay & Kyser, 

2001; Ashley, 2007; Lepre et al., 2007; Campisano & Feibel, 2008; Deocampo et 

al., 2009; Magill et al., 2013b; Ashley et al., 2014a). Some of the most noticeable 

lake level fluctuations are recorded between 1.9 and 1.7 Ma at Koobi Fora (Brown 

& Feibel, 1991; Lepre et al., 2007) and Olduvai Gorge, with those at Olduvai being 

attributed to precessional forcing (Hay & Kyser, 2001; Ashley, 2007; Deocampo et 

al., 2009; Magill et al., 2013b; Ashley et al., 2014a). However, tectonics also 

possess the ability to impact lake conditions through the alteration of wider 

catchment and drainage networks, as well as lake morphology (Bergner et al., 2009; 

Trauth et al., 2010; Olaka et al., 2010; Feibel, 2011; Maslin et al., 2014). 

Vegetation structure among the formations appears to generally follow a mosaic 

type environment dominated by wooded grasslands or grassy woodlands, before 

having an overall increase in the abundance of grasslands as time goes on, 

particularly C4 grasslands (Table 3.2). This most likely relates to the progressive 

aridification experienced throughout the Plio-Pleistocene of East Africa (deMenocal, 

1995; 2004). This aridification could be linked to the expansion of C4 grasslands, 

leading environments to become gradually more open over time, as shown in these 

palaeoenvironmental records (Tipple & Pagani, 2007; Ségalen et al., 2007; Edwards 

et al., 2010).  
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Table 3.2: Significant locations containing geological formations (fm) that preserve hominin bearing sediments dating from the Miocene to the Pleistocene in East Africa. An overview of the 

palaeoenvironment interpreted at each formation is given, as well the methods used for palaeoenvironmental reconstruction 

Location and associated fossils 
Associated time period and palaeoenvironmental 

description 
Methods References 

Omo-Turkana, 

Kenya/Ethiopia 

 

(Australopithecus 

anemensis, 
Australopithecus 

afarensis, 
Paranthropus 

Boisei, 

Paranthropus 

aethiopicus, Homo 

habilis, Homo 
rudolfensis, Homo 

erectus, 

Kenyanthropus 

platyops) 

Nawata fm. 

Miocene: Heterogeneous environments, including forest, 

woodland and grassland in proximity to a broad river, with 

conditions becoming more open about 6.5 Ma. No evidence 

of significant lake formation, only small shallow floodplain 

ponds. 

Sedimentology; Fauna; 

Stable isotopes; Plant 

wax biomarkers; Plant 

Macrofossils; Pollen 

Bonnefille, 1976; Brown 

et al., 1978; Bonnefille 

& Dechamps, 1983; 

Brown & Feibel, 1986; 

Howell et al., 1987; 

Cerling et al., 1988; 

2003; 2011a; 2015; 

Feibel et al., 1989; 

Leakey et al., 1995; 

1996; Wynn, 2000; 

2004; Bobe & Eck, 

2001; Bobe et al., 2002; 

2007; Alemseged, 2003; 

Harris & Leakey, 2003; 

Feibel, 2003; Macho et 

al., 2003; Schoeninger et 

al., 2003; Bobe & 

Behrensmeyer, 2004; 

Gathogo & Brown, 

2006; Hernández 

Fernández & Vrba, 

2006; Manthi, 2006; 

Bobe, 2006; 2011; 

Lepre et al., 2007; 

Quinn et al., 2007; 

2013; Gathogo et al., 

2008; Harris et al., 

2008; Bobe & Leakey, 

2009; Levin et al., 2011; 

Kanapoi fm. 

Pliocene: Mixture of woodlands and grasslands, but with a 

predominance of woodland (fauna). Complex mosaic of 

palaeoenvironments, but relatively dry and open (isotopes). 

Mursi fm. 

Pliocene: Prevalent closed woodlands and forests, although 

some indication of open dry grasslands. Potentially ecotonal 

environments at the edges of woodlands and grasslands. 

Deposition in deltaic and alluvial settings. 

Usno fm. 
Pliocene: Woodlands/ecotonal environments at the edges of 

woodlands and grasslands. Close to water. 

Shungura fm. 

Pliocene: Alternating lacustrine and fluvial depositional 

environments. Mosaic of forest, woodland and grassland in 

varying proportions. Closed wet system. 

 

Pleistocene: Fluvial deposition with the exception of a 

large lake phase at ~ 2.1 Ma. Mosaic of forest, woodland 

and grassland in varying proportions. An increase in 

grassland presence, although not significantly until after 2 

Ma. Still more wooded than other areas of the Turkana 

basin. 

Koobi Fora fm. 

Pliocene: Alternating lacustrine and fluvial phases. Mosaic 

woodlands along large river, with open savanna at the basin 

margins and uplands. Gallery forest, floodplain grasslands 

and dry marginal bushland.  Evidence for seasonal 

fluctuations in moisture. 
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Pleistocene: Closed lacustrine system with deep lake which 

shifts to a large, open meandering river system with streams 

and ponds. Expansion of large subaerial floodplain 

landscapes suitable for grassland expansion. Grassland 

expansion between 2 and 1.75 Ma, coincident with shift to 

fluvial system. 

Drapeau et al., 2014; 

Barr, 2015; Plummer et 

al., 2015; Uno et al., 

2016b; Bamford, 2017; 

Manthi et al., 2017; 

Plummer & Finestone, 

2017; Field, 2020  

 

Nachukui fm. 

Pliocene: Woodlands with patches of grassland. Dry 

conditions. Primarily mixed C3/C4 ecosystems, with an 

increase in grasses towards the end of the Pliocene. 

 

Pleistocene: Slight decrease in the proportion of woodland 

to open grassland, with C4 vegetation now dominating the 

ecosystem. Riparian woodland present. Deposition under 

fluvial and alluvial conditions, with some periods of 

lacustrine deposition. 

Olduvai Gorge, Tanzania 

 

(Paranthropus boisei, Homo habilis, 
Homo rudolfensis, Homo erectus) 

Pleistocene: Fluvio-lacustrine deposition, contemporaneous 

volcanism and faulting. Generally a tropical semi-arid 

setting, mainly centred around a palaeolake. Several climate 

fluctuations between wet and cooler conditions and arid and 

hot conditions, generally trending towards aridity. Mosaic 

microenvironments and palaeoecology. Freshwater 

availability through springs and wetland systems fed by 

groundwater. Fluctuations between abundant grasslands 

with shrubs and fruit baring trees to dense forests. 

Geochemistry; Stable 

isotopes; Phytoliths; 

Pollen; Fauna; 

Sedimentology; Plant 

wax biomarkers; Total 

organic carbon; Plant 

macrofossils 

Cerling & Hay, 1986; 

Fernandez-Jalvo et al., 

1998; Ashley & Driese, 

2000; Hay & Kyser, 

2001; Liutkus & Ashley, 

2003; Liutkus et al., 

2005; Bamford, 2005; 

Albert et al., 2006; 

2015; Bamford et al., 

2008; Deocampo et al., 

2009; Ashley et al., 

2009; 2010a; 2010b; 

2014a; 2014b; Barboni 

et al., 2010; Bennett et 

al., 2012; Magill et al., 

2013a; 2013b 
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Laetoli, Ethiopia 

 

(Australopithecus afarensis, 

Paranthropus aethiopicus, Homo 

sapiens) 

Pliocene: Wood dominated vegetation, shifting to mosaic 

wooded habitats with C3 grasses, gradually trending to 

more bushland, before shifting to wooded grasslands with 

C4 grasses. Mainly riparian/gallery woodland with 

grassland. Gradual trend towards a more arid and open 

environment. Fluvial environment with some lacustrine 

deposition. 

Phytoliths; Fauna; Stable 

isotopes; Plant 

macrofossils; Pollen; 

Sedimentology/Geology 

Bonnefille & Riollet, 

1987; Cerling, 1992; 

Foster et al., 1997; 

Barboni & Bremond, 

2009; Bishop et al., 

2011; Kingston, 2011; 

Kovarovic & Andrews, 

2011; Reed & Denys, 

2011; Rossouw & Scott, 

2011; Su & Harrison, 

2015; Su, 2011; 

Bamford, 2011a; 2011b; 

Barboni, 2014; 

Harrison, 2017  

Hadar 

 

(Australopithecus afarensis) 

Pliocene: Dry gallery woodland close to a stream with 

mosaic savanna vegetation – grassy woodland. Deposition 

across an extensive floodplain near to an ancestral river and 

palaeo-lake, but also periods of fluvial and lacustrine 

deposition. Predominantly C3 plants (mainly trees) with 

some C4 grasses. 

Pollen; Sedimentology; 

Fauna; Geochemistry; 

Stable isotopes 

Taieb et al., 1972; 

Bonnefille et al., 1987; 

2004; Radosevich et al., 

1992; Hailemichael, 

2001; Hailemichael et 

al., 2002; Levin et al., 

2004; Quade et al., 

2004; Wynn et al., 2008; 

Campisano & Feibel, 

2008; Reed, 2008; 

Aronson et al., 2008; 

Bedaso, 2011; Reed & 

Geraads, 2012; 

Johanson, 2017  

Olorgesaillie, Kenya 

 

(Homo erectus) 

Pleistocene: Predominantly C4 grassland with some 

wooded grassland. Close proximity to a shallow freshwater 

lake with some phases of fluvial deposition. Cooler and 

moister than semi-arid climate today. 

Stable isotopes; 

Phytoliths; Diatoms; 

Sedimentology; Fungal 

spores; Geochemistry; 

Plant wax biomarkers; 

Charcoal; Fauna 

Potts, 1998; 2016; Sikes 

et al., 1997; 1999; Potts 

et al., 1999; Owen et al., 

2009; 2011; 2014; 

Kinyanjui, 2012; Lee et 

al., 2013  
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Homa Peninsula, 

Kenya 

 

(Homo) 

Kanam fm. 

Miocene: Diverse spatially mosaic environment, 

fluctuating between closed and open environments. 

Sediments most likely deposited in a lacustrine/marginal 

lacustrine environment. 

Fauna; Stable isotopes; 

Sedimentology; 

Geochemistry 

Boswell, 1935; Kent, 

1942; Plummer & Potts, 

1989; Behrensmeyer et 

al., 1995; Potts et al., 

1997; Potts, 1998; 

Ditchfield et al., 1999; 

Plummer et al., 1999; 

2009b; 2009a; Bishop et 

al., 2006; Plummer & 

Bishop, 2016  

 

 

Kanjera 

South fm. 

Pleistocene: Deposition on an alluvial plain at the margin 

of a lake basin. Rapid deposition occurring in the form of 

hyperconcentrated flows. Lightly wooded to open grassland 

habitat. 

Kanjera 

North fm.  

Pleistocene: Deposition included transitions between 

fluvial, lacustrine and mudflat environments.   

 

  



 

 29 

3.3.2. Reconstructive techniques 

Multi-proxy approaches appear to be essential to palaeoenvironmental 

reconstructions (Table 3.2). Sedimentological/geological analyses, isotopic 

analyses and analyses of faunal remains appear to be among the most frequently 

used palaeoenvironmental indicators. The use of a suite of palaeoenvironmental 

indicators improves the accuracy and clarity of palaeoenvironmental 

reconstructions, in addition to their robustness (Cerling et al., 2010; White et al., 

2010; Kinyanjui, 2012; Turner et al., 2014).  

Geological formations are first analysed in terms of their sedimentology/geology to 

develop a facies model, which divides sediments into different lithofacies based on 

their primary depositional attributes, including bedding, grain size, texture and 

sedimentary structures (e.g. Hay, 1976; Harris et al., 1988; Behrensmeyer et al., 

1995; Ditchfield et al., 1999; Liutkus & Ashley, 2003). Broadly defined lithofacies are 

utilised to trace stratigraphic units across a site and constrain sampling for more 

detailed analyses; interpretations are also made on the depositional environment of 

sediments based on the characteristics of each lithofacies (Hay, 1976; Brown & 

Feibel, 1986; 1991; Potts, 1989; Behrensmeyer et al., 1995; Campisano & Feibel, 

2008; Wynn et al., 2008; Ditchfield & Harrison, 2011; Campisano, 2012). More 

detailed facies models at the centimetre scale have also been constructed to 

correlate sediment dynamics to climatic fluctuations and lake transgressions and 

regressions; this is often performed on continuous sedimentary records, such as the 

cores taken at Olduvai Gorge (Ashley, 2007; Blumenschine et al., 2012; Stanistreet, 

2012). 

Palaeovegetation structure in the studied formations are most frequently interpreted 

using 𝛿
13C isotopes of pedogenic carbonates/palaeosols and fossil tooth enamel, 

fossil fauna, and pollen (Table 3.2). This provides independent records of the 

vegetation structure, allowing for more robust and detailed interpretations to be 

made (Cerling et al., 2010; White et al., 2010; Kinyanjui, 2012; Turner et al., 2014). 

Stable carbon isotopes provide information on the distribution of C3 (common in 

cooler, wetter climates) to C4 (common in hotter, dryer climates) vegetation (e.g. 

Levin et al., 2004; Wynn, 2004; Quinn et al., 2007; Sikes & Ashley, 2007; Cerling et 

al., 2011c). However, caution should be taken in the interpretation of 𝛿13C records, 
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as 𝛿
13C values may increase as palaeosols mature (Bennett et al., 2012). Fossil 

fauna can be linked to vegetation based on their dietary preferences and habitats 

(e.g. Fernandez-Jalvo et al., 1998; Bobe, 2011; Bishop et al., 2011; Drapeau et al., 

2014; Plummer et al., 2015). Pollen provides more detailed information on the 

palaeovegetation structure than both isotopic and faunal analyses, revealing 

information on plant type/species and spatial distribution; pollen is not always 

preserved in sediments however (Bonnefille, 1976; 1984; Bonnefille & Dechamps, 

1983). 

Plant wax biomarker analysis is utilised at both Olduvai Gorge and at the Nachukui 

formation in the Omo-Turkana basin to provide more detailed insights into 

palaeovegetation structure. At Olduvai Gorge, it enabled the identification of 

significant ecosystem variability, with fluctuations in vegetation structure coinciding 

with precession length cycles (Magill et al., 2013a). Similarly, at the Nachukui 

formation its use highlighted that C4 vegetation was present in a higher abundance 

throughout the Pleistocene than indicated by isotopic analysis (Uno et al., 2016b). 

Notably, analyses of plant wax biomarkers and total organic carbon allowed the 

identification of significant ecosystem variability at Olduvai Gorge during the 

Pleistocene, with fluctuations in vegetation structure coinciding with precession 

length cycles (Magill et al., 2013a); temporal variations in precipitation were also 

identified (Magill et al., 2013b).  

Phytoliths allow more detailed interpretations to be made on the palaeovegetation 

in terms of plant type/species and spatial distribution, similar to pollen ( Bamford et 

al., 2006; Kinyanjui, 2012; Barboni, 2014; Albert et al., 2015). Their use at 

Olorgesaillie (Kinyanjui, 2012), Olduvai Gorge (Bamford et al., 2006; 2008; Albert et 

al., 2006; 2015; Barboni et al., 2010), and Laetoli (Rossouw & Scott, 2011) highlight 

this, where they support interpretations made from isotopes and fauna, whilst also 

revealing additional detail on palaeoclimatic dynamics and palaeovegetation 

structure. Phytoliths are also well preserved in oxidised environments, and so are 

often present in dry environments where pollen may be absent (Piperno, 2006; 

Kinyanjui, 2012). Information can also be provided beyond family level on grasses, 

which is more accurate than that of grass pollen  (Twiss et al., 1969; Mulholland & 

Rapp, 1992; Piperno & Pearsall, 1998; Mercader et al., 2010; Kinyanjui, 2012). 
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However, their analysis suffers from issues in multiplicity (a given taxon produces 

multiple phytoliths) and redundancy (a given phytolith may be produced by many 

taxa), which can produce a biased record of the palaeovegetation (Barboni & 

Bremond, 2009; Mercader et al., 2009; Albert et al., 2015).  

Plant macrofossils are also utilised to reconstruct palaeovegetation in several of the 

geological formations (Albert et al., 2006; 2015; Bamford et al., 2006; Andrews & 

Bamford, 2008; Bamford, 2012; 2017). They provide robust independent records of 

palaeovegetation on a local scale; this is particularly advantageous, as pollen and 

phytolith provide more regional records (Bamford, 2012). 

𝛿18O isotopes are utilised in many of the formations and provide a record of 

palaeoclimate dynamics (Cerling & Hay, 1986; Sikes et al., 1999; Cerling et al., 

2003; 2011a; Wynn, 2004; Quinn et al., 2007; Sikes & Ashley, 2007; Levin et al., 

2011; Bennett et al., 2012). In the Hadar formation, 𝛿18O analysis revealed that the 

palaeoenvironment underwent gradual aridification throughout the Pliocene, yet still 

experienced high climate variability within this time (Levin et al., 2004; Quade et al., 

2004; Aronson et al., 2008; Bedaso, 2011). This is further highlighted by 

palynological evidence here, which depicts high climate variability and an array of 

habitats (Bonnefille et al., 1987; 2004). A similar trend can also be observed from 

𝛿18O analysis of sediments from Olduvai Gorge, where the palaeoclimate gradually 

became more arid throughout the Pleistocene (Cerling & Hay, 1986; Cerling et al., 

1988; Sikes & Ashley, 2007). To contrast this, 𝛿
18O values from Olorgesaillie 

demonstrate that environment was moister than the modern landscape, indicating 

that it had the capability to support more C3 vegetation than today (Sikes et al., 

1999). Caution has however been drawn to the interpretation of 𝛿18O records; the 

mixture of meteoric waters with lacustrine saline brines can skew 𝛿18O values, 

potentially giving a false representation of palaeoclimate dynamics (Bennett et al., 

2012). 

Other methods less frequently used for palaeoenvironmental reconstructions 

include geochemical analysis of clays, which enables the identification of freshwater 

in palaeoenvironments (Deocampo et al., 2009; Deocampo & Tactikos, 2010; 

Deocampo et al., 2010; Owen et al., 2011; Lee et al., 2013). Analyses of 

diatomaceous sediments have also aided the identification of wetland systems, as 
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well as both saline and freshwater lakes (Liutkus & Ashley, 2003; Owen et al., 2008; 

2009; 2011; 2014; Lee et al., 2013; Albert et al., 2015).  

It should be highlighted that although the use of multi-proxy approaches often 

increases the robustness of palaeoenvironmental reconstructions, interpretations 

between different proxy records should be taken with caution. Proxy records from 

different sources may produce contradictory results due to issues such as 

preservation, response time and sensitivity (Moore et al., 1991; Barboni & Bremond, 

2009; Mercader et al., 2009; Mather et al., 2011; Albert et al., 2015; Vrydaghs et al., 

2016). For example, pollen has been shown to have high taxonomic value in 

palaeoenvironmental reconstructions, but can suffer from issues such as 

preservation, causing some species to become under-represented in the 

palaeoenvironmental record (Moore et al., 1991; Dunseth et al., 2019). When 

comparing this to phytolith proxy data, although a lower taxonomic resolution is 

obtained, phytoliths are more resilient to post-depositional processes (Albert et al., 

2015). To add to this, both of these proxy sources have issues with multiplicity and 

redundancy, as some plants produce more/less pollen/phytoliths than other, 

causing them to become over/under-represented in the palaeoenvironmental record 

(Moore et al., 1991; Barboni & Bremond, 2009; Mercader et al., 2009; Albert et al., 

2015; Vrydaghs et al., 2016). Factors such as these must be taken into account 

when interpreting proxy data from multiple sources. 

3.3.3. Chronological control 

Chronological control has received much attention at each of the sites ( Deino & 

Potts, 1992; Ditchfield et al., 1999; Campisano, 2007; Deino, 2011; 2012; Brown & 

McDougall, 2011). A well-constrained and robust chronology is essential in 

palaeoenvironmental reconstructions to determine the timing of changes that may 

influence evolutionary events, but also for the cross-comparison of 

palaeoenvironmental records (Barham et al., 2011; Gibbon et al., 2014; Granger et 

al., 2015). High-resolution chronologies are also desirable to prevent temporal 

averaging of palaeoenvironmental change (Hopley & Maslin, 2010; Maslin et al., 

2014). Sampling resolution is also responsible for this, but samples taken from long 

sedimentary sequences with little chronological control can result in fluctuations in 

the environment being overlooked, resultantly displaying an ‘average’ environment 
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for that time, rather than the true environment (Hopley & Maslin, 2010; Maslin et al., 

2014). 

Multiple dating methods are often used to establish a more reliable chronology 

(Barham et al., 2011; Gibbon et al., 2014; Turner et al., 2014; Granger et al., 2015). 

From the sites analysed here, the most frequently used techniques include 

radiometric dating of volcanic tuffs (Brown & McDougall, 2011; Deino, 2011; 2012), 

biostratigraphy (Ditchfield et al., 1999; Bishop et al., 2006), magnetostratigraphy 

(Ditchfield et al., 1999; Brown & McDougall, 2011; Deino, 2012) and 

tephrostratigraphy (Campisano, 2007; Brown & McDougall, 2011; Deino, 2012).  

Radiometric dates (primarily 40Ar/39Ar dates) of tuffs and their correlations with other 

tuffs through tephrostratigraphy has been essential in developing robust timelines 

at the majority of the hominin baring regions, most notably the Omo-Turkana basin 

(Cerling et al., 1979; Brown & McDougall, 2011; Feibel, 2011). This has facilitated 

an accurate chronology to be established across spatially varying geological 

formations, providing a lengthy record of palaeoenvironmental change (Brown & 

McDougall, 2011).  

Magnetostratigraphy is often used in conjunction with these techniques and 

provides an independent age control on the correlation of sequences; however, it 

cannot provide an absolute date like that of radiometric dating techniques (Ditchfield 

et al., 1999; Brown & McDougall, 2011; Deino, 2012). Biostratigraphy is used in a 

similar way, yet it can provide some idea on the age of sediments without the use 

of other dating techniques (Ditchfield et al., 1999; Bishop et al., 2006).  

3.4. Drivers of palaeoenvironmental change and their 
impact on palaeoclimate 

From the information discussed thus far, is evident that East African 

palaeoenvironments were extremely variable. Numerous authors have highlighted 

that environmental and climatic changes are the result of both major tectonic activity 

and orbital forcing.  

3.4.1. Tectonic activity 

Palaeoenvironmental change throughout East Africa was largely driven by the 

complex formation and development of the East African Rift System (EARS), which 
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involved substantial faulting and volcanism over an extended period (Crossley & 

Knight, 1981; Baker et al., 1988; Blisniuk & Strecker, 1990; Strecker et al., 1990; 

Foster et al., 1997; Ebinger et al., 2000; Trauth et al., 2007; Maslin & Christensen, 

2007; Maslin et al., 2014; WoldeGabriel et al., 2016). Significant changes in 

vegetation structure, climate and topography were triggered by this (Baker et al., 

1988; Strecker et al., 1990; Sepulchre et al., 2006; Maslin & Christensen, 2007; 

Trauth et al., 2007; 2010; Bergner et al., 2009; Olaka et al., 2010; Borchardt & 

Trauth, 2012; Prömmel et al., 2013; Maslin et al., 2014). 

Uplift during the Plio-Pleistocene transformed relatively flat topography throughout 

the EARS into mountainous terrain, creating an orographic barrier that resulted in 

reduced moisture availability and aridification in East Africa (deMenocal, 2004; 

Sepulchre et al., 2006; Maslin & Christensen, 2007; Prömmel et al., 2013; Maslin et 

al., 2014). A progressive shift from C3 to C4 vegetation occurred in response to this 

which had significant impacts on biota throughout the Plio-Pleistocene (Wynn, 2004; 

Levin et al., 2004; Feakins et al., 2005; Quinn et al., 2007; Sikes & Ashley, 2007; 

Harris et al., 2008; Plummer et al., 2009b; Brachert et al., 2010; Cerling et al., 2011a; 

Maslin et al., 2014; Uno et al., 2016b); these changes can be observed in the 

environmental records previously discussed (Table 3.2). 

Drainage throughout the EARS was also significantly influenced by tectonic activity. 

Basins suitable for lake formation were created throughout the EARS through the 

development of graben morphologies, although faulting also destroyed basins over 

long periods (~ 100 kyrs) of time (Baker et al., 1988; Strecker et al., 1990; Trauth et 

al., 2010). Faulting also caused the alteration of catchments and drainage networks, 

as well as the morphology of lake basins through downwarping, drainage reversal 

and ponding (Baker et al., 1988; Strecker et al., 1990; Rach, 1992; Trauth et al., 

2010; Maslin et al., 2014). This may have affected lake conditions over shorter 

periods of time, as well as their sensitivity to precipitation and evaporation (Bergner 

et al., 2009; Trauth et al., 2010; Olaka et al., 2010; Feibel, 2011; Maslin et al., 2014). 

Although it is clear that tectonic activity had a significant impact on East African 

palaeoenvironment, ambiguity still surrounds the full extent of this (Maslin et al., 

2014). A limited understanding of the timing, altitude and rate of uplift throughout 

the EARS is partially responsible for this, as these factors control local precipitation 
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and are consequently essential to climate evolution (Spiegel et al., 2007; Pik et al., 

2008; Wichura et al., 2010; Maslin et al., 2014). Additionally, records of 

palaeovegetation primarily come from hominin sites that are spatially limited in terms 

of the wider environment, and may also be subject to time-averaging over long 

sequences (Hopley & Maslin, 2010). This makes it difficult to fully understand the 

spatial and temporal impact tectonics had on palaeovegetation (Maslin et al., 2014). 

3.4.2. Orbital forcing 

Orbital forcing is largely responsible for the occurrence of glacial and interglacial 

periods throughout the Quaternary, either directly or indirectly, through eccentricity, 

obliquity and precession cycles (Maslin & Christensen, 2007; Maslin et al., 2014). 

In East Africa, precession cycles largely influenced moisture availability and 

seasonality prior to and throughout the Miocene to the Pleistocene (deMenocal, 

1995; Teaford & Ungar, 2000; Bobe & Eck, 2001; Trauth et al., 2003; Clement et 

al., 2004; Reed & Fish, 2005; Denison et al., 2005; Deino et al., 2006; Hopley et al., 

2007; Kingston, 2007; Lepre et al., 2007; Wilson, 2011; Joordens et al., 2011; Magill 

et al., 2013b; Ashley et al., 2014a; Maslin et al., 2014). 

Supporting evidence for the impact of precession forcing on East African climate 

and moisture availability is increasing. Fluviolacustrine sediments and diatomites at 

the Baringo-Bogoria basin (central Kenya rift valley) record the occurrence of 

wet/dry periods at precession intervals (23 Kyrs) between 2.7 – 2.55 Ma (Deino et 

al., 2006; Kingston, 2007; Wilson, 2011; Kinyanjui, 2012; Wilson et al., 2014). 

Similarly, lithological investigations show that lake-level change consistent with 

timescales of precession or obliquity in the Turkana basin at Koobi Fora occurred 

between 1.9 – 1.6 Ma (Lepre et al., 2007). Evidence from lithological investigations 

and analysis of strontium isotope ratios of lacustrine fish fossils at Karari Ridge, 

Turkana basin, demonstrated that wet/dry periods and monsoon intensity were also 

influenced by precession between 2 – 1.85 Ma (Joordens et al., 2011). At Olduvai 

Gorge, episodes of lake expansion and contraction were also recorded within the 

lithostratigraphy, coinciding with precession intervals between 1.84 – 1.74 Ma 

(Ashley & Driese, 2000; Ashley, 2007;). Rainfall was shown to increase by a third 

between the dry and wet portion of each precession cycle (Ashley, 2007). Stable 

carbon isotopic signatures of lipid biomarkers from ancient plants here also 
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correlated strongly with precession cycles (Magill et al., 2013a). Similar cycles were 

recorded more recently (1.1 and 0.9 Ma) in the diatomaceous lacustrine sediment 

at the Olorgesailie basin (Trauth et al., 2007; Owen et al., 2008; Potts, 2013). 

Orbital forcing also has an indirect influence on East African climate. High-latitude 

orbital forcing impacts glacial-interglacial cycles, which consequently effects East 

African climate due to changes in: Pole-Equator temperature gradients; sea surface 

temperatures; wind strength and direction; atmospheric carbon dioxide, methane 

and water vapour content (Maslin et al., 2014). The effects of these cycles are 

reflected by the sensitivity of African palaeovegetation throughout the Quaternary, 

in which changes in atmospheric CO2 and regional temperatures resulted in rapid 

shifts in pollen assemblage indices (Lezine, 1991; Bonnefille & Mohammed, 1994; 

Elenga et al., 1994), charcoal fluxes (Verardo & Ruddiman, 1996), and the ratio of 

C3 to C4 biomarkers (Huang et al., 1999; Ficken et al., 2002; Schefuß et al., 2005). 

The interaction of glacial-interglacial cycles with high and low latitude orbital forcing, 

as well as the insolation maxima and minima make this increasingly complex; 

resultantly, tropical African climate could respond to orbital forcing at both 11.5 kyrs 

and 5 kyrs intervals, not just at 23 kyrs precession intervals (Trauth et al., 2003; 

Berger et al., 2006; Verschuren et al., 2009; Maslin et al., 2014). 

3.4.3. Other global climate transitions 

Aside from tectonic activity and orbital forcing, several significant climatic events 

occurred through the Miocene to Pleistocene which influenced the 

palaeoenvironment of East Africa in a number of ways (Table 3.3); these are briefly 

discussed here. 

C4 grasslands have had a significant impact on vegetation structure globally (Tipple 

& Pagani, 2007; Ségalen et al., 2007; Brown et al., 2011). In East Africa, forests 

reduced in size and more open landscapes became increasingly common, 

evidenced in a wide range of proxies (Sikes et al., 1999; Potts et al., 1999; Bobe et 

al., 2002; 2007; Cerling et al., 2003; 2011a; 2015; Bobe & Leakey, 2009; Bobe, 

2011; Rossouw & Scott, 2011; Kinyanjui, 2012). The faunal community responded 

to this with large-scale evolutionary changes. Included within this are anatomical 

and behavioural changes in hominins, whom adapted to more arid and open 
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environments facilitated by C4 grasslands throughout the Plio-Pleistocene (Plummer 

et al., 2009a; 2009b). 

Aside from weak precipitation changes in East Africa evidenced by climate 

modelling studies, little is known about the effects of the tectonic closure of the Strait 

of Gibraltar across East Africa (Murphy et al., 2009; Schneck et al., 2010). 

The intensification of the northern hemisphere glaciation (iNHG) may be responsible 

for changes in African climate from 2.7 Ma onwards. Regional aridity is one 

postulated response, evidenced by a large increase in the amount of dust leaving 

the Sahara and Arabia (deMenocal, 1995; 2004); however, this has been debated, 

as oxygen isotope values show significant transitions at the same time as the iNHG, 

rather than following it (Trauth et al., 2009). In addition to this, large lakes in the 

Baringo-Bogoria Basin (Deino et al., 2006; Kingston, 2007), and on the eastern 

shoulder of the Ethiopian Rift and in the Afar Basin (Williams et al., 1979; Bonnefille, 

1983), are thought to have gone through cycles of growth and decline between 2.7 

and 2.5 Ma; this is indicative of a highly variable climate regime (Maslin et al., 2014). 

Numerous changes in the tropics coincide with a potential change in the Walker 

circulation at around 1.9 Ma. Despite there being a gradual tend towards more open 

environments after 3 Ma, it was following 2 Ma that the open, grassy landscapes 

started to occur in higher abundance, evidenced by 𝛿13C/12C ratios from fossil 

mammals (Lee-Thorp et al., 2007). Terrestrial dust records from the Arabian Sea 

(deMenocal, 1995; 2004), the eastern Mediterranean Sea (Larrasoaña et al., 2003), 

and off subtropical West Africa (Tiedemann et al., 1994) also indicate increased 

aridity and variability subsequent to 1.9 – 1.5 Ma (Trauth et al., 2009). During this 

time, evidence for the presence of large, deep and fluctuating lakes also exists in 

East Africa (Trauth et al., 2005; 2007). In addition to this, the DWC has been 

suggested to alter the properties of the El Niño-South Oscillation, consequently 

impacting the Indian Ocean Dipole — the primary cause of modern day interannual 

variability in precipitation in Africa (Saji et al., 1999); this may have influenced East 

Africa in a similar way throughout the Plio-Pleistocene (Maslin et al., 2014). 
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Table 3.3: Significant climatic events occurring through the Miocene to Pleistocene that may have impact East African palaeoenvironment. Each event is explained briefly, as well as the effect 

each of them may have on East African climate 

 Event Explanation Effect on East African 
climate 

Sources 

C4 Grassland 
emergence and 
expansion 

Carbon dioxide threshold breached ~ 30 Ma; C4 

photosynthetic pathway in plants developed as a 
response, including C4 grasses 

C4 grass dominated biomes 
had major impact on 
continental biota. In Africa, 
forests reduced in size and 
expansive grasslands became 
more common 

Tipple & Pagani, 2007; Ségalen et al., 2007; 
Plummer et al., 2009a; Edwards et al., 2010; 
Brown et al., 2011; Cerling et al., 2013; Maslin 
et al., 2014 
 

Tectonic 
closure of the 
Strait of 
Gibraltar 

Mediterranean Sea isolated from Atlantic Ocean 
ay ~ 5.59 Ma, resulting in its desiccation and the 
removal of ~ 6% of dissolved salts, significantly 
altering the alkalinity. Normal conditions re-
established at ~ 5.33 Ma 

Weak precipitation changes, 
little known about any further 
effects 

Hsü et al., 1973; Krijgsman et al., 1999; Bickert 
et al., 2004; Roveri et al., 2008; Murphy et al., 
2009; Schneck et al., 2010; Maslin et al., 2014 
 

Intensification 
of the Northern 
Hemisphere 
Glaciation 
(iNHG) 

Glaciation in Northern Hemisphere intensified 
dramatically between 2.75 Ma and 2.54 Ma, 
characterised by repeated advances and retreats 
of ice sheets (glacial-interglacial cycles)  

Variable climate regime and 
an increase in regional aridity 
from ~ 2.7 Ma 

Keigwin, 1978; 1982; Keller et al., 1989; 
Ruddiman et al., 1988; Mann & Corrigan, 1990; 
Raymo, 1991; 1994; Wright & Miller, 1996; Li et 
al., 1998; Haug & Tiedemann, 1998; Maslin et 
al., 1998; 2014; Crowley & Hyde, 2008; 
DeConto et al., 2008; Fedorov et al., 2013; 
Abe-Ouchi et al., 2013  

Development of 
an intensified 
Walker 
Circulation 
(DWC) 

Intensified Walker Circulation (east – west 
temperature gradient across tropical Pacific 
Ocean) developed in response to global cooling 

Variable climate regime and 
increased aridity from ~ 2 Ma 

deMenocal, 1995; 2004; Saji et al., 1999; 
Ravelo et al., 2004; McClymont & Rosell-Melé, 
2005; Liu et al., 2008; Brierley et al., 2009; 
Trauth et al., 2009; Fedorov et al., 2013; 
Larrasoaña et al., 2013; Maslin et al., 2014 

Early to Middle 
Pleistocene 
Transition 
(EMPT) 

Transition in periodicity of glacial-interglacial 
cycles from 41 kyrs to a quasiperiodicity of ~ 100 
kyrs. Increase in amplitude of global ice volume 
variations 

Variable climate regime and 
increased aridity from ~ 1 Ma 

Prell, 1984; Shackleton et al., 1988; Imbrie et 
al., 1992; Tiedemann et al., 1994; Berger & 
Jansen, 1994; Mudelsee & Stattegger, 1997; 
Maslin & Ridgwell, 2005; Trauth et al., 2005; 
2007; Abe-Ouchi et al., 2013; Maslin et al., 
2014 
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African climate had a significant response to the early – middle Pleistocene 

transition (EMPT). Although C4 grasses were present throughout Africa, they 

remained a relatively minor component of the environment until the late Pliocene 

and early Pleistocene (Ségalen et al., 2007). Open ecosystems dominated by C4 

grass components emerged during the EMPT throughout East Africa, evidenced by 

pedogenic carbonate 𝛿13C data (Sikes et al., 1997; Cerling et al., 2011c; Levin et 

al., 2011). Additionally, large ephemeral lakes throughout East Africa may also have 

formed as result of the EMPT between 1.1 and 0.9 Ma, such as the Olorgesailie 

Formation, the Naivasha and Elemnteita-Nakuru basins, and the Afar Basin (Trauth 

et al., 2005; 2007). 

3.5. Summary 

Literature suggests that five primary hypotheses linking palaeoenvironmental 

change to hominin evolution exist. These include the: turnover-pulse, aridity, deep-

lakes variability, and pulsed climate hypotheses. Other linkages have also been 

made between hominin evolution and the emergence and expansion of savannahs, 

as well as with tectonic activity and the variable environments that it created. After 

evaluating literature surrounding East African Palaeoenvironmental records from 

the Miocene to the Pleistocene, research most commonly reports the environment 

of deposition amongst sites as alternating phases of both lacustrine and fluvial 

deposition in floodplain and marginal lacustrine environments. Alluvial deposition is 

also apparent in some formations. Amongst these records, the most frequently used 

reconstructive techniques in include analyses of stratigraphy, 𝛿
13C isotopes, plant 

wax biomarkers, phytoliths, plant macrofossils and 𝛿
18O isotopes. Tectonic activity 

and orbital forcing have been identified as the primary driving mechanisms of 

palaeoenvironmental change, although global climate transitions including the 

expansion of C4 grasslands, the tectonic closure of the Straight of Gibraltar, the 

EMPT, the iNHG and the EMPT have all had significant impacts on 

palaeoenvironmental change.  
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CHAPTER 4.   METHODS 
4.1. Introduction 

This chapter details the methods/proxies that will be used to reconstruct the 

palaeoenvironment of the Nyayanga and Sare River sites on the Homa Peninsula. 

Each method is reviewed in terms of its usefulness to palaeoenvironmental 

reconstructions and to this study. The methodological approach, including the 

laboratory technique and data analysis, is also detailed.  

4.2. Geology/sedimentology 

Investigations into the geology and sedimentology of palaeoenvironments are 

crucial to develop a framework for further analysis of sediments and often 

guide/constrain laboratory techniques (Hay, 1976; Hassan, 1979; Boggs, 1995; 

Vandenberghe, 2013; Miall, 2013; Paterson & Heslop, 2015b). As the environment 

plays a major role in the formation of sediments, sediments can act as a significant 

indicator of palaeoenvironmental conditions. Observations are made on colour, 

composition, sedimentary structures, size class, particle shape, roundness, grain 

orientation etc. (Hay, 1976; Hassan, 1978; Behrensmeyer et al., 1995; Ditchfield et 

al., 1999). This information is invaluable and is frequently used to develop and refine 

a facies model, which divides a sequence into different lithofacies.  

Lithofacies are lithologically different yet deposited in environments that are closely 

related (Hay, 1976). Classification of lithofacies is based on their primary 

depositional attributes, which can include bedding, grain size, texture, and 

sedimentary structures (Miall, 2013). The scale of a lithofacies is dependent on the 

level of detail that its classification incorporates; broadly defined lithofacies are more 

suitable for tracing stratigraphic units across a site, whilst high levels of detail at the 

centimetre scale are more applicable to logging a sediment core (Miall, 2013). 

Lithofacies are then subject to further analysis in order to develop an interpretation 

of the geological history and environmental evolution; this can subsequently be 

mapped on a basin scale (Hay, 1976; Hassan, 1978; Liutkus & Ashley, 2003; Miall, 

2013; Albert et al., 2015).  

Prior to the lithofacies classification system introduced by Miall (1977), sediments 

were assigned to lithofacies based on a researchers own local classification system. 
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Resultantly, the identification of common depositional themes between sites were 

overlooked, as the lack of a standardised classification system between deposits 

obscured any similarities (Miall, 2013).  

Miall’s updated classification system (Table 4.1) has since become a standard field 

methodology when investigating fluvial deposits (e.g. Lepre, 2009; Maurin et al., 

2017; Mtelela et al., 2017; Bordy et al., 2019; Saylor et al., 2019; Scardia et al., 

2019). Despite this, critics suggest that important detail may be overlooked by 

assigning sediments to a predetermined lithofacies (Bridge, 1993). Additionally, 

assigning sediments to predetermined lithofacies can lead to the incorrect 

assumption that each facies has a unique interpretation (Bridge, 1993). However, 

Miall acknowledges that there may be differences to the ‘standard’ lithologies and 

highlights that the classification system should be used as a basis for field research, 

whilst researchers should be aware that refinements are always possible (Miall, 

2013). 

 
Figure 4.1: Photograph taken by Prof. Tom Plummer of the author collecting a sediment spot sample from Excavation 3 

at Nyayanga using a stainless steel trowel 
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During field investigations on the Homa Peninsula, sediment spot samples were 

taken from geological trenches and excavations that were dug throughout each of 

the sites (Figure 4.1). When taking samples, the weathering profile was first 

removed from the face of the sequence, with the sample then being taken with a 

stainless-steel trowel. The classification system proposed by Miall (Table 4.1) was 

used to provide a basis for identifying lithofacies site wide and adhere to a 

standardised classification system (Miall, 2013). Observations were made on 

colour, composition, sedimentary structures and size class. A hand lens was also 

utilised to inspect carbonate nodules after their removal with a stainless steel trowel, 

whilst the presence of coalescing carbonates and carbonate horizons were also 

noted. Samples were taken from each of the lithofacies identified, as well as at 

laterally varying locations. Assessments of both the palaeo- and modern 

geomorphological profile of each of the sites were also made. Further architectural 

analysis was not completed due to lack of sediment exposure, as exposures were 

limited to geological trenches and excavations (Miall, 2013). Moreover, wider 

conglomeratic surveys identifying geological provenances surrounding the sites 

have previously been completed (Braun et al., 2008; Finestone, 2019) and were not 

carried out here. 
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Facies 

code 

Facies Sedimentary 

Structures 

Interpretation 

Gmm Matrix-supported, 

massive gravel 

Weak grading Plastic debris flow (high strength, 

viscous) 

Gmg Matrix-supported 

gravel 

Inverse to normal 

grading 

Pseudoplastic debris flow (low 

strength, viscous) 

Gci Clast-supported gravel Inverse grading Clast-rich debris flow (high 

strength), or pseudoplastic debris 

flow (low strength) 

Gcm Clast-supported 

massive gravel 

- Pseduoplastic debris flow (inertial 

bedload, turbulent flow) 

Gh Clast-supported, 

crudely bedded gravel 

Horizontal bedding, 

imbrication 

Longitudinal bedforms, lag 

deposits, sieve deposits 

Gt Gravel, stratified Trough cross-beds Minor channel fills 

Gp Gravel, stratified Planar cross-beds Transverse bedforms, deltaic 

growths from older bar remnants  

St Sand, fine to very 

coarse, may be pebbly 

Solitary or grouped 

trough cross-beds 

Sinuous-crested and linguoid (3-D) 

dunes 

Sp Sand, fine to very 

coarse, may be pebbly 

Solitary or grouped 

trough cross-beds 

Transverse and linguoid bedforms 

(2-D dunes) 

Sr Sand, very fine to 

coarse 

Ripple cross-

lamination 

Ripples (lower flow regime) 

Sh Sand, very fine to 

coarse, may be pebbly 

Horizontal lamination 

parting or streaming 

lineation 

Plane-bed flow (critical flow) 

Sl Sand, very fine to 

coarse, may be pebbly 
Low-angle (<15°) 
cross-beds 

Scour fills, humpback or washed-out 

dunes, antidunes 

Ss Sand, fine to coarse, 

may be pebbly 

Broad, shallow scours Scour fill 

Sm Sand, fine to coarse Massive, or faint 

lamination 

Sediment-gravity flow deposits 

Fl Sand, silt, mud Fine lamination, very 

small ripples 

Overbank, abandoned channel, or 

washed-out dunes, antidunes 

Fsm Silt, mud Massive Backswamp or abandoned channel, 

or waning flood deposits 

Fm Mud, silt Massive, desiccation 

cracks 

Overbank, abandoned channel, or 

drape deposits 

Fr Mud, silt Massive, roots, 

bioturbation 

Root bed, incipient soil 

C Coal, carbonaceous 

mud 

Plant, mud films Vegetated swamp deposits 

P Paleosol carbonate 

(calcite, siderite) 

Pedogenic features: 

nodules, filaments 

Soil with chemical precipitation 

Table 4.1: Facies classification model from Miall (2013) 
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4.3. Particle size analysis and EMMA 
4.3.1. Particle size analysis 

Whilst geological provenances and sediment sources surrounding Nyayanga and 

Sare River have been identified in previous studies utilising ED-XRF and 

conglomeratic surveys (Braun et al., 2008; Finestone, 2019), little is known about 

the transport behaviour and depositional mechanisms occurring at these sites. Due 

to the lack of exposure of sediments and much of the material belonging to the fine 

fraction (<2 mm), field analysis of sediments can only provide a limited amount of 

this information. Resultantly, particle size analysis (PSA) was chosen to learn more 

about the sedimentary processes occurring at Nyayanga and Sare River through 

the analysis of the fine fraction.  

PSA has long been an established technique in reconstructing the environment, 

transport behaviour and depositional mechanisms of sediments, as particle size 

trends appear to be the result of sedimentary processes (Hassan, 1978; Friedman, 

1979; Le Roux & Rojas, 2007; Liu et al., 2014; Clarke et al., 2014; Amireh, 2015), 

and due to the ubiquitous nature of sediments, its application spans an array of 

environmental settings (Bement et al., 2007; Amit et al., 2007; Dill & Ludwig, 2008; 

Dinakaran & Krishnayya, 2011; de Haas et al., 2014; Guan et al., 2016) and time 

periods (Gillies et al., 1996; Lekach et al., 1998; Amit et al., 2007; Houben, 2007; 

Yin et al., 2011; Wang et al., 2015; Schillereff et al., 2015). Traditionally, particle 

size was measured using the sieve-pipette method (SPM). This consists of sieving 

the size fraction >63 µm and using the settling method, which relies on Stokes’ law, 

for the fraction <63 µm. This assumes that particles share the same density as 

quartz, and are rigid, smooth spheres with a known settling velocity, with a mass 

percentage being given for each defined class (Beuselinck et al., 1998).  

More recent advances in particle size analysis using different methods have 

resulted in a decline in the use of SPM, due to several drawbacks. These include: 

size variations within defined size-classes, as some particles are platy in shape 

rather than spherical (Beuselinck et al., 1998; Wang et al., 2013); the requirement 

of large amounts of sample (Wang et al., 2013); its labour intensive/time consuming 

nature (Di Stefano et al., 2010; Wang et al., 2013); and its vulnerability to operator 

error (Beuselinck et al., 1998; Wang et al., 2013). 
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Laser diffraction poses an attractive alternative, due to its rapid time of analysis, 

higher resolution and small sample requirement (Konert & Vandenberghe, 1997; 

Beuselinck et al., 1998; Eshel et al., 2004; Di Stefano et al., 2010; Wang et al., 

2013). The technique is based on the light diffraction theory that particles of given 

sizes diffract light at certain angles whilst pumped through a sample cell in 

suspension. The diffracted light intensity is then acknowledged by detectors (which 

measure volume percentage) and processed through one of two diffraction theories 

(Mie theory or the Fraunhofer theory) (Beuselinck et al., 1998). It should be 

highlighted that the two techniques may obtain different results, as SPM is a 

gravimetric technique, whereas laser diffraction is volumetric (Beuselinck et al., 

1998).  

Despite its advantages, attention should also be drawn to the limitations of laser 

diffraction. The clay fraction is frequently underestimated by this technique when 

particles clay particles are platy, as the optical diameter measured is much larger 

than the spherical dimeter of the particle (Konert & Vandenberghe, 1997; Beuselinck 

et al., 1998; Eshel et al., 2004; Wang et al., 2013). A standardised diffraction theory 

used to interpret the data obtained within laser diffraction is also lacking. Two 

theories exist; the Fraunhofer theory and the Mie theory. The main difference is that 

the Fraunhofer models assume that only diffraction occurs and no refraction, which 

is not always the case. Therefore, the Mie theory attempts to rectify this through the 

use of a refractive index, yet this can also be difficult to choose, due to the multi-

sized and poly-mineralic nature of sediments (Beuselinck et al., 1998; Eshel et al., 

2004; Di Stefano et al., 2010; Wang et al., 2013). It is suggested that the Fraunhofer 

theory be applied to instances where particles are >50µm in diameter, and the Mie 

theory to particles <50µm in diameter; however, this cannot always be satisfied, due 

to the heterogeneous nature of sediments and must be taken into consideration 

during the comparison of studies (Di Stefano et al., 2010; Wang et al., 2013). 

Textural parameters/descriptive statistics (eg. mean, mode, sorting, skewness, 

kurtosis etc.) are frequently employed in environmental reconstruction (Folk & Ward, 

1957; Friedman, 1979; Clarke et al., 2014; Amireh, 2015), especially with the 

emergence of larger particle size datasets obtained through more rapid methods of 

PSA (IJmker et al., 2012). Computer programmes, for example GRADISTAT (Blott 
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& Pye, 2001), have been developed to rapidly calculate textural parameters from 

particle size datasets; this has made the task of analysing particle size results in this 

manner trivial and far less laborious (Hartmann, 2007).  

However, it is widely acknowledged that textural parameters, more often than not, 

are not truly representative of sedimentary processes where polymodal or highly 

skewed particle size distributions (PSD) are concerned (Weltje & Prins, 2003; Holz 

et al., 2004; 2007; Dietze et al., 2012; Clarke et al., 2014; Schillereff et al., 2014; 

Amireh, 2015). Such distributions are often the result of the physical mixing of 

sediment populations from different transport mechanisms, and/or from various 

sources (Prins, 1999; Holz et al., 2007; IJmker et al., 2012; Ma et al., 2015). This 

has long been realised (Curray, 1960; Visher, 1969; Middleton, 1976; Ashley, 1978; 

Sheridan et al., 1987), and consequently much work has focused on ‘unmixing’ 

these subpopulations through an array of statistical and graphical methods (Weltje, 

1997; Prins, 1999; Weltje & Prins, 2003; 2007; Dietze et al., 2012; Clarke et al., 

2014; Paterson & Heslop, 2015b). 

4.3.2. End-member mixing analysis 
4.3.2.1. End-member mixing analysis and its use in this research 

End-member mixing analysis (EMMA) is the process of decomposing or ‘unmixing’ 

PSDs into constituent components, or end-members (EMs), in order to gain more 

detailed information on the sedimentary processes that occurred within a 

palaeoenvironment. EMs derive more meaningful interpretations of sediment 

dynamics from PSDs and often represent the sediment pool, pathway or mixing 

dynamics of the environment (Weltje, 1997; Weltje & Prins, 2003; 2007; Meyer et 

al., 2013; Clarke et al., 2014; Paterson & Heslop, 2015b).  

EMMA has been utilised in a variety of different sedimentary archives to identify 

sediment sources and/or transport mechanisms, which Dietze and Dietze (2019) 

highlight include marine, lacustrine, aeolian, fluvial, alluvial and periglacial 

environments, across multiple spatial and temporal scales (Prins et al., 2002; Stuut 

et al., 2002; Weltje and Prins, 2003; Holz et al., 2004; Vriend and Prins, 2005; 

Garzanti et al., 2007; Hamann et al., 2008; Strauss et al., 2012; Ijmker et al., 2012; 

Dietze et al., 2012; 2013; Clarke et al., 2014; Borchers et al., 2015; Ma et al., 2015; 

Toonen et al., 2015; Schillereff et al., 2015; Wündsch et al., 2016; Collins et al., 
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2017; Varga et al., 2019). However, it has been highlighted that the physical 

plausibility, geomorphological, and geological information when performing 

analyses must always be taken into account, as well as during the interpretation of 

EMs (Paterson & Heslop, 2015b). Without this information, one cannot be confident 

whether the EM represents the available sediment source or the mixing dynamics 

of the environment (Ijmker et al., 2012; Clarke et al., 2014).  

Recently EMMA has proven effective in identifying major depositional processes 

involved in site formation in archaeological contexts, providing a greater 

understanding of human/environmental interactions (Collins et al., 2017). Such 

information would prove invaluable to the research at hand. Resultantly, EMs will be 

used in conjunction with geological and geomorphological information acquired 

through field analyses of sediments and from previous work (Braun et al., 2008; 

Finestone, 2019) to identify transport mechanisms/depositional processes at 

Nyayanga and Sare River. 

4.3.2.2. A brief overview of end-member mixing analysis 

Multiple methods of EMMA exist and have been discussed comprehensively by 

various authors (Weltje, 1997; Prins, 1999; Weltje & Prins, 2007; Prins et al., 2007; 

Dietze et al., 2012; Paterson & Heslop, 2015b; Van Hateren et al., 2018) and will 

not be covered in detail here. Essentially, these techniques assume that datasets 

are formed from a fixed number of EMs, which are non-negative and sum to 1/100% 

(Prins, 1999; Paterson & Heslop, 2015b). The simplest possible explanation of 

particle size variation within a dataset is sought after, and so the minimum number 

of EMs to provide an adequate approximation of the data is identified through 

goodness-of-fit statistics, namely the coefficient of determination (r2) (Prins et al., 

2007). The aim is to achieve a high coefficient of determination whilst maintaining a 

low linear correlation between EMs (Paterson & Heslop, 2015b). By doing this, 

overfitting of the EMs to the dataset is prevented, thus meaning that EMs are linearly 

independent (Paterson & Heslop, 2015b). Two main approaches are taken to 

unmixing particle size distributions; these can be divided into non-parametric 

approaches and parametric approaches.  

Parametric approaches assume that observed particle size distributions are 

composed of numerous continuous unimodal EMs that may be described by 
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analytical functions (eg. normal, lognormal or Weibull distributions) and a small set 

of descriptive parameters (Prins et al., 2007; Paterson & Heslop, 2015b). They 

require prior independent genetic knowledge of EM particle size distributions and 

cannot simultaneously decompose multiple particle size distributions (Prins, 1999; 

Prins et al., 2007; Vandenberghe, 2013). For these reasons, they will not be 

discussed further here.  

Non-parametric approaches obtain EMs from the dataset itself by using the 

covariance between samples as a geological context (Weltje & Prins, 2007; Prins et 

al., 2007; Paterson & Heslop, 2015b). For this reason, no prior independent genetic 

knowledge of subpopulations is required (Weltje & Prins, 2007; Vandenberghe, 

2013; Flood et al., 2015; Paterson & Heslop, 2015b; Liu et al., 2016). Three main 

methods of non-parametric End Member Mixing Analysis (EMMA) are used; simplex 

expansion (Weltje, 1997; Prins et al., 2000; Moreno et al., 2002; Stuut et al., 2002; 

Frenz et al., 2003; Holz et al., 2004; 2007; Wan et al., 2007; Hamann et al., 2008; 

Meyer et al., 2013), eigenvector rotation (Dietze et al., 2012; 2014; IJmker et al., 

2012; Clarke et al., 2014; Ma et al., 2015; Schillereff et al., 2015; Langford et al., 

2016; Wang et al., 2016) and nonnegative matrix factorisation (NMF)(Paterson & 

Heslop, 2015b).  

NMF boasts the most easily navigated user interface (AnalySize — based in 

MatLab), the best EM fits and the highest capability of identifying the true EMs, 

whilst also having a rapid computing time (Paterson & Heslop, 2015b; Van Hateren 

et al., 2018). For these reasons, NMF presents the most beneficial non-parametric 

approach to EM mixing analysis and will be utilised in the research.  

4.3.3. Laboratory preparation and data analysis 

For this research, samples were first subject to chemical pre-treatment similar to 

that outlined by Konert & Vandenberghe (1997) in order to isolate the discrete 

particles and provide evenly dispersed suspension (Liu et al., 2014). 10 ml of 30% 

H2O2 was added to oxidise samples and remove unwanted organic material that 

may otherwise reduce repeatability of results or skew particle size distributions (Blott 

et al., 2004; Gray et al., 2010). Subsequently, samples were heated for further 

oxidation until all reaction ceased. Carbonates were not removed by the use of 

hydrochloric acid, as these were suspected to make up a large proportion of the 
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samples and be part of the original deposition. Deionised water was added to 

neutralise samples. These were then placed in a 40⁰C oven until almost all the water 

had evaporated. Calgon was then added to ensure the even dispersal of particles. 

A Beckman Coulter LS11320 laser granulometer was used measure particle size 

using the Fraunhofer model, as samples contained coarser material >63µm, nor 

could a refractive index be obtained. Analyses of samples were repeated 5 times to 

ensure reproducibility. GRADISTAT was used to calculate textural parameters and 

size classes in the phi unit using the Folk and Ward method (Folk & Ward, 1957). 

AnalySize, the EMMA interface developed within MATLAB, was used to calculate 

non-parametric EMs through NMF for the datasets (Paterson & Heslop, 2015b). 

Sedimentary processes associated with each EM were then identified with aid from 

field sediment logs and previous work (Braun et al., 2008; Finestone, 2019). The 

percentage of each EM in sediment samples and their distribution spatially and 

temporally was determined in order to derive the major sedimentary processes 

involved in site formation (Figure 4.2). 

 
Figure 4.2:The process followed in this study to learn more about sedimentary dynamics at Nyayanga and Sare River 

through the analysis of the fine fractuon of sediment. PSA is first used. With the acquisition of multimodal PSDs, EMMA 

is used to ‘unmix’ PSDs to learn more about the various sedimentary processes involved in site formation. The process of 

utilising EMMA entails determining the minimum number of EMs that best represent the data from both Nyayanga and 

Sare River. Sedimentary processes are then attributed to these EMs with the aid of field sediment logs and previous work. 

The percentage of each EM in sediment samples and their distribution spatially and temporally is then determined to 

decipher the major sedimentary processes invovled in site formation.  
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4.4. Phytolith analysis 
4.4.1. Phytoliths and palaeoenvironments 

Methods such as pollen analysis, lipid biomarker analysis and isotope analysis are 

most common in reconstructing Plio-Pleistocene palaeovegetation/palaeoclimate in 

east Africa (section 3.3.2. and references therein). Samples from both Nyayanga 

and Sare River were examined for pollen, however this was either absent or sparse 

most likely due to lack preservation (Bamford et al., 2006; Uno et al., 2016a). Lipid 

biomarker analysis was also attempted with samples, but due to equipment 

malfunctions and time constraints this was not completed, but may bare potential 

for future research. Moreover, isotopic analyses are being undertaken by colleagues 

working on the HPPP, and so were not completed in this research. Despite this, 

upon laboratory inspection it was found that samples from both sites contained an 

abundance of phytoliths, and so their analysis was decided to be the best method 

available for the reconstruction of palaeovegetation in this research. 

Phytoliths are morphologically distinct bodies of silica produced within and between 

plant cells, as a result of the deposition of dissolved silica from evapotranspiration 

(Piperno, 1997; 2006). Phytolith production within plants is controlled by climatic 

conditions, soil chemistry and water, plant developmental stage and the taxonomic 

affinity of the plant (Piperno, 2006; Kinyanjui, 2012). Phytoliths are mainly produced 

in grasses, but also in some other plants. They are morphologically distinct, meaning 

that when analysed they can provide partial information on plant taxa and thus on 

the palaeoecology of a site (Bamford et al., 2006; Lu et al., 2007; Katz et al., 2010; 

Albert et al., 2015). Phytoliths are produced in all plants, but monocotyledons, 

specifically grasses, accumulate silica more effectively, and thus produce more 

phytoliths than dicotyledons  (Piperno, 1988; Piperno & Pearsall, 1998; Albert et al., 

1999; Barboni et al., 1999; Strömberg, 2004; Piperno, 2006; Mercader et al., 2009; 

Kinyanjui, 2012). 

The use of phytoliths in palaeoenvironmental reconstructions has increased over 

the previous 30 years (Albert et al., 1999; 2000; 2006; 2009; Mercader et al., 2000; 

2009; 2010; Thorn, 2004; Bremond et al., 2005b; 2005a; Bamford et al., 2006; 2008; 

Barboni et al., 2010; Rossouw & Scott, 2011; Kinyanjui, 2012; Novello et al., 2015). 

The ratio of C3 to C4 grasses is often calculated through the use of grass phytolith 
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indices; this provides information on the palaeoclimate and palaeovegetation of a 

region (Bamford et al., 2006; Barboni & Bremond, 2009; Kinyanjui, 2012; Albert et 

al., 2015). The ratio of closed to open habitat is also calculated through estimates 

of grass/tree and shrub composition (Bremond et al., 2005a; Kinyanjui, 2012). Due 

to their robust chemical composition, phytoliths are  also incredibly durable and 

resistant to post-depositional processes (Bamford et al., 2006). For this reason, they 

have seen extensive use at Miocene to Pleistocene archaeological and 

palaeoanthropological sites, where in some cases, pollen is not preserved (Bamford 

et al., 2006; Uno et al., 2016a). Their use in reconstructing African palaeovegetation 

is not novel, and hominin sites throughout East Africa have been subject to phytolith 

analysis with success (Bamford et al., 2006; 2008; Albert et al., 2009; 2015; 

Mercader et al., 2009; 2010; Rossouw & Scott, 2011; Kinyanjui, 2012). This makes 

phytoliths an ideal tool for the reconstruction of palaeovegetation on the Homa 

Peninsula.  

However, one must take into account the taxonomic resolution of phytoliths. The 

issue of differential production, which causes multiplicity and redundancy, can 

produce a biased record of the palaeovegetation (Barboni & Bremond, 2009; 

Mercader et al., 2009; Albert et al., 2015). Moreover, different methods of transport 

can lead to the differential sorting of phytoliths in an environment, dependant on 

their size, weight and shape; consequently, this may affect interpretations of the 

palaeovegetation (Lu et al., 2007). These issues must be carefully considered when 

making interpretations from phytolith assemblages. Often, a reference collection of 

the modern vegetation of a region and its phytolith production is studied in order to 

deduce which plants/plant parts produce certain phytoliths, as well as how many 

phytoliths are produced by each plant/plant part (Albert et al., 1999; 2015; Bamford 

et al., 2006; Lu et al., 2007). Moreover, the geomorphology of the sample site is 

frequently taken into account to determine the depositional processes and 

environment under which phytolith might have been deposited; this is often deduced 

through the use of a facies model (e.g. Bamford et al., 2006; Bement et al., 2007; 

Neumann et al., 2009; Albert et al., 2015). 
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4.4.2. Laboratory technique and data analysis 
4.4.2.1.Preparation of ancient sediment for phytolith analysis 

Ancient sediment was prepared for phytolith analysis through a method similar to 

that described by Bamford et al., (2006) and Albert et al., (1999); by following this 

method, consistency is maintained with other colleagues working on phytoliths on 

the Homa Peninsula, as well as with studies at better known archaeological sites. 

The method ensures the recovery of the lightest phytoliths and concentrates 

phytoliths for further analysis (Bamford et al., 2006). 1g of sediment was first air-

dried in a 40⁰C oven before being treated with an equivolume solution of 3 N HCL 

and 3 N HNO3 for 30 minutes and subsequently being centrifuged at 3000rpm for 2 

minutes. This eliminates carbonates and phosphates from the samples. The 

supernatant was then removed and the pellet was washed with deionised water 

three times, by centrifuging for 2 mins at 3000rpm and removing supernatant. 

Following this, 10 ml of 30% H2O2 was added to the samples to oxidise organic 

matter. This was heated to 70⁰C and more H2O2 was added until the reaction had 

ceased. The sample were then placed in a 40⁰C oven and air-dried before being 

reweighed. The resultant sample is then termed the acid insoluble fraction (AIF) 

(Albert et al., 1999; Bamford et al., 2006).  

The AIF were then subject to density separation to partition the mineral components 

by adding 5 ml of sodium polytungstate solution (Na6(H2W12O40)H2O) of 2.4g/ml 

density. This density is commonly used, due to the density of phytoliths ranging from 

1.5 – 2.3 mg/l (Albert et al., 1999; 2000; 2006; 2015) This was then centrifuged at 

3000rpm for 5 minutes. The supernatant was subsequently transferred to another 

centrifuge tube and 1 ml of deionised water was added. This was vortexed and 

centrifuged again at 3000rpm for 5 minutes. This process was repeated until no 

visible mineral particles remained in the supernatant, indicating that all minerals had 

been retrieved.  

4.4.2.2.Preparation of modern plants for phytolith analysis 

A modern reference collection situated at the National Museums of Kenya prepared 

by Rahab Kinyanjui was used to compare phytoliths from ancient sediment with. 

This was prepared using the methodology outlined by Kinyanjui (2012). 
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4.4.2.3.Preparation of microscope slides for phytolith description 

Slides were prepared following the methods outlined by Bamford et al., (2006) and 

Albert et al., (1999). 1 mg of sample, accurate to 0.1 mg, was added to a microscope 

slide. Three to four drops of Entellan were added to the slide and mixed with the 

sample before adding a cover slide. By counting the total number of fields containing 

sediment grains, an aerial coverage of sediment on the slide can be estimated. A 

minimum count of 200 phytoliths with recognisable morphologies were counted to 

ensure on a 24% error margin in the interpretation of results; by counting only 50 

phytoliths, this margin increases to 40% (Bamford et al., 2006).  

4.4.2.4.Description and identification of phytoliths 

The classification used to describe phytoliths in this study is presented in Table 4.2; 

pictures of the various morphologies described are presented in Figure 4.3. It is 

based on an array of literature (Twiss et al., 1969; Brown, 1984; Piperno, 1988; 

2006; Albert et al., 1999; 2000; Albert, 1999; Albert et al., 2006; 2015; Bamford et 

al., 2006; 2008), the PHYTCORE online database (phytcore.org) and morphological 

classifications described by Kinyanjui (2012). Phytoliths are divided into categories 

based on the vegetation type they are diagnostic of (grasses, herbaceous, sedges 

and wood). Where phytoliths are produced most abundantly by a particular 

vegetation group, but are also produced in other plants, they are categorised as 

‘nondiagnostic’. Terms used to describe phytolith morphologies relate to the 

anatomical terminology of the cell in which they developed (Albert et al., 2000). If 

this was not possible, terms relating to the geometrical characteristics of the 

phytolith were used, as outlined in the International Code for Phytolith Nomenclature 

(ICPN) (Madella et al., 2005; Bamford et al., 2006; Albert et al., 2015). Previous 

quantitative studies were used to inform interpretations on the abundance of 

phytoliths from different plants/plant parts (Albert et al., 2000; Albert & Weiner, 2001; 

Albert, 2003; Bamford et al., 2006; Albert et al., 2015).  

 

http://www.phytcore.org/
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Table 4.2: Classification system used to describe phytoliths in this study. Phytolith morphologies are presented based on the vegetation group they relate to, and classed as nondiagnostic if they 

are also produced in other plants. A description for each morphotype is given, as well as sources that describe/identify such morphotypes. Pictures of the majority of morphotypes are presented 

in Figure 4.3; these are distinguished in the ‘Figure no.’ column. 

Vegetation 

type 

Subgroup Name Fig. no. 

(Figure 4.3) 

Morphotype description References 

Grasses Grass 

Silica Short 

Cell 

Rondel/ 

Trapeziform 

b.i – b.v/ 

c.i – c.ii 

Varying shapes including conical, 

keeled and pyramidal. Sometimes 

described as trapeziforms 

Fredlund & Tieszen, 1994; Albert et al., 1999; Strömberg, 

2004; Madella et al., 2005; Piperno, 2006; Bremond et al., 

2008; Rossouw, 2009; Mercader et al., 2010  

Saddle d. Two convex edges opposite each 

other, with two straight or concave 

edges 

Twiss et al., 1969; Fredlund & Tieszen, 1994; Piperno & 

Pearsall, 1998; Thorn, 2004; Strömberg, 2004; Madella et 

al., 2005; Piperno, 2006; Bremond et al., 2008; Mercader 

et al., 2010  

Bilobate e.i – e.iii Two distinct lobes connected by a 

shank/shaft 

Twiss et al., 1969; Brown, 1984; Fredlund & Tieszen, 

1994; Piperno & Pearsall, 1998; Albert et al., 1999; 

Thorn, 2004; Strömberg, 2004; Madella et al., 2005; 

Piperno, 2006; Bremond et al., 2008; Rossouw, 2009; 

Barboni & Bremond, 2009; Mercader et al., 2010  

Cross i. Four lobes arranged in a cross 

shape. Both symmetrical and 

asymmetrical 

Twiss et al., 1969; Mulholland & Rapp, 1992; Fredlund & 

Tieszen, 1994; Alexandre et al., 1997; Strömberg, 2004; 

Madella et al., 2005; Barboni & Bremond, 2009; 

Rossouw, 2009  

Non-

diagnostic 

Scutiform f.i – f.ii Short cells with swollen bases and 

a conical point. Occasionally 

referred to as ‘shield-shaped’ or 

‘lanceolate’  

Mulholland & Rapp, 1992; Thorn, 2004; Madella et al., 

2005; Kinyanjui, 2012 

Bulliform g.i – g.iv Fan-shaped cells Mulholland & Rapp, 1992; Piperno & Pearsall, 1998; 

Albert et al., 1999; Strömberg, 2004; Madella et al., 2005; 

Piperno, 2006; Kinyanjui, 2012 
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Acicular h. Needle-shaped cells Twiss et al., 1969; Madella et al., 2005; Bremond et al., 

2005b; 2008 

Sedges - Achene o.i – o.iv Thin plates with cone shapes. 

Rounded cones  

Piperno, 1988; 2006; Ollendorf, 1992; Strömberg, 2004; 

Madella et al., 2005; Kinyanjui, 2012 

Papillae p.i – p.iii Thin plates with cone shapes. Hat-

shaped  

Piperno, 1988; 2006; Ollendorf, 1992; Strömberg, 2004; 

Madella et al., 2005; Kinyanjui, 2012 

Herbaceous - Elongate a.i – a.vi Plates with a length greater than 

their width  
Twiss et al., 1969; Piperno, 1988; 2006; Strömberg, 2004; 

Madella et al., 2005; Novello et al., 2015 

Woody Diagnostic Sclereid j.i – j.iii Elongate/irregular in shape with 

tapered ends. Can be branched or 

facetted with knobs on surface  

Albert et al., 1999; Strömberg, 2004; Madella et al., 2005; 

Piperno, 2006; Kinyanjui, 2012  

Tracheid k.i – k.v Elongate in shape with 

ornamentation in an annular, 

reticulate or helical fashion 

Albert et al., 1999; Strömberg, 2004; Madella et al., 2005; 

Piperno, 2006; Kinyanjui, 2012  

Spheroid l.i – l.iv Spherical in shape Piperno, 1988; 2006; Albert et al., 1999; 2000; 2006; 

Strömberg, 2004; Madella et al., 2005; Barboni et al., 

2007; Mercader et al., 2009; Albert et al., 2009; 

Kinyanjui, 2012  

Non-

diagnostic 

Irregular m.i – m.ii Undefined in shape  Albert et al., 1999; 2006; 2015; Bamford et al., 2006; 

Kinyanjui, 2012 

Blocky 

polyhedron 

- Plate-like cells with a polyhedral 

outline. Often faceted and either 

compact or elongated 

Albert et al., 1999; Strömberg, 2004; Madella et al., 2005; 

2006; 2015; Barboni et al., 2010; Kinyanjui, 2012 

Unknown - Tabular n.i – n.ii Table shaped with opposite sides 

parallel to each other 

Madella et al., 2005 

Unidentified - Morphotypes that have not been 

assigned 

- 
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Figure 4.3: Phytolith morphologies identified in this study. a.i – vi) Elongate, b.i – v) Rondel, c.i – ii) Trapeziform 

rondel, d.) Saddle, e.i – iii) Bilobate, f.i – ii) Scutiform, g.i – iv) Bulliform, h.) Acicular, i.) Cross. j.i – iii) Sclereid, k.i – 

v) Tracheid, l.i – iv) Spheroid, m.i – ii) Irregular, n.i – ii) Tabular, o.i – iv) Achene, p.i – iii) Pappilae 
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4.4.2.5.Data analyses 

Morphotypes identified in the phytolith assemblage were counted and presented as 

TILIA diagrams for each geological trench. Counts for each morphotype were 

displayed as a percentage of the total count; this was plotted against depth of the 

geological trench. Morphotypes were grouped based on the type of vegetation they 

relate to. Groups included: herbaceous, grass, nondiagnostic grass, wood, 

nondiagnostic wood, and unknown. The percentages of diagnostic groups are 

presented on the right of the diagram. Changes in the percentages of these groups 

is assumed to relate to changes in the structure of the palaeovegetation (Kinyanjui, 

2012). Diagrams were delineated into zones where the vegetation structure was 

suspected to undergo shifts. Although the interpretation of vegetation structure 

utilising phytoliths may be subject to biases surrounding differential production, 

transport and preservation, the information provided by phytoliths is invaluable 

where methods such as analyses of pollen, lipid biomarkers and carbon isotopes 

are unavailable (Lu et al., 2007).  

Morphotypes and groups differ slightly between Sare River and Nyayanga. Counts 

for Sare River were completed prior to the awareness of several morphotypes 

including achene, papillae and sclereid type phytoliths. Due to time constraints, it 

was not possible to complete the counts for Sare River again. For this reason, the 

sedge and wood components of the vegetation structure at Sare River may be 

under-represented.  

4.5. Cosmogenic nuclide dating 
4.5.1. Cosmogenic nuclides and the importance of dating 

The establishment of a robust regional geochronology on the Homa Peninsula is 

essential in determining the age of the sites here in order to place them in a 

comparable timeframe to other east African palaeoanthropological sites (Barham et 

al., 2011; Gibbon et al., 2014; Granger et al., 2015). Whilst Kanjera South has been 

subject to dating in previous studies using biostratigraphy and magnetostratigraphy 

(Ditchfield et al., 1999; 2019; Bishop et al., 2006; Plummer et al., 2009b), Nyayanga 

and Sare River have not. Magnetostratigraphy, geochemical tuff sourcing, single 

crystal laser fusion 40Ar/39Ar dating and biostratigraphy are all work in progress at 

these sites by other colleagues working on the HPPP. It is essential that sediments 
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are dated with multiple techniques, as all dating methods face various limitations 

and can potentially provide contrasting ages for the same sediment, highlighting the 

need for verification between independent dating techniques (Barber et al., 2000; 

Smith, 2001; Marshall et al., 2007).  

With sediments suspected to be Plio-Pleistocene in age and much of the more 

common methods of dating (section 3.3.3. ) already work in progress on the Homa 

Peninsula, few methods of dating are available for utility here. The use of 

cosmogenic nuclide dating however has become more common in archaeological 

contexts, providing accurate, precise and independent dates up to c. 5 Ma (Granger 

& Muzikar, 2001; Granger, 2014; Gibbon et al., 2014; Granger et al., 2015; Çiner et 

al., 2015; Liu et al., 2015). Resultantly, this technique was utilised herein to constrain 

the age of archaeological occurrences and act as an independent chronological 

control (Barham et al., 2011) for other dating methods utilised on the Homa 

Peninsula. An application to the Natural Environment Research Council (NERC) for 

samples taken from both Nyayanga and Sare River was submitted for cosmogenic 

nuclide dating, although only the samples from Sare River were accepted. 

Of the different methods of cosmogenic dating (Dunai, 2010), the isochron burial 

method was used (Balco & Rovey, 2008). Burial dating uses the differential decay 

rates of cosmogenic nuclides where samples have become shielded (burial) from 

cosmic rays (high energy charged particles that penetrate the earth’s atmosphere 

and collide with the surface from outer space) (Dunai, 2010). Commonly, and in this 

study, the ratio of the different half-lives of cosmogenic radionuclides 26Al and 10Be 

are utilised, due to their simultaneous occurrence in quartz, as well as the accurate 

knowledge of their decay constants and half-lives (Dunai, 2010). By using the 

differential decay rates of the cosmogenic nuclides, a ratio is obtained which is used 

to acquire a single age for the point at which the samples was taken from, assuming 

that the sample was in situ (Balco & Rovey, 2008; Dunai, 2010). This aids in 

constraining magnetostratigraphy data to the sedimentary sequence at Sare River, 

dramatically improving the chronological framework here.  

4.5.2. Field and Laboratory technique 

Nine samples were collected from conglomerate deposits using a stainless steel 

trowel at Sare river thought to be rapidly buried. Samples included one sample of 



 

 59 

c.60 quartzite pebbles, two samples of sand, and six individual clasts. These were 

acquired from a 3 – 4 m facies of fluvial sands and gravels at the base of a 5.1 m 

section, above a highly weathered granite bedrock and below a clear 30 – 50 cm 

tuff layer (location in Figure 2.8). All samples were buried at a depth greater than 3 

m, as suggested by Granger (2014), and comprised mainly of Quartz (Figure 4.4). 

After being awarded the NERC funding to complete cosmogenic nuclide dating on 

samples taken from Sare River, samples were taken to the Scottish Universities 

Environmental Research Centre’s (SUERC) cosmogenic isotope analysis 

laboratory in East Kilbride in November 2016. The laboratory procedure followed 

here is similar to that outlined by Balco & Rovey (2008). Much of this procedure was 

carried out by the authour under the guidance and supervision of staff at SUERC, 

whilst the remainder of the laboratory procedure and age calculations were 

completed by Dr. Ángel Rodés. 

Samples were crushed and sieved to the size fraction 250 – 500 um. These were 

then franzed, which separates magnetically charged particles from non-magnetic 

particles in order to isolate the non-magnetic quartz grains. Isolated quartz grains 

were then placed in a solution of HNO3 and HCl and heated on a hot plate overnight. 

Following this, samples were subject to froth flotation to remove feldspars, before 

being repeatedly etched in dilute HF. Al and Be were extracted from quartz 

separates using standard methods of HF dissolution and column chromatography 

(Stone, 2004). ICP optical emission spectrophotometry is to be used to calculate Al 

concentrations on aliquots of the dissolved sample. Al and Be isotope ratios were 

then calculated through accelerator mass spectrometry. 
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Figure 4.4: A) Composite sedimentological log of the visible exposures at Sare River. White circle at c. 1 m shows the 

location from which samples were taken. The Orio tuff suggested to be ~ 1.77 Ma in age is also highlighted B) The 

conglomerate facies at the base of the palaeosol from which samples were taken C) Several of the samples acquired for 

cosmogenic dating; all are quartz or quartzite in lithology and were sampled from the same stratigraphic unit 

4.6. Summary 

This chapter has reviewed each method in terms of its usefulness to 

palaeoenvironmental reconstructions and to this study. Each method has been 

evaluated in terms of its advantages, whilst the weaknesses of each method have 

also been acknowledged. Information has also been detailed on the field and 

laboratory based technique of each method, as well as the data analysis involved.. 

Geological/sedimentological investigations provide invaluable information on the 

sedimentary dynamics of a palaeoenvironment, whilst also establishing a framework 

for more detailed analysis of sediments using a facies model that can be traced site-

wide. The use of PSA provides information on the sedimentary dynamics involved 

in site formation through analysis of the fine fraction. This is limited due to the mixing 

of different sedimentary processes creating multimodal PSDs. EMMA provides a 

way to ‘unmix’ the PSDs into EMs which can be attributed to sediment sources or 

processes with aid of field sediment logs. By analysing the spatial and temporal 

distribution of these EMs in samples at both sites, detailed information on the major 

sedimentary processes involved in site formation can be learned. Palaeovegetation 

structure and palaeoclimate can be interpreted using phytolith analysis. Detailed 

information can be gathered on the proportion of various vegetation types, 

A 

C 

Orio 

Tuff 
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particularly grasses, but the wood component may be poorly represented. 

Cosmogenic nuclide dating of quartzite pebbles, sand and clasts acquired from 

fluvial sands and gravels below the tuff layer at Sare River will also provide an 

absolute date here through the use of the isochron burial method. This will aid 

chronological control at this site. Together, these methods will provide a detailed 

multi-proxy palaeoenvironmental reconstruction of the Homa Peninsula that will 

form the basis for further analysis. This information is summarised in the workflow 

diagram shown in Figure 4.5 

 

 
Figure 4.5: A summary workflow diagram overviewing the methods utilised in this study and their role in developing 

palaeoenvironmental reconstructions of the study sites. Square boxes with standard text indicate actions taken/methods 

used in this study. Italic text in circular boxes indicate rationale for each action/method, or the results of methods. Bold 

text in square boxes indicate the aspects of the palaeoenvironment reconstructions that methods contribute towards. 
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CHAPTER 5.   RESULTS 
5.1. Introduction 

In this chapter, the results of field investigations, particle size analysis, EMMA and 

phytolith analysis will be presented for both Nyayanga and Sare River. A workflow 

diagram which overviews the order in which results are described is shown in Figure 

5.1. Results are first presented for Nyayanga, and subsequently for Sare River. For 

both sites, results of EMMA are presented first, as well a description of each EM in 

terms of the sedimentary characteristics they represent. Sediment sections for each 

geotrench/excavation are then presented, displaying sediment logs acquired in the 

field, PSA results, EM distribution and vegetation type distribution. For each section, 

sediments and their variation up-sequence are first described based on results from 

field analyses and PSA. PSA results are presented as size class divisions, as the 

majority of sediments are polymodal in nature. The distribution of EMs throughout 

samples is subsequently described. Following this, phytolith distributions throughout 

the sequences are described, with the distribution of vegetation types plotted for 

each sample. TILIA diagrams are used to display more detailed information on the 

phytolith distributions throughout sequences. Finally, the results of cosmogenic 

nuclide dating of samples taken from Sare River will also be presented.  

 
Figure 5.1: Workflow diagram overviewing the order in which results are presented for both sites  
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5.2. Nyayanga 
5.2.1. EMMA 

At Nyayanga, a three EM model was chosen to best represent the dataset without 

overfitting (Figure 5.2), as explained in section 4.3.2. Both a high coefficient of 

determination (r2=0.952) and 95th percentile were obtained with this model, whilst 

also maintaining a low linear correlation between the EMs (r2=0.138). A low angular 

deviation was also obtained (θ=9.759), which displays the angular difference in 

degrees between the reconstructed and observed data. If a sample has a low r2 

and/or a high angular deviation, it indicates that the sample has not been well 

represented by the EM model. Such samples are shown as outliers, represented by 

the red crosses in Figure 5.2. These outliers remain present in all the simulated EM 

models (Figure 5.2), so it was decided not to increase the number of EMs further. 

Instead, significant outliers will be highlighted and described in terms of their 

individual textural parameters in addition to how they are represented by the EM 

model.  

EM densities were exported from AnalySize and imported to GRADISTAT to 

compute descriptive statistics and size classes in order to maintain consistency with 

the original particle size distributions.  

5.2.1.1.EM1 

EM1 is a symmetrical poorly sorted silty clay (Figure 5.2). Despite this, it has a mean 

grain size of 8.8Φ, resembling a very fine silt. Since it is multimodal, the mean 

becomes a less reliable descriptor for the average grain size; in cases of 

multimodality the median is often more reliable. Here, the median is very similar to 

the mean and still classes the average grain size as a very fine silt. Although 

identified as being a symmetrical distribution, EM1 can be seen to have a slight 

coarse tail which incorporates a very small amount of fine sand. With a kurtosis 

value of 1.06, EM1 is classed as mesokurtic, suggesting that the sorting of the 

distribution remains relatively consistent between the tails and the central portion of 

the distribution.  

5.2.1.2.EM2 

EM2 is similar to, yet slightly coarser than EM1 and can be identified as a 

symmetrical poorly sorted silt (Figure 5.2). Almost the entire distribution is made of 
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silts, with a small amount of clay also being present. It is a unimodal distribution with 

a mean of 7.34 Φ, classing it as a fine silt. The kurtosis is 0.99 classing it as 

mesokurtic, like that of EM1.  

5.2.1.3.EM3 

EM3 differs to the previous two EMs. It can be classed as a very fine skewed poorly 

sorted sandy silt (Figure 5.2). Although classed as a unimodal distribution in 

GRADISTAT, it can be seen to have a small fine peak that incorporates a small 

amount of clays in addition to its coarser primary peak. For this reason, the median 

may be more appropriate to classify the average grain size; this can be identified as 

a very coarse silt. The kurtosis of EM3 is higher than that of previous EM’s; it can 

be classed as very leptokurtic. This suggests that its central peak of coarse silts is 

better sorted than that of the tails of the distribution. 

 
Figure 5.2: EM plots for particle size distributions at Nyayanga. (A) The three EM model overlaid on particle size 

distributions from Nyayanga, (B) Size fractions of each EM, (C) Textural parameters of each EM, (D) Linear 

correlations for each EM scenario (E) Angular deviations for each EM scenario 
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5.2.2. Geotrench 1 

5.2.2.1.Sedimentology 

Geotrench 1 (Figure 5.3 & Figure 5.4) is ~ 5.4 m in depth. At its base, it is comprised 

of matrix-supported angular clasts in a clayey silt conglomerate with occasional 

cobbles, before gradationally transitioning to a grey brown clayey silt with some 

sandy lenses, occasional granules and carbonate nodules at ~ 4.8 m. Overlying this 

is a grey brown clayey silt with sandy orange lenses, which are overlain by a grey 

green silt with occasional pebbles. The unit subsequently fines to a grey brown 

clayey silt. At ~ 3.9 m, an erosive contact exists with the overlying light orange grey 

massive silty sands. Over a metre of massive grey brown clayey silts with carbonate 

nodules are then observed from ~ 3.7 m, before sharply transitioning to light orange 

clayey silts with some gravel, as well as coalescing carbonate nodules up to pebbles 

in size at ~ 2.4 m. Finally, a sharp transition at ~ 0.8 m to a massive red brown 

clayey silt with pedogenic carbonate nodules characterises the top of this trench.  

5.2.2.2.EMMA 

At the base of Geotrench 1, EM’s 1 and 2 explain the majority of particle size 

distributions (Figure 5.3), with a smaller percentage of EM3. From ~ 4.4 m to ~ 4.2 

m, EM3 increases in percentage whilst EM1 decreases, following which EM1 

significantly increases again and explains over 50% of particle size distributions. 

This trend is interrupted at ~ 3.9 m, where EM3 increases to over 50%, whilst EM2 

decreases further to ~ 10%. However, at this depth the particle size distribution is 

very poorly explained by the EM model (R2=0.16), as an outlier is present (OL2). 

The sample at this depth incorporates higher percentages of sands, with over 50% 

of the sample ranging in sizes from fine to coarse sand. Sand is not present in large 

amounts in any of the EMs, especially in sizes greater than fine sand; this most 

likely explains why this sample is poorly explained by the EM model.  

At ~ 3.8 m in depth EM1 accounts for over 50% of the distributions up to ~ 2.3 m in 

depth. The percentage of EM2 reduces from ~ 2 5% to 0 during this period, whilst 

EM3 increases from ~ 15% to ~ 30%. An outlier is present (OL1) at ~ 2.4 m. Similar 

to the previous outlier, the particle size distribution of this sample incorporates 

higher percentages of fine sand, which is most likely why it is poorly represented by 

the EM model.  
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Figure 5.3: Sediment log of Geotrench 1(Figure 2.3) at Nyayanga. Sediment log depth is presented in metres. Facies codes 

outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation types 

are also included at corresponding sample depths. Two outliers are present (OL1 and OL2). These samples incorporate 

higher percentages of sand. Letters a – f. relate to sediment pictures displayed in Figure 5.4 

From ~ 2.1 m in depth to ~ 0.8 m, EM2 best explains the majority PSD’s with 

percentages over 75% in all but one sample, of which is dominated by EM1. Aside 

from this sample, EM1 is present percentages <25%, decreasing upwards. EM3 

shows the opposite trend and increases from absence to ~ 20%.  
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Figure 5.4: Photos of sediments in GT1 at Nyayanga. Letters a – f correspond to the depths sections highlighted in 

Figure 5.3. Sediment features are highlighted in the images 

At ~ 0.8 m in depth, the best explanation of PSD’s alternates between EM’s 1 and 

2; whilst EM1 is present in percentages >50%, EM2 is present is in percentages 

<25%, and vice versa. EM3 is consistently present in percentages <25%.  

5.2.2.3.Phytoliths 

Throughout the trench, grass and herbaceous phytoliths dominate the assemblage 

(Figure 5.5). Sedge and wood phytoliths remain present in abundances of ~ 10%. 

However, to better describe the dynamics of the phytolith distribution throughout the 

trench, four zones were identified.  
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Zone 1 characterises the base of the trench between 5.4 m and 4.5 m. Grass 

phytoliths increase from ~ 30% to ~ 50%, whilst wood and herbaceous phytoliths 

both reduce in percentage. An increase in rondels characterises the increase in 

grass phytoliths, whilst a reduction in spheroids are responsible for the reduction of 

wood phytoliths. Irregular phytoliths however are seen to increase, most likely 

relating to wooded vegetation, although they are nondiagnostic of this.  

At 4.5 m to 2.9 m, zone 2 is delineated. This zone has the most consistent trend in 

vegetation types indicated by phytoliths. Wood phytoliths remain ~ 10%, whilst 

sedge phytoliths are slightly fewer ~ 5%. Grass and herbaceous phytoliths generally 

remain ~ 40% in abundance, with some variations. Rondel phytoliths show the most 

variation in this zone, showing repeated increases and decreases of at least 15%. 

Saddles gradually decrease in this zone, as do bilobates and sclereids. Tracheids 

characterise much of the wood phytoliths. 

Zone 3 lies at 2.9 m to 1.6 m. Sedge phytoliths increase to ~ 10% in this zone, 

characterised primarily by achene phytoliths. Grass phytoliths also increase in 

percentage and dominate this zone, composed mainly of rondel and saddle 

 

Figure 5.5: Phytolith morphotypes counted at GT1 and their respective percentages. Morphotypes are categorised into 

vegetation types (Herbaceous, Sedges, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here). 

The diagram is delineated into four zones representing shifts in the vegetation structure  
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phytoliths. Herbaceous phytoliths show a small decrease in percentage from zone 

2.  

From 1.6 m to the top of the trench is zone 4. Grass phytoliths dominate this zone, 

more so than zone 3. These are primarily composed of rondels, although saddles 

are present throughout. Herbaceous phytoliths reduce in percentage, as do sedge 

phytoliths. Wood phytoliths show a reduction in percentage from zone 3 at the base 

of zone, but steadily increase to ~ 10%.  

5.2.3. Geotrench 2 
5.2.3.1.Sedimentology 

~ 4.2 m in depth, Geotrench 2 (Figure 5.6 & Figure 5.7) consists of relatively different 

sediments than that of Geotrench 1. At its base, it is comprised of massive grey silts 

with carbonate nodules and occasional granules. Overlying this at ~ 3.5 m in depth 

are massive red brown clayey silts with carbonate nodules, like that of those towards 

at the top of Geotrench 1; evidence for faulting here may also exist. A sharp change 

to massive light orange clayey silts occurs at ~ 2.3 m in depth, with occasional 

carbonate nodules and manganese staining also present. This is overlain by a 

massive grey orange granular clayey silt at ~ 1.7 m, where carbonate nodules are 

still present. Massive light orange grey granular clayey silts overlie these sediments 

at ~ 1.2 m, with a thin band of carbonate nodules running through the centre of this 

layer at ~ 1.1 m. A metre of brown silts with carbonate nodules throughout make up 

the top of Geotrench 2, with carbonate nodules being particularly more concentrated 

at ~ 0.8 m in depth. 

5.2.3.2.EMMA 

From the base to ~ 3.8 m in depth, EM2 best explains PSD’s, with EM1 present in 

percentages <10% at the very base and then absent, whilst EM3 is absent at the 

base and then present in percentages ~ 25% (Figure 5.6). 

EM2 best explains the PSD’s between ~ 3.8 m and ~ 1.7 m in depth. At this depth 

and below, EM3 is present in percentages <10% or absent. EM1 infrequently better 

explains PSD’s than EM2, and is generally present in percentages <30%.  

From 1.7 m to 1 m in depth, EM2 best represents PSD’s, but EM1 still represents ~ 

25% of each PSD. EM3 increases in percentages at ~ 1.7 m and above, and at 



 

 70 

times better represents PSD’s than EM2, before becoming less present (<25%) at 

~ 1.3 m.  

From 1 m to the top of the trench EM3 best represents PSD’s , present at 

percentages >50% in both samples, whilst EM2 is present in slightly higher 

percentages than EM1.  

 

 
Figure 5.6: Sediment log of Geotrench 2 (Figure 2.3) at Nyayanga. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths. Letters a – g. relate to sediment pictures displayed in Figure 5.7 
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Figure 5.7: Photos of sediments in GT2 at Nyayanga. Letters a – g correspond to the depths sections highlighted in 

Figure 5.6. Sediment features are highlighted in the images 

5.2.3.3.Phytoliths 

The distribution of phytoliths in Geotrench 2 appears more consistent than that of 

Geotrench 1 (Figure 5.8). Herbaceous phytoliths dominate the majority of this 

geotrench, although grass phytoliths are present in abundance. Two zones are 

identified here.  

Zone 1 spans from 4 m to 2 m in depth. It is dominated by herbaceous vegetation 

in abundances of over 50%. Grass phytoliths generally comprise ~ 35% of the 

phytolith known distribution; this is made up primarily of rondel phytoliths, although  
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Figure 5.8: Phytolith morphotypes counted at GT2 and their respective percentages. Morphotypes are categorised into 

vegetation types (Herbaceous, Sedges, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here). 

The diagram is delineated into two zones representing shifts in the vegetation structure 

saddle phytoliths are present throughout. Wood phytoliths are almost entirely absent 

from this zone. Sedge phytoliths are present in abundances <10%.  

From 2 m in depth to the top of the trench is zone 2. Grass phytoliths, composed 

mainly of rondel phytoliths, dominate this zone between 2 m and 1.3 m in depth with 

abundances of ~ 50%,before reducing to ~ 40% for the remainder of the zone. 

Saddles steadily decrease throughout zone 2, whilst bilobates increase. 

Herbaceous phytoliths are present in abundances of ~ 40% between 2 m and 1.3 

m, before becoming dominant from 1.3 m to the top of the trench, with abundances 

of ~ 50%. Wood phytoliths can be seen to steadily increase in percentage 

throughout this zone, from <5% at the base, to ~ 10% at the top of the trench. Sedge 

phytoliths are present in abundances of ~ 5% throughout the zone.  

5.2.4. Geotrench 3 
5.2.4.1.Sedimentology 

Geotrench 3 (Figure 5.9 & Figure 5.10), ~ 3.1 m in depth, is comprised of a massive 

dark grey brown clayey silt with isolated carbonate nodules at its base. Overlying 

this at ~ 2.9 m is a massive grey buff coloured silt with carbonate nodules 

coalescing, which gradationally develops more light orange silts at ~ 2.5 m. 

Subsequently, a massive dark grey brown clayey silt with carbonate nodules 

overlies these sediments at ~ 1.9 m. At ~ 1.5 m, grey brown clayey silts with some 
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granules and increased carbonate content appear, with carbonate content 

hardening into rock-like clasts. Following this, between ~ 1.2 m and ~ 0.6 m, 

alternating laminations of light grey yellow and orange brown grey sandy silts exist, 

with carbonate nodules dispersed throughout, as well as lenses of orange sands 

and silts. Orange brown sandy silts with carbonate nodules cap this trench. 

5.2.4.2.EMMA 

Throughout Geotrench 3, EM’s 1 and 3 follow a consistent pattern (Figure 5.9). At 

the base of the trench, EM1 is seen to increase in percentage until ~ 2.9 m in depth.  

 
Figure 5.9: Sediment log of Geotrench 3 (Figure 2.3) at Nyayanga. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths. Four outliers are present in the trench (OL3 – 6), two at ~ 1.1 m 

in depth, and two at ~ 0.6 m in depth. these samples incorporate higher percentages of sand in their distribution. Letters 

a – f. relate to sediment pictures displayed in Figure 5.10 
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Figure 5.10: Photos of sediments in GT3 at Nyayanga. Letters a – f correspond to the depths sections highlighted in 

Figure 5.9. Sediment features are highlighted in the images 

Following this, it decreases to ~ 20%, before increasing in percentage again 

between ~ 2.8 m and ~ 2 m, from which point it generally decreases in abundance 

towards to the top of the trench. EM3 shows the opposite trend throughout the 
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trench. EM2 is consistently present throughout the trench in percentages between 

~ 25% and 50%, with the occasional exceptions. It is at its lowest percentages in 

the middle of the trench ~ 1.9 m in depth, either side of which it increases in 

percentage.  

Four outliers are present in the trench (OL3 – 6), two at ~ 1.1 m in depth, and two 

at ~ 0.6 m in depth. Like the outliers identified in Geotrench 1, these samples 

incorporate higher percentages of sand in their distribution, up to coarse sand in 

size, and so will be poorly presented by the EM model. These samples do not fit the 

EM model well, even by increasing the number of EMs, most likely due to the 

infrequency of coarser PSD’s.  

5.2.4.3.Phytoliths 

Like previous trenches, grass and herbaceous phytoliths dominate the assemblage 

throughout Geotrench 3 (Figure 5.11). Wood and sedge phytoliths are present 

throughout the trench, although in low percentages. Three zones can be identified 

in this trench. 

Zone 1 spans from 3.1 m to 1.8 m. Grass phytoliths dominate this zone, comprising 

at least 45% of the known phytolith distribution and gradually increasing throughout 

the zone. Herbaceous phytoliths are present in similar abundances of 45% at the 

base of the zone, but gradually decrease to abundance of ~ 30% towards the top of 

the zone. Wood phytoliths display an over  

increase in percentage from <5% at the base of the zone to ~ 20% at the top; these 

are composed primarily of tracheid phytoliths. Sedge phytoliths are present 

throughout in abundances of 5 – 10%. 

 Zone 2, which spans from 1.8 m to 0.8 m in depth, is dominated by grass and 

herbaceous phytoliths, which have relatively even abundances of ~ 45%. A 

reduction in wood phytoliths can be observed throughout the zone; percentages 

drop to <5%. Abundances of sedge phytoliths remain consistent with zone 1.  

From 0.8 m to the top of the trench is zone 3. This is dominated by herbaceous 

phytoliths, which increase in percentage from ~ 45% in zone 2 to ~ 70% in zone 3. 
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Grass phytoliths reduce in abundance to ~ 30%. Wood and sedge phytoliths are 

present in low abundances of <5%.  

 

Figure 5.11: Phytolith morphotypes counted at GT3 and their respective percentages. Morphotypes are categorised into 

vegetation types (Herbaceous, Sedges, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here). 

The diagram is delineated into three zones representing shifts in the vegetation structure 

5.2.5. Geotrench 5 
5.2.5.1.Sedimentology 

Only ~ 2 m in depth, Geotrench 5 (Figure 5.12) is the smallest of the Nyayanga 

trenches. At its base, it is comprised of a massive buff coloured laminated clayey 

silt. Overlying this are poorly sorted gravels and occasional cobbles supported by a 

grey brown clayey silt matrix. At ~ 1 m, a massive well sorted grey brown clayey silt 

with some manganese characterises the rest of these sediments. The two 

uppermost sediment units are consistent with lower parts of Geotrench 1 and 2.  

5.2.5.2.EMMA 

From the base to ~ 0.5 m in depth, Geotrench 5 is largely dominated (~ 50%) by 

EM2 (Figure 5.12). EM3 is present in percentages <20%. EM1 is generally more 

present with percentages ~ 30%, although it falls to ~ 10% at 1.7 m and has a peak 

of ~ 65% at 0.9 m. At the top of the trench, EM3 is largely present in PSD’s, with 

over 50% presence in two of three samples. EM2 decreases in presence to ~ 25% 

for these two samples but remains at ~ 50% for the third. EM1 is present in 

percentages <15%.  
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Figure 5.12: Sediment log of Geotrench 5 (Figure 2.3) at Nyayanga. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths 

5.2.5.3.Phytoliths  

Throughout Geotrench 5, herbaceous phytoliths are dominant in abundances of 

>50% (Figure 5.13). Grass phytoliths are present throughout in abundances of 30% 

to 45%. Sedge and wood phytoliths are almost completely absent from this trench, 

with abundances <5%.  

 

Figure 5.13: Phytolith morphotypes counted at GT5 and their respective percentages. Morphotypes are categorised into 

vegetation types (Herbaceous, Sedges, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here)  
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5.2.6. Geotrench 6 
5.2.6.1.Sedimentology 

Geotrench 6 (Figure 5.14 & Figure 5.15) is ~ 3.2 m in depth, with sediments here 

apparently coarser overall than other previous units. At the base of the trench, an 

outcrop of a fairly massive cobble conglomerate exists, which is not depicted in the 

log. Overlying this is a ~ 35cm massive granular grey brown clayey silts with diffuse 

carbonate nodules. This has a gradational contact with the overlying massive grey 

orange brown clayey silts at ~ 2.8 m, where diffuse carbonate nodules also exist. 

Up sequence a gradational shift towards alternating faintly laminated clayey silts 

and sandy silts with fine gravel at ~ 2.3 m, with a lower concentration of carbonate 

nodules is identified. Overlying these sediments at ~ 1.3 m is a massive clayey silt 

with large amount of carbonate nodules, up to pebbles in size, as well as clasts up  

 
Figure 5.14: Sediment log of Geotrench 6 (Figure 2.3) at Nyayanga. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths. One outlier is present at ~ 2 m (OL7). This sample incorporates 

a large percentage of sand. Letters a – c. relate to sediment pictures displayed in Figure 5.15 
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to pebbles in size. These sediments have a sharp contact with the overlying massive 

dark brown orange granular clayey silt at ~ 0.7 m, which contains carbonate nodules 

and occasional granules; these sediments are similar to the red brown orange 

sediments seen in previous trenches.  

5.2.6.2.EMMA 

There is little change in EM compositions in Geotrench 6 (Figure 5.14). EM2 

dominates much of the sequence and accounts for over 50% of the EM composition 

for most samples. EM3 fluctuates between 15% and 40% throughout the trench, 

showing a peak from the base to ~ 2.8 m in depth, a trough to ~ 2 m in depth, 

followed by a peak to ~ 1.4 m in depth, tailed by a steady general decrease to the 

top of the trench. EM1 is present in low percentages (<20%) for much of the trench, 

with exceptions at ~ 3 m and ~ 2 m, where it’s percentages rises. One outlier is 

present at ~ 2 m (OL7). This sample incorporates a large percentage of sand, like 

previous outliers.  

 
Figure 5.15: Photos of sediments in GT6 at Nyayanga. Letters a – c correspond to the depths sections highlighted in 

Figure 5.14. Sediment features are highlighted in the images 
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5.2.6.3.Phytoliths 

The phytolith assemblage at Geotrench 6 is dominated by herbaceous phytoliths 

(Figure 5.16). These are present in very high abundances of 70% to 90%. Grass 

phytoliths are present in abundances of 10% to 35%; the heist instance is located 

at 1.6 m in depth. Sedge phytoliths are almost absent, with abundances <5%. Wood 

phytoliths show a similar trend, although have a single instance where abundances 

are >10% at 1.6 m; this is the same location grass phytoliths also reach their highest 

abundance.  

 

Figure 5.16: Phytolith morphotypes counted at GT6 and their respective percentages. Morphotypes are categorised into 

vegetation types (Herbaceous, Sedges, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here) 

5.2.7. Geotrench 7 
5.2.7.1.Sedimentology 

At the base of Geotrench 7 (Figure 5.17 & Figure 5.18), a massive light grey buff 

clayey silt exists between ~ 3.3 m and ~ 2.7 m in depth, with cobbles and pebbles 

in its lowermost parts. This is overlain by a massive orange grey clayey silt with 

carbonate nodules diffusely dispersed throughout. At ~ 1.8 m the sediments coarsen 

to more sandy silts with faint horizontal laminations. At ~ 1.6 m, orange sandy silts 

supporting pebbles and carbonate nodules appear; these sediments have a diffuse 

contact with overlying massive brown silts at ~ 0.5 m, which contain a clear 

pedogenic carbonate horizon at ~ 0.25 m. 
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5.2.7.2.EMMA 

Geotrench 7 displays some of the most consistent PSD’s up sequence throughout 

the site, and this is reflected in the EMs (Figure 5.17). EM2 accounts for over 75% 

of the EM compositions at the base of the trench, and steadily decreases in 

percentage from the base to the top. EM3 shows the opposite trend and rises from 

~ 10% at the base, to ~ 70% at the top of the trench. EM1 is absent for much of the 

trench, but is infrequently present in percentages <10%.  

 

 
Figure 5.17: Sediment log of Geotrench 7 (Figure 2.3) at Nyayanga. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths. Letters a – b. relate to sediment pictures displayed in Figure 

5.18 
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Figure 5.18: Photos of sediments in GT7 at Nyayanga. Letters a – b correspond to the depths sections highlighted in 

Figure 5.17. Sediment features are highlighted in the images 

5.2.7.3.Phytoliths 

Geotrench 7 displays a consistent phytolith distribution throughout (Figure 5.19). It 

is dominated by herbaceous phytoliths, which have an abundance of ~ 50%. Grass 

phytoliths have  

an average abundance of ~ 40% throughout the trench. Wood phytoliths are present 

in low abundances of ~ 5% throughout, whilst sedge phytoliths are present in even 

lower abundances.  

 

Figure 5.19: Phytolith morphotypes counted at GT7 and their respective percentages. Morphotypes are categorised into 

vegetation types (Herbaceous, Sedges, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here) 
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5.2.8. Geotrench 8 
5.2.8.1.Sedimentology 

Geotrench 8 (Figure 5.20 & Figure 5.21) is ~ 3.1 m in depth. At its base, a ~ 60cm 

massive red brown silt with carbonate nodules exists, overlain by a thin grey clayey 

silt with diffuse carbonate nodules throughout at ~ 2.5 m. A massive grey silt with 

reworked carbonate nodules and cementing overlies this at ~ 2.4 m. A diffuse 

contact exists between these sediments and the overlying massive orange silts at ~ 

2.1 m, which are characterised by carbonate nodules and light cementing. At ~ 1.6 

m, these sediments have a gradational contact with brown silts, where there is also 

manganese alteration. A sharp, undulating contact with the overlying light brown 

silts exists at ~ 1.5 m. These sediments incorporate some larger carbonate nodules 

towards 1 m.  

 
Figure 5.20: Sediment log of Geotrench 8 (Figure 2.3) at Nyayanga. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths. Letters a – c. relate to sediment pictures displayed in Figure 

5.21 



 

 84 

Overlying this at ~ 1 m, a brown clayey silt with diffuse carbonate nodules exists. 

Within these sediments an isolated light orange silt exists at ~ 0.5 m, which could 

potentially be a small channel structure. At the top of the trench at ~ 0.3 m there is 

a massive brown silt with a clear carbonate horizon. This unit is similar to the 

sediments preserved in the uppermost unit of Geotrench 7.  

5.2.8.2.EMMA 

Like Geotrench 7, Geotrench 8 has extremely consistent PSD’s up sequence 

throughout all of the units present (Figure 5.20). From the base to ~ 0.9 m, EM2 

accounts for most of the EM compositions, but decreases from ~ 75% to ~ 50%. 

Above this depth, it decreases further to ~ 30% at the top of the trench. EM3 displays 

the opposite trend and displays a general increase from the base of the trench, 

where its percentage is ~ 25/35%, to the top of the trench, where it accounts for 

over  

 
Figure 5.21: Photos of sediments in GT8 at Nyayanga. Letters a – c correspond to the depths sections highlighted in 

Figure 5.20. Sediment features are highlighted in the images 
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50% of the EM composition. Like the previous trench EM1 is infrequently present in 

percentages <20%, but shows a gradual increase from ~ 1.5 to the top of the trench. 

5.2.8.3.Phytoliths 

Geotrench 8 is dominated by herbaceous phytoliths throughout (Figure 5.22). Grass 

phytoliths are consistently present in abundances of over 20%. Wood phytoliths 

show a reduction in percentage throughout the trench, whilst sedge phytoliths are 

almost absent. Two zones are identified. 

Zone 1, which spans from 2.4 m to 1.2 m is dominated by herbaceous phytoliths. 

Between 2.4 and 1.9 m, grass and wood phytoliths both see an increase in 

percentage, before decreasing between 1.9 m and 1.2 m. Sedge phytoliths are 

present in abundances of ~ 5%. 

Zone 2 spans from 1.2 m to the top of the trench. It is characterised by an almost 

complete absence of wood and sedge phytoliths. Herbaceous phytoliths see a 

reduction in percentage from ~ 75% to ~ 60% throughout this zone, but are still 

dominant. Grass phytoliths increase from~ 25% to ~ 40% in this zone.  

 

 

Figure 5.22: Phytolith morphotypes counted at GT8 and their respective percentages. Morphotypes are categorised into 

vegetation types (Herbaceous, Sedges, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here). 

The diagram is delineated into two zones representing shifts in the vegetation structure 
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5.2.9. Geotrench 9 
5.2.9.1.Sedimentology 

Geotrench 9 (Figure 5.23 & Figure 5.24), also ~ 3.1 m in depth, contains massive 

grey green silts at its base, with occasional carbonate nodules. Overlying this at ~ 

2.1 m are massive well sorted brown clayey silts, with no obvious carbonate 

nodules. At ~ 1.9 there is an orange massive silt with carbonate nodules within. This 

gradationally changes to a brown clayey silt at ~ 1.7 m which gradually coarsens 

upwards, but remains predominantly a silt. At ~ 1.3 m, this gradationally shifts 

towards a massive orange clayey silt with carbonate nodules. A gradational contact 

with these sediments is also present at ~ 0.9 m, where the sediments become a 

massive red brown clayey silt with occasional carbonate nodules. This is overlain  

 
Figure 5.23: Sediment log of Geotrench 9 (Figure 2.3) at Nyayanga. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths. Letters a – c. relate to sediment pictures displayed in Figure 

5.24 
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Figure 5.24: Photos of sediments in GT9 at Nyayanga. Letters a – c correspond to the depths sections highlighted in 

Figure 5.23. Sediment features are highlighted in the images 

by a ~ 10cm band of white micrite and carbonate nodules at ~ 0.6 m, which is 

overlain by a massive brown clayey silt with carbonate nodules.  

5.2.9.2.EMMA 

In Geotrench 9, EM1 generally displays a gradual increase from its base to the top 

of trench, from which it goes from being absent in the EM composition to accounting 

for ~ 50% of it by ~ 0.5 m in depth (Figure 5.23). EM3 shows the opposite trend; at 

the base of 

the trench it is accountable for ~ 50% of the EM composition, but is absent by the 

top of the trench. EM2 is present throughout the entire trench, generally in 

abundances of at least 50%, but in places, such as ~ 1 m, reaching almost 75%.  

5.2.9.3.Phytoliths 

Herbaceous phytoliths dominate Geotrench 9 throughout, with abundances of over 

50% (Figure 5.25). Grass phytoliths can be seen to increase in percentage from 

25% to 40% between the base of the trench to 1.8 m, before decreasing to 25% at  
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Figure 5.25: Phytolith morphotypes counted at GT9 and their respective percentages. Morphotypes are categorised into 

vegetation types (Herbaceous, Sedges, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here) 

the top of the trench. Wood phytoliths are present throughout in low abundances of 

<5%; sedge phytoliths show a similar trend and are almost absent. 

5.2.10. Establishing Sedimentary units 

By evaluating these geological trenches, it has been possible to divide the 

sedimentary sequence at Nyayanga into four different units (NY-1 to 4) across the 

site. This will be discussed herein and will provide a framework to interpret the 

palaeoenvironment at Nyayanga. Figure 5.26 displays the previously described 

geological trenches within the context of these sedimentary units.  

5.2.10.1.NY-1 

NY-1 has the most extensive presence throughout the geological trenches; it is 

visible in all trenches. The lithology of this unit varies laterally, although it is largely 

composed of grey clay/silt rich deposits interbedded with orange sands, the latter of 

which are associated with granule-cobble grade material. The largest exposures of 

this unit appear in the southwest of the site at Geotrench 1 to 5, as well as at an 

excavation which was placed nearby (Figure 5.26); smaller exposures to the 

northeast further up the canyon are also visible. Due to the variable lithology of this 

unit, subunits have also been identified.  

NY-1A, located between 5.3 m and 4.8 m in GT1 (Figure 5.3), is the lowermost 

subunit of NY-1 and is seen overlying sediments believed to predate this unit. It is 

largely structureless and characterised by clasts up to cobbles in size suspended in  
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Figure 5.26: Sedimentary units identified site wide at Nyayanga across geotrenches. Vertical placement of geotrenches is 

representative of their elevation at the site. Horizontal placement of trenches roughly represents their position from west 

to east of the site. Precise locations of each Geotrench are shown in the inset figure, which is enlarged in Figure 2.3. 

Sediments from units NY-1 and NY-2 date to 3.05 – 2.595 Ma, based on previously acquired ages from biostratigraphy 

and magnetostratigraphy (Finestone, 2019) 

a fine clayey silt matrix. EM1 is present here in abundances of up to 45%, yet EM2 

is dominant. Phytoliths here are dominated by grass and herbaceous indicating 

phytoliths, although wood and sedge indicating phytoliths remain present in low 

percentages during this interval.  

NY-1B is visible at GT1 (Figure 5.3, 4.8 m – 3.9 m), GT3 (Figure 5.9, 3.1 m – 1.3 

m), GT5 (Figure 5.12, 2 m – 0.3 m) and GT6 (Figure 5.14, 3.1 m – 2.2 m). These 

sediments include interbedded massive muddy matrix supported pebbles and 

massive muds. Throughout this interval, EM1 and EM2 are most dominant, although 

EM3 is present, occasionally in abundance. In GT1 and GT3, EM1 and EM2 

alternate in dominance. EM1 is frequently abundant when associated with the 

massive muddy matrix supported pebbles, whilst EM2 is frequently more abundant 

when associated with the massive muds with some exceptions. EM3 is present in 

its greatest abundance in the first instance of the massive muds, following which it 

is less abundant, but still present. In GT5 and GT6 EM1 is less abundant (~ 25%) 

and the subfacies is largely dominated by EM2 (>50%), whilst in GT6 EM3 is more 

abundant than elsewhere (>25%). Grass and herbaceous indicating phytoliths are 
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most abundant in this subfacies, although in GT1 and GT3, wood and sedge 

indicating phytoliths reach their highest abundance (~ 15%) site wide. However, in 

GT5 and GT6 they are almost absent. 

NY-1C is seen overlying NY-1B in GT1 (3.9 m – 3.7 m), GT3 (1.3 m – 0.6 m), GT5 

(0.3 m – 0 m) and GT6 (2.2 m – 1.2 m). In GT1, these sediments are characterised 

by poorly sorted massive silty sands which have an erosive contact with the 

underlying massive muds previously described. Increased sand content is 

characteristic of this subunit, up to coarse sand in size. Similarly, in GT3 an erosive 

contact exists with underlying sediments, whilst sand content and size also 

increases. Fluctuations occur in the sand content in GT3 between 1 m and 0.6 m, 

with sand content generally decreasing, before increasing sharply again. Similarly, 

in GT6 sand content and size increases sharply at 2 m, before sharply decreasing 

and then steadily increasing up to 1.2 m. In GT5 sand content also increases at 0.3 

m, where before it was absent. Unlike the sediments at the other trenches, sands 

here are not as coarse. EM2 and EM3 are most abundant throughout this subunit. 

GT1 and GT5 are dominated by EM3, where it accounts for ~ 50% of the EM 

composition, whilst in GT3 and GT6, EM2 is most abundant. EM1 is poorly 

represented throughout this subunit, with abundances of ~ 25% or lower throughout 

all of the trenches. Phytoliths samples were not taken for instances of this subunit 

in GT1 and GT5. However, in GT3 and GT6 phytoliths in these sediments are 

characterised by grass and herbaceous indicating phytoliths. 

NY-1D is seen overlying NY-1C in GT1 (Figure 5.3, 3.7 m – 2.3 m) and GT3 (Figure 

5.9, 0.6 m – 0 m). It is also visible in GT2 (Figure 5.6, 4.2 m – 3.5 m) and GT8 

(Figure 5.20, 3.1 m – 2.5 m). Sediments in this subunit are characterised by massive 

grey brown clayey silts with carbonate nodules and occasional granules in GT1 and 

GT2. At GT3, sediments in this subunit are slightly coarser and are characterised 

by massive orange brown sandy silts with carbonate nodules. In GT8 NY-1D is 

comprised of a massive red brown silt with carbonate nodules, similar to sediments 

in GT1 and GT2. EM2 is dominant throughout much of this subunit, apart from GT1 

where it is present in low percentages. Here, EM1 is largely dominant. EM3 is also 

present throughout this subunit with abundances of approximately 15 – 25%. 

Vegetation throughout this subunit is characterised by large percentages of grass 
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and herbaceous indicating phytoliths. Sedge indicating phytoliths are also present 

in low percentages (<10%). Wood indicating phytoliths are largely absent other than 

in GT1 where they are present throughout this subunit in low percentages (<10%).  

NY-1E is the uppermost subunit of NY-1. It is visible in GT1 (Figure 5.3, 2.4 m – 0.9 

m), GT6 (Figure 5.14, 1.2 m – 0.8 m), GT7 (Figure 5.17, 3.2 m – 2.8 m), GT8 (Figure 

5.20, 2.5 m – 2 m) and GT9 (Figure 5.23, 3.1 m – 2.1 m). This subunit is 

characterised by carbonaceous clayey silts. In GT1, it is massive, light orange in 

colour and contains coalescing carbonate nodules up to pebbles in size. In GT6 it 

is a massive grey clayey silt with carbonate nodules up to pebbles in size dispersed 

throughout. In GT7, carbonate nodules are absent, but sediment are light grey buff 

clayey silts, with occasional pebbles and cobbles at its base. At GT8, the base of 

this subunit is comprised of a thin grey brown clayey silt with coalescing carbonate 

nodules. Overlying this is a massive grey silt with cemented carbonate nodules. In 

GT9, massive grey green silts with occasional carbonate nodules characterise this 

subunit. Throughout these exposures, EM2 is particularly dominant comprising at 

least 50% of the EM composition. The only exception to this is GT9, where EM3 is 

mostly dominant (~ 50%). EM3 is also present in all other exposures, generally with 

abundances of 30% or less. EM1 is most poorly represented throughout this subunit. 

It is almost completely absent from all exposures with the exception of GT1. Here it 

is dominant (>50%) in two instances, but generally present in abundances of ~ 25%. 

Phytoliths in this subunit are characterised by abundant grass and herbaceous 

indicating phytoliths. Wood and sedge indicating phytoliths are infrequent and never 

present in abundances higher than 10%.  

5.2.10.2.NY-2 

NY-2 is well exposed throughout the entirety of Nyayanga (Figure 5.26), with the 

exceptions of Geotrench 4 and 5. Most commonly, it is a massive red brown strongly 

pedogenically altered clayey silt with sandy intercalations of coarse sand to 

granules, much of which is stained with manganese. However, some due to lateral 

variance in the unit, subunits have been identified.  

NY-2A is the lowermost subunit of unit NY-2. It is visible in GT1 (Figure 5.3, 0.8 m 

– 0 m), GT2 (Figure 5.6, 3.5 m – 2.3 m), GT6 (Figure 5.14, 0.7 m – 0 m) and GT9 

(Figure 5.23, 2.1 m – 1.9 m). This subunit is characterised by massive clayey silts 
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with pedogenic carbonates dispersed throughout much of the subunit. Sediment are 

frequently red brown in colour and occasionally incorporate granules in some areas 

(GT6). EM characteristics throughout this subunit are laterally variable. In GT1, EM1 

and EM2 fluctuate in abundance significantly from as much as 75% to as little as 

10% of the EM composition. EM3 is present here throughout in low percentages 

(<25). In GT2, EM2 is largely dominant throughout this subunit (>70%), with the 

exception of two instances upon which EM1 is most abundant (>75%). EM3 is less 

frequently absent from this subunit here, and only present in very low abundances 

(<10%). EM2 is also consistently dominant throughout GT6 (>50%), although not 

as abundant as in GT2. EM1 and EM3 are also both consistently present throughout 

in similar percentages to one another (<25%). In GT9, EM3 is dominant throughout 

this subunit (>50%), whilst EM2 comprises the rest of the EM composition. EM1 is 

almost entirely absent here. Phytoliths throughout this subunit are dominated by 

herbaceous indicating phytoliths in all trenches other than GT1, where grass 

indicating phytoliths are dominant. Grass indicating phytoliths are present 

throughout all of this subunit, whilst wood and sedge indicating phytoliths are almost 

entirely absent.  

NY-2B is exposed in GT2 (Figure 5.6, 2.3 m – 1.7 m), GT7 (Figure 5.17, 2.7 – 1.8 

m), GT8 (Figure 5.20, 2.1 m – 1.5 m) and GT9 (Figure 5.23, 1.9 m – 1.7 m). This 

subunit is characterised by massive orange grey clayey silts with carbonate nodules 

dispersed throughout, as well as light cementing. EM1 is only present in GT2, where 

it fluctuates in abundance between 25% and 75%. EM2 is more abundant here for 

most of the exposure, whilst EM3 is almost entirely absent. EM2 and EM3 account 

for the entire composition in all other exposures. EM2 is generally dominant 

although only marginally. Grass and herbaceous indicating phytoliths are most 

abundant in these sediments, with herbaceous phytoliths mostly dominant. Wood 

and sedge phytoliths are present in low abundances (<15%).  

NY-2C is visible in GT7 (Figure 5.17, 1.5 m – 0.5 m), GT8 (Figure 5.20, 1.5 m – 1 

m) and GT9 (Figure 5.23, 1.7 m – 0.9 m). Sediments in this subunit vary laterally. In 

GT7, sediments belonging to this subunit are characterised by orange sandy silts 

supporting pebbles and carbonate nodules. At GT8, there is a small reduction in 

sand content and sediments are composed of light brown silts. In GT9, sand content 
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reduces further and sediments are characterised by brown clayey silts which lighten 

in colour to orange clayey silts incorporating carbonate nodules. The absence of 

EM1 and abundances of EM2 and EM3 characterise this subunit. In GT7, EM3 is 

most dominant, and increases in abundance moving upward throughout the subunit. 

EM2 is present throughout and displays the opposite trend, whilst EM1 is largely 

absent. In GT8, EM2 and EM3 are relatively equal in abundance throughout, whilst 

EM1 is absent for much of this exposure. EM2 is most abundant at GT9, although 

EM3 is dominant in the upper part of this subunit. EM1 is more abundant here than 

in other exposures, but still in low percentages. Herbaceous indicating phytoliths 

dominate this subunit throughout. Grass indicating phytoliths are present in 

abundances of ~ 25%. Wood indicating phytoliths are present in low abundances 

(<10%), whilst sedge indicating phytoliths are absent.  

5.2.10.3.NY-3 

NY-3 is the most poorly exposed sedimentary unit throughout Nyayanga, only 

visible in GT2 (Figure 5.6, 1.7 m – 1 m) and GT8 (Figure 5.20, 1 m – 0.3 m). The 

lower part of this subunit is composed of grey orange granular silts with carbonate 

nodules. In its upper part, it is characterised by orange/brown silts with increased 

amounts of carbonate nodules. EM2 and EM3 are present in relatively equal 

abundances for the lower part of this subunit, whilst EM2 becomes largely dominant 

(>75%) in the upper parts. EM1 is present in very low percentages throughout the 

subunit (<15%). Grass and herbaceous indicating phytoliths are most abundant 

throughout this subunit. Grass indicating phytoliths have a slightly higher abundance 

in the lower parts, whilst herbaceous indicating phytoliths are more abundant in the 

upper parts. Wood indicating phytoliths increase in abundance throughout this 

subunit, yet are still very low in percentage. Sedge indicating phytoliths show the 

opposite trend.  

5.2.10.4.NY-4 

NY-4 is exposed throughout GT2 (Figure 5.6, 0.8 m – 0 m), GT7 (Figure 5.17, 0.5 

m – 0 m), GT8 (0.3 m – 0 m) and GT9 (0.9 m – 0 m). Sediments throughout this 

subunit are characterised by massive brown silts with pedogenic carbonates 

throughout, at times coalescing to form cemented horizons. EM2 and EM3 compose 

much of this subunit. EM3 is dominant in GT7 and GT8, whilst EM2 dominates GT9 
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and much of GT2. EM1 is present in all exposure in low abundances, apart from in 

GT9 where it is particularly abundant (>40%). Herbaceous indicating phytoliths 

dominate this subunit, whilst grass indicating phytoliths are also moderately 

abundant (~ 30%). Wood and sedge indicating phytoliths are present in very low 

percentages (<10%). 

5.2.11. Closing Statement/Table of lithology  

In summary, Nyayanga displays four sedimentary units that have been identified 

and described through various analytical techniques (Table 5.1). These units vary 

laterally over a ~ 200 m transect between the southwest and northeast of the site, 

the former of which shows larger exposures than the latter. The site is generally 

characterised by carbonate rich fine grained sediment with occasional coarser 

material up to cobbles in size. Sediments are poorly sorted throughout and often 

multimodal in nature. These sediments have been ‘unmixed’ into three EMs, which 

may shed light on the sedimentary processes that occurred surrounding the time of 

deposition. Known phytolith assemblages are heavily dominated by grass and 

herbaceous indicating phytoliths, particularly elongates and rondels. Wood and 

sedge indicating phytoliths are much less frequent and at times absent.  
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Unit Subunit Exposure Sedimentology/Particle size EMMA Phytoliths 

 

 

 

 

 

 

 

 

 

 

NY-1 

NY-1A GT1 Massive poorly sorted clayey silts with 

clasts up to cobbles matrix supported. 

Carbonate nodules present 

EM2 is most abundant. EM1 present in abundances 

of up to 45%. EM3 absent 

Dominated by grasses and 

herbs. Wood and sedges 

present in low percentages 

NY-1B GT1, GT3, 

GT5, GT6 

Interbedded poorly sorted massive muddy 

matrix supported pebbles and poorly sorted 

massive muds.  

EM1 and EM2 most abundant throughout, EM3 

occasionally abundant. EM1 associated with 

massive muddy matrix supported pebbles. EM2 

associated with massive muds. EM3 abundant with 

first instance of massive muds 

Grasses and herbs most 

abundant throughout. Wood 

and sedges their highest 

abundance site wide (~ 15%) 

in GT1 and GT3.  

NY-1C GT1, GT3, 

GT5, GT6 

Poorly sorted massive silty sands and sandy 

silts with erosive contact to underlying 

sediments in places. Sand up to coarse sand 

in size. Fluctuating sand content 

throughout. 

EM2 and EM3 dominant throughout. EM3 

dominant in GT1 and GT5, EM2 dominant in GT3 

and GT6. EM1 poorly represented throughout 

(<25%). 

Grasses and herbs 

characteristic of this subunit. 

NY-1D GT1, GT2, 

GT3, GT8  

Poorly sorted massive silts with carbonate 

nodules and occasional granules. Colour 

varies throughout exposures. Grey brown in 

GT1 and GT2, orange brown in GT3 and 

red brown in GT8.  

EM2 dominant throughout most exposures other 

than GT1 where EM1 is dominant. EM3 present 

throughout all exposures. 

Grasses and herbs dominant. 

Sedges present in low 

percentages. Wood absent 

other than GT1 

NY-1E GT1, GT6, 

GT7, GT8, 

GT9 

Poorly sorted carbonaceous clayey silts. 

Light orange in colour at GT1. Light grey 

in colour at other exposures. Coalescing 

carbonate nodules in GT1. Dispersed 

carbonate nodules elsewhere. 

EM2 dominant throughout, other than at GT9 

where EM3 is dominant. EM1 poorly represented 

throughout subunit, other than in GT1.  

Grasses and herbs  

dominant throughout. Wood 

and sedges infrequent 

 

 

NY-2 

NY-2A GT1, GT2, 

GT6, GT9 

Poorly sorted massive clayey silts with 

pedogenic carbonates dispersed throughout. 

Red brown in colour with occasional 

granules. 

Laterally variable EM characteristics. EM1 and 

EM2 fluctuate in abundance and dominate GT1. 

EM2 dominant throughout GT2 and GT6. EM3 

dominates GT9, but EM2 abundant.  

Herbs dominant throughout. 

Grasses abundant. Absence of 

wood and sedges. 

NY-2B GT2, GT7, 

GT8, GT9 

Poorly sorted massive orange grey clayey 

silts with carbonate nodules dispersed 

throughout and occasional cementing.  

EM2 and EM3 most abundant in relatively even 

proportions. EM1 only present in GT2, where it 

fluctuates in abundance and is occasionally 

dominant; EM3 absent here. 

Grasses and herbs most 

abundant. Wood and sedges 

present but in low abundances 

(<15%) 
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NY-2C GT7, GT8, 

GT9 

Laterally variable sediments. Poorly sorted 

orange sandy silts supporting pebbles and 

carbonate nodules in GT7. Light brown 

poorly sorted sandy silts in GT8. Poorly 

sorted brown clayey silts with carbonate 

nodules in GT9.  

EM1 largely absent throughout. EM2 and EM3 

dominant in relatively equal abundances.  

Herbs most abundant, but 

grasses present in abundance 

of ~ 25%. Wood present in 

low abundances. Sedges 

absent.  

 

 

NY-3 

- GT2, GT8 Grey orange granular silts with infrequent 

carbonate nodules comprise the lower parts 

of this subunit. Orange/brown silts with 

increased carbonate nodules form the upper 

parts. 

EM2 and EM3 present in relatively equal 

abundances for the lower part this subunit. EM2 

dominant in upper parts. EM1 present in very low 

percentages throughout.  

Grass and herb dominated. 

Grasses most abundant in 

lower parts, whilst herbs more 

abundant in upper parts. Wood 

increases in abundance 

throughout subunit, but 

remains low in percentage. 

 

NY-4 

- GT2, GT7, 

GT8, GT9 

Poorly sorted massive brown silts. 

Pedogenic carbonates throughout, at times 

coalescing to form cemented horizons. 

Largely dominated by EM2 and EM3. EM3 

dominant in GT7 and GT8, whilst EM2 dominant in 

GT9 and GT2. EM1 present throughout in low 

percentages, other than in GT9 where it is 

particularly abundant.  

Herbs dominate throughout, 

whilst grasses are also 

moderately abundant. Wood 

and sedges are present in very 

low percentages.  

Table 5.1: A summary of the different sedimentary units identified at Nyayanga, as well as their lateral variance. Their EM characteristics and phytolith distribution are also included 
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5.3. Sare River 
5.3.1. EMMA 

At Sare River, a two EM model best represents the dataset without overfitting 

(Figure 5.27). A high coefficient of determination was achieved (r2=0.989), in 

addition to a low linear correlation between the two EMs (r2=0.299). A very low 

angular deviation was also obtained (θ=4.616). The EM model was well fitted to all 

samples; no samples deviated from the r2 value significantly. The same process 

applied to the Nyayanga EM model was applied here.  

 
Figure 5.27: EM plots for particle size distributions at Sare River. (A) The two EM model overlaid on particle size 

distributions from Nyayanga, (B) Size fractions of each EM, (C) Textural parameters of each EM, (D) Linear 

correlations for each EM scenario (E) Angular deviations for each EM scenario 

5.3.1.1.EM1  

EM1 is a unimodal symmetrical poorly sorted clayey silt (Figure 5.27), with an 

average grain size of 7.63 Φ which resembles a fine silt. With a kurtosis value of 



 

 98 

0.99, EM1 is classed as mesokurtic; this indicates the sorting is consistent at both 

the tails and central portion of the distribution. 

5.3.1.2.EM2 

EM2 is a multimodal fine skewed poorly sorted silt (Figure 5.27). The median is 

more appropriate to use as a descriptor of average grain size whilst the distribution 

is multimodal. This is coarser than EM1, with a value of 6.26 Φ, making it a medium 

silt. The kurtosis of EM2 is 0.88, making it platykurtic; this suggests that the 

distribution is better sorted in its tail than in its central portion.  

5.3.2. Excavation 4 
5.3.2.1.Sedimentology 

Excavation 4 is 1.4 m in depth (Figure 5.28). At its base, it is a poorly sorted grey 

brown granular silt. Within this are coarser orange silts. Unlike previous excavations, 

it has no evidence of any carbonate. Some roots are present. This gradationally 

shifts into the overlying poorly sorted granular orange silts at 0.6 m. Very infrequent 

small traces of carbonate nodules are present in this horizon. This gradationally 

 
Figure 5.28: Sediment log of Excavation 4 (Figure 2.8) at Sare River. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths 
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shifts into an orange grey poorly sorted granular silt; only a change in colour can be 

observed.  

5.3.2.2.EMMA 

Excavation 4 is dominated by EM2, although EM1 is present throughout the 

excavation; at 0.8 m it is the most dominant EM, and at 1.2 m it accounts for almost 

50% of the EM composition (Figure 5.28). 

5.3.2.3.Phytoliths 

A similar trend in phytolith distributions to Excavations 1 and 5 emerges in 

Excavation 4 (Figure 5.29). Grass phytoliths dominate the phytolith distribution 

throughout the excavation, with an abundance >55%. Within the grass phytoliths, 

bilobates decrease throughout the excavation from ~ 15% to <5%. Herbaceous 

phytoliths are generally present in abundance of 30%. Wood phytoliths show an 

increase in percentage from the base of the excavation to the top, yet still account 

for <5% of the known phytolith distribution. Like previous excavations at Sare River, 

there are a significant number of nondiagnostic wood phytoliths present throughout.  

 

 

Figure 5.29: Phytolith morphotypes counted at EXC4 and their respective percentages. Morphotypes are categorised into 

vegetation types (Herbaceous, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The percentages of 

these vegetation types are presented on the right of the diagram (ND morphotypes are not included here). 

5.3.3. Excavation 1 
5.3.3.1.Sedimentology 

Excavation 1 at Sare River is 1.6 m in depth (Figure 5.30). At its base, it is composed 

of a massive poorly sorted orange grey tuffaceous silt, with occasional carbonate 

nodules. Overlying this at 1.1 m in depth is a massive poorly sorted grey brown silt 

with frequent carbonate nodules. Occasional roots are also present in the upper part 

of this horizon. This is overlain by a dark brown black silty topsoil at 0.4 m in depth.  
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5.3.3.2.EMMA 

Excavation 1 is consistently dominated by EM1 throughout with very little fluctuation. 

EM2 is present throughout much of the excavation, accounting for ~ 25 – 35% of 

the EM composition (Figure 5.30). 

 
Figure 5.30: Sediment log of Excavation 1 (Figure 2.8) at Sare River. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths 

5.3.3.3.Phytoliths 

Excavation 1 displays a consistent phytolith distribution throughout (Figure 5.31). It 

is dominated by grass phytoliths, which have an abundance >60% throughout. 

Herbaceous phytoliths have an abundance of ~ 35% throughout, whilst wood 

phytoliths are present in abundances of <10%. However, a significant number of 

irregular and blocky polyhedral phytoliths can be observed throughout the 

excavation, which likely originate from wooded plants, but are not diagnostic of such.  
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Figure 5.31: Phytolith morphotypes counted at EXC1 and their respective percentages. Morphotypes are categorised 

into vegetation types (Herbaceous, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here). 

5.3.4. Excavation 5 
5.3.4.1.Sedimentology 

Excavation 5 is 1.8 m in depth (Figure 5.32). At its base is the same massive poorly 

sorted orange grey tuffaceous silt as Excavation 1, although occasional granule 

grade sediment is present. Carbonate nodules are also present throughout the  

 
Figure 5.32: Sediment log of Excavation 5 (Figure 2.8) at Sare River. Sediment log depth is presented in metres. Facies 

codes outlined by Miall (2013) are included on sediment logs. Particle size distributions, EM abundances and vegetation 

types are also included at corresponding sample depths 
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horizon. This gradationally changes into a massive poorly sorted grey brown silt at 

1.4 m; occasional granules remain present. At 1 m, a gradational change into finer 

brown silts occurs. Carbonate nodules also increase in presence and size, with 

some reaching up to pebble grade sizes.  

5.3.4.2.EMMA 

EM2 dominates Excavation 5 (Figure 5.32). At the base of the trench it accounts for 

~ 80% of the EM composition, but steadily decreases up sequence and accounts 

for ~ 55% of the EM composition at the top of the excavation. EM1 displays the 

opposite trend. 

5.3.4.3.Phytoliths 

Excavation 5 displays a similar consistent trend to that of excavation 1 (Figure 5.33). 

Grass phytoliths dominate the excavation throughout, with an abundance generally 

>60%. At 1.3 m, a lower abundance of ~ 40% is observed. Herbaceous phytoliths 

have an abundance of ~ 35% throughout the trench, but at a singular instance at 

1.3 m, they have an abundance of ~ 50% and are more dominant than grass 

phytoliths. Wood phytoliths are present throughout with a low abundance of <5%, 

however like Excavation 1, there are a significant number of nondiagnostic wood 

phytoliths. 

 
Figure 5.33: Phytolith morphotypes counted at EXC5 and their respective percentages. Morphotypes are categorised 

into vegetation types (Herbaceous, Grasses, nondiagnostic (ND) Grasses, Wood, ND Wood and Unknown). The 

percentages of these vegetation types are presented on the right of the diagram (ND morphotypes are not included here). 

5.3.5. Establishing sedimentary units 

From the excavations and the surrounding sediments at Sare River, two 

sedimentary units can be identified (SARE-1 and SARE-2); these units are 

described herein.  
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5.3.5.1.SARE-1 

SARE-1 is the base of the sedimentary sequence seen at Sare River in this 

research. It is only seen throughout all of Excavation 4 (Figure 5.28). Poorly sorted 

granular silts comprise the sediments here, with little to no evidence of carbonates 

developing. At its base, SARE-1 is grey brown in colour with some orange silts, the 

latter of which gradationally become the dominant lithology of the unit. This unit can 

be traced across the site upstream, where an orange grey tuff can be seen to overly 

these sediments. EM2 is dominant throughout this unit, yet EM1 is present and 

occasionally abundant. 

Phytolith assemblages are dominated by grass-indicating phytoliths in SARE-1, 

although herbaceous phytoliths comprise a significant proportion of the phytolith 

assemblage (>25%). Wood phytoliths increase in percentage throughout this unit, 

but still have a low abundance (<10%). 

5.3.5.2.SARE-2 

Overlying the previously noted tuff is SARE-2. This unit is characterised by poorly 

sorted orange grey tuffaceous silts at its base, with occasional granule grade 

sediment. The orange grey tuffaceous sediment is likely related to the underlying 

tuff. Carbonate nodules are infrequent here. These orange grey tuffaceous silts 

gradationally shift to grey brown poorly sorted silts. The colour shift is most likely 

owed to the lack of exposure of the tuff, which would reduce the availability of this 

sediment. Moving up the sequence, carbonate nodules become more frequent and 

increase in size. This unit is overlain by a brown black topsoil. EM1 dominates the 

sediments at Excavation 1 (Figure 5.30), whilst EM2 is present throughout (~ 30%). 

To contrast this, EM2 is dominant at Excavation 5 (Figure 5.32). EM1 is present 

here and becomes more abundant up sequence, from 20% to 45%.  

Phytolith assemblages in this unit follow a consistent trend. They are grass-

dominated (>55%) with a significant abundance of herbaceous phytoliths (~ 30%). 

The percentage of wood phytoliths fluctuates between 5% and 10%. 

5.3.6. Closing Statement/Table of lithology 

Sare River displays two sedimentary units that have been identified and described 

through various analytical techniques (Table 5.2). The site is mainly characterised  
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Unit Sedimentology/Particle 

size 

EMMA Phytoliths 

 

 

 

SARE-1 

Poorly sorted granular silts 

with little to no evidence of 

carbonates. Grey brown in 

colour at base with some 

orange silts. Gradationally, 

orange silts become 

dominant lithology 

EM2 dominates 

throughout. EM1 present 

throughout, at times 

abundant 

Dominated by grass 

phytoliths throughout. 

Significant abundance of 

herbaceous phytoliths 

(>25%). Increase in 

wood phytoliths 

throughout, but low in 

abundance (<10%) 

 

 

 

 

SARE-2 

Poorly sorted orange grey 

tuffaceous silt with 

occasional granule grade 

sediment at base, with 

infrequent carbonate 

nodules. Gradational shift 

to overlying poorly sorted 

grey brown silts with 

increased carbonate nodule 

frequency and size 

Dominated by EM1 at 

excavation 1, although 

EM2 present throughout 

(~ 30%). EM2 dominant at 

excavation 5. EM1 present 

and becomes more 

frequent up sequence, 

from 20% to 45% 

Grass-dominated 

throughout (>55%). 

Herbaceous phytoliths 

comprise a significant 

proportion of assemblage 

(~ 30). Wood phytoliths 

present in low 

abundances (5 – 10%) 

Table 5.2: A summary of the different sedimentary units identified at Sare River, as well as their lateral variance. Their 

EM characteristics and phytolith distribution are also included 

by massive poorly sorted fine grained sediment throughout, with variations in the 

frequency of carbonate nodules. Sediments are multimodal in nature and have thus 

been ‘unmixed’ into two EMs, which will allow for interpretations to be made on 

sedimentary dynamics at the time of deposition in greater detail. Phytolith 

assemblages are dominated by grass and herbaceous indicating phytoliths. Wood 

indicating phytoliths are present in low abundances throughout the site. 

5.3.7. Chronology – Cosmogenic nuclide dating 

AMS measurements were obtained for both 26Al and 10Be for nine samples taken at 

Sare River (Table 5.3). The sediments sampled are thought to be laterally 

contemporaneous with those in SARE-1, and underlie the tuff which separates 

SARE-1 and SARE-2. An average basin altitude of 1259 m was calculated using 

SRTM data from the USGS data server. Under the assumption that all the samples 

taken received the same amount of post-burial cosmogenic irradiation, the isochron 

method (Figure 5.34) yields a burial age of 1.512 ± 0.089 Ma (slope R2=0.97). All 

samples lie on this isochron, indicating that samples are all consistent with a single 

age of deposition at the stated time. 
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Sample 10Be (x106 atoms per gram) 26Al (x106 atoms per gram) 26Al/10Be (x106) 

SR1 0.920 ± 0.026 5.120 ± 0.164 5.56 ± 0.24 

SR2 0.157 ± 0.006 1.061 ± 0.053 6.74 ± 0.43 

SR3 1.01 ± 0.036 5.143 ± 0.316 4.68 ± 0.32 

SR4 1.808 ± 0.05 7.853 ± 0.246 4.34 ± 0.18 

SR5 1.139 ± 0.032 5.969 ± 0.215 5.24 ± 0.24 

SR6 0.916 ± 0.031 4.61 ± 0.242 5.03 ± 0.31 

SR8 2.527 ± 0.067 8.743 ± 0.261 3.46 ± 0.14 

SR9 0.445 ± 0.012 2.796 ± 0.133 6.29 ± 0.34 

SR10 0.451 ± 0.014 2.63 ± 0.088 5.83 ± 0.27 

Table 5.3: AMS measurements of samples taken from Sare River. 10Be concentrations are based on 2:79·10-11 10Be/Be 

ratio for NIST SRM4325. 26Al concentrations are based on 4:11 · 1011 26Al/Al ratio for Purdue Z92-0222 standard 

 

 

 

 
Figure 5.34: Cosmogenic 26Al and 10Be concentrations for samples taken at Sare River. The black ellipses represent the 

correction of the measured data to remove post-burial nuclide production. The dashed line displays the production ratio 

P26(0)/P10(0) for comparison. The dark line resembles the best fit to the isochron data, which all samples lie on. This 

indicates that samples are consistent with a single age of deposition at 1.512 ± 0.089 Ma 
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CHAPTER 6.   DISCUSSION 
6.1. Introduction 

This chapter begins by interpreting EM characteristics presented in Chapter 5 from 

both Nyayanga and Sare River and subsequently attributes each EM to 

transport/depositional mechanisms or sediment sources. Leading on from this, 

results of the various reconstructive techniques applied are interpreted and the 

palaeoenvironments of the various sedimentary units identified at each site are 

reconstructed. Driving mechanisms of palaeoenvironmental change at both sites 

are then discussed. Finally, the palaeoenvironmental reconstructions of both sites 

are evaluated in terms of hominin activity in East Africa. Consideration is also given 

to which of the various hypotheses linking hominin evolution to palaeoenvironmental 

change this research provides support for.  

6.2. EM interpretation 
6.2.1. Introduction 

The interpretation of EM characteristics obtained in Chapter 5 will give detailed 

information on the sedimentary processes that were involved in site formation at 

both Nyayanga and Sare River (section 4.3.2.1). In this section each EM will be 

attributed to a sedimentary process. Information acquired from field inspection of 

sediments will be used to constrain interpretations made from EMs and underpin 

the geometry of sedimentary processes The distribution of EMs in samples gathered 

across each site can then be analysed, and the major sedimentary processes 

involved in sediment deposition spatially and temporally can be identified.  

6.2.2. Nyayanga 
6.2.2.1. EM1 

EM1 (Figure 5.2) is primarily composed of clay and silt, but also incorporates a small 

percentage of coarser particles up to coarse sand in size. Additionally, it often 

occurs in conjunction with the presence of clasts up to pebbles and even cobbles in 

size that are matrix-supported. Some of these clasts are carbonaceous, ranging 

from granules to pebbles in size (e.g. Figure 5.3). These carbonates are individual 

clasts and lack evidence of developing laminae or coalescing, which could indicate 

that they are not in situ and were instead reworked (Machette, 1985). Alternatively, 

these could have formed in flow hiatuses. The presence of clasts and coarser 
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particles found in relation to EM1 suggests that this is not a low energy environment, 

despite much of the EM being composed of fine sediment (Pierson, 2005). 

Moreover, the poor sorting of EM1 might also suggest that these sediments were 

deposited rapidly, under a variable flow regime, or were infrequently reworked 

(McLaren & Bowles, 1985; Pye & Blott, 2004). This is further supported by the 

absence of sedimentary structures such as channel features, where EM1 is seen in 

high percentages (Pierson, 2005) (e.g. Figure 5.3). Such characteristics are 

indicative of viscous, sediment-rich hyperconcentrated flows at Nyayanga, which 

likely occurred quickly and infrequently and were unconfined in nature. These types 

of flow are characterised by poor sorting, matrix-supported clasts, and massive 

structureless deposits. Erosive features are often absent in such instances, as the 

viscous nature and low shear stress bases of such flows often bury underlying 

sediment rather than erode it (Pierson, 2005; Stanistreet et al., 2018; de la Torre et 

al., 2018). EM1 also appears to be multimodal, which is also a common feature of 

hyperconcentrated flows (Pierson, 2005). 

6.2.2.2.EM2 

EM2 (Figure 5.2) is composed almost entirely of silts, with only a small percentage 

of clays present. The highest percentages of this EM are most frequently associated 

with sediments where coarse particles and clasts are absent, as well as sedimentary 

structures (e.g. Figure 5.6). In some areas of the site, high percentages of EM2 are 

associated with the presence of coalescing carbonate nodules and in situ carbonate 

nodules. This suggests that EM2 is related to a low energy depositional 

environment, which at times was stable enough for soil development to take place 

(Folk & Ward, 1957; Machette, 1985; Marriott & Wright, 1993; Ditchfield et al., 1999; 

Clarke et al., 2014; Wang et al., 2015; Liu et al., 2016). This, as well as the poor 

sorting of EM2, suggests that its sediments were likely to have been infrequently 

reworked (McLaren & Bowles, 1985; Pye & Blott, 2004). Resultantly, EM2 may 

represent periods of landscape stability at Nyayanga, or potentially flow hiatuses. 

This aligns with the interpretation of EM1, as hyperconcentrated flows are often 

separated by periods of landscape stability and pedogenic development (Ditchfield 

et al., 2018). In these periods, represented by EM2, deposition most likely occurred 

as fluvial runoff and aeolian deposition (Vandenberghe, 2013; de Haas et al., 2014; 

Vandenberghe et al., 2018; Ditchfield et al., 2018). Additionally, during such stable 
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periods pedogenesis was likely to have occurred (Machette, 1985; Ditchfield et al., 

2018).  

6.2.2.3.EM3 

The higher percentages of coarse silt and sand grade sediment that characterise 

EM3 (Figure 5.2) suggest that it may represent mechanisms associated with  higher 

transport/depositional energies than EM2 (Folk & Ward, 1957; Clarke et al., 2014; 

Wang et al., 2015; Liu et al., 2016). EM3 is often observed in higher percentages 

associated with matrix-supported gravel grade sediment that incorporates granules 

and occasionally pebbles (e.g. Figure 5.17). These clasts are frequently 

carbonaceous, but show little evidence of coalescing or the development of laminae, 

suggesting they may be reworked (Machette, 1985). Sedimentary structures 

including erosive contacts and faint laminations can also be observed in these 

instances and point towards fluvial/alluvial activity, yet no channel features are 

evident (Miall, 2013). Like previous EM’s, EM3 is poorly sorted suggesting that it 

may be rapidly deposited or deposited under a variable flow regime (McLaren & 

Bowles, 1985; Pye & Blott, 2004). The presence of laminations may indicate that 

the latter is more likely, as rapid deposition would be more likely to result in massive 

structureless deposits (Pierson, 2005; North & Davidson, 2012; Miall, 2013). The 

absence of any channel features suggests that activity associated with this EM may 

have been unconfined in nature (Pierson, 2005; North & Davidson, 2012; Miall, 

2013). The evidence presented above suggests that EM3 is representative of 

unconfined fluvial flows. Such flows would periodically have sufficient energy to 

entrain coarser sediment like the sands observed in EM3, as well as the gravel 

grade sediment often seen in association with this EM. Matrix-supported deposits 

are likely the result of flow deceleration as flows expanded and the concentration of 

suspended sediment increased, causing the flow to become hyperconcentrated and 

more debris flow like at times (North & Davidson, 2012). This would be fitting with 

the very fine skew of this EM (McLaren & Bowles, 1985). 

6.2.3. Sare River 
6.2.3.1. EM1 

EM1 (Figure 5.27) at Sare River is composed almost entirely of silts, with a small 

percentage of clay. Coupled with the absence of clasts throughout all the 

excavations (Figure 5.28, Figure 5.30, Figure 5.32) this indicates that EM1 either 
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represents a low energy depositional environment, or a source area defined by a 

dominance of fine sediment availability (Paterson & Heslop, 2015a). The poor 

sorting of EM1 suggests that deposition of sediments may have occurred either 

rapidly or under a variable flow regime, or that sediments were infrequently 

reworked (McLaren & Bowles, 1985; Pye & Blott, 2004). The lack of sedimentary 

structures associated with this EM, as well as the presence of soft carbonate 

nodules attests that these sediments were infrequently reworked (Machette, 1985). 

Periods of landscape stability and flow hiatuses are most likely represented by this 

EM. Aeolian deposition and deposition via fluvial runoff most likely occurred during 

these intervals (Pope & Wilkinson, 2005; Vandenberghe, 2013; de Haas et al., 2014; 

Vandenberghe et al., 2018).  

6.2.3.2.EM2 

EM2 (Figure 5.27) is composed primarily of coarse silts, with a small percentage of 

fine sand. It is poorly sorted, which suggests that these sediments may have been 

either rapidly deposited or infrequently reworked (McLaren & Bowles, 1985; Pye & 

Blott, 2004). The fine skew of this EM attests to this, as sediments were likely 

deposited as there was a reduction in flow energy (McLaren & Bowles, 1985). The 

presence of gradational contacts (Figure 5.28Figure 5.30Figure 5.32) suggests that 

rapid deposition is less likely, as sharper contacts would be observed in such 

instances (Miall, 2013). The absence of any channel features observed in sediments 

suggests that deposition associated with this EM was unconfined in nature. These 

lines of evidence suggest that EM2 most likely represents low energy unconfined 

fluvial activity that was potentially ephemeral in nature, or had a variable flow 

regime. This would allow for the transport of coarser sediment, such as the sand 

and granule sized sediment observed. A variable flow regime would also produce 

poor sorting throughout the sediment, as well as a fine skew with a reduction in 

energy (McLaren & Bowles, 1985). The lack of erosive features and an average 

grain size of medium silt suggests that these flows were low in energy throughout 

the time these sediments were deposited (Folk & Ward, 1957; Visher, 1969). 

Additionally, the lack of channel features may suggest that sediments were 

deposited in unconfined flow events, rather than in the confines of a channel (Miall, 

2013). 
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6.2.4. Summary 

At Nyayanga, the three EMs identified are attributed to different sedimentary 

processes. Field observations were used underpin the geometry of sedimentary 

processes and to geomorphologically constrain interpretations. EM1 is interpreted 

as representing episodic viscous, sediment-rich hyperconcentrated flows which 

were unconfined in nature. EM2 is suggested to relate to a low energy depositional 

environment in which fluvial runoff, aeolian deposition and soil development 

occurred. EM3 represents relatively unconfined fluvial activity that periodically had 

sufficient energy to erode and entrain coarser sediment.  

Two EMs were attributed to different depositional mechanisms/environments at 

Sare River. EM1 likely relates to periods of landscape stability in which aeolian 

deposition and fluvial runoff also occurred. EM2 is interpreted as representing low 

energy unconfined fluvial activity that was potentially ephemeral in nature, or had a 

variable flow regime.  

6.3. Palaeoenvironmental reconstruction 
6.3.1. Nyayanga 

6.3.1.1. Introduction 

Here, the palaeoenvironmental setting of each sedimentary unit identified at 

Nyayanga is interpreted based on the results obtained in Chapter 5, specifically the 

description of sediments in section 5.2.10. This is summarised in Table 6.1, whilst 

the sections below explore this in more detail. Driving mechanisms of 

palaeoenvironmental change here are also discussed. 

Table 6.1: A summary of palaeoenvironmental characteristics interpreted for each sedimentary unit and subunit 

identified at Nyayanga based on sediment descriptions in section 5.2.10. 

Unit Subunit Palaeoenvironment characteristics 

NY-1 

NY-1A 

Deposition via episodic hyperconcentrated flows capable of entraining 

cobble grade sediment. Flow hiatuses characterised by stable land surface 

development and secondary processes (fluvial runoff, aeolian deposition). 

Open bushy grassland with infrequent woodland and sedges 

NY-1B 

Variable environment. Deposition fluctuates between episodic 

hyperconcentrated flows and intermittent unconfined fluvial flows capable 

of eroding underlying sediment. Flow hiatuses characterised by landscape 

stability and secondary processes. Open bushy grasslands with infrequent 

woodland and sedges persisted 
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NY-1C 

Shift to a more frequently wet environment. Intermittent unconfined fluvial 

flows with a variable flow regime occurred throughout deposition of 

sediments. These were more water laden and capable of eroding underlying 

sediments. Flow hiatuses were not lengthy enough for significant 

pedogenesis. Similar palaeovegetation structure remained 

NY-1D 

Environment became more stable and was characterised by pedogenic 

development and secondary processes including fluvial runoff and aeolian 

deposition. Intermittent unconfined flows may have occurred, but with a 

lower frequency. Bushy grasslands with infrequent woodland and sedges 

persisted 

NY-1E 

Environment becomes increasingly stable. Significant stages of soil 

maturity developed. Infrequent unconfined fluvial flows lower in energy 

occurred. Flow hiatuses characterised by secondary processes. Bushy 

grassland/grassy bushlands characterise palaeovegetation 

NY-2 

NY-2A 

Low energy environment with frequent periods of landscape stability. 

Intermittent unconfined fluvial activity occurred, potentially attributable to 

secondary fluvial runoff. Landscape characterised by grassy bushlands 

NY-2B 

Increasingly stable environment with soil development reaching greater 

stages of maturity. Intermittent unconfined fluvial activity occurred 

throughout with higher transport energy, indicating a wetter environment. 

An increase in woodland and sedges attest this. Landscape remained 

dominated by grassy bushlands 

NY-2C 

Unconfined fluvial activity became more common and increased in flow 

velocity, but remained intermittent. Flow hiatuses characterised by stable 

land development and early stages of pedogenesis. Grassy bushlands 

characterised the landscape 

NY-3 - 

Intermittent unconfined fluvial activity with stable land surface 

development in flow hiatuses. Early stages of pedogenesis. 

Palaeovegetation characterised by bushy grasslands/grassy bushlands with 

infrequent woodland and sedges 

NY-4 - 

Stable environment in which mature soils developed with late stages of 

pedogenesis. Unconfined fluvial activity occurred intermittently. Grassy 
bushlands with infrequent woodland and sedges characterised 

palaeovegetation 

 

6.3.1.2. NY-1 interpretation 

The lowermost sedimentary unit at Nyayanga, NY-1 (Figure 5.26) is suggested to 

have been deposited between 3.05 – 2.595 Ma (Finestone, 2019). It has the largest 

exposures site wide, particularly in the southwest of the site. High abundances of 
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EM1 (~ 45%) and the presence of massive poorly sorted matrix supported clasts 

throughout NY-1A (section 5.2.10.1) suggest sediments are characteristic of 

hyperconcentrated flow deposits (Pierson, 2005). The higher abundance of EM2 

suggests these flows are likely to be episodic, and separated by periods of 

landscape stability, as is common of hyperconcentrated flows (Pierson, 2005; 

Ditchfield et al., 2018). During periods of landscape stability, deposition most likely 

took place via secondary processes including fluvial runoff and aeolian deposition 

(Pope & Wilkinson, 2005; Harvey et al., 2005; Vandenberghe, 2013; de Haas et al., 

2014; Vandenberghe et al., 2018). The presence of pedogenic carbonates attests 

to this, although the lack of coalescing or development of laminae suggests that 

these may have been reworked or are immature in development (Machette, 1985). 

The relative abundance of wooded vegetation (~ 15%) during this period might 

indicate that soil formation did take place, and that carbonates were subsequently 

reworked. Grasses and herbaceous vegetation were most abundant and the 

landscape was most likely that of an open one characterised by bushy grasslands 

with infrequent woodland and sedges. 

The shift to interbedded poorly sorted massive muddy matrix supported pebbles and 

poorly sorted massive muds belonging to NY-1B (section 5.2.10.1) suggest that the 

environment began to become more variable at this time. The two instances of 

massive muddy matrix supported pebbles (Figure 5.3, Figure 5.9, Figure 5.12) are 

characteristic of hyperconcentrated flows and debris rich flows, as represented by 

EM1 which is most abundant here. More frequent clasts are present in GT1 (Figure 

5.3) than in the laterally equivalent sediments at GT3 (Figure 5.9) and GT5 (Figure 

5.12) in this facies. This might suggest that GT1 was more central to the most active 

parts of the hyperconcentrated flows, whilst GT3 and GT5 were more marginal. The 

reduction in EM2 suggests that the development of stable land surfaces did not 

occur as frequently as in the underlying sediments in GT1 (Figure 5.3), other than 

in the upper instances of this facies in GT5 (Figure 5.12) and GT6 (Figure 5.14), 

again suggesting these locations were likely marginal. This is reflected by the 

reduction/absence of wooded vegetation and the increase in grasses, yet this may 

also be a climate signal (deMenocal, 1995; Ehleringer & Cerling, 2002; Tipple & 

Pagani, 2007; Hopley et al., 2007). With the absence of channel features and an 

increase in the abundance of EM3 here, unconfined fluvial activity more water laden 
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than that of the hyperconcentrated flows likely became more frequent and was 

potentially capable of eroding and entraining sand sized sediment (Pierson, 2005; 

de Haas et al., 2014; Ditchfield et al., 2018; de la Torre et al., 2018). 

In contrast, the massive muds that these sediments are interbedded with do not 

display the same evidence for hyperconcentrated flows (section 5.2.10.1). The 

dominance of EM2 suggests that these massive muds are characteristic of periods 

of landscape stability. The increase in abundance of EM3 at these times also 

indicates that during these periods, fluvial runoff most likely took place, as well as 

aeolian deposition (Vandenberghe, 2013; de Haas et al., 2014). The reduction in 

EM1 and the lack of evidence for hyperconcentrated flows in the lower massive 

muds may reflect an increase in the frequency of precipitation, as fine sediment may 

have been reworked more often, rather than in less frequent/higher magnitude 

events (de Haas et al., 2014). In GT3 (Figure 5.9), GT5 (Figure 5.12) and GT6 

(Figure 5.14) greater sediment accumulation as well as lighter coloured 

carbonaceous sediment indicates that these sediments were deposited on a 

relatively stable land surface, more so than that of the laterally contemporaneous 

sediments in GT1. The carbonaceous sediment suggests that soil development 

likely took place during this time (Machette, 1985). The presence of wooded 

vegetation and sedges attests to this, although the landscape was still dominated 

by grasses and herbaceous vegetation. The higher abundance of EM1 in the upper 

massive muds is most likely a result of the unconfined fluvial activity represented by 

EM3. These flows entrained more sediment as the flow expanded and decelerated, 

causing the concentration of sediment to increase and the flow to become 

hyperconcentrated (North & Davidson, 2012).  

The overlying sediments of NY-1C (section 5.2.10.1) might indicate the shift to a 

more frequently wet environment. The erosive contact that these sediments have 

with underlying sediments suggests that more water laden flows occurred during 

this time (Pierson, 2005; de Haas et al., 2014; Ditchfield et al., 2018; de la Torre et 

al., 2018). The coarse sand present in these sediments is most likely a product of 

these erosional events, which may explain why they are not observed in the 

underlying sediments characterised by hyperconcentrated flows as these flows are 

more likely to bury sediments than erode them (Pierson, 2005; Ditchfield et al., 
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2018). The partially and weakly cemented sandstones underlying NY-1 are most 

likely the source of the coarse sands observed in NY-1C. The lack of any channel 

features and the higher abundances of EM3 here suggest that these flows were 

unconfined in nature (Miall, 2013). The low abundance of EM1 could be a product 

of the deceleration of these unconfined flows as previously discussed (North & 

Davidson, 2012). EM2 is also abundant throughout these sediments, though 

carbonate nodules are absent suggesting short periods of landscape stability were 

common. Resultantly, unconfined fluvial activity might have been intermittent and 

possess a variable flow regime (McLaren & Bowles, 1985; Pye & Blott, 2004). The 

fluctuations in sand and granule content in GT3 (Figure 5.9) and GT6 (Figure 5.14) 

are indicative of this, as are the fine skew and poor sorting of EM3 (Visher, 1969; 

McLaren & Bowles, 1985; Pye & Blott, 2004). The low abundance of wooded 

vegetation and sedges and the dominance of grasses and herbaceous vegetation 

suggests the environment at this time was an open bushy grassland. This  

environment is commonly associated with such unconfined flows (North & 

Davidson, 2012).  

The dominance of EM2 in the overlying sediments of NY-1D (section 5.2.10.1) 

suggests the environment was characterised by more frequent periods of landscape 

stability than the underlying sediments. Carbonate nodules throughout these 

sediments suggests that some of these periods were sufficiently sustained for soil 

development to take place (Machette, 1985). The reduction in EM3 indicates that 

higher energy fluvial activity was not as frequent during this time, and deposition 

most likely took place as low energy fluvial runoff (de Haas et al., 2014). This is 

supported by the lack of coarser sands as well as an overall decrease in sand 

content (Visher, 1969; McLaren & Bowles, 1985). Sediment exhaustion might also 

explain the overall decrease in sand content observed, although the development 

of stable land surfaces indicates it was most likely due to a reduction in flow velocity. 

The landscape remained relatively open during this period, characterised by bushy 

grasslands with infrequent wooded vegetation and sedges. The dominance of EM1 

in GT1 (Figure 5.3) may suggest that sediments deposited here were at the margins 

of the unconfined flows, where deceleration occurred and particles as small as clay 

were deposited, potentially indicating a standing water environment (North & 
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Davidson, 2012). Aeolian deposition may also be responsible for the deposition of 

such sediments (Vandenberghe, 2013; de Haas et al., 2014) 

The environment appears to become increasingly stable during NY-1E (section 

5.2.10.1). The carbonaceous sediment here and the frequent carbonate nodules 

which in places form laminae or coalesce suggest that periods of landscape stability 

were long enough for significant pedogenic development to take place and reach 

more matures stages (Machette, 1985; Ditchfield et al., 1999; 2018). The 

dominance of EM2 throughout these sediments attests to this. The presence of EM3 

and the lack of channel features suggests that unconfined fluvial activity still took 

place at times, potentially as fluvial runoff (de Haas et al., 2014). The decrease in 

percentages of EM3 and in sand sized sediment from GT9 to GT1 indicates that 

these flows were focussed in the southeast of the site, whilst much of the sediment 

toward the northwest was marginal. This is reflected by the increase in abundances 

of EM1 across the same transect. An open landscape characterised by grassy 

bushlands/bushy grasslands persisted here.  

6.3.1.3. NY-2 interpretation 

The sediments of NY-2 (Figure 5.26) were deposited subsequently to NY-1, but also 

within the age of 3.05 – 2.595 Ma (Finestone, 2019). Sediments from this unit differ 

to those from NY-1, with abundances of EM1 generally absent. The absence of 

sedimentary structures, clasts other than pedogenic carbonate nodules, as well as 

the reduced percentage of sand sized sediment suggests that the lowermost 

sediments belonging to NY-2A (section 5.2.10.2) were characteristic of a low energy 

environment (Visher, 1969; Miall, 2013). The abundances of EM2 throughout this 

subunit support this, and indicate that stable land surfaces were common. The 

presence of carbonate nodules further indicates soil development occurred during 

this time, although the lack of coalescing or development of laminae indicate these 

were not mature soils (Machette, 1985). The absence of channel features 

throughout these sediments and the frequency of EM3, indicate that low energy 

intermittent and unconfined fluvial activity continued to occur. Like the uppermost 

sediments of NY-1, a reduction in the frequency of EM3 from the southeast of the 

site at GT9 to northwest at GT1 occurs, suggesting the most active area of these 

flows remained in the southeast of the site. EM1 displays the opposite trend, 
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indicating flow deceleration still occurred in the northwest of the site near to GT1. 

The landscape remains characterised by grassy bushlands. The lack of wooded 

vegetation and sedges might be owed to increased aridity (Tipple & Pagani, 2007; 

Ségalen et al., 2007; Cerling et al., 2013; Maslin et al., 2014).  

Similar environmental conditions can be observed in the sediment of NY-2B (section 

5.2.10.2). The dominance of poorly sorted clayey silts containing carbonate nodules 

is suggestive of a low energy environment in which soil formation occurred (Folk & 

Ward, 1957; Visher, 1969; McLaren & Bowles, 1985; Machette, 1985; Pye & Blott, 

2004). The degree of cementation associated with these sediments suggests these 

soils may have been more mature than those of the underlying sediments 

(Machette, 1985). Abundances of EM2 align with this, as periods of stable land 

surface development appear common. An increase in sand content and in the 

abundance of EM3 in these sediments points towards a wetter environment at this 

time, as unconfined fluvial activity appears to be more common and have a higher 

entrainment capacity (Visher, 1969). Increases in the abundance of wooded 

vegetation and sedges may reflect this, however the environment remains as an 

open grassy bushland. EM3 follows the same trend of decreasing from southeast to 

northwest in abundance. Its absence is replaced by abundances of EM1 in GT2, 

suggesting that this is where flow deceleration of unconfined flows may have 

occurred (North & Davidson, 2012).  

In the overlying sediments of NY-2C (section 5.2.10.2), small changes in the 

environment can be observed. The increase in EM3 throughout these sediments, 

as well as the increase in sand content, the presence of some pebbles and the lack 

of any channel features, indicates that unconfined fluvial activity throughout this 

interval had higher flow velocities and was potentially more frequent (Visher, 1969; 

McLaren & Bowles, 1985; Miall, 2013). The relatively even abundance of EM2 

highlights that these flows remained intermittent, and were characterised by periods 

of stable land development in flow hiatuses. The presence of carbonate nodules in 

these sediments is indicative of soil development, however the lack of laminae or 

coalescing suggests these were immature, or potentially reworked by the 

intermittent unconfined fluvial activity (Machette, 1985). The increase in herbaceous 

vegetation suggests that the landscape was characterised by grassy bushlands 
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during this time. The decreases in percentages of wooded vegetation may be 

related to the less frequent periods of stable land surface development.  

6.3.1.4. NY-3 interpretation 

The sediments of NY-3 (section 5.2.10.3, Figure 5.26) are ill-defined due to their 

lack of exposure throughout the site. In the southeast of the site an extremely 

consistent environment persisted, as is evident from the PSDs and EM composition. 

Relatively even abundances of EM2 and EM3 within massive sediments are 

indicative of an environment upon which intermittent unconfined flow events 

persisted, with flow hiatuses marked by periods of stable land development. 

Although the presence of carbonate nodules throughout these sediments is 

indicative of soil development, the lack of laminae and coalescing suggests that soil 

development here is moderately immature, or that nodules have been reworked 

(Machette, 1985). In the northwest of the site, stable land surfaces appear to 

become more frequent throughout this interval, as evidenced by the increase in EM2 

and the reduction in EM3. The increase in wooded vegetation attests to this. The 

overall landscape during this time appears to be characterised by that of a bushy 

grassland/grassy bushland with occasional wooded vegetation and sedges. 

6.3.1.5. NY-4 interpretation 

The environment of NY-4 (section 5.2.10.4, Figure 5.26) was most likely one that 

experienced lengthy periods of stable land formation, allowing for soil development 

to take place. This is evidenced by the abundance of pedogenic carbonates 

throughout this unit, which display evidence for a higher degree of maturity from 

coalescing and forming laminae, as well as thick horizons (Machette, 1985). The 

presence of sand sized sediment and the lack of any channel features, as well as 

an abundance of EM3 suggest that unconfined fluvial activity continued to occur 

throughout these sediments (Visher, 1969). The higher abundances of EM3 in GT7 

(Figure 5.17) and GT8 (Figure 5.20) suggest that these flows were most active in 

this area, whilst the higher abundance of EM2 in GT2 (Figure 5.6) and GT9 (Figure 

5.23) indicates that sediments deposited here were marginal to the area of activity. 

A grassy bushland best characterises this landscape with infrequent wooded 

vegetation and sedges. 
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6.3.1.6. Palaeoenvironmental reconstruction 

The depositional environment throughout Nyayanga is interpreted as having been 

characterised by a combination of hyperconcentrated flows, intermittent unconfined 

fluvial activity with a variable energy regime, and flow hiatuses in which aeolian 

deposition and stable land development occurred. This largely occurred within an 

open landscape on the slopes leading from Homa Mountain which were dominated 

by grasses and herbaceous vegetation, with infrequent woodland and sedges.  

The characteristics listed above are indicative of an alluvial fan/plain environmental 

setting at Nyayanga (Blair & McPherson, 1994a; 1994b; Mather & Stokes, 2003; 

Harvey et al., 2005; Mather & Hartley, 2005; Waters et al., 2010; North & Davidson, 

2012; de Haas et al., 2014; Mather et al., 2017). Hominin activity has been identified 

in this type of environment elsewhere during the Plio-Pleistocene of East Africa 

(Brown & Feibel, 1991; Hay & Kyser, 2001; Ashley et al., 2009; Feibel, 2011; 

Drapeau et al., 2014; Brugal et al., 2004; Uribelarrea et al., 2017; Ditchfield et al., 

2018). Alluvial plains form between highlands and depositional lows, where 

highlands act as sediment sources and depositional lows provide ample space for 

sediment accumulation (Blair & McPherson, 1994a; Harvey et al., 2005; Waters et 

al., 2010; de Haas et al., 2014). The rapid elevation changes from Homa Mountain 

towards the expansive depositional low in the west (Figure 2.1, Figure 2.3) make 

Nyayanga a likely area for this formation (Le Bas, 1977; Blair & McPherson, 1994a; 

Harvey et al., 2005). The thicker exposure of sediments in the northwest of the site 

most likely represent a depositional sink with greater accommodation space for 

sediments to accumulate (Harvey et al., 2005).  

Additionally, alluvial environments are frequently characterised by episodic mass 

flow and/or unconfined fluvial events (Blair & McPherson, 1994a; Harvey et al., 

2005; de Haas et al., 2014), much like those thought to have occurred throughout 

the sediments at Nyayanga. Similar flows have been interpreted at other hominin 

sites dating to the Plio-Pleistocene and show evidence for them burying and 

preserving underlying sediments, rather than eroding them (Ditchfield et al., 2018; 

Stanistreet et al., 2018; de la Torre et al., 2018). This is essential in establishing 

whether traces of hominin activity are in fact in situ (Ditchfield et al., 2018).  
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Erosion/aggradation is also usually confined to smaller active sectors of an alluvial 

plain, and during periods of inactivity and on inactive sectors, aeolian deposition and 

fluvial runoff frequently occur, as well as pedogenic development (Hartley et al., 

2013; de Haas et al., 2014). This can be observed throughout the sediments at 

Nyayanga. Moreover, lower energy unconfined fluvial activity identified at Nyayanga 

may in fact be attributable to fluvial runoff as a secondary process (Harvey et al., 

2005; de Haas et al., 2014).  

The sediments underlying lowermost NY-1 at Nyayanga resemble thick (10 m+) 

sequences of interbedded sandstones and weakly cemented conglomeratic layers. 

These most likely relate to a period in which an active alluvial belt was central to the 

site and deposition occurred in frequent unconfined flow events (Harvey et al., 2005; 

de Haas et al., 2014).  

In NY-1 deposition on the alluvial plain becomes more episodic. Low frequency 

hyperconcentrated flow events capable of mobilising sediment up to cobbles in size 

at times deposited structureless beds of sediment across an open bushy grassland. 

These flows varied in energy, with the highest energy flows at the base of this unit. 

Periods of landscape stability and pedogenic development separated these flows, 

in which fluvial runoff and aeolian deposition most likely took place on the inactive 

surface (de Haas et al., 2014; Vandenberghe et al., 2018). Intermittent unconfined 

fluvial events also took place and likely decelerated in velocity moving west across 

the site. Here, flows expanded and became more sediment laden causing them to 

become hyperconcentrated and at times debris rich and more debris flow like (North 

& Davidson, 2012). At times, these unconfined fluvial events were more water laden 

and had higher flow velocities. This most likely resulted in erosion into harder 

sandstones observed throughout the site, causing the appearance of sand sized 

sediment in the deposits (Harvey et al., 2005; Pierson, 2005; Miall, 2013; de Haas 

et al., 2014; Ditchfield et al., 2018; de la Torre et al., 2018). Hyperconcentrated flows 

became less frequent throughout this unit, whilst lengthy periods of landscape 

stability with intermittent unconfined fluvial events became more common. This 

might reflect this section of the alluvial plain becoming less active (Figure 6.1).   

During the deposition of NY-2 a similar environment to that of NY-1 persisted, 

although with lower energy. Periods of stable land surface development and 
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pedogenesis were common suggesting activity on this part of the alluvial plain was 

infrequent, particularly during the deposition of NY-2B. Fluvial runoff and aeolian 

deposition likely occurred during these periods (Vandenberghe, 2013; de Haas et 

al., 2014). Unconfined fluvial activity lower in energy than that observed in NY-1 

persisted throughout the environment, and similarly most likely became 

hyperconcentrated as the flow decelerated towards the depositional low in the west 

of the site (North & Davidson, 2012). The increased occurrence of stable land 

surfaces as well as the reduction in hyperconcentrated flow events suggests that 

this sector of the alluvial plain became inactive, migrated laterally (Figure 6.1), or 

prograded during the deposition of NY-2, which is why an overall reduction in energy  

 
Figure 6.1: Conceptual model displaying how the active sector of the alluvial plain may have migrated laterally. A. displays 

Nyayanga situated on the alluvial belt at where intermittent fluvial flows and episodic hyperconcentrated flows occurred 

during the deposition of NY-1. B. displays how the active sector of the alluvial plain may have migrated laterally during 

deposition of NY-2, with Nyayanga now closer to the margins of the active sector. C. illustrates further migration of the 
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active sector of the alluvial plain during deposition of NY-3 and NY-4, with Nyayanga now part of the marginal areas of 

landscape stability, where secondary process of deposition were likely to have been prominent. 

can be observed in the depositional environment here (Blair & McPherson, 1994a; 

Harvey et al., 2005; de Haas et al., 2014). The increased frequency of unconfined 

fluvial activity at the top of these sediments, as well as the increased energy of said 

activity indicates that this part of the alluvial plain began to become more active 

during the deposition of NY-2C. This all persisted across a landscape characterised 

by grassy bushlands and bushy grasslands with infrequent wooded vegetation. 

Little change in the environment occurs in NY-3. The frequency of unconfined fluvial 

activity appears to increase here, suggesting that a continuation of the environment 

represented by NY-2C is likely. Regular periods of landscape stability and the 

increase in frequency of wooded vegetation suggest that this sector of the alluvial 

plain remained relatively inactive at the time these sediments were deposited, or at 

least experienced periods of inactivity (de Haas et al., 2014). Consequently, fluvial 

activity most likely occurred in the form of fluvial runoff across the inactive surface. 

The landscape remained characterised by open bushy grasslands and grassy 

bushlands.  

Lengthy periods of stable land formation and soil development suggest that at the 

time the sediments of NY-4 were deposited this was a relatively stable environment. 

By this time, it is likely that the alluvial belt had migrated and that Nyayanga was 

located in an inactive area of the alluvial plain (Blair & McPherson, 1994a; Harvey 

et al., 2005; de Haas et al., 2014). Alternatively, the alluvial plain may have become 

inactive as a result of increased aridity at the site, reducing the frequency of flows 

(deMenocal, 1995; 2004). This allowed for extensive pedogenic horizons to form. 

Secondary processes may have characterised the inactive surface in the form of 

fluvial runoff and aeolian deposition. The unconfined flows represented by EM3 in 

this unit most likely relate to the aforementioned fluvial runoff, rather than unconfined 

flow events relating to an active alluvial belt (Vandenberghe, 2013; de Haas et al., 

2014). The landscape remained characterised by a grassy bushland with infrequent 

wooded vegetation and sedges.  
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6.3.1.7. Drivers of palaeoenvironmental change at Nyayanga 

Much like other alluvial environments, palaeoenvironmental evolution at Nyayanga 

was most likely driven by a complex interplay of several controlling factors (Blair & 

McPherson, 1994a; Harvey et al., 2005; Waters et al., 2010; de Haas et al., 2014; 

Stokes & Mather, 2015; Mather et al., 2017). Regional and local tectonics may have 

had one of the largest impacts on environmental change here. The Homa Mountain 

carbonatite complex creates significant changes in relief from the east to the west 

of the site, whilst the development of the EARS created depositional lows and basins 

suitable for lake formation to the west of the site, whilst also amplifying the relief of 

Homa Mountain through uplift (Le Bas, 1977; Sepulchre et al., 2006; Bergner et al., 

2009; Trauth et al., 2010; Olaka et al., 2010; Maslin et al., 2014). The location of 

Nyayanga on the slopes at the foot of Homa Mountain most likely meant that 

sediments prograded towards the expansive depositional low to the west, as well 

as aggraded (Blair & McPherson, 1994a; Harvey et al., 2005; Waters et al., 2010; 

de Haas et al., 2014).  

Additionally, the development and destruction of palaeolakes by faulting to the west 

of the site would have led to changes in base-level, which may have ultimately 

dictated periods of incision or deposition across the site (Stokes & Mather, 2000; 

Maher et al., 2007; Maher & Harvey, 2008). Similar environmental settings have 

shown evidence for palaeolake fluctuations impacting the depositional environment 

in this way (Baker et al., 1988; Strecker et al., 1990; Trauth et al., 2010). However, 

the impact of base-level change on alluvial evolution is also very much controlled 

by sediment supply, which can also be driven by climate (Blair & McPherson, 1994a; 

Harvey et al., 1999; Harvey et al., 2005; Waters et al., 2010). Local faulting 

throughout the Homa Peninsula may also have led to changes in sediment supply 

throughout time by breakdown of sediment (Harvey et al., 2005; Waters et al., 2010). 

Drainage was likely also effected by faulting, potentially causing variations in the 

active sector of the alluvial plain that Nyayanga was located upon, with river capture 

also a possibility (Harvey et al., 2005; Maher et al., 2007; de Haas et al., 2014).  

Climate may also have been a significant driver of environmental change at 

Nyayanga. Changes in climate dictate the abundance of sediment supply (erosion), 

the release of sediment throughout the catchment, and the abundance/composition 
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of vegetation cover which stabilises sediment (Blair & McPherson, 1994a; Harvey 

et al., 2005; Pope & Wilkinson, 2005; Waters et al., 2010; Stokes & Mather, 2015). 

Precipitation largely drives sediment supply to alluvial plains, with periods of higher 

precipitation resulting in an increase in sediment supply (Blair & McPherson, 1994a; 

Pope & Wilkinson, 2005; Harvey et al., 2005; Waters et al., 2010). Additionally, 

larger amounts of precipitation can result in higher sediment entrainment capacities, 

particularly in higher magnitude episodic events (Mather & Hartley, 2005; Harvey et 

al., 2005; de Haas et al., 2014). Moister climates can often also attest to increased 

vegetation cover which stabilises sediments leading to a reduction in sediment 

supply (Harvey et al., 2005; Pope & Wilkinson, 2005; Maher et al., 2007; Waters et 

al., 2010).  

The sediments at Nyayanga, particularly in unit NY-1 point towards a variable 

climate regime. Hyperconcentrated flows here were likely a product of episodic high 

magnitude periods of precipitation resulting in an increased sediment supply due to 

erosion, as well as higher sediment entrainment capacities (Blair & McPherson, 

1994a; Pierson, 2005; Harvey et al., 2005; North & Davidson, 2012; de Haas et al., 

2014). Evidence from phytoliths suggest that a largely open environment existed, 

indicating that sediments were relatively unstable at these times (Pope & Wilkinson, 

2005; Harvey et al., 2005; Maher et al., 2007; Waters et al., 2010;). As flows moved 

west from Homa mountain, they became more viscous and sediment laden, causing 

them to become hyperconcentrated. Upon reaching the gentler relief of the alluvial 

plain at Nyayanga, these flows decelerated and resulted in aggradation throughout 

the site, particularly in the depositional low to the northwest (Pierson, 2005; North & 

Davidson, 2012; de Haas et al., 2014).  

Periods of unconfined fluvial activity and fluvial runoff may have been the result of 

frequent precipitation resulting in more water laden flows capable of 

erosion/incision, rather than large episodic events (Blair & McPherson, 1994a; 

Harvey et al., 2005; North & Davidson, 2012; de Haas et al., 2014). Throughout the 

deposition of NY-1, as well as through NY-2, 3 and 4, periods of landscape stability 

and flow hiatuses become more common, and the environment is characterised by 

less frequent wooded vegetation and more vegetation indicative of open 

environments. This could indicate that aridification generally occurred throughout 
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time at Nyayanga (deMenocal, 1995; 2004; Tipple & Pagani, 2007; Ségalen et al., 

2007; Edwards et al., 2010). Fluvial flows like those observed throughout these 

units, rather than that of hyperconcentrated flows are often more characteristic of 

such climates in alluvial plains (Harvey et al., 2005; Waters et al., 2010). 

The variability in climate observed at Nyayanga may be owed to orbital forcing. 

Precession cycles largely influenced moisture availability and seasonality 

throughout the time that the sediments Nyayanga were deposited, which may 

explain the intermittent nature of flows and their periodic hiatuses (deMenocal, 

1995; Teaford & Ungar, 2000; Bobe & Eck, 2001; Trauth et al., 2003; Clement et 

al., 2004; Denison et al., 2005; Reed & Fish, 2005; Deino et al., 2006; Hopley et al., 

2007; Kingston, 2007; Lepre et al., 2007; Wilson, 2011; Joordens et al., 2011; Magill 

et al., 2013b; Ashley et al., 2014a; Maslin et al., 2014). 

Additionally, the aridification interpreted at Nyayanga may relate to the iNHG 

(section 3.4.3. ), which coincides with the supposed age (3.05 – 2.595 Ma) of 

sediments here (Maslin et al., 2014; Finestone, 2019). This would have resulted in 

a variable climate regime with an increase in regional aridity, which can also be 

observed at Nyayanga (Keigwin, 1978; 1982; Ruddiman et al., 1988; Keller et al., 

1989; Mann & Corrigan, 1990; Raymo, 1991; 1994; Wright & Miller, 1996; Li et al., 

1998; Haug & Tiedemann, 1998; Maslin et al., 1998; 2014; Crowley & Hyde, 2008; 

DeConto et al., 2008; Fedorov et al., 2013; Abe-Ouchi et al., 2013).  

The openness of the environment and lack of stabilising vegetation observed 

throughout the sediments at Nyayanga could also relate to the expansion of C4 

grasses (Tipple & Pagani, 2007; Ségalen et al., 2007; Edwards et al., 2010; Cerling 

et al., 2013; Maslin et al., 2014). These became more common with increased aridity 

(section 3.4.3. ), and explain the lack of wooded vegetation throughout the site. 

However, the low frequency of wood may also be related to phytolith production 

rates. Wooded vegetation produce lower amounts of phytoliths than that of grasses 

and herbaceous vegetation, causing them to become underrepresented in the 

phytolith distribution (Piperno, 1988; 2006; Piperno & Pearsall, 1998; Albert et al., 

1999; Barboni et al., 1999; Strömberg, 2004; Mercader et al., 2009; Kinyanjui, 

2012).  
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6.3.2. Sare River 
6.3.2.1. Introduction 

The palaeoenvironmental setting of the two sedimentary units identified at Sare 

River are interpreted based on the results obtained in Chapter 5, specifically the 

description of sediments in section 5.3.5. This is summarised in Table 6.2, whilst 

the sections below explore this in more detail. Driving mechanisms of 

palaeoenvironmental change here are also discussed. 

Table 6.2: A summary of palaeoenvironmental characteristics interpreted for each sedimentary unit and subunit 

identified at Sare River based on sediment descriptions in section 5.3.5 

Unit Palaeoenvironment 

SARE-1 

Sediments primarily deposited via intermittent low energy unconfined fluvial 

activity. The frequency of these flow reduced throughout deposition of this unit. Flow 

hiatuses were characterised by stable land surface development and secondary 

processes. Open environment characterised by bushy grasslands/grassy bushlands 

with infrequent wooded vegetation. Wooded vegetation increases in frequency 

throughout this unit  

SARE-2 

Similar environment to SARE-1. Intermittent low energy unconfined fluvial activity 

deposited sediments here, with lengthier/more frequent flow hiatuses. Pedogenic 

development took place during these periods. Open environment characterised by 

bushy grasslands with infrequent wooded vegetation 

 

6.3.2.2. SARE-1 interpretation 

Deposition of SARE-1 was previously thought to have occurred at ~ 1.77 Ma, based 

on magnetostratigraphy and the correlation of reversed polarity sediments with the 

Olduvai Subchron (Finestone, 2019). However, new evidence from cosmogenic 

dates which provide an absolute date of sediment deposition suggest that 

sediments were deposited more recently than previously thought, with an age of 

1.512 ± 0.089 Ma. This highlights the importance of utilising multiple methods of 

chronological control, particularly independent numerical dating methods  (Barham 

et al., 2011; Gibbon et al., 2014; Granger et al., 2015). However, one must be aware 

that post burial production of cosmogenic nuclides can complicate dating when 

using this method (Granger & Muzikar, 2001).  

With only EXC4 (Figure 2.8) containing exposures of SARE-1 (section 5.3.5.1), it is  

difficult to accurately interpret the palaeoenvironment that sediments belonging to 

this unit were deposited in. From what can be observed, a low energy environment 



 

 126 

is evident, with poorly sorted silt sized sediment dominant throughout (Visher, 1969; 

McLaren & Bowles, 1985; Pye & Blott, 2004). The dominance of EM2 throughout 

this unit suggests that sediments were primarily deposited by low energy intermittent 

fluvial flows. The lack of evidence for a channel suggests that this was most likely 

unconfined fluvial activity (North & Davidson, 2012; Miall, 2013;). The increase in 

EM1 throughout this unit suggests that these flows became more infrequent and 

were separated by periods of landscape stability during flow hiatuses. The lack of 

any pedogenic features indicates these periods were not long enough for the 

development of soils (Machette, 1985). Alternatively, these flows might have 

migrated laterally allowing for periods of landscape stability to take place, which is 

common in alluvial plains (Blair & McPherson, 1994a; Harvey et al., 2005; de Haas 

et al., 2014;). The increase in wooded vegetation throughout this unit aligns with 

more frequent periods of landscape stability. Vegetation remains dominated by 

grasses and herbaceous vegetation and points towards a largely open landscape 

characterised by bushy grasslands/grassy bushlands with occasional wooded 

vegetation.  

6.3.2.3. SARE-2 interpretation 

A similar environment persists throughout SARE-2 (section 5.3.5.2). The lack of 

sedimentary structures and the abundance of EM2 throughout EXC5 (Figure 2.8) 

suggests that unconfined fluvial activity was concentrated here. The relatively lower 

abundances of EM1 indicates that periods of landscape stability were infrequent. 

Flow hiatuses and periods of landscape stability appear to become more frequent 

throughout this unit, as reflected by the increase in EM1 and the absence of granule 

grade sediment (Visher, 1969; McLaren & Bowles, 1985). The laterally equivalent 

sediments at EXC1 (Figure 2.8) appear to experience less frequent unconfined 

fluvial activity than that of EXC5, and may have been located close to the margins 

of the flows. An increase in silt and clay sized sediment as well as the dominance 

of EM1 suggests that sediments here were exposed to greater periods of landscape 

stability (Visher, 1969). The presence of carbonate nodules attests to this, yet their 

low frequency suggests that soils did not develop to significant maturity  (Machette, 

1985). It is likely that the unconfined fluvial activity throughout this unit was subject 

to lateral migration, allowing for periods of landscape stability to occur in laterally 

equivalent sediments (Blair & McPherson, 1994a; Harvey et al., 2005; de Haas et 
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al., 2014). Like SARE-1, the environment may still be characterised as a bushy 

grassland with infrequent wooded vegetation.  

6.3.2.4. Palaeoenvironmental reconstruction 

The depositional environment at Sare River is similar to that of Nyayanga. It is 

interpreted as a more distal alluvial plain than that of Nyayanga, having been subject 

to intermittent unconfined fluvial activity, as well as fluvial runoff and aeolian 

deposition in periods of inactivity. Stable land surfaces developed in these flow 

hiatuses, characterised by pedogenic development of the wider landscape. 

Deposition of sediments largely occurred across an open envionrment 

characterised by bushy grasslands and grassy bushlands, with infrequent wooded 

vegetation. 

Alluvial plains at Sare River were likely formed as a result of the greater relief to the 

southeast at Nyamira (Figure 6.2) which created a reduction in relief towards the 

depositional low in the west, formed by the EARS. Sare River is located in the 

intermediate area between the highlands and depositional low, where broad plains 

with mild changes in relief were likely to have existed.  

 
Figure 6.2: Topographic map of western Kenya displaying the elevation change between Sare River and Nyamira.  

Deposition of SARE-1 at 1.512 ± 0.089 Ma may represent a period in which this 

sector of the alluvial plain saw more frequent activity (Figure 6.3), with few periods 
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of landscape stability, as evidenced by the lack of pedogenic development 

(Machette, 1985). These periods of landscape stability became more common 

throughout the deposition of this unit, suggesting that fluvial activity likely migrated 

laterally from this area, which is common in alluvial plain settings (Blair & 

McPherson, 1994a; Harvey et al., 2005; de Haas et al., 2014). Alternatively, 

aridification at the site may have reduced moisture availability over time, resulting 

in lengthier and more frequent flow hiatuses (deMenocal, 1995; 2004; Tipple & 

Pagani, 2007; Ségalen et al., 2007; Edwards et al., 2010). Secondary processes 

including fluvial runoff and aeolian deposition are thought to have occurred during 

periods of inactivity. Deposition occurred across an open landscape characterised 

by bushy grasslands/grassy bushlands (Vandenberghe, 2013; de Haas et al., 2014).  

The later deposition of SARE-2 represents a continuation of the previous 

environmental characteristics. Stable land surfaces characterised by pedogenic 

development became increasingly frequent (Machette, 1985; Ditchfield et al., 1999).  

 
Figure 6.3: Conceptual model displaying how the alluvial plain which Sare River is located upon may have experienced 

less activity due to the trend towards increased aridity. A. shows the SARE-1 landscape which has increased fluvial activity 

owed to higher moisture availability. B. shows how this fluvial activity likely became more infrequent by SARE-2, leaving 

larger spaces of landscape stability subject to secondary processes of deposition 

This in combination with the low energy characteristics throughout this unit suggest 

that migration of the active area of the alluvial plain had occurred by this time, and 

that deposition probably occurred through secondary processes across the 
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landscape in the form of fluvial runoff and aeolian deposition (Vandenberghe, 2013; 

de Haas et al., 2014). This continued to occur across an open landscape 

characterised by bushy grasslands with infrequent wooded vegetation (Figure 6.3).  

6.3.2.5. Drivers of palaeoenvironmental change 

Much like palaeoenvironmental evolution at Nyayanga, a combination of regional 

and local tectonics as well as changes in climate most likely drove environmental 

change at Sare River. The development of the EARS created a depositional low in 

the west for the accumulation of sediments most likely sourced from areas of greater 

relief in the east where uplift occurred (Le Bas, 1977; Sepulchre et al., 2006; Bergner 

et al., 2009; Trauth et al., 2010; Olaka et al., 2010; Maslin et al., 2014). Sediments 

likely aggraded on the broad plains in the intermediate area between these two 

locations at Sare River (Blair & McPherson, 1994a; Harvey et al., 2005; Waters et 

al., 2010; de Haas et al., 2014). Changes in base-level caused by the formation and 

destruction of palaeolakes throughout the EARS would have influenced periods of 

incision and aggradation at Sare River (Stokes & Mather, 2000; Maher et al., 2007; 

Maher & Harvey, 2008). Additionally, local faulting would have had an influence on 

sediment supply and geomorphological changes to the catchment that Sare River 

was located in, with river capture a possibility in the area surrounding the Nyamira 

highlands (Harvey et al., 2005; Waters et al., 2010). The Kaniamwia Fault is located 

in close proximity to Sare River and may have had an influence on the envionrment 

(Le Bas, 1977).  

The lack of a rapid change in sedimentary characteristics or palaeovegetation 

indicates that tectonics were not the main driver of palaeoenvironmental change at 

Sare River. Climate may have had a more gradual impact on palaeoenvironmental 

evolution at Sare River. The increase in frequency of periods of inactivity and stable 

land surface development as well as the openness of the landscape indicates that 

the site suffered a gradual reduction in moisture availability and experienced 

aridification over time (deMenocal, 1995; 2004; Trauth et al., 2009; Maslin et al., 

2014). This may also relate to the expansion of C4 grasses, which are frequently 

linked to more arid environments (deMenocal, 1995; 2004; Tipple & Pagani, 2007; 

Ségalen et al., 2007; Edwards et al., 2010). 
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Aridification here may be related to the DWC, which resulted in increased aridity in 

East Africa from ~ 2 Ma throughout the Pleistocene, similar to the time these 

sediments were deposited (Saji et al., 1999; Ravelo et al., 2004; McClymont & 

Rosell-Melé, 2005; Liu et al., 2008; Brierley et al., 2009; Trauth et al., 2009; Fedorov 

et al., 2013; Larrasoaña et al., 2013; Maslin et al., 2014). Intermittent unconfined 

fluvial activity is also characteristic of arid alluvial environments (Harvey et al., 2005; 

Waters et al., 2010). Alternatively, periods of inactivity may instead be owed to a 

migration of the drainage network on the alluvial plain, allowing stable land surfaces 

to develop at Sare River (Blair & McPherson, 1994a; Harvey et al., 2005; de Haas 

et al., 2014).  

6.4. Hominin activity on the Homa Peninsula and its place 
in the wider East African context 

The Homa Peninsula provides two new records of Hominin activity throughout the 

Plio-Pleistocene. At Nyayanga where sediments are dated to ~ 2.6 Ma (Finestone, 

2019), hominins (Paranthropus sp.) inhabited or frequented an alluvial environment 

that was characterised by intermittent flows and periods of stable land surface 

development. The climate here appeared to be variable, but experienced gradual 

aridification and was characterised by an open landscape with bushy grasslands 

and grassy bushlands. Such environments are typical of Paranthropus (Wynn, 

2004; Bamford, 2005; Wood & Leakey, 2011; Bobe, 2011; Albert et al., 2015), whom 

had craniodental morphology adapted to processing large quantities of low-quality 

vegetation such as grasses and sedges typical of an open environment, rather than 

harder objects such as wood (Cerling et al., 2011b). It has previously been 

highlighted that although it is evident that the diet of Paranthropus was largely C4 

based, it has been difficult to identify if this is largely sedge based or grass based 

with isotopic evidence alone (Cerling, 2014). Phytolith evidence from this research 

shows that sedges are largely infrequent throughout Nyayanga, suggesting that 

Paranthropus indulged on C4 based grasses and shrubs. Paranthropus is also 

frequently linked to increased aridification and the development of savanna 

ecosystems as a result (deMenocal, 1995; 2011; Wynn, 2004). Remains of 

Paranthropus are often found in association with fluvial, deltaic and alluvial 

environments characterised by low proportions of wooded vegetation (Wynn, 2004; 

Bobe, 2011; Cerling et al., 2011b; Maslin et al., 2014; Albert et al., 2015). Evidence 
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from Nyayanga supports current knowledge about the environmental preferences 

of Paranthropus whilst also expanding it to a new spatial context.  

Of the different hypotheses linking palaeoenvironmental change to hominin 

evolution (section 3.2. ), Nyayanga provides further detail to previous studies and 

increases our understanding of environmental linkages. The trend towards greater 

aridity at Nyayanga as well as the largely open environments provide support that 

aridity was a major driver in hominin evolution and environmental change 

(deMenocal, 1995; 2011). The interpretation that the expansion of the EARS and 

the formation/destruction of lakes throughout it influenced base-level and periods of 

incision/aggradation throughout the area may also support the notion that the 

formation/destruction of deep lakes throughout East Africa drove key events in 

hominin evolution (Trauth et al., 2007; 2010). The most likely hypothesis that 

palaeoenvironmental change at Nyayanga provides support for is that of the pulsed-

climate hypothesis (Maslin & Trauth, 2009). In addition to the evidence for the 

formation/destruction of lakes, a period of variability whilst trending towards greater 

aridity is evident at Nyayanga in unit NY-1. This unit also bares the most abundant 

evidence for hominin activity during this time (Finestone, 2019). 

The abundance of hominin tools uncovered at Sare River, particularly in the 

sediments of SARE-2 suggest that hominin activity was ongoing throughout the time 

of deposition here (Finestone, 2019). This activity thrived in the low-energy alluvial 

plains that were characterised by bushy grasslands and grassy bushlands, 

potentially in a more arid climate. Similar evidence for hominins inhabiting open 

grasslands and wooded grasslands exists from the Pleistocene period at the 

Olorgesaillie formation (Table 3.2). Despite this, activity largely occurred in close 

proximity to a shallow freshwater lake, rather than on a broad alluvial plain like that 

of Sare River. Similarly, evidence from Olduvai Gorge suggests that hominins 

inhabited a range of habitats, which included relatively open grasslands during the 

Pleistocene (Table 3.2). This included alluvial environments that experienced 

intermittent fluvial activity like that of Sare River. Hominin activity was also 

interpreted to have taken place on the alluvial plains characterised by wooded 

grasslands and open grasslands at Kanjera South, although higher energy 

characteristics are apparent here (Table 3.2). Grassland habitats surrounding a 
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fluvial system are also evident in the Koobi Fora formation in the mid-Pleistocene 

(Table 3.2). The dominance of grasslands was also evident at the Nachukui 

formation, which was characterised by fluvial and alluvial deposition (Table 3.2). The 

Shungura formation also developed a significant increase in the presence of 

grassland following 2 Ma, and was again characterised by fluvial deposition (Table 

3.2). 

Resultantly, the deposits at Sare River support and provide additional evidence for 

Hominin activity having occurred in more open environments throughout the 

Pleistocene, particularly in environments characterised by alluvial/fluvial deposition. 

Its trend towards more open environments that showed longer periods of inactivity 

might also point towards gradual aridification. This suggests that hominin activity at 

Sare River might provide additional support to the aridity hypothesis (deMenocal, 

1995; 2011)
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CHAPTER 7.   CONCLUSIONS 
7.1. Introduction 

It was the aim of this thesis to provide palaeoenvironmental context for evidence of 

hominin activity across the Homa Peninsula at two sites, Nyayanga and Sare River, 

whilst also expanding knowledge on hominin environmental preferences to a new 

spatial context — the Homa Peninsula. To achieve this, objectives for both sites 

included: (1) reconstruct the depositional environment, (2) reconstruct the 

palaeovegetation, (3) identify drivers of palaeoenvironmental change by analysing 

changes in (1) and (2) throughout time and (4) determine the relationship between 

hominin activity and palaeoenvironmental change, as well its linkage with driving 

mechanisms.  

Utilising a multi-proxy approach which incorporated field sedimentary analyses, 

particle size analysis, EMMA and analyses of phytoliths, similar environments were 

identified at both sites. Deposition is thought to have occurred in an alluvial plain 

setting at both sites, with Nyayanga being more proximal to the sediment source 

than that of Sare River. This occurred in a largely open landscape characterised by 

bushy grasslands with infrequent wooded vegetation and sedges. 

Palaeoenvironmental evolution at both sites is attributed to an interplay of driving 

mechanisms including tectonic activity and climate, similar to other 

palaeoenvironmental records from the Plio-Pleistocene of East Africa. The hominin 

active palaeoenvironments identified align with previous research findings from 

other hominin bearing sedimentary records from East Africa, whilst also expanding 

our understanding to a new spatial context — the Homa Peninsula. Fluctuations in 

climate and an overall trend towards more arid environments, creating largely open 

landscapes appears to be one of the primary influences on hominin activity.  

7.2. Key Findings 
7.2.1. Palaeoenvironmental reconstructions 

A multi-proxy approach to reconstructing the palaeoenvironment at both sites was 

utilised. The identification of sedimentary dynamics was enabled using field 

sedimentary analysis, particle size analysis and EMMA. The latter of these methods 

allowed for multimodal PSDs to be ‘unmixed’ and interpreted in detail. Analyses of 

phytoliths produced reconstructions of palaeovegetation and thus palaeoclimate. 
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These methods used in conjunction provided detailed insights into the evolution of 

the palaeoenvironment of the Homa Peninsula.  

At Nyayanga, an alluvial plain environment was identified for the deposition of 

sediments ~ 2.6 Ma. Initially, deposition occurred via episodic hyperconcentrated 

flows capable of mobilising cobble grade sediment, yet likely to bury underlying 

sediments rather than erode. Intermittent unconfined fluvial flows more water laden 

than the hyperconcentrated flows also occurred intermittently, and were capable of 

eroding underlying sediments. These flows likely decelerated with expansion and 

became low energy hyperconcentrated flows. Flow hiatuses were characterised by 

secondary processes including fluvial runoff and aeolian deposition, as well as 

pedogenic development. Throughout time, higher energy hyperconcentrated flows 

became absent, whilst unconfined fluvial activity became more infrequent. 

Pedogenic development and deposition by secondary processes increased in 

frequency. These changes were likely caused by a migration of the active sector of 

the alluvial plain, although aridification at may also be responsible for the reduction 

in the frequency of flows here. The landscape throughout this time remained open, 

with palaeovegetation fluctuating between bushy grasslands and grassy bushlands 

with infrequent woodland and sedges.  

Similarly, an alluvial plain was identified as the depositional environment for 

sediments at Sare River at ~ 1.5 Ma, although more distal from the sediment source 

than that of Nyayanga. Here, intermittent unconfined fluvial activity deposited 

sediments across the gentle slopes. These became more infrequent throughout 

time. During flow hiatuses, secondary process deposited sediments on the inactive 

sector of the plain, whilst stable land surface development and pedogenesis also 

occurred. The reduced frequency of unconfined fluvial activity is attributed to a 

migration of the active sector of the alluvial plain. This all occurred in an open 

landscape characterised by bushy grasslands with infrequent woodland.   

7.2.2. Drivers of environmental change on the Homa Peninsula 

Palaeoenvironmental change on the Homa Peninsula appears to the result of a 

complex interplay of driving mechanisms including both regional and local tectonics, 

as well as climate. At both sites, the development of the EARS created depositional 

lows with extensive space for the accumulation of sediment, a key feature in alluvial 
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environments. During its development, the formation and destruction of palaeolakes 

most likely also influenced changes in base level throughout the peninsula, driving 

incision and aggradation within the alluvial systems. The formation of the Homa 

Mountain carbonatite complex created steep changes in relief across the area, as 

well as a more proximal sediment source for Nyayanga than that of Sare River. 

These factors account for the occurrence of hyperconcentrated flows at Nyayanga, 

as well as unconfined fluvial activity with higher energy than those at Sare River.  

The most significant driver of palaeoenvironmental change at both sites appears to 

be that of climate. At Nyayanga, hyperconcentrated flows were most likely caused 

by episodic high magnitude periods of precipitation which resultantly led to an 

increased sediment supply and higher sediment entrainment capacities. Intermittent 

unconfined fluvial activity was likely controlled by lower magnitude higher frequency 

periods of precipitation. A trend towards a more arid climate is inferred from the 

increased frequency of flow hiatus and periods of stable land surface development. 

The timing of this aridification coincides with that of the iNHG, which is thought to 

have resulted in a variable climate regime with increased regional aridity throughout 

East Africa. The openness of the environment here can be attributed to this 

aridification, which resulted in the expansion of C4 grasslands and the reduced 

frequency of woodland.   

A similar trend is evident at Sare River, where unconfined fluvial activity became 

more infrequent and periods of landscape stability become more common. This 

trend is more consistent throughout the sequence at Sare River, unlike the variability 

in climate observed in the sediments at Nyayanga. Aridification at Sare River 

coincides with the DWC, which resulted in aridification throughout East Africa from 

~ 2 Ma. 

7.2.3. Implications for Hominin research 

This thesis has provided environmental context for hominin activity (specifically 

Paranthropus) ~ 2.6 Ma in an alluvial environment at Nyayanga, as well as hominin 

activity ~ 1.5 Ma on the alluvial plains at Sare River. Environmental preferences of 

Paranthropus at Nyayanga align with pre-existing research findings, suggesting 

these hominins inhabited or frequented similar depositional settings in open 

landscapes characterised by bushy grasslands with infrequent wooded vegetation. 
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This is consistent with their largely C4 based diet. Where isotopic evidence has been 

unable to identify whether this diet is largely sedge based or grass based, evidence 

from phytoliths demonstrate that the latter is more likely. Evidence from Nyayanga 

also corroborates previous linkages between Paranthropus and increased 

aridification and the development of savanna ecosystems. The 

formation/destruction of lakes as well as the climate variability identified in the 

hominin baring sediments of NY-1 at Nyayanga provides support for the pulsed-

climate hypothesis linking environmental change to hominin evolution. 

Similar to other Pleistocene palaeoenvironmental records, Sare River proves 

support that hominin activity during this period thrived in open environments 

characterised by alluvial/fluvial deposition. The trend towards greater aridity 

throughout the sediments at this site suggests that hominin activity at Sare River 

could provide support for the aridity hypothesis linking palaeoenvironmental change 

to hominin evolution.  

7.2.4. The use of EMMA in interpreting depositional environments 

The novel use of EMMA to interpret sedimentary dynamics in Plio-Pleistocene 

palaeoenvironmental records from East Africa has proven successful in this context. 

PSA alone is incapable of highlighting various depositional mechanisms that may 

have occurred throughout a site, particularly where sediments are multimodal, which 

most often they are. By utilising EMMA in conjunction with field sedimentary 

analyses, it has been possible to infer the sedimentary dynamics that occurred 

throughout the Homa Peninsula and to what extent they are represented at spatially 

and temporally varying locations. This is invaluable when assessing how 

depositional environments are likely to have evolved.  

Additionally, the use of EMMA and sedimentology allowed for the identification of 

hyperconcentrated flows that may bury underlying sediments rather than eroding 

them, which is detrimental in establishing whether traces of hominin activity 

uncovered at Nyayanga are in fact in situ. 

7.2.5. Phytoliths as a tool for reconstructions of palaeovegetation 

Phytoliths have proven a competent tool in assessing the palaeovegetation 

structure of the Plio-Pleistocene environment of the Homa Peninsula. Due to their 
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excellent preservative characteristics, this has allowed for the reconstruction of 

vegetation structure where other methods may have failed. Due to the age of 

sediments, particularly at Nyayanga, pollen is not preserved well. Additionally, 

isotopic evidence fails to distinguish the types of vegetation throughout a site. Such 

information has proven valuable to this work, as more detailed information on the 

diet of Paranthropus has been revealed, as well as the environments in which 

hominin activity took place. 

7.2.6. Cosmogenic dating as an independent chronological 
constraint 

Previously, chronology at Sare River was based on magnetostratigraphy and its 

correlation with a tuff alone. The lack of an absolute date here made interpretations 

of chronology difficult, as an independent date could not be used to constrain the 

relative dating of magnetostratigraphy. Cosmogenic nuclide dates obtained from 

sediments at Sare River have provided an independent chronological constraint on 

sediments and better inform chronological inferences from magnetostratigraphy. 

The age of sediments acquired form cosmogenic dating suggests that sediments 

are younger than previously thought, although limitations surrounding post burial 

production of cosmogenic radionuclides should also be acknowledged. 

7.3. Limitations of this research 

It is essential that the limitations of this research are addressed to best inform 

interpretations and the direction of future work here. One of these limitations is 

sampling resolution. Samples were not taken at regular intervals, and instead 

targeted spot samples were taken. More detailed information on 

palaeoenvironmental change may have been acquired through the acquisition of 

samples from regular intervals. At Sare River, the spatial resolution of sampling was 

also limited due to the lack of exposures available to sample, as well as the time 

constraints faced whilst in the field. More detailed information about the 

palaeoenvironment and its lateral variability could be acquired by improving spatial 

resolution of sampling.  

The analyses of phytoliths in this study is also limited to an extent. Phytoliths can 

provide more detailed information on plant taxa and resultantly attribute them to 

C3/C4 mechanisms, providing information on climate dynamics. However, in this 
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study phytoliths were only used to provide information on the types of vegetation 

present at the time of deposition, with delineations between grasses, herbaceous 

vegetation, sedges and woodland. This was largely due to the time constraints faced 

in sufficiently developing this technique for such inferences to be made, as this 

method is largely subjective and operator dependant. As previously discussed, 

phytolith counts for Sare River were completed prior to the awareness of several 

morphotypes. Due to time constraints, it was not possible to complete these counts 

again. For this reason, the sedge and wood components of the vegetation structure 

at Sare River may be under-represented. 

Chronological control at Nyayanga requires improvement. Here, no independent 

absolute dates of sediments exist, which makes it difficult to constrain the timing of 

sediment deposition. Only biostratigraphy and magnetostratigraphy are used 

throughout this site, both of which are relative dating techniques and cannot provide 

accurate numerical dates on the deposition of sediment.  

7.4. Direction of future work 

This research has provided the basis for more in depth reconstructions of the 

palaeoenvironment at Nyayanga and Sare River. Sedimentary units have been 

identified and their lithofacies described, providing a framework for future analyses. 

Such analyses might include that of plant wax lipid biomarkers (e.g. Magill et al., 

2013a; 2016; Uno et al., 2011; 2016b) or 𝛿13C isotopic analyses (e.g. Levin et al., 

2004; Quinn et al., 2007; Plummer et al., 2009b; Cerling et al., 2011b; 2011c) to 

further inform the palaeovegetation structure at both sites, due to the limitations 

faced with analyses of phytoliths. Additionally, more detailed information could be 

obtained on the moisture availability at both sites through the analysis of 𝛿18O 

isotopes (e.g. Cerling et al., 2003; Wynn, 2004; Quinn et al., 2007; Sikes & Ashley, 

2007; Levin et al., 2011). This would allow for more accurate conclusions to be 

drawn on the drivers of palaeoenvironmental change at both sites, particularly if it is 

thought that climate is one of the main drivers.  

Future work would also benefit from increasing the resolution of sampling, which 

would allow for more discrete changes in sediments to be identified, thus allowing 

for more detailed insights into palaeoenvironmental trends to be obtained 

(Hartmann, 2007). This would also allow the facies model created herein to be 
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further refined, with the potential of better describing existing lithofacies and possibly 

identify sub-facies within these. Additionally, by increasing the spatial resolution of 

sampling at Sare River, more detailed interpretations of the environments lateral 

variability could be obtained.  

It is essential that future work on the Homa Peninsula prioritises chronological 

control. Independent absolute dates for sediments at Nyayanga would aid in 

attributing driving mechanisms to palaeoenvironmental change here, whilst also 

informing on rates of deposition. This would allow for more detailed information to 

be provided on the timing of hominin activity here and the environmental factors 

which influenced such. Further dating at Sare River would also be beneficial in order 

to validate dates acquired for the site thus far.  
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