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Abstract

The detection of gravitational waves (GWs) originating from a black hole (BH) binary

merger in 2015 by LIGO marked the beginning of the age of GW astronomy. Another

defining moment came in 2017 with the joint detection of GWs and their electromagnetic

(EM) counterpart, beginning with a short gamma ray burst (sGRB), from a neutron star

merger.

For GW astronomy to reach its scientific potential accurate models of the binary GW

inspiral are needed. In addition, an understanding of the possible formation channels

of merging compact binaries (including how the formation history is encoded into GW

observables) and of the possible EM counterparts to GWs (such as sGRBs, kilonovae

and GRB afterglows in the case of NS mergers) is required. This thesis is dedicated to

these two aspects of GW astrophysics.

In part I we discuss a new formation channel of compact binaries: tidal encounters with

a massive BH at galactic centres or potentially in dense star clusters. First we discuss

simple cases where initially circular binaries are injected towards a massive BH. The

analysis is later extended to initially eccentric systems (corresponding to different BH

binary origins). These tidal encounters can disrupt binaries, but do not always lead

their break-up. Since surviving binaries tend to become hard and eccentric, this process

can produce BH mergers in principle. For initially circular binaries, we show that the

gravitational wave (GW) merger times become shorter by a factor of more than 102

(105) in 10% (1%) of the surviving cases. This reduction is primarily due to the growth

in binary’s eccentricity at the tidal encounter. We obtain the effective spin distribution

of the survivors. It is found that binary orientations can flip in the opposite direction
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at the tidal encounter. For the survivors with large merger time reduction factors, the

effective spin distribution is found to be rather flat. The merger rate due to the tidal

encounter channel is estimated to be ∼ 0.6Gpc−3yr−1. This estimate is not especially

sensitive to whether initially circular or initially eccentric binaries are considered.

In part II we study merger jet radio images. These images recently proved to be

essential in breaking the degeneracy between different ejecta models for the afterglow

of the neutron star (NS) merger event GW170817. The properties of synthetic radio

images are characterized in detail by using semi-analytic models of laterally spreading

GRB jets, and compared to the case of collimated jets. The image centroid evolution

is obtained, and we find that this feature initially moves away from the explosion

point in the sky with apparent superlumianal velocity, following the principal jet.

After reaching a maximum displacement its motion is reversed. This behavior is

in line with that observed in full hydrodynamics simulations. We then explicitly

show images can be used to break intrinsic degeneracies in afterglow light curves,

and in particular how they can be used to determine the viewing angle θobs, or more

precisely ∆θ = θobs − θc, where θc is the jet core opening-angle. Two methods for

determining ∆θ are contrasted: the direct comparison of two images and the point

emitter approximation for apparent superluminal motion, which states that for the

apparent velocity at peak time βapp ∼ 1/∆θ. By considering five different jets with

identical light curves at their peak time and which roughly agree with GW170817

afterglow radio data (ν = 3 GHz), the viewing angle for this event is estimated to be

θobs ∼ 0.32 rad.

JOSEPH JOHN FERNANDEZ MAY 4, 2021
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Chapter 1

Introduction

1.1 Gravitational waves and multi-messenger astronomy

For centuries astronomy relied solely on electromagnetic (EM) waves to study the

cosmos. Advances in detector technology expanded the range of EM frequencies

which could be observed. This in turn led to more insight into the physics of the

Universe. The wider the range of observable frequencies, the more complete the

picture which can be obtained of the emitters. For instance, to determine the composition

of a star in detail requires spectra which may cover multiple observational wavebands.

In addition, photons of different energies can often be associated with different processes

or properties of the emitting systems. For example, high frequency photons such as

gamma rays can be associated with energetic events involving shocks (such as gamma

ray bursts, e.g. Kumar & Zhang 2015), whereas the emission of protostars peaks in the

infrared (e.g. Adams & Shu 1985; Dunham et al. 2014).

Multimessenger astronomy, the study of the Universe by combining EM observations

with other sources of information or messengers, aims to expand the observational

capacity of traditional astronomy. These new messengers include neutrinos, cosmic

rays or gravitational waves (GWs) (Branchesi, 2016). GW astronomy has been especially

relevant since the start of LIGO’s operating runs in 2015 (Abbott et al., 2016). GWs
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1.2. Outline of the thesis 2

are important as they open up the possibility of observing the dark Universe. This

includes parts of the Universe where light cannot be emitted (such as in black hole

mergers, the detection of which has become routine) or times when it simply cannot

propagate (such as in the early Universe, before the cosmic microwave background

was emitted) (Colpi & Sesana, 2017).

The merger of compact binaries (whose components are stellar remnants such as white

dwarves, neutron stars or black holes) are a prime source for current GW detectors (see

e.g. Abbott et al. 2020b). Much like the rest of astrophysics, GW astronomy relies

heavily on theoretical models to interpret observations. Interpreting binary mergers

requires modelling the GW signal due to the inspiral. To extract as much scientific

value as possible is is also necessary to model the pre-merger life of these binaries,

before the inspiral phase, and the post-merger evolution of the remnant. The former

involves considering what processes can lead to the formation and merger of compact

binaries, what rate of mergers each process can produce or how the properties of the

GW signals (such as their amplitude and frequency spectrum) depend on their physical

state of the binary. The latter depends on the composition of the binary. If it was made

up solely of black holes, the ring-down signal of the merger remnant could be used to

test predictions of alternative theories of gravity. If at least one of the binary members

was a neutron star an electromagnetic counterparts can be expected (depending on the

binary mass ratio), which could provide information on the host galaxy of the merger,

the properties of the surrounding matter or, for example, provide insight into shock and

accretion physics. Multimessenger observations, which combine EM and GW signal,

have already been used to place independent constraints on the Hubble constant H0,

related to the rate of expansion of the Universe (Hotokezaka et al., 2019).

1.2 Outline of the thesis

As introduced above, modelling binary inspirals is extremely important to be able to

determine the source of GW signals, but so too is understanding the pre- and post-merger

physics. The objective of this thesis is to contribute to the understanding of pre-merger



1.2. Outline of the thesis 3

and post-merger physics. Because these two areas of study involve different physical

models and methods, this thesis is divided into two parts.

Part I is dedicated to characterizing a specific dynamical process, the tidal encounter

channel, which can result in compact stellar binary mergers. While the focus is placed

on black hole mergers, the analysis presented in part I is applicable to compact binaries

of any flavour. Chapter 2 gives an introduction to GW science, including the detection

of GWs and a discussion of the different formation channels for merging binaries.

Chapter 3 details the dynamical formalism used to characterize the tidal encounter

channel. The process is then analyzed in detail for binaries that are initially circular

in chapter 4. The study is extended to binaries that are initially eccentric in chapter

5. Physical quantities which can be inferred from GW observations are characterized,

and an estimate of the merger rate density due to this channel is provided.

Part II sees the focus shifted onto the post-merger stage, and in particular to modelling

one of the EM counterparts of neutron star mergers, where the standard gamma-ray

burst (GRB) model can be applicable. In chapter 6 the different components of the

EM counterpart to neutron star mergers such as GW170817 are introduced: short

GRBs, kilonova and the merger jet afterglow. The semi-analytic formalism to model jet

dynamics and radiation is introduced in chapter 7. In chapter 8 a systematic analysis of

synthetic radio images of merger jets is presented. A novel contribution of this section

is the calculation of images of laterally spreading jets by means of semi-analytic methods

(these images are generally obtained using full hydrodynamical simulations). Different

observable quantities which can be extracted from images (such as the image centroid

and different aspects of the image structure) are characterized. The results are then

used to described how radio imaging can be used to break intrinsic degeneracies in

lightcurve parameter estimation, and in particular determine the viewing angle between

the jet axis and the observer’s line-of-sight.

General conclusions and suggestions for future work are given in chapter 9.



Part I

A dynamical source of merging black

holes in the galactic centre

4



Chapter 2

Gravitational Waves

The LIGO (Laser Interferometer Gravitational wave Observatory) facilities made the

first direct detection of GWs in 2015 (Abbott et al., 2016a). Their existence was first

predicted by Albert Einstein almost a century earlier (Einstein, 1916). By considering a

small perturbation to an otherwise flat spacetime metric, it can be shown that changes

in the gravitational field propagate obeying a well understood wave equation. The

result can also be generalized to curved spacetimes (Misner et al., 1973).

It can also be shown that the lowest-order source of GWs is the time-varying mass-quadrupole

(Flanagan & Hughes, 2005). This result implies that the Universe is full of GW

sources: most compact objects in the Universe are part of binary or higher order

systems. Not surprisingly, to date all of the direct observations of GWs have originated

from binary systems (Abbott et al., 2020b).

This chapter serves as motivation and background for the work to follow in part I. The

foundations of General Relativity are briefly reviewed. A sketch of the derivation of the

GW equation is given, as well as a discussion of GW physics, sources and detection.

In the last section the most relevant theoretical models for the origin of BH binary

systems are examined.

5



2.1. General relativity and gravitational waves 6

2.1 General relativity and gravitational waves

Isaac Newton’s law of universal gravitation, first presented in 1686, states that two

masses m1, m2 will attract each other with a force proportional to their masses and

inversely proportional to the square of the distance between them,

F1,2 =
Gm1(r1)m2(r2)

|r2 − r1|2
r̂1,2 = −F2,1 (2.1)

where the subscript (1, 2) indicates that force is that which mass 1 feels due to mass 2,

and r̂1,2 is the unit vector directed along the line joining the two masses, oriented from

m1 to m2 (Landau & Lifshitz, 1980). With this law the motion of celestial bodies and

of freely-falling objects on the Earth were given a unified explanation under a single

theory. Newton’s law prevailed as an adequate description of gravity for over 200

years, but by the end of the nineteenth century observational and theoretical evidence

indicated that it was an incomplete description. In particular, the theory is explicitly

non-local: as described by equation 2.1, changes in m1 will be immediately felt by

m2, as the mass contributions to the force depend only on the instantaneous position

of each particle (Misner et al. 1973; Landau & Lifshitz 1980).

The non-locality of Newtonian gravity makes it incompatible with special relativity

(SR). This theory describes motion in inertial reference frames and is built upon two

postulates: that physical laws are invariant under changes of inertial frame, and that the

speed of light in vacuum is the same for all inertial observers. Among the consequences

of these are that space and time are unified into a single physical object known as

space-time, and that physical information cannot propagate faster than the speed of

light in vacuum (Misner et al., 1973). This meant that a new description of gravity was

needed, built to be compatible with SR so that the non-local features described above

were removed, but that would also reduce to Newton’s law in the appropriate limit.

The key to solving this problem was found to lie in a centuries-old experimental result.

To a great degree of accuracy, the inertial mass (a measure of the opposition of a body

to change its state of motion) and gravitational mass (a measure of how much a particle
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is affected by a gravitational field) are equal. This leads to the universality of free-fall,

also known as the weak equivalence principle, or the WEP (Haugan & Lämmerzahl,

2001):

”All bodies, independently of mass or composition, accelerate equally under the

influence of a gravitational field.”

In particular, this result implies that a free-falling observer would not be able to distinguish

between being immersed in a constant gravitational field or in a uniformly accelerated

reference frame: the dynamics of both situations would be identical (at least locally).

While constant gravitational fields do not exist in the Universe, in many situations,

such as in the immediate vicinity of the surface of a planet, this treatment is a good

approximation. Having recognized this, the WEP can be extended to the Einstein

equivalence principle, or EEP (Haugan & Lämmerzahl, 2001),

”The laws of physics in free-fall are locally equivalent to those in the absence of

gravity.”

As the motion of a free-falling body is locally equivalent to uniformly accelerated

motion, and acceleration can be removed with an appropriate change of reference

frame, then motion in a gravitational field is locally (that is, for a small enough region

of spacetime) equivalent to inertial motion. Therefore, gravity can be described by a

coordinate transformation. Additionally, special relativity itself and any laws compatible

with it will remain valid in the presence of a gravity (Haugan & Lämmerzahl, 2001).

In SR, the fundamental object is the interval, defined as the quadratic form (Landau &

Lifshitz, 1980)

ds2 = ηαβdx
αdxβ; η = diag(−c, 1, 1, 1), (2.2)

where the Einstein summation convention for repeated indices is used (Misner et al.,

1973), α, β = 0 − 3 and η is the Minkowski metric tensor, a 4 × 4 symmetric tensor

(Landau & Lifshitz, 1980). The interval is an invariant, i.e. it remains constant under
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transformations between inertial frames (Lorentz boosts and rotations). As the laws of

Special Relativity are still valid in the presence of gravity, and gravity is equivalent to a

coordinate transformation, then equation 2.2 holds by simply changing the Minkowski

metric for a general metric tensor η → g. Therefore, the gravitational field can be

understood as a change in the geometry (or the curvature) of spacetime, embodied in

the metric tensor (Misner et al. 1973; Flanagan & Hughes 2005),

Fg → gαβ; ds2 = gαβdx
αdxβ (2.3)

This is how gravity is understood in the General Theory of Relativity (GR): the presence

of mass changes the geometry of spacetime. In that sense, gravity is interpreted as a

fictitious force which bodies feel as they free-fall in curved spacetime. Asymptotically

far away from masses, spacetime is flat, i.e. the Minkowski metric of SR determines

the geometry (Misner et al., 1973; Landau & Lifshitz, 1980).

In the Newtonian picture, a mass distribution ρ(r) is related to the gravitational field,

or equivalently the gravitational potential φ(r) by Poisson’s equation,

∇2φ = 4πGρ(r). (2.4)

Without entering into detail, it can be stated that in GR the corresponding description

is given by Einstein’s field equations (Le Tiec & Novak, 2017),

Gµν + Λgµν =
8πG

c4
Tµν (2.5)

where Gµν is the Einstein tensor, a combination of the Ricci curvature tensor Rµν
1

and its contraction, Λ the cosmological constant, which accounts for the accelerated

expansion of the Universe and Tµν is the energy-momentum tensor, which gives the

distribution of mass-energy and takes on the role of ρ(r). The Einstein equations are a

set of 10 non-linear, partial differential equations which account for the interaction of

mass-energy with spacetime: mass distributions determine the geometry of spacetime,

1The Ricci tensor is obtained by contracting the curvature tensor Rαβγσ , and this tensor from the
second derivatives of the metric tensor gαβ .
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which itself determines the motion of massive bodies.

2.2 The weak field limit

The non-linearity of the equations means that they are extremely difficult to solve.

However, several exact solutions have been found since their formulation. These

include the Schwarzschild metric (which describes the spacetime around a spherically

symmetric object) or the Kerr metric (for the spacetime of a rotating black hole)

(Misner et al., 1973), among others. Interestingly, the equations can be linearized,

not unlike the equations of fluid dynamics. While a full derivation is beyond the scope

of this work it can be shown that in a flat, background spacetime, for a small metric

perturbation hα,β such that to first order2

ηαβ → gαβ = ηαβ + hαβ, |hαβ| � |ηαβ|. (2.6)

Selecting appropriate coordinates (by setting what is known as the Lorentz gauge), the

Einstein equations 2.5 reduce to

�h̄αβ = −16πTαβ, (2.7)

where h̄αβ = hαβ − h is the trace reversed metric perturbation, h the trace of hαβ , and

� is the D’Alembert operator, defined as

� = − 1

c2
∂2

∂t2
+∇2 (2.8)

(Flanagan & Hughes, 2005; Le Tiec & Novak, 2017). This result is an explicit expression

of the locality of gravitation in General Relativity. Changes in mass distributions or the

field itself do not propagate instantaneously, as they would in the Newtonian theory.

Instead, perturbations to the metric, or equivalently the curvature of spacetime, will

propagate through space at a finite speed, the speed of light in vacuum c, and obeying

2As only first order terms are kept, this approach is also known as linearized gravity.
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a wave equation. In the absence of mass-energy, equation 2.7 reduces to

�h̄αβ = 0, (2.9)

which as in electromagnetism or fluid dynamics admits solutions in the form of a

superposition of plane waves, h̄kαβ ∝ eikαx
α . Once again, without entering into detail

it can be shown with this solution that GW waves are transverse (they propagate in

the perpendicular direction to the metric oscillations), have two polarization degrees

of freedom (often denoted h× and h+) and that only the spatial components of h̄αβ

correspond to radiative degrees of freedom.

The previous discussion is valid in the non-relativistic limit, i.e. for systems with

negligible self gravity and flat spacetime backgrounds. While the linearized treatment

is not valid in all cases, other formalisms exist to treat these systems, and it can be

shown that GWs are a general feature of GR (Blanchet, 2014).

2.3 Sources of gravitational waves

In the non-relativistic, low velocity limit, the sources of GWs are time-varying mass

distributions. Therefore, to identify the lowest order sources of GWs it is convenient

to analyze the moments of an isolated mass distribution ρ(r):

• The zeroth-order moment is the total mass M =
∫
ρ(r)d3r. Due to conservation

of mass, Ṁ = 0. This excludes the possibility of monopolar GW radiation,

similarly to how conservation of charge forbids monopolar electromagnetic (EM)

radiation.

• The mass dipole is defined as dM =
∫
ρ(r)rd3r. The time derivative of this

moment is simply the total linear momentum of the system, p = ḋm. As the

total linear momentum of an isolated system is conserved, a frame where p =

ḋm = 0 can always be found. Therefore, dipolar GW radiation is not a true

physical effect, but a result of reference frame selection. While the lowest-order
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EM waves originate from time-varying charge dipoles, to generate GW radiation

higher-order moments must be considered.

• The second moment of the mass distribution is the moment of inertia, or inertia

tensor, a 3× 3 tensor with components Iij =
∫
ρ(r)xixjd

3r, where i, j represent

strictly spatial components. There is no conservation law which forces this

quantity to be constant. In particular it can be shown that the second time

derivative of the quadrupole moment Iij , derived from the inertia tensor as

Iij = Iij − 1
3
δijIij , is the lowest-order source of gravitational waves.

Dimensional analysis shows that the quadrupole moment and gravitational perturbation

are related by (Flanagan & Hughes, 2005)

h ∼ G

c4r

d2I
dt2

, (2.10)

where r is the distance from the source. A more rigorous analysis of the solutions

of equation 2.7 leads to the Einstein quadrupole formula (Misner et al., 1973), which

agrees with the previous equation up to factors of order unity (it must also be noted

that the previous formula is missing a time-delay dependence in I, assuming the GWs

propagate along the z-direction the full formula contains a term I(t− z/c)).

Objects which present time-varying mass-quadrupoles include more or less exotic

systems such as core-collapse supernovae in stars with rotating cores, or rotating neutron

stars with a small oblateness (Flanagan & Hughes, 2005; Colpi & Sesana, 2017).

However, by far the simplest and most common source is the compact binary. Around

half of the stars in the Universe are members of binary (or higher-order degeneracy)

systems. While only the most compact binaries are visible to currently available

GW detectors (BH-BH, BH-NS and NS-NS systems), these are common enough to

constitute prime sources for GW physics and astronomy (Flanagan & Hughes, 2005;

Le Tiec & Novak, 2017; Colpi & Sesana, 2017).

The essential aspects of the evolution of a compact binary due to GW radiation were

described in Peters & Mathews (1963) and Peters (1964). By considering a binary
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made of up two point masses, and the loss of energy and angular momentum due to

GW emission, it was shown that the eccentricity and semi-major axis of a binary evolve

according to

ė = −19

12

βe

a4(1− e2)5/2

(
1 +

121

304
e2
)
,

(2.11)

ȧ = − β

a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
,

where the constant β is a function of the binary member masses, β = 64G3m1m2m/5c
5.

These are known as Peter’s equations. From visual inspection it can be seen that the

effect of GW radiation is to shrink the binary, and circularize it if it were initially

eccentric. The binary members will inspiral towards each other until they coalesce,

leaving a single object in their place. The evolution in the a − e plane of an example

binary with varying initial eccentricity is shown in figure 2.1 (note that the figure shows

the evolution of the adimensional variable ã = a/a0; equations 2.11 can be analytically

scaled to dimensionless variables). From these equations it can be shown that the GW

merger time, or the time in which a → 0, given an initial semi-major axis a0 and

eccentricity e0 is

τgw(a0, e0) =
12

19

c40
β

∫ e0

0

de
e29/19(1 + 121/304 e2)1181/2299

(1− e2)3/2
, (2.12)

where c0 = c0(a0, e0) is an integration constant (Peters, 1964). The merger times for

a binary with members m1 = m2 = 30M� and different (a0, e0) values are shown

in figure 2.2. It can be seen that even for very massive objects τgw can be orders of

magnitude longer than the age of the Universe. The coalescence time can be decreased

by reducing the binary semi-major axis or by increasing the eccentricity. For circular

binaries (e0 = 0), the expressions take on a simpler form. The semi-major axis decay

is given by a(t) = (a40 − 4βt)1/4. and the coalescence time becomes τgw = a40/4β.

The GW spectrum of a inspiraling binary depends on whether the orbit is circular or

eccentric. In the first case, the system will radiate GW waves at twice its Keplerian

orbital frequency (Flanagan & Hughes, 2005). As the orbit becomes tighter, the GW
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Figure 2.1: The evolution of binaries with various e0 in the a/a0 − e/e0 plane (in the figure
ã = a/a0).
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Figure 2.2: Gravitational wave merger times τgw as a function of eccentricity e, for different
initial semi-major axis a0 values.
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frequency will increase, allowing energy and angular momentum to be radiated away at

a faster rate, which increases the amplitude of the GWs and accelerates the inspiral. In

the case of BHs, this process continues until the innermost-stable circular orbit (ISCO)

radius of one of the members is crossed. At this point the GW waves are radiated at

the maximum frequency and the BHs plunge into each other, coalescing into a single

object. The resulting black hole then emits low-amplitude GWs as it relaxes to its new

steady state, in a process known as the ringdown.

Eccentric binaries have a phase-dependent angular velocity and member separation.

Therefore, their inspirals are more complicated, radiating GWs over a range of frequencies

and amplitudes. In particular, at each periapsis passage the binary emits a burst of large

amplitude, high frequency GWs due to the large relative velocity and proximity of its

members. In contrast, at apoapsis the radiation is at its weakest. As described by

Peter’s equations, the eccentricity is quickly radiated away and the inspiral becomes

quasi-circular.

2.4 Detection of gravitational waves

Consider two test particles separated by a proper distance L0 along the x-direction

and located at z = 0 in a given coordinate frame, and incoming GW radiation which

propagates along the z-direction. It can be shown that when the GWs traverse the

region of space where the particles are located, the proper distance between them is

modified so that (Le Tiec & Novak, 2017)

L = L0 → L = L0

[
1 +

1

2
hxx(t, z = 0)

]
(2.13)

from where it follows that

∆L

L0

=
1

2
hxx(t, z = 0), (2.14)
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where ∆L = L−L0. For a pure plane wave solution, the distance between the particles

oscillates during the passage of the GW.

This result is key for observational GW physics. While indirect observations of GWs

have been available for several decades (GW emission is responsible for the slow

inspiral of the Hulse-Taylor binary, e.g. Weisberg et al. 1981; Taylor & Weisberg

1982), direct detection of GWs has become possible in recent years due to the use of

GW laser interferometers. These devices use two or more lasers to generate interference

patterns. When a GW crosses the path of the lasers, the length of the paths followed

by the photons changes. This translates to a modification of the phase of the photons

and hence the interference pattern, from which the GW signal can be inferred (Abbott

et al., 2009).

A favored design for ground-based interferometers uses a L-configuration, as illustrated

in figure 2.3. These devices consist of two laser arms which intersect, forming a

90◦ angle. Coherent light from a common source is sent down both arms by using a

beamsplitter. The light then travels up-arm, At the end of the path, the light is reflected

by a mirror, which re-directs the beams down their arms. The reflected beams are

then recombined to form the required interference pattern. The detection of GWs is

troublesome: they are extremely weak. This can be understood by inspecting equation

2.10: the G/c4 factor significantly reduces the amplitude of GWs, making it extremely

small even for the most massive sources. This effect is counteracted in detectors by

using extremely long laser arms. From equation 2.14 it can be read that given a fixed

GW amplitude h, the change in the length of the arm ∆L scales with its unperturbed

length L0. Because the phase contribution to the laser phase due to the GW is such

that ∆ψ ∝ ∆L, using a longer arm length will lead to a greater modification of the

interference pattern.

The currently available network of ground-based GW interferometers consists mainly

of L-shaped detectors, including:

• LIGO Hanford and LIGO Livingston, each consisting of two 4 km arms each,

and separated by a distance of over 3000 km from each other (Abbott et al.,
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Figure 2.3: Diagram of an L-shaped GW interferometer. A laser source (bottom box)
emits a beam which is split by the beamsplitter (green diagonal lines). The beams travel
along their respective arms and are reflected off the mirrors. The beams travel back and
then recombine. Finally an interference pattern is formed (purple circle). Figure adapted
from https://commons.wikimedia.org/wiki/File:Gravitational_wave_
observatory_principle.svg, supplied under CC BY-SA 3.0 license.

2009).

• The VIRGO interferometer, with 3 km arms, located in Circana, Italy (e.g Riles

2013).

• GEO, with 600 m arms and located in Sarstedt, Germany (Blair et al., 2012).

• Kagra, equipped with with 3 km arms and located in the Kamioka Observatory,

Japan (Aso et al., 2013; Abbott et al., 2020).

These facilities will be complimented in coming years with LIGO India (with 4 km

arms, and expected completion date around 2025, Unnikrishnan 2013) and the Einstein

Telescope (this device is of a different design, made up of three arms in a triangular

configuration, Hild et al. 2008), among others.

Ground-based detectors are well suited for the detection of stellar-mass binary inspiral

https://commons.wikimedia.org/wiki/File:Gravitational_wave_observatory_principle.svg
https://commons.wikimedia.org/wiki/File:Gravitational_wave_observatory_principle.svg
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events. To observe lower frequency events, such as those associated with massive black

hole mergers due to galactic interactions or extreme mass-ratio inspirals (eMRIs),

much larger detectors are needed. Space based interferometers are expected to be able

to probe these low-frequency regions. Proposed instruments include LISA (designed

with three 106 km laser arms) or DECIGO (designed to have three 1000 km arms).

The first LIGO detection, denoted GW150914, occurred during an engineering run.

This event was especially significant, as it constituted the first direct observation of

GWs (Abbott et al., 2016a). Additionally, it was also the first direct confirmation of the

existence of BH binaries, as well as of BHs of several tens of solar masses (the inferred

binary member masses from the GW observation were 35.4+5.0
−3.4 M� and 29+3.3

−4.3 M�,

and the merger remnant was estimated to be of 62+3.7
−3.4 M�, Abbott et al. 2016a). Before

GW astronomy there was no observational evidence supporting the existence of BHs of

several tens of solar masses. GW detections also allowed for direct confirmation of the

existence of Kerr black holes which posses non-zero angular momentum. The effective

spin parameter (this parameter is discussed in following sections) of GW151226 is

larger than zero. This implies that at least of the binary members had non-zero spin

with a component perpendicular to the binary orbital plane (Abbott et al., 2016b).

As of December 2019, the joint LIGO/VIRGO observation efforts have detected 56

compact mergers, 3 NS-NS mergers, 1 BH-NS merger and 3 BH-mass gap objects

(mass gap objects cannot be strictly classified as BHs or NSs) (Abbott et al., 2020b;

Georgescu, 2020). The merger rate density of BH mergers to be constrained to 23.9+14.9
−8.6

Gpc−3yr−1 and the NS merger rate to 320+490
−240 Gpc−3yr−1 (Abbott et al., 2020b).

2.5 The origin of merging compact binaries

The currently available set of BH merger detections are sufficient for it to be stated that

these events are commonplace in the Universe. The binary member masses inferred

from GW150914, GW170104 and GW170814 were also surprising, as stellar evolution

models find difficulty in producing such massive BHs (Abbott et al., 2016a, 2017a,b).
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Even when massive enough stars can be formed, the binaries need to be tight or

eccentric enough to be able to merge on a time scale which makes observations possible.

Additionally, the effective spin parameters inferred from the observations are small,

and compatible with zero in all but three of the events.

Much effort has been allocated to describing physical processes which can lead to BH

binaries compatible with the LIGO/VIRGO observations. Once a plausible physical

mechanism for the formation of these systems is found, its predictions for binary

properties which can be inferred from GW observations must be characterized. These

include the binary member masses, the chirp mass M (related to how the frequency

increases during the inspiral), orbital eccentricity e, or the effective spin χeff. The last

of these is particularly interesting, as it is very well characterized by LIGO/VIRGO,

and is almost constant during the inspiral (Blanchet, 2014). Therefore, it is an excellent

tracer of the binary origin. This parameter is the mass-weighed projection of the BH

spins onto the binary angular momentum, i.e. a measure of if the black holes are

spinning and how large the components are in the direction perpendicular to the orbital

plane. Its values range between χeff = 1 (for perfectly aligned BH spins with the

binary angular momentum and maximally spinning BHs) to χeff = −1 (if the spins

are directed in the opposite direction to the angular momentum again with maximally

spinning BHS).

A variety of mechanisms have been devised both to form BHs of masses compatible

with LIGO/VIRGO observations and to lead them to merge within the age of the

Universe. These can generally be split into two broad groups: isolated field binary

scenarios, and dynamical formation channels. It is expected, that with aLIGO/VIRGO

at design sensitivity, the next observing runs with yield tens to hundreds of detections,

which will be sufficient to disentangle the main channels responsible for forming the

merging BHs (Farr et al., 2017; Hotokezaka & Piran, 2017; Hotokezaka & Piran,

2017a,b; Farr et al., 2018; Barrett et al., 2018; Gerosa, 2018).

Isolated field binary channels are studied using stellar evolution models to determine

what characteristics of massive stellar binaries can eventually lead to merging BHs

which are detectable by LIGO/VIRGO. As their name indicates, these models consider
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binaries which evolve with little or no interaction with other systems. Therefore

the inner-dynamics of the binary must account both for the BH formation and the

necessary binary hardening for efficient GW merging. Leading models in this group

include common-envelope evolution or chemically homogeneous evolution scenarios.

Common-envelope models (e.g Paczynski 1976; Eggleton 2006; Taam & Sandquist

2000; Belczynski et al. 2016) consider massive binaries which are initially on wide

orbits. The more massive member will leave the main sequence sooner than its companion,

migrate and swell. If it fills its Roche lobe, the smaller companion will accrete mass

from its envelope, this in turn drives the stars closer together due to dynamical friction.

The second star grows as it removes mass from the first star, which eventually collapses

to a BH. When the second star leaves the main sequence and swells, its envelope will

engulf the BH. Further dynamical friction tightens the orbit even more. Eventually,

the envelope is lost and the second BH is formed, leaving a tight binary BH. While

this model is capable of producing BH mergers within the age of the Universe, it also

presents several problems. In particular, features of the stellar evolution, including

modeling stellar winds and the common envelope phase introduce uncertainties in the

process. Additionally, this particular process faces the problem that the stars can merge

before they have collapsed to BHs.

Chemically homogeneous evolution models avoid the need for a common envelope

phase by considering similar mass stars which rotate at high velocities. In these stars

have thee gas constantly mixed by the rotation, which provides the nucleus with fresh

fuel for nuclear reactions. These stars never undergo a swelling phase when their

core is depleted of hydrogen, and compactness is conserved. The stars will eventually

collapse when they have expanded their fuel, conserving almost all of their mass, and

the BH binary is formed (e.g. Mandel & de Mink 2016; Marchant et al. 2016).

From a detection perspective, mergers originating from isolated field binary models

are characterized by positive effective spin parameters (close to unity) and circular

inspirals. As the stars evolve independently from surrounding objects, tidal torques

have sufficient time to align the stellar spins with the orbital angular momentum of the

binary (the effective spin can be reduced if for example the BH angular momentum
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is tilted by natal kicks due to for example non-isotropic supernovae explosions, e.g.

Wysocki et al. 2018).

Dynamical formation processes take place in the densest stellar environments of galaxies,

such as globular clusters or the nuclear star cluster (NSC). They depend on the interaction

with extra massive objects to remove energy from the binary orbits and facilitate

mergers.

As in the previous case, several dynamical formation channels have been proposed.

One of the more thoroughly explored models considers BH binaries in globular clusters.

Stellar evolution models indicate that these systems should be capable of producing

and retaining a population of BH binaries. Mass segregation and dynamical friction

will drive these objects towards the centre of the cluster. On its path, a binary will

encounter a series of compact objects (e.g. stars or black holes) which it will interact

with. The binary will undergo a (2+1)-body interaction in which the two most massive

of the three objects forming a tighter binary than the previous one, and the third being

launched away having removed orbital energy from the binary. Numerical simulations

show that a succession of interactions of this kind can result in tight enough binaries

for mergers to be observed within the age of the Universe . For this to take place the

system must be dense enough to provide new objects for the interactions and retain the

binary, as it will receive a kick after each (2 + 1)-body event (Rodriguez et al., 2015,

2016).

In most galactic centres, with or without a massive black hole, dense environments

known as Nuclear Star Clusters (NSCs) form over time (Arca-Sedda & Capuzzo-Dolcetta,

2019; Arca-Sedda & Gualandris, 2018). This is due to the in-fall of clusters from

outer regions of the galaxy towards the centre, as well as field objects being scattered

towards the galactic centre due to their interaction with the stochastic stellar potential.

When MBHs are present, hierarchical triples can form. These are composed of an

inner binary which orbits the MBH at large distance. In this situation, the secular

Kozai-Lidov effect becomes relevant. This occurs due to the interaction of the inner

binary with the MBH over long times, leading to a periodic exchange of eccentricity

and binary inclination around the MBH. The process can lead the binary to phases of
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very high eccentricity, during which it releases bursts of GW radiation and tightens its

orbit until eventually the BHs merge (VanLandingham et al., 2016; Antonini & Rasio,

2016; Hoang et al., 2018).

Other dynamical processes have been shown to lead to GW mergers with varying

rates (e.g. Mandel & Farmer 2018; Arca-Sedda et al. 2018). High-velocity close

encounters of initially unbound BHs can lead to the release of GW Bremsstrahlung,

which captures the objects in a BH (Gondán et al., 2018). These are very tight and

eccentric upon formation, and are expected to quickly merge, giving rise to eccentric

inspirals. AGN disks have also been proposed as a site for compact mergers. In these

environments viscous and dynamical friction can efficiently remove energy from the

binary, facilitating the coalescence (Tagawa et al., 2020; Leigh et al., 2018). In chapters

4-6, the tidal deformation of compact binaries due to close encounters with MBHs is

investigated as a potential source of BH mergers.

In contrast to isolated field models, dynamical processes are expected to produce

eccentric inspirals with a range of effective spin parameters (in most cases, the models

predict uniformly distributed χeff-models). This is due to the binary orbits being

constantly perturbed by external interactions, or binary members being exchanged with

other objects with randomly oriented spins.

The possibility of hierarchical mergers has been considered, especially in the context

of BHs with masses of the order of several tens of solar masses (Gerosa & Berti,

2017). The remnant object from a compact merger will generally receive a natal kick

due to conservation of linear momentum. As was discussed above, if the host system

or cluster is dense enough its gravity can retain the remnant. After this it can proceed

to form another binary, and merge again, leaving an even larger remnant. While the

details of this process are sensitive to the natal kick, which is difficult to constrain,

hierarchical mergers are a potentially dominant source of BH-BH coalescence events

(Antonini & Rasio, 2016). Kimball et al. (2020) found that several of the mergers

reported in the second gravitational wave transient catalogue (Abbott et al., 2020b)

are compatible with being the result of a first generation (1G) BH merging with a

remnant from a past coalescence (2G), and two events which are candidates for a
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2G+2G merger.



Chapter 3

Tidal encounter dynamics and the

restricted three-body problem

Tidal forces are a key concept in gravitational physics. It follows from the equivalence

principle that these forces are the only expression of the gravitational field which are

detectable by a free-falling observer (by means of geodesic deviation) (Misner et al.,

1973). Even from the point of view of classical gravity these forces are important: the

Universe is made up not of point-like objects, but bodies with spatial extension. Given

a large enough system, different parts of it will experience different gravitational fields.

In many cases this can lead to tidal disruption or deformation of the system.

Most galaxies harbour a massive black hole (MBH) in their centres which dominates

the local gravitational potential (Alexander, 2017). Dense environments known as

nuclear star clusters (NSC) form around these objects which can host a great number

of single and binary compact objects. In particular, observations of the Milky Way

NCS indicate there is a population of up to hundreds of binaries in which at least one

member is a compact object (Hailey et al., 2018), and simple analytic estimates yield

a total population of ∼ 20000 BHs (Miralda-Escudé & Gould, 2000; Morris, 1993;

Rasskazov & Kocsis, 2019).

Observations of hypervelocity stars (HVS) and S-stars in the Milky way indicate that

23
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binaries can interact with, and be disrupted by the central MBH. HVSs are stars ejected

from the galactic centre at large velocities observed at current times in the halo (Brown,

2008). S-stars are a family of stars which orbit around the MBH on extremely eccentric

orbits (e.g. Sabha et al. 2012). The origin of these two separate families of objects is

linked by the Hills mechanism. In this picture, a stellar binary approaches the MBH.

If the periastron of the orbit is close enough to the MBH the binary can be tidally

disrupted (Brown, 2015; Hills, 1988) . One of the members launched away at a high

velocity, becoming an HVS. The other is captured and bound to the MBH, adding

to the population of S-stars. Whether the binary is disrupted or not depends on the

characteristics of the (2 + 1) system, including the inclination of the binary orbit with

respect to that of the orbit around the MBH, the eccentricity and radius of the binary, or

the periastron distance (Sari et al., 2010; Brown et al., 2018; Fernández & Kobayashi,

2019).

In this chapter the restricted parabolic three-body formalism is derived. This way,

a perturbative equation of motion is obtained which greatly simplifies the numerical

integration of the otherwise full three-body problem. This approach has been used to

study the tidal disruption of compact binaries due to close encounters with MBHs in

Sari et al. (2010); Kobayashi et al. (2012); Brown et al. (2018). It is used in chapters

4 and 5 to study the properties of post-encounter BH binaries. Finally, by means of

angular momentum considerations, the tidal torque equation is derived, which illustrates

how the MBH couples the different angular momenta of the system.

3.1 The restricted parabolic three-body problem

In this section the equation of motion describing the dynamics of a close-encounter

between a compact binary and MBH is derived. The distance scales considered are

much larger than the Schwarzschild radii of the BHs considered. Therefore, Newtonian

gravitation can be used accurately. The derivation below follows Sari et al. (2010)

A three-body system, consisting of a compact binary with member masses m1, m2,
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such that m = m1 +m2, and a third more massive object (the MBH) of mass M � m,

is considered. A full description of the time evolution of this system would in principle

imply solving 18 first order differential equations. As M � m, the MBH can be

considered stationary at the origin. The equations of motion then read

r̈1 = −GM
r31

r1 +
Gm2

|r1 − r2|3
(r2 − r1) (3.1)

r̈2 = −GM
r32

r2 −
Gm1

|r1 − r2|3
(r2 − r1), (3.2)

where r1, r2 are the positions of the binary members with respect to the MBH. The

tidal encounter can disrupt the binary or modify its orbit. To analyze this it is more

interesting to study the evolution of the distance between the binary members r =

r2 − r1. Combining the previous equations,

r̈ = −GM
r32

r2 +
GM

r31
r1 −

Gm

r3
r. (3.3)

If the binary members are much closer to each other and to their centre of mass (COM)

trajectory than to the MBH, then the previous equation can be simplified further.

Therefore, assuming the COM moves on a trajectory rm, linearizing the first two terms

in the equation 3.3 yields

r1,2
r31,2
≈ rm − 3

rm
r5m

[rm · (r1,2 − rm)] +
r1,2 − rm

r3m
. (3.4)

Inserting this result into equation 3.3 yields

r̈ = −GM
r3m

r + 3
GM

r5m
(r · rm)rm −

Gm

r3
r. (3.5)

Therefore, the solution the full three-body problem is reduced to specifying a trajectory

rm and solving equation 3.5. The approach of the binary to the MBH can be conveniently

modeled by considering that the COM follows a parabolic path, with analytical form

(e.g. Bate et al. 1971; Landau & Lifshitz 1980)

rm =
2rp

1 + cos f
r̂m, (3.6)
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where rp is the distance of closest approach (the periastron), r̂m = (cos f, sin f, 0) is

the unit vector in the direction of the COM (assuming the trajectory is contained in the

xy-plane) and f the true anomaly of the orbit. The true anomaly depends implicitly on

the time coordinate through the relation

t =

√
2

3

√
r3p
GM

tan(f/2)(3 + tan2(f/2)). (3.7)

Defining the dimensionless quantities

r̃ = (M/m)1/3 r/rp,

(3.8)

t̃ =
√
GM/r3p t,

the equation of motion 3.5 can be rewritten as (Sari et al., 2010)

¨̃r =

(
rp
rm

)3

[−r̃ + 3(r̃ · r̂m)r̂m]− r̃

r̃3
. (3.9)

This way, the full three-body problem is reduced to solving 3.9 which along with the

differential form of 3.7,

ḟ =
√

2(1 + cos f)2/4, (3.10)

that is, the original 18-first order differential equation problem is reduced to only 7

(Sari et al., 2010; Kobayashi et al., 2012; Brown et al., 2018).

To study whether the encounter disrupts a binary or not, it is convenient to analyze the

energy of the binary members. The energy of a point particle on a parabolic trajectory

is null. In the case of the binary, the energy is slightly negative due to its self-energy.

However, this is much smaller than the binding energy to the MBH in its vicinity and

can be neglected. Therefore, the energy of the ith member reads

Ei = −GMmi

ri
+

1

2
mi|ṙ2i | . (3.11)
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The terms in ri can again be linearized around rm, yielding

1

ri
≈ 1

rm
− 1

r2m
r̂m · (ri − rm) ; |ri|2 ≈ |rm|2 + 2rm · (r1 − rm).

With this, to first order in rm the energy reads

Ei =
GMmi

r2m
(ri − rm) +miṙm · (ṙ1 − ṙm), (3.12)

as the zeroth order contributions due to the parabolic orbit are null. Noting that in this

approximation E1 = E2, by rearranging the combination m2E1 −m1E2 and rescaling

the distance and time variables as before, then

E1 = −GMm1m2

mrp

(m
M

)1/3 [ r2p
r2m

r̂m · r +
ṙm
rp
· r
]

= −E2 (3.13)

As the binary approaches the MBH, its members energies oscillate between |E1| and

−|E1|. If the tidal encounter disrupts the binary, one of the compact objects remains on

a closed orbit around the MBH while the other is launched to infinity. In this case, the

bound object has negative post-encounter energy and the other positive post-encounter

energy. This makes it computationally simple to check whether a binary is disrupted

or not.

3.2 The tidal torque

The angular momentum of the binary members around the MBH is given by

L = m1r1 × v1 +m2r2 × v2, (3.14)

where the MBH is at the origin. Using the binary positions relative to the COM

∆r1,2 = r1,2−rm, the angular momentum can be rewritten as the sum of two components
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L = Lm + Lb where

Lm = mrm × ṙm, (3.15)

Lb = m1∆r1 ×∆ṙ1 +m2∆r2 ×∆ṙ2 =
m1m2

m
r× ṙ.

The COM angular momentum Lm and the binary angular momentum Lb can change

at the tidal encounter. However, since the binary system moves in the central force

field, the total vector L should be conserved. Using the equation of motion (3.5), the

evolution of Lb is given by (Fernández & Kobayashi, 2019)

L̇b =
3GMm1m2

mr3m
(r · r̂m)r× r̂m. (3.16)

Expanding this equation out in components shows that the effect of the torque depends

on whether the binary orbit is coplanar with the COM trajectory or not:

• Coplanar binaries experience a torque which acts along the direction of their

initial angular momentum Lb,in. Therefore the tidal encounter will not rotate the

orbital plane. However, it can spin-up or spin-down the binary. In particular,

sufficient spin-down can flip the binary orbital plane so that Lb,out is anti-parallel

to Lb,in.

• Tilted binaries on the other hand experience a torque with components perpendicular

to Lb,in. Their orbital planes can be rotated by the tidal encounter. They also

experience parallel components of torque leading to spin-up or spin-down (this

results is important for the numerical experiments described in chapter 4 and

onwards).



Chapter 4

Black hole mergers induced by tidal

encounters with a MBH

The tidal disruption of stellar binaries by a MBH is a process well known to produce

hypervelocity stars (Hills, 1988; Yu & Tremaine, 2003). In this picture, the gravity of

the MBH overcomes the self-gravity of the binary. One of the stars becomes bound to

the MBH, and conservation of energy leads to the other moving away from the MBH

at high speeds. However, such a tidal encounter does not always lead to the break-up

of binaries. Previous numerical studies have revealed that about 10% of binaries can

survive such an encounter even for deep penetrations (Sari et al., 2010; Brown et al.,

2018). Since surviving binaries tend to become hard and eccentric, this process can

provide a new formation channel of BH mergers.

In this chapter the properties of stellar mass black hole (BH) mergers induced by tidal

encounters with a massive BH at galactic centres, or potentially in dense star clusters,

are discussed. The post-encounter orbital parameters of the survivors are characterized.

It is shown that the gravitational wave (GW) merger times become shorter by a factor

of more than 102 (105) in 10% (1%) of the surviving cases. The effective spins of the

surviving binaries are also obtained, assuming that the spins of BHs in binaries are

initially aligned with their binary orbital angular momenta and that they are constant

during the encounter. A key result is that the binary orientations can flip in the opposite

29
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Figure 4.1: The binary angular momentum L̂b is defined in the rest frame of the binary’s
COM. The same set of unit vectors x̂, ŷ and ẑ is used to represent the axes of a Cartesian
coordinate system (the coordinate axes in the binary’s COM rest frame are parallel to those in
the massive BH rest frame). The polar angle θ is defined as the angle between Lb and x̂. With
this parameterisation, the outcome of the tidal encounter does not depend on the azimuth angle
ϕ for D � 1, because the COM moves along the x axis in the massive BH rest frame (the
parabolic orbit becomes radial for D � 1).

direction at the tidal encounter. For the survivors with large merger time reduction

factors of 105, the effective spin distribution is asymmetric, but rather flat 1.

4.1 Problem setup

To simplify the analysis, in this chapter the discussion is limited to circular binaries.

This reduces the dimension of the system parameter space by two (characterization

of non-circular binaries requires the eccentricity and orientation of the semi-major

axis to be specified). In the restricted three-body approximation, the system’s initial

conditions are fully characterized by the orbital plane orientation, given by the unit

vector L̂ = (cos θ, sin θ cosϕ, sin θ sinϕ) (this is illustrated in figure 4.1); the binary

phase at periastron φ and the penetration factor D = rp/rt.

The binaries are injected into parabolic orbits far out from the tidal radius. The binary

evolution is largely independent of rm if the simulations start at a large enough radius

1The results in this chapter have been published as Fernández & Kobayashi (2019).
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rm,0 = rt. In this work rm = 10rt is set. The initial binary phase (at t0 = t(r0) < 0),

φ0 = ωt0 + φ is characterized by using the effective phase at φ at t = 0 (i.e. at

periastron passage), where ω is the constant angular velocity of the binary at rm � rt.

The actual phase at t = 0 is in general different from φ due to the tidal force of the

MBH. If the angular momentum Lb is in the z-direction (a planar, prograde case), the

initial binary phase φ0 is the angle between r and ŷ at t = t0. In the general case,

the initial separation vector r and initial velocity dr/dt are defined assuming a planar

prograde case, and are rotated so that Lb points in the (θ, ϕ) direction (see figure 4.1).

The equation of motion 3.9 is integrated together with 3.10 using a fourth-order Runge

Kutta scheme (Press et al., 1992). To ensure the accuracy of the dynamical evolution, at

each instant the time-step width ∆t is chosen to be the smallest between the characteristic

orbital time of the binary tbin and the free-fall time of the parabolic orbit tpar, multiplied

by a normalization factor h. That is, the time-step is set at each instant to be ∆t =

h ·min{tbin, tpar}, where tbin is evaluated from the instantaneous orbital parameters of

the binary and tpar is fixed by the parabolic orbit. The normalization factor is set so

that both the inner binary orbit and the COM parabolic orbit are sampled with sufficient

resolution while allowing for time-efficient solution of the equations. This is especially

important in the case of survivors with significantly reduced semi-major axes. Due to

their short orbital periods the time -steps can be extremely small. Therefore, if h is

too small these systems can result in a computational bottleneck . For the simulations

described in this work the normalization factor is set to h = 10−3. It was found

that was more than sufficient to adequately sample the dynamics (smaller time-steps

showed no appreciable increase in accuracy when compared to the full three-body

calculations), while allowing for swift numerical resolution. The accuracy of the

restricted three-body formalism and the numerical code are described in detail below,

in section 4.2.

As was discussed in chapter 2, a parameter of great interest for aLIGO/VIRGO observations

is the effective spin χeff of the binary, defined as

χeff =
1

m
(m1S1 +m2S2) ·

Lb
|Lb|

, (4.1)
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where S1,2 are the dimensionless spins of the BHs in the binary, bound by 0 ≤ S1,2 ≤

1 (Farr et al., 2017). It then follows that 0 ≤ χeff ≤ 1. The BH spins do not

intervene in the Newtonian treatment of the tidal encounter, as classical point-like

objects cannot carry internal angular momentum. Therefore, these vectors are constant

in this description. This approximation remains valid as long as the binary separation

and the distance to the MBH are much larger than their horizon scales.

As was shown in the previous chapter, the dynamics of the tidal encounter does not

directly depend on the masses of the binary members. Restricted three-body results

can be simply rescaled in terms of their masses. However, the mass ratio m1/m2

is required to evaluate the effective spin. Considering that many of the BH mergers

detected by LIGO/Virgo so far are consistent with equal mass members, m1 = m2

is assumed when the effective spin χeff is discussed. Unless stated otherwise, the BH

spins are taken to be initially parallel to Lb. In this case the effective spin of the

survivors indicates whether and to what extent the binary orientation changes at the

tidal encounter. For simplicity, it is also assumed that S = |S1| = |S2|. Then for an

equal-mass binary equation 4.1 becomes

χeff,out = S L̂b,in · L̂b,out, (4.2)

4.2 Binary hardening and orbital plane-rotation due to

tidal encounters

To illustrate the effect of the tidal encounter on the inner-orbits of surviving binaries,

a coplanar case for D = 1 is considered. The orbit of the secondary component in the

primary component comoving frame is shown in figure 4.2. The red line is the orbit

as calculated using the restricted three-body approximation. In this case, the initially

circular binary emerges from tidal encounter with large eccentricity e = 0.97 and the

the semi-major axis is reduced by a factor of 2.7. The ratio of in-going-to-outgoing
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GW merger times is well approximated by the formula

τgw,out
τgw,in

∼ (1− e2)7/2
(
a

a0

)4

, (4.3)

where a0 is the pre-encounter semi-major axis. Using this relation, it is found that

in this case τgw is reduced by a factor of ∼ 106 by the tidal encounter. The black

dashed dotted line indicates the orbit obtained with the full three body treatment. The

two results are almost identical in the figure, illustrating the accuracy of the restricted

three-body approximation.

Figure 4.2: The evolution of binary separation vector r = r2−r1. This is equivalent to the orbit
of the secondary component in the primary component comoving frame. A prograde binary
orbit with D = 1 is assumed to evaluate the restricted three-body approximation orbit (red
solid line). The black dashed-dotted line indicate the full three-body orbit. The binary mass
ratios are assumed to be m1/m2 = 3 and M/m = 105 for the full three-body calculations.
Lengths are in units of the initial binary separation a0.

The orbital plane of binaries which are initially non-coplanar with the COM motion can
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be rotated by the tidal encounter. Even small misalignment can lead to flipping of the

orbital plane, i.e χeff ∼ −1. To illustrate this, the almost coplanar case θ = 0.5π, ϕ =

0.6π is considered for D = 0.5 (left column) and D = 1.0 (right column) for a range

values of the binary phase at periastron φ. Several post-encounter system parameters

were obtained as a function of φ, including χeff, e, τgw,out/τgw,in and the semi-major

axis a. These are shown in figure 4.3. The figure only shows surviving systems.

Therefore, for D=0.5 (D=1.0) the gaps between φ ∼ 0.725π and 0.81π (φ ∼ 1.38π

and 1.535π) indicate that all the binaries in this range were disrupted. The binary

orientation, given by L̂b flips to almost the opposite direction in the border regions.

Disrupted binaries have e > 1. As expected, the eccentricity and the semi-major axis

of the survivors grow at the border regions. The wide separation of binaries near the

disruption binaries may help induce a large torque in equation 3.16 (as they would act

as long lever arms), resulting in the negative effective spins at the boundaries. It is

also found that binaries near the disruption regions and inside the survival regions can

emerge with significantly reduced τgw.

4.2.1 Validity of the restricted three-body formalism

The restricted parabolic three-body formalism is based the assumption that the binary

COM approaches the MBH on a parabolic orbit. This places constraints on the energy

and angular momentum of the system.

The gravitational field is conservative, implying that the total energy of the system is

constant. Binary shrinking (stretching) leads to energy being injected into (removed

from) the COM orbit. Therefore, in general the post-encounter COM orbit will be

hyperbolic or elliptical. However, the released energy is extremely small compared

to the kinetic energy associated with the velocity of the COM at tidal radius (for the

trajectory in figure 4.2, the released energy corresponds to ∆E ∼ 0.16Gm2/a0, a

fraction of the binary internal kinetic energy which itself is much smaller than that of

the COM). Therefore, the parabolic description is a valid approximation even after the

tidal encounter).
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Figure 4.3: Surviving binaries. Left column: D = 0.5. Right column: D = 1.0. From top to
bottom the post-encounter effective spin, eccentricity, semi-major axis and the ratio of the GW
merger times before and after the tidal encounter are given as a function of φ. The assumed
initial orientation is θ = 0.5π, ϕ = 0.6π.

The orbit around the tidal radius is still very close to the initial parabolic orbit. Even

if the initial COM orbit is not exactly parabolic, the approximation is still accurate.

Assuming an orbit energy of the COMEm = κ(Gm2/a0), the full three body evolution

is numerically evaluated for a binary with D = 1, θ = p0.6π, ϕ = 0.5π, φ ∼ 0.4π,

M = 4×106M� and m1 = m2 = 30M�. The results are compared with the restricted

parabolic approximation results for the same set of the four parameters D, θ, ϕ and φ.

In both calculations, the binary survives the tidal encounter with the massive BH. The

differences of the semi-major axis, eccentricity and merger time are ∆a/a ∼ 0.4%, 4%
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and 2%, ∆e/e ∼ 0.07%, 0.6% and 1%, and ∆τgw/τgw ∼ 3%, 20% and 20% for κ =

1, 10 and 100, respectively. Since the merger time is sensitive to a and e, the error in the

merger time is rather large for κ & 10. However, for the present discussion, only the

order-of-magnitude estimate of τGW is needed (or a few 10% error in the τGW estimate

does not affect the conclusions). Even for κ = 100 (for which the COM velocity

at large distances from the massive BH is about one order of magnitude larger than

the binary rotation velocity), the restricted parabolic approximation gives reasonable

results.

Similarly, conservation of the total angular momentum of the three-body system is

guaranteed, as only central forces are present in the dynamics. If the binary orbital

plane is rotated (or if it becomes eccentric without changing its semi-major axis),

angular momentum is exchanged with the COM orbit. Recalling equations 3.15,

and considering equal mass binaries, then up to factors of order unity the angular

momentum of the binary is Lb ∼
√
aGm (up to factors of order unity). Similarly,

for the parabolic orbit Lm ∼
√
rpGM . Therefore the ratio of binary to COM angular

momentum is roughly given by

Lb
Lm
∼
(m
M

)2/3
D−1/2. (4.4)

Assuming a stellar mass binary and a typical central MBH with M ∼ 106M�, the

ratio is of order 10−4D−1/2. Therefore, even for deep encounters (e.g D ∼ 10−3),

Lb � Lm. Therefore, even a flip of Lb would not significantly effect Lm, ensuring the

validity of the restricted parabolic approximation.

4.3 Numerical study

This section is dedicated to characterizing the properties of binaries which survive

the tidal encounter. Even in the restricted three-body formalism, this system presents

a rich parameter space. Therefore, Monte Carlo simulations are used to analyse the

dynamics.
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In section 4.3.1 the penetration factor dependence is characterized, and in 4.3.2 the

full parameter space is explored. As discussed above, the treatment in this chapter is

limited to circular binaries. Symmetry considerations are used to reduce the parameter

space volume which must be explored. In particular, following the discussions in

Brown et al. (2018), the binary orientation is taken to be isotropic on the hemisphere

defined by 0 ≤ θ ≤ π/2, 0 ≤ ϕ ≤ 2π. For sampled each binary orientation, the binary

phase is drawn from a uniform distribution in the range 0 ≤ φ ≤ π.

4.3.1 Penetration factor dependence

The penetration factor D is a key parameter in the description of the tidal encounter

dynamics. If the periastron rp is located well outside the tidal radius rt, the binaries

are not affected by the tidal force of the MBH during a single encounter. Numerical

simulations show that all binaries survive for D > 2.1. Therefore, the main discussion

is limited to penetration factors below this threshold value. For smaller D, the survival

probability decreases roughly linearly Psur ∝ D, leveling off at Psur ∼ 10% around

D = 0.1. This is shown in figure 4.4. In this figure the separate survival probabilities

for prograde (defined as having Lb,z > 0) and retrograde (Lb,z < 0) binaries are also

given. The survival probability for retrograde binaries is significantly larger, even

for deep penetrations. This is in agreement with previous studies of the stability of

hierarchical triple systems (Grishin et al., 2017).

Figure 4.5 shows the distributions of the semi-major axis (top panel) and eccentricities

(middle panel) of the survivors, obtained by randomly sampling 1000 binary orientations

and more than 200 binary phases. The Monte Carlo sampling was carried out for D =

0.25, 0.5, 0.75, 1.0, and 2. It is found that the distributions (especially the eccentricity

distribution) are insensitive to D. Except in the D = 2 case, the distributions are

similar to each other. For 3% of the survivors, the semi-major axes are reduced by

a factor of > 2 with respect to the pre-encounter separation a0. The survivors are

eccentric in general, and about 10% have very high eccentricity e > 0.9.

The GW merger time reduction factors are shown in the bottom panel of figure 4.5.
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Figure 4.4: Probability of surviving the tidal encounter, as a function of D. The probability is
integrated over the other binary parameters θ, ϕ, φ. This is given for general orientation (blue
line), initially retrograde binaries (red) initially prograde binaries (green).

From equation 4.3 it is clear that this parameter has a strong dependence on the semi-major

axis and eccentricity of the binary. As before, the distributions are very similar to each

other, except in the D = 2 case. About 10% (1%) of the survivors have GW merger

times shorter by a factor of 100 (105) or more when compared to the pre-encounter

merger times. For D > 2 it is found that the merger time reduction achieved decreases

rapidly (e.g for D = 2.5, GW merger times shorter by a factor > 10 (> 50) in 10%

(1%) of cases, while for D = 3 practically all of the binaries are unaffected by the

encounter).

The orientations of the binaries can also change significantly at the tidal encounter.

The blue line in figure 4.6 indicates the probability of getting a survivor with a negative

effective spin as a function of D (i.e. the probability that the binary survives the tidal

encounter and the surviving binary has a χeff < 0 when a binary with a random

orientation and binary phase is injected with a given D). The distribution is found to

be bimodal with peaks aroundD = 0.4 andD = 1.5. Since the surviving probability is
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Figure 4.5: Distributions of the semi-major axes a (top panel), eccentricity differences 1 − e
(middle panel) and GW merger times τgw,out (bottom panel) of the survivors. The semi-major
axis and GW merger times are given in units of the pre-encounter values a0 and τgw,in. The
distributions are obtained from the Monte Carlo sampling with fixed D = 0.25, 0.5, 0.75, 1.0
and 2.

close to linear in D, the peaks indicate that a significant fraction of survivors (∼ 40%)

have negative effective spins around D = 0.4 (the fraction is around 10 − 15 % for
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D=1-1.5), and the fraction drops sharply for D > 1.5.

To investigate how the results depend on the initial binary orientation, the Monte

Carlo sample is split into two groups, one for which binaries are initially prograde

(Lb,z > 0) and one for which they are initially retrograde (Lb,z < 0) where Lb,z is the

z-component of the pre-encounter angular momentum Lb. The green and red lines in

4.6 correspond to the prograde and retrograde cases, respectively. The distributions

are normalized so the sum of the two gives the total distribution, i.e. they have been

multiplied by 1/2. The peak aroundD = 0.4 is due to retrograde binaries (the red line).

Prograde binaries are known to be more vulnerable to tidal disruption. Accordingly, the

surviving probability for the prograde group rapidly decreases for deeper encounters

D < 2.1. Since the surviving probability of the order of a few percent for the prograde

group, and around 40% for the retrograde group, the domination of this peak by the

latter is not surprising. Since the surviving probability for the retrograde group is

roughly linear inD forD < 1.5, it indicates that a good fraction (∼ 40%) of retrograde

binaries will significantly change their orientations around D = 0.4.

4.3.2 The entire population of survivors

The properties of the BH binary populations in the Universe are still highly uncertain.

The distribution of penetration factors D is likely to be susceptible to the complicated

galactic centre dynamics (Merritt, 2013; Alexander, 2017; Bradnick et al., 2017). The

loss cone for tidal breaking of binaries may be empty. However, Weissbein & Sari

(2017) have recently shown that rare large scatterings can play a significant role, and

the tidal encounter events which occur well inside the cone are almost as common as

those with D = 1. Here two simple D distributions are assumed: P (D) ∝ Dα (α = 0

or 1) to illustrate the tidal encounter model. These correspond to situations close to the

full loss cone regime, i.e. binaries are scattered rather efficiently towards the MBH. If

D � 1 the binary survives the encounter, and its properties do not change. To limit

the discussion to strictly tidal encounters (events which can disrupt binaries), the range

of 0 < D < 2.1 is considered to characterize the process. While the encounter can
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Figure 4.6: Probability of survival with negative χeff as a function of D. The initial binary
orientations are assumed to be isotropic (blue line), upward (Lb,z > 0; green line) or downward
(Lb,z < 0; red line)

reduce the merger time for shallower penetrations, this effect is strongly suppressed

for D > 2.1, and this upper limit does not significantly affect the main results2.

The binary orientations {θ, ϕ} and the binary phase φ are again assumed to be uniformly

distributed. For eachD-distribution, more than 4×105 random realizations {D, θ, ϕ, φ}

are generated. An overall surviving probability of 47% (54%) is found for α = 0

(α = 1).

In figure 4.7 the distributions of the binary parameters are given. As was discussed

above, the survivor properties are rather insensitive toD. Therefore, the twoD-distributions

yield similar results (the red lines correspond to α = 0, the blue solid/dashed lines to

α = 1. The distribution of semi-major axes peaks sharply at a/a0 = 1 (top left panel),

and ∼ 50% of the survivors have semi-major axes smaller than their initial values a0.

It is also found that a/a0 < 0.5 in ∼ 1% of cases. The eccentricities of the surviving

2This also ensures consistency with the event rate estimate presented in section 4.5.
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Figure 4.7: Orbital parameters of survivors: a (top panels), 1 − e (middle panels) and
tgw,out/tgw,in (bottom panels). The left panels indicate their probability distribution functions,
and the right panels are for the cumulative distributions. The uniform D distribution (α = 0)
and the power-law distribution (α = 1) results are shown by the red solid and blue dashed lines,
respectively. a is in units of the initial separation a0. The black dashed-dotted lines indicate
a linear fit to the eccentricity distribution for the α = 0 case (middle panels), and the analytic
cumulative distribution of merger time reduction factors (bottom right panel).
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systems are much more spread out (middle left panel). About 50% of the survivors

have e > 0.5, and several percent very large eccentricity e > 0.9. These orbital

changes significantly reduce the GW merger times of the survivors. The distribution

of merger time reduction factors (bottom left panel) is found to be bimodal in linear

space. A fraction of 10% (1%) of the binaries have their merger times reduced by a

factor of 102 (105) or more.

It is primarily the growth in eccentricity, rather than the hardening of the binaries,

that causes the GW-driven merger time-scale to shrink following tidal interactions. To

illustrate this, it can be shown that the τgw,out/τgw,in distribution can be reproduced

from the eccentricity distribution. For the α = 0 case, the probability distribution

function of the eccentricity can be fit with a linear function P = (1 + s)− 2se, where

s ∼ 0.31. This linear function satisfies the normalization condition
∫ 1

0
P (e)de = 1.

The probability function of (1 − e) is shown as the black dashed-dotted line in the

middle left-hand side panel of figure 4.7. It can be seen that the linear approximation

describes the numerical results (the red solid line) reasonably well, except for (1 −

e) ∼ 0 or 1. Since the merger time reduction factor τgw,out/τgw,in is proportional to

ξ ≡ (1 − e2)7/2, the distribution of ξ would give that of the reduction factor if the

binary hardening is negligible. Using the distribution function of the eccentricity, the

cumulative distribution function of ξ is found to be P (> ξ) = (1+s)
(

1−
√

1− ξ2/7
)
−

sξ2/7. This analytic function describes the numerical reduction factor distribution (the

red solid line) reasonably well. In particular, it gives 1.3% (11%) for ξ = 10−5

(ξ = 10−2), which closely matches the numerical results. The overestimate at low

values τgw,out/τgw,in << 1 originates from the linear fit to the eccentricity distribution

P (1−e), which overestimates the fraction of extremely eccentric survivors e−1→ 0.

The non-cumulative distribution of ξ can also be analytically evaluated for 0 ≤ ξ ≤ 1,

giving P (ξ) ∝ ξ−5/7(1 − ξ−2/7)−1/2. This function has a U-shape, with peaks at

ξ = 0, 1. In the bottom left-hand side panel of 4.7, the high-side tail, corresponding to

cases with τgw,out/τgw,in > 1, is due to survivors with a > a0.

In Addison et al. (2019) the properties of survivors are studied using full three-body

calculations. Assuming a uniform D-distribution for 0.35 < D < 5, they found a
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semi-major axes distribution very similar to that presented in this chapter. They also

find that most of the surviving binaries in their sample are relatively unperturbed in

eccentricity, but have shown that a small fraction can become very eccentric after the

encounter.

To estimate the effective spin of the surviving systems, three situations are considered.

The first is the canonical case, with S1,2 initially parallel to Lb. The other two cases

account for possible misalignment mechanisms (e.g BH natal kicks). For these, the

BH spin amplitudes are assumed to be the same S = S1 = S2, but are given random

and independent directions: uniformly distributed in the cone with angle π/4 around

Lb,in, or sampled from a normal distribution with standard deviation π/4 and centred

on Lb,in, where the in subindex indicates the pre-encounter angular momentum. The

resulting effective spin distributions are shown in figure 4.8 for the three BH spin

models (aligned: blue line, uniform in the cone: green dashed-dotted line, normal: red

solid line). It is found that all three distributions are similar to each other for χeff < 0.

About 7% of survivors have negative effective spins.

While the χeff-distributions were evaluated for the entire population of survivors, only

a fraction of them have short GW merger times, or more precisely, significant reduction

factors for the merger times. The effective spin distribution based on the aligned spin

model was evaluated for survivors with reduction factors τgw,out/τgw,in < 10−5. It is

found that this distribution is much flatter (see the left panel of figure 4.8), and that 39%

of this population have negative effective spins. It is also found that 19% of survivors

with τgw,out/τgw,in < 10−2 have negative effective spins.

4.4 Constraints from the χeff−measurements

The effective spins of the BH mergers observed by LIGO/Virgo so far are clustered

around χeff ∼ 0, they are consistent with low effective spins within −0.5 < χeff <

0.5 at the 90% credible level (Abbott et al., 2016, 2017a,b,d; Belczynski et al., 2020;

Abbott et al., 2020b). The small values of the effective spins can result from either
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Figure 4.8: Effective spin distributions of survivors (left panel) and their cumulative
distributions (right panel). The BH spins are aligned with the Lb,in (blue dashed line),
uniformly distributed in the cone with opening angle π/4 around Lb,in, or normally distributed
with a standard deviation π/4 around Lb,in. The black dashed line corresponds to survivors
with τgw,out/τgw,in < 10−5. The uniformD-distribution is assumed for all cases. The effective
spin χeff is given in units of the individual BH spin S.

intrinsically small BH spins S or large BH spins whose directions are misaligned with

the orbital angular momentum of the binary Lb. Positive effective spins have been

detected in three cases: GW151226, GW170729 and GW190412, for which χeff =

0.21+0.20
−0.10, 0.36+0.21

−0.25 and 0.25+0.08
−0.11 respectively (Abbott et al., 2020b). These indicate

that at least of the members of each binary was spinning before the merger event and

that this member had χeff > 0. GW170104 has effective spin χeff = −0.12+0.21
−0.30,

centered on a negative value, but also compatible with zero within uncertainty. The

others are consistent with zero (Abbott et al., 2020b). The small values of χeff can

result from small BH spins S. If the intrinsic spins are almost zero for most BHs

in binaries, the current and future effective spin measurements would not give strong

constraints on the formation models of BH binaries. However, if the intrinsic spins are

large for a significant fraction of BHs, effective spins could reveal their origins.

BHs in isolated field binaries are expected to be preferentially aligned with the orbital

angular momentum. Although natal kicks (e.g. anisotropic SN explosions or neutrino
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emission) can induce misalignment (Wysocki et al., 2018), significant misalignment

would disrupt the binaries, suppressing GW merger events. It would be difficult for

the isolated binary models to produce a significant fraction of mergers with large

misalignment χeff < 0. A non-vanishing fraction of high positive χeff is predicted

in this class of models. If such events are not detected with the coming LIGO/Virgo

observations, it would be unlikely that the observed BH mergers formed via field

binaries (Hotokezaka & Piran, 2017b)

BHs in dynamically formed binaries in dense stellar environments are expected to have

their spins distributed isotropically. The χeff distribution is expected to be symmetric

about zero, and it can be extended to high negative (or positive) χeff if the intrinsic

spin S is large. Considering GW151226, GW170729 and GW190412 with χeff > 0

and no definitive systems with χeff < 0, the current sample is very weakly asymmetric.

Analysis in (Farr et al., 2018) suggested that around 10 additional detections, in addition

to those reported in the first operating run, were expected to be sufficient to distinguish

between a pure aligned or isotropic population. Recently Zevin et al. (2020) used

the extended catalogue of events GWTC2 (Abbott et al., 2020b) and several different

formation channels to attempt to infer the origin of merging BH binaries. A key result

in this work was that a combination of channels is preferred by the analysis, and

that the detections by LIGO/VIRGO are likely an almost equal mix of isolated field

binaries and dynamically formed binaries. It was also found low intrinsic BH-spins are

preferred. Similarly, in Garcia-Bellido et al. (2020) it was found that, when considering

different spin-orientation scenarios (flat, isotropic, spin-aligned and anti-aligned), which

can be associated with different formation channels, the current detection catalogue

favours BH spins which are low and isotropically oriented.

In the tidal encounter model described in this chapter, a significant fraction of mergers

have large misalignment χeff < 0 especially if binaries with large reduction factors of

the merger time are considered. The χeff distribution is slightly asymmetric, but flat

with minor enhancement at the high and low ends χeff ∼ ±S. If the intrinsic BH spins

are rather small S ∼ 0.2 − 0.4, the resultant distribution could be roughly consistent

with the current sample.
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4.5 Merger rate estimate

It is not trivial to estimate how frequently BH binaries merge due to the tidal encounter

mechanism. Several processes are involved in the estimate, most of which are not

well constrained by current observations (Miller et al., 2005). A rough estimate of the

merger rate due to the tidal encounter channel can be written as

R ≈ ng · N · P, (4.5)

where ng is the number density of galaxies,N is the tidal encounter rate of BH binaries

with a massive BH (events per yr per galaxy), P is the fraction of tidal encounters that

produce survivors with τgw < 1010 years. It is assumed that the first galaxies formed

about 1010 years ago, and they have had sufficient time to host and grow massive BHs.

This is consistent with recent observations, which indicate quasars are known to exist

when the Universe was less than a billion years old (Bañados et al., 2018). Since

survivors merge many years after the tidal encounters, this estimate implicitly assumes

that the merger rate reaches a steady state.

The fraction P depends on the semi-major axis distribution of the pre-encounter circular

binaries. As galactic centres are collisional environments, wide binaries can be disrupted

by encounters with other objects. Equalizing the binding energy Gm1m2/2a with the

kinetic energy of an intruder m∗σ2/2, it is found that a = Gm1m2/m∗σ
2 ∼ 140

au for m1 = m2 = 30M�, m∗ = 1M� and the Milky-Way velocity dispersion

σ ∼ 75 km/s (Gebhardt et al., 2000). This is set as the maximum semi-major axis

value. The minimum semi-major axis is set at a0 = 0.2 au for which binaries with

m1 = m2 = 30M� do not merge within 1010 yrs if they are not disturbed by the tidal

encounter or other mechanisms. These binaries emit weak GWs at low frequencies

fgw < 5.5×10−6(m/60M�)1/2(a/0.2 au)−3/2 Hz. Assuming a uniform a0 distribution

in logarithmic space, and using the a/a0 and e distribution for α = 0 obtained in

section 4.3.2, the merger time τgw distribution of survivors is evaluated (the α = 1 case

also gives a very similar distribution). It is found that ∼ 50% of BH binaries survive

the tidal encounter and ∼ 6% of the survivors have merger times of less than 1010
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years, yielding P ∼ 3× 10−2.

Although the tidal encounter rate is highly uncertain, N = 10−6 /yr/galaxy is adopted

as a fiducial value. Stars are tidally disrupted by a massive BH with a rate of 10−5 −

10−4/yr/galaxy (Komossa, 2015). In the Milky Way, hypervelocity stars and the S-star

cluster imply a similar rate of 10−5 − 10−3/yr/galaxy for the disruption of stellar

binaries (Bromley et al., 2012). Simulations of galactic dynamics indicate that a

density cusp forms around MBHs, where the concentration of high-mass objects increases.

Population synthesis predictions also suggests that the fraction of BHs and NSs present

in these regions is enhanced with respect to the field. In particular, using the simple

formalism presented in Rasskazov & Kocsis (2019), it can be shown that the fractions

of BHs in the entire Milky Way and nuclear star cluster are ∼ 0.13% and ∼ 0.23%,

respectively (Licquia & Newman, 2013). In addition, it is expected that dynamical

friction will drive BHs formed in the outer regions towards the centre, further increasing

their number (Löckmann et al., 2010; Petrovich & Antonini, 2017). Recent numerical

studies have shown that this effect can increase their number by up to a factor of several

(Rasskazov & Kocsis, 2019). These results are supported by recent observations of

quiescent X-ray binaries in the Milky Way galactic centre, indicative of a large population

of BHs and BH binaries in the galactic centre (Hailey et al., 2018). Hence the tidal

encounter rate of compact binaries to be smaller than that inferred from HVS observations

for stellar binaries by a factor of ∼ 102.

In the early Universe, the number density of galaxies was higher, but most of these

galaxies were relatively small and faint, with masses similar to those of the satellite

galaxies surrounding the Milky Way (e.g. Conselice et al. 2016). Assuming the galaxy

number density ng ∼ 0.02 Mpc−3 (Conselice et al., 2005; Hoang et al., 2018), then

R ≈ 0.6 Gpc−3yr−1. (4.6)

This is much smaller than the BH merger rates inferred by GW observations 15.3 −

38.8 Gpc−3yr−1 (Abbott et al., 2020b). The tidal encounter mechanism is unlikely to be

the dominant formation channel of BH mergers. However, the current and near-future



4.6. Discussion and conclusions 49

GW observatories are expected to detect an enormous number of BH mergers. A small

fraction of them might have experienced the tidal encounter with a massive BH. The

merger times of hard binaries (originally τgw � 1010 years) can be further shortened

by this mechanism. If binaries merge in the vicinity of massive BHs, GW lensing

echoes might be produced (Kocsis, 2013).

4.6 Discussion and conclusions

In this chapter the first systematic study of how the tidal encounter with a massive BH

affects the properties of BH-BH binaries (e.g. GW merger times and effective spins) is

presented. Since the binary members were treated as point particles, the new formation

mechanism of GW mergers also can be discussed with other compact stellar mergers

such as NS-BH and NS-NS mergers.

BH binaries can survive the tidal encounter even in the deep limit D � 1. Although

deep encounter survivors are counter-intuitive, binaries are actually disrupted, and the

binary members separate when they deeply penetrate the tidal sphere of the massive

BH. However, they approach each other after the periastron passage and a small fraction

of them (12% for D � 1) can form binaries again even in the deep penetration cases

(Sari et al., 2010; Brown et al., 2018).

Assuming simple D distribution models (i.e. an uniform or linear distribution for

0 < D < 2.1), it was shown that about 50% of injected binaries can survive the tidal

encounter, and the GW merger times of the survivors can be shorter by many order of

magnitudes than that of pre-encounter binaries. About 10% (1%) of the survivors have

GW merger times shorter by a factor of > 100 (> 105) than that of the pre-encounter

binaries. Assuming that BH spins are aligned with the binary angular momentum

before the tidal encounter, it is also shown that survivors can have large negative

effective spins. This is because the tidal force rotates the orientation of the binaries,

and the orientation flips to the opposite direction in some cases. In particular, the χeff

distribution of survivors with large reduction factors of the merger time is asymmetric,
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but rather flat, and a significant fraction has negative effective spin.

Since BH spins are only weakly constrained by observations (and observations are

generally consistent with equal-mass mergers), for the effective spin calculation equal

binary member masses m1 = m2 and intrinsic spins S = |S1| = |S2| were assumed.

As the BH spins are constant in the tidal encounter model, it is straightforward to

examine other possibilities. For example, in another equal-mass case with |S1| =

S, |S2| = 0 (e.g. ), the effective spins χeff of the survivors are maximally S/2 instead

of S. Since the directions of the BH spins are assumed to be independent and random

when the effective spins are evaluated for the uniform and normal distributions of BH

spins, the effective spin distribution should be identical to those shown in figure 4.7 if

the x-axis is rescaled (i.e. χeff should take a value between −0.5 and 0.5, and all the

distributions peak around χeff/S ∼ 0.5).

While the discussion is centred on the tidal encounter survivors, a large fraction of BH

binaries should break up at the encounter. In such cases, one of the binary members

should be ejected as a hyper-velocity BH and the other is captured in a highly eccentric

orbit around the massive BH. This is one of possible channels to produce extreme

mass ratio inspirals (Miller et al., 2005; Chen & Han, 2018), which are promising GW

sources for the LISA mission (Babak et al., 2017).

Simulations presented in this chapter show that the GW merger time can be reduced

even in shallow encounters with D > 2.1. However, the reduction effect becomes

insignificant quickly for larger values of D (e.g. for D = 2.5, GW merger times are

reduced by a factor of > 10 (> 50) for only 10% (1%) of cases, while for D = 3

more than 99% of the post-encounter binaries have τgw,out/τgw,in ≥ 0.8). For the range

0 < D < 3, the survivor fraction is found to be ∼ 66%. The main result of section

4.3.2 is modified by a factor of 2: ∼ 5% (∼ 0.5%) of the survivors have the merger

times reduced by a factor of > 100 (> 105). Although this may modify the merger rate

estimated above, the uncertainty in the tidal encounter rate is much larger.

Extreme-mass-ratio bursts (EMRBs) are a prime source of GWs for the future space-based

interferometer LISA, and could possibly provide constraints for the very uncertain
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tidal encounter rate (Turner 1977; Rubbo et al. 2006; Berry & Gair 2013). They

are produced when a binary, which can be treated as a point particle at the lowest

order of approximation, passes by a massive BH. The GW signal will have a burst-like

behaviour, roughly characterized by an amplitude hb ∼ GMm/c4rpd and a duration

∆T ∼ 1/fb ∼
√
r3p/GM (e.g. Kobayashi et al. 2004). Expressing the periastron

distance rp in terms of the GW frequency fB, then

hB ∼ 10−21
(

M

4× 106M�

)2/3(
m

30M�

)(
fB

10−3Hz

)2/3(
d

102Mpc

)−1
. (4.7)

LISA is expected to be able to detect EMRBs from MBHs out to ∼ 100 Mpc (Berry &

Gair, 2012; Moore et al., 2015).

If the periastron distance and tidal separation are comparable (rp ∼ rt),the pre-encounter

circular binary emits GWs at frequency fb similar to the EMRB frequency fB, but with

an amplitude smaller by a factor of ∼ (M/m)2/3. Since the signal-to-noise ratio can

be enhanced by integrating the periodic signal, the effective amplitude of the GWs

from the binary would be ∼
√
N(M/m)−2/3hB, where Nc = fb∆Tobs is the number

of cycles radiated during an observation period ∆Tobs. In order to make the effective

amplitude comparable to that of the EMRB, a very long observational run is needed

with ∆Tobs ∼ f−1b (M/m)4/3 ∼ 200 yr for M = 4 × 106M�, m = 30M� and

fb = 10−3 Hz. For a more realistic observational period ∆T = 1 − 5 yr, the effective

amplitude would be smaller by one order of magnitude than the EMRB’s amplitude.

Therefore, EMRBs would be the dominant GW signal in the tidal encounter event, and

they could indicate how frequently compact objects pass by MBHs. However, it would

be difficult to distinguish binary encounters from single object encounter events.

The Newtonian formulation breaks down if the periastron is close to the event horizon

scale Rg of the central massive BH or equivalently if D . (m/M)1/3Rg/a ∼ 2 ×

10−3(a/1au)−1(m/60M�)1/3(M/4×106M�)2/3. Relativistic corrections might become

important if the encounter is very deep or if the initial binary separation is much smaller

than 1 au. However, in the latter case, binaries have short GW merger times even

before the tidal encounter, and binary hardening processes might not be required to
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produce BH mergers.



Chapter 5

The tidal encounter and eccentric

binary populations

The LIGO/VIRGO observations have shed light on the previously unknown population

of BH binaries (e.g. Abbott et al. 2020b). However, the overall statistical properties

of these systems are still unknown. As was discussed in previous chapters, more

observations are necessary to characterize their properties.

While there is a great deal of uncertainty with regard to the properties of BH binaries,

it is a reasonable assumption that these systems will preserve some of the properties

of their progenitor stars. In particular, it can be expected that their dynamical properties

are determined by their environment. Knowledge obtained from electromagnetic observations

of stars can therefore be used to characterize the properties of different BH merger

formation channels. One of such properties is the distribution of eccentricities of black

hole binaries. There are examples in the literature of theoretical models which attempt

to shed light on the BH binary eccentricity distribution (e.g Kowalska et al. 2011).

However, there is still insufficient observational data to determine the validity of these

models. In contrast, this distribution has been characterized for different populations

of stellar binaries, including those in the field and in collisional environments (such as

globular clusters).

53
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In this chapter the effect of non-zero initial eccentricity on the tidal encounter process is

characterized. Following this, three eccentricity distributions are considered, corresponding

to different astrophysical origins of the BH binaries. By using Monte Carlo simulations

the merger fraction enhancement is computed for a population which, without other

intervening processes, would not coalesce within a Hubble time. As in chapter 4,

observables of interest such as the post-encounter effective spin and eccentricity distributions

are obtained.

5.1 The effect of eccentricity on the dynamics of the

tidal encounter

As in chapter 4 compact binaries with component masses m1, m2 such that m =

m1 +m2 are considered. The binary COM approaches a massive black hole (MBH) of

massM on a parabolic trajectory. To study the evolution of these systems the restricted

three-body formalism is used (Sari et al., 2010; Brown et al., 2018).

The separation of the members in an eccentric binary depends on time, and is given by

(Bate et al., 1971; Landau & Lifshitz, 1980)

d(t) =
a(1− e2)

1 + e cosφ(t)
, (5.1)

where a is the semi-major axis (sma) and φ the binary phase. As follows from eq.

5.1, binary separation varies between a(1 + e) at apoapsis and a(1 − e) at periapsis

during its orbit. In contrast to circular binaries, for which the tidal radius rt and D are

constant, in the eccentric case these parameters are effectively time-dependent. The

system will be more susceptible to disruption or deformation at periapsis, where it

spends the majority of its orbital time. In this case it has a larger effective tidal radius,

hence the parabolic orbit penetrates deeper into it.
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5.1.1 Initial conditions

In chapter 4 circular binaries undergoing tidal encounters were characterized by D,

the orientation of their orbital plane (specified by two angles θ, ϕ), and the binary

phase at periastron φ. The binary orientations are sampled from uniform distributions,

accounting for symmetry considerations, as in chapter 4. For eccentric binaries the

orbital velocity is phase-dependent. Therefore, it is sampled from a distribution law

proportional to the inverse of the orbital velocity:

dn(φ)

dφ
∝ 1

(1 + e0 cosφ)2
, (5.2)

where e0 is the initial eccentricity, and φ ∈ [0, 2π]. The orientation of the binary

semi-major axis in the orbital plane must also be selected, specified by an angle η. It

is sampled from a uniform distribution in the range [0, π] (Brown et al., 2018).

5.1.2 The effect of eccentricity on the survival rate

In this section we discuss how the statistical properties of tidal encounter survivors

change if binaries are injected toward the massive BH with non-zero eccentricity e0 6=

0. Monte Carlo simulations are performed for different initial eccentricities e0 ∈

{0, 0.1, 0.5, 0.9}, and a uniformly distributed penetration factor D, where D is still

defined as D = rp/rt = rp/[(M/m)1/3a]]. For each e0 value, 1.5 × 105 random

realizations of the set {D, θ, ϕ, φ, η} were sampled.

The probability of an eccentric binary surviving the encounter is shown as a function

ofD in figure 5.1 (averaged over the other system parameters). No circular binaries are

disrupted for D > 2.1 (Brown et al., 2018). However, in the eccentric case binaries are

disrupted for much shallower encounters. This is due to eccentric binaries spending

a large fraction of their orbital time close to periapsis, and hence experiencing an

effectively smallerD-parameter. Consequently, the maximum penetration factorDmax

for which there are tidal disruptions depends on e0. For moderate eccentricity (in the

figure e0 ≤ 0.5), it is also found the survival probability curves are insensitive to D
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Figure 5.1: Probability of a binary surviving the encounter, as a function of D. The
distributions were obtained by Monte Carlo sampling with constant e0. The solid blue, orange
and green lines are for e0 = 0.1, 0.5 and 0.9 respectively. The initially circular case e0 = 0
is shown for comparison (solid red line). The distributions are integrated over all binary
parameters {θ, ϕ, φ, η}. The binary angular momentum and semi-major axis orientations
were sampled from uniform distributions. The binary phase was sampled according to equation
5.2.

(< 1). For large eccentricity, the curves separate. For e0 = 0.9, the effective D of the

encounter varies by as much as ∼ 0.75. This leads to deep tidal sphere penetrations

even for orbits which would be extremely shallow in the circular case. The survival

probability plateaus for small D, as in the circular case. This is consistent with results

shown in Sari et al. (2010) and Brown et al. (2018), which show that the disruption

probability becomes constant for very deep penetrations.

5.1.3 Orbital properties of survivors

Following the discussion above, in this section the maximum penetration factor D is

set to Dmax = 2.5, 3.1 and 3.3 for e0 = 0.1, 0.5 and 0.9 respectively (at these values

the survival probability becomes unity, as is illustrated in figure 5.1).
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Figure 5.2: Distributions of the semi-major axes a (top panel), eccentricity differences 1 − e
(middle panel) and GW merger times τgw,out (bottom panel) of the survivors. The semi-major
axis and GW merger times are given in units of the pre-encounter values a0 and τgw,in. The
distributions are obtained from the Monte Carlo sampling with fixed e0 = 0.1, 0.5 and 0.9
(blue, orange and green lines respectively), and with uniformly distributed penetration factors
D, and the binary orientation and semi-major axis orientation as in figure 5.1.
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e0 e > e0 e > 0.9 〈e〉
0 100% 6% 0.44
0.1 91% 5% 0.42
0.5 65% 12% 0.61
0.9 26% 26% 0.72

Table 5.1: Summary of the main features of the eccentricity distributions shown in the bottom
panel of figure 5.2.

Figure 5.2 shows the post-encounter distributions of the survivor semi-major axes (top

panel), eccentricities (middle panel) and GW merger time fractional change (bottom

panel) for initially eccentric binaries. The fraction of binaries with reduced semi-major

axis after the encounter a < a0 slightly decreases, from ∼ 60% for e0 = 0 to ∼ 50%

for e0 = 0.9. Similarly, the fraction of binaries for which a/a0 ≤ 2 varies between

2.3% in the circular case to around 1% for e0 = 0.9.

We summarize in table 5.1 how the eccentricity changes at the tidal encounter. In

contrast with the circular case, for e0 6= 0 the binaries can become more eccentric or

can be circularized after the encounter. For moderate e0 the binaries generally become

more eccentric, and the mean eccentricity of the distribution 〈e〉 increases. For the

highly eccentric case e0 = 0.9 it is found that 〈e〉 < e0, and in general the tidal

encounter reduces the eccentricity of the survivors.

In chapter 4 it is found for circular binaries that in 10% (1%) of cases τGW is reduced

by a factor of 102 (105) or more. The distributions of reduction factors for the eccentric

cases are shown in the bottom panel of figure 5.2. The reduction factors are similar to

the circular case. The greatest reduction is found for e0 = 0.5, for which τGW is a factor

of 102 (105) or more smaller after the encounter in 12% (1.3%) of cases. In contrast

to the circular case, we find that for initially eccentric binaries the post-encounter

distributions present significant fractions of binaries with extended merger time (for

e0 = 0.9, of up to 75%). This is due to the large fraction of systems which become less

eccentric and are stretched after the tidal encounter.

It is found that allowing for e0 6= 0 increases the fraction of binaries with post-encounter

χeff < 0 significantly. For initially circular binaries this is the case in ∼ 7% of cases.
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In comparison, this fraction increases to ∼ 12% for e0 = 0.5, and to ∼ 35% for

e0 = 0.9. This is shown in figure 5.3. As the eccentric binaries spend larger fractions

of their orbital period close to periapsis, when considering the tidal torque described by

equation 3.16 they can present extended lever arms, which may facilitate the rotation

of the orbital plane by the tidal force of the MBH.

5.2 Full numerical study

5.2.1 Monte Carlo sample

In this section Monte Carlo simulations are used to characterize how different initial

eccentricity distributions modify the properties of the surviving population of binaries.
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Figure 5.3: Post-encounter χeff-distributions for initially eccentric binaries. In general, it is
found that allowing for e0 6= 0 increases the fraction of binaries with χeff < 0 after the
encounter, i.e. more binaries have their orbital planes flipped. The solid blue, orange and
green curves are for e0 = 0.1, 0.5 and 0.9 respectively. The circular case (solid red line) is
shown for comparison. The binary parameters were sampled as in figures 5.1 and 5.2
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Three pre-encounter, power law eccentricity distributions are considered,

dn(e0) ∝ eα0de0, (5.3)

for 0 < e0 ≤ 0.95, which are representative of different astrophysical scenarios:

• A uniform distribution or α = 0 (distribution 1), compatible with observations

of field binaries (Raghavan et al., 2010). These can move towards the galactic

centre due to their proper motions or scattered into the region by the stochastic

potential of the stellar background. This distribution has a mean eccentricity

〈e0〉 = 0.475 and a cumulative distribution function (CDF) such that CDF(0.5) =

0.55%, i.e. e0 < 0.5 for 55% of the sample.

• A thermal eccentricity distribution for which α = 1 (distribution 2). Binaries

in dense, collisional systems such as globular clusters can undergo sequence of

effective two body encounters (the binary with another compact object) which

after sufficient time drive the system to thermal equilibrium (Jeans, 1919). Globular

clusters can migrate towards the galactic centre due to dynamical friction. They

are also speculated to host intermediate mass black holes (Perera et al., 2017;

Kızıltan et al., 2017), which could mediate tidal encounters. For this distribution

〈e0〉 = 0.63 and CDF(0.5) = 28%.

• A distribution compatible with observations of a limited sample massive O-stars

in the field (Sana et al., 2012), for which α = −0.5 (distribution 3). In this case

〈e0〉 = 0.32 and CDF(0.5) = 73%.

This distribution was inferred by fitting orbital parameter distributions to observations

of a sample of 71 O-type objects, out of which 40 were identified as binary

systems. The masses of the sample are in the range 15M� − 60M�. It must

be noted the exponent in this case has rather large uncertainties (of the order of

50%, ±0.22).

The initial eccentricity distributions e0 are shown in the left panel of figure 5.4. The

binary orientation, semi-major axis orientation in the orbital plane and phase are sampled
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as discussed in the previous section. The penetration factor D is sampled from a

uniform distribution in the range 0 < D < 3.3 (by considering binaries with arbitrary

orientations and phase at periastron, and it is found that for e0 ≤ 0.95 and D > 3.3

no binaries are disrupted). For each eccentricity distribution, over 4.5 × 105 random

realizations of the set {D, θ, ϕ, φ, e0, η} were sampled. As in chapter 4, the binaries

were injected on parabolic orbits at a distance rm = 10rt, and the equations of motion

3.9, 3.10 were integrated using a fourth-order Runge-Kutta scheme. The total survivor

fractions for distributions 1, 2 and 3 were found to be ∼ 58%, ∼ 57% and ∼ 62%,

respectively.
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Figure 5.4: Left panel: initial eccentricity e0-distributions for three different scenarios. Right
panel: survivor eccentricity distributions. The eccentricities for field binary, globular cluster
binaries eccentricities and field O-star binaries are shown in blue, green and red respectively.

The three sets of surviving binaries were analytically rescaled using the relations 3.8.

The MBH mass was chosen to be 4 × 106M� and the binary BH member masses

m1 = m2 = 30M�. The pre-encounter semi-major axes were sampled from uniform

distribution in logarithmic space. The lower limit amin of the distribution was set

by demanding that pre-encounter merger time of the binaries satisfied τgw,in > 1010

yr. Using Peter’s formula 2.12 and noting that in the sample e0,max = 0.95, it was

found that a0,min ≈ 1.5 au. The upper limit amax was found by limiting the sample
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to binaries which are narrow enough to survive a dynamical encounter with a typical

galactic centre object. Considering the Milky Way galactic centre velocity dispersion

σ ∼ 75km/s (Gebhardt et al., 2000), and considering a collision with a solar mass

object, then for amax

Gm1m2

2a0,max
=

1

2
M�σ

2, (5.4)

i.e. the binding energy of the widest binaries in the sample is equal to the kinetic

energy of a typical colliding object in the region. From this relation it is found that

amax ≈ 140 au. To ensure the convergence of the post-encounter distributions after

rescaling, for each surviving binary three a0 values were sampled.

5.2.2 Numerical results

Having fixed the binary member masses and pre-encounter semi-major axes, the GW

merger time of the survivors can be obtained using equation 2.12. It is found that

0.98%, 1.34% and 0.65% of the survivors emerge from the encounter with τgw ≤

1010 yr. The distributions of merger times of these systems are shown in figure 5.5

(non-cumulative and cumulative distributions are shown in the left and right panels

respectively). Around ∼ 0.5% of these survivors merge less that 1000 years after

the encounter, and ∼ 6% within 106 years (a full orbital period around the sphere of

influence of the MBH, with sma ∼ 10 pc, is around 1.5 × 106 years). The discussion

in the rest of this section is limited to the properties of these systems.

The fractions are smaller than those obtained in the case of initially circular binaries,

∼ 3% (see chapter 4, section 4.5). This is in great part due to the selection of Dmax

and amax. The value of Dmax was set to the maximum value for which binaries with

e0 = 0.95 can be disrupted. Similarly, the amax value was set to ensure that none of

the sample would merge in less than 1010 years. Both Dmax and amax are larger than

necessary for less eccentric binaries. Consequently these parameter choices reduce the

number of systems susceptible to tidal deformation and which would merge within a
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Hubble time after the tidal encounter. The fractions of systems with τgw,out < 1010

years obtained here can therefore be taken as lower limits. In principle, this would

also reduce the merger rate estimate from chapter 4 by a factor of a few. However,

any variation due to these parameter choices is still much smaller than that due to the

highly uncertain tidal encounter rate. From these considerations it can be concluded

that the merger rate estimateR ≈ 0.6 Gpc−3yr−1 obtained for initially circular binaries

is not significantly changed by considering families of eccentric binaries.
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Figure 5.5: GW merger time distributions for surviving binaries with τgw < 1010 yr (left panel)
and cumulative distribution (right panel). The merger times were obtained after analytically
rescaling the tidal encounter survivor systems. The results for e0-distributions 1, 2 and 3 are
shown in blue, green and red respectively.

The post-encounter semi-major axis and eccentricity distributions, obtained after selecting

binaries with τgw,out < 1010 yr, are shown in figure 5.6. For all three e0-distributions,

the post-encounter semi-major axis distributions (left panel) are narrow and centered

on a/a0 ≈ 1, similarly to what was found for the initially circular case in chapter

4. The distributions are also virtually identical for all three sets of binaries. This

indicates that typically the survivors are not significantly stretched or compressed by

the tidal force of the MBH. However, the eccentricity distribution strongly favours

very eccentric binaries with e > 0.98, and presents a sharp drop-off to almost 0 for
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e < 0.94. This is the main factor leading to the short merger times of these systems.

These eccentricity distributions can be compared with those for the full population of

survivors, shown in the right panel of figure 5.4. In this plot it can be seen that while the

eccentricity distributions are modified by the tidal encounter, the main features remain

roughly the same (for example, whether more circular or more eccentric binaries are

favored and the general trends of the distribution, except in the case of distribution 3

for 1−e > 0.9 where there is a drop-off). In contrast, when only considering survivors

with τgw < 1010 years, the distributions are essentially identical, independently of the

initial conditions distribution. This feature also holds for a/a0 and, as was shown

above, the τgw,out distributions.
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Figure 5.6: Post-encounter orbital properties of surviving binaries with τgw < 1010 yr. Left
panel: semi-major axis distribution in logarithmic space. Right panel: eccentricity distribution.
The color scheme is the same as in figure 5.5.

To obtain the effective spin χeff-distributions the procedure discussed in chapter 4

is followed. The BH spins S1,2 are assumed to be initially parallel to the binary

angular momentum Lb. The post-encounter effective spins were then obtained by

using equation 4.2. Figure 5.7 shows the post-encounter χeff-distributions resulting

from selecting the survivors with merger times τGW,out < 1010 years. As before, it is
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Figure 5.7: Post-encounter χeff distribution obtained after selecting systems with τgw <
1010 yr. The effective spin is given in units of the initial BH spin S. The color scheme is
the same as in figure 5.5.

found that these distributions are broadly independent of the e0-distributions. In all

three cases, the distribution is rather flat, presenting a slight preference for χeff > 0.5,

peaking at χeff = ±1 and around 40% of the survivors emerging with negative effective

spins. This result is similar to that for the circular case, discussed in chapter 4, where

a similar distribution was obtained for survivors with τgw,out/τgw,in ≤ 10−5.

5.3 Discussion and conclusions

In spite of there being multiple physically plausible mechanisms for the formation of

eccentric BH binaries, most LIGO/VIRGO detections reported to date are consistent

with circular binaries, although recently GW190521 has been speculated to originate

from an eccentric binary (Abbott et al., 2020a; Gayathri et al., 2020). This could

be due to binary circularization by GW radiation before reaching the LIGO/VIRGO

band, but also due to selection bias in favor of circular binaries (Huerta & Brown,
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2013). The search algorithms currently used to find signals in LIGO/VIRGO data are

ill-equipped for the detection of eccentric signals, while they are very well tuned for

quasi-circular inspirals. GW coalescence signals are identified in the LIGO/VIRGO

data by match-filtering with pre-calculated templates. These do not include eccentric

inspirals, and the current library can only detect binaries with small eccentricities e <

0.1 (Abbott et al., 2019) Several approaches are being taken in order to detect eccentric

BH binaries. Using the GW signal bursts associated with eccentric inspirals (Tiwari

et al., 2016), power stacking of signals (Tai et al., 2014), or the application of deep

learning techniques (George & Huerta, 2018) for real time detection are among the

proposed methods to detect eccentric BH binaries. With the expanded ground-based

detector network made up of LIGO’s two detectors at design sensitivity (advLIGO),

VIRGO and the up and coming Japanese detector KAGRA, it is expected that binary

eccentricities will be detectable with uncertainty as low as ∆e ∼ 10−3 (Gondán et al.,

2018).

With the current library of BH coalescence observations constraints have been placed

on properties such as the universal merger rate, or the mass distribution of BH binaries

(e.g. Abbott et al. 2019). Other properties, such as the binary eccentricity distribution,

remain unknown. GW radiation circularizes compact binaries. However, it is reasonable

to assume that the BH binary population of the Universe will conserve and trace the

properties of its progenitor stellar binary population. The eccentricity distribution of

merging BH binaries should therefore be determined by the pre-inspiral evolution

of the system and interactions with other objects in its environment. For example,

if field binary scenarios dominate the merger rate then circular binaries will make

the largest contribution to the set of observed mergers. In contrast, if dynamical

formation channels dominate then binaries with different degrees of eccentricity at

different frequency bands will be observed (i.e. very eccentric binaries in the LIGO and

VIRGO band originating from fly-by captures (O’Leary et al., 2009), or very eccentric

binaries in LISA band which have circularized by the time they reach the sensitivity

range of ground-based facilities (Gondán et al., 2018)).

In this chapter the effect of non-zero initial eccentricity e0 on the tidal encounter
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process is characterized. As the binary member distance depends on the orbital phase

for eccentric binaries, the depth of the encounter also depends on this parameter. This

modifies the dynamics of the encounter, in particular the survival probability. Survivors

can become more or less eccentric in this case, and a larger fraction of them are

stretched by the tidal encounter. It is also found that a larger fraction of eccentric

binaries can be flipped by the tidal encounter, resulting in χeff < 0.

The tidal encounter channel is then placed in astrophysical context by considering

different origins for the BH binaries. Three eccentricity distributions were considered,

obtained with electromagnetic observations of stellar binaries (for general field binaries

and field O-star binaries) or theoretical predictions (i.e. for collisional environments

such as globular clusters). The dimensionless tidal encounters were rescaled by considering

binary member masses compatible with aLIGO/VIRGO observations and a physically

plausible binary semi-major axis distribution, corresponding to binaries wide enough

to have long pre-encounter GW merger times, but tight enough to be able to survive

typical encounters in the NSC.

In all three cases it is found that a small, but non-negligible fraction of the survivors

emerge from the encounter with τgw < 1010 years. These systems are very eccentric,

with most having e > 0.94, and present a rather flat post-encounter effective spin

distribution, with χeff < 0 in around 40% of cases. An interesting result is that

the distributions of post-encounter properties of these systems are independent of the

initial e0-distribution. This indicates that the main factor determining the post-encounter

population is the tidal interaction itself, not the initial conditions distribution (in chapter

4 it was found that the outcome was very weakly dependent on the initialD-distribution).

The fractions of binaries with post-encounter τgw < 1010 yr are very sensitive to the

a0-distribution. The limits were selected so that no binaries with e ≤ 0.95 would merge

within 1010 years before the encounter. This distribution significantly suppress the

mergers of modestly eccentric binaries. Therefore, the results discussed in this chapter,

and in particular the merger fractions, establish a lower-limit on the merger fraction

enhancement due to the tidal encounter. The results of this chapter also indicate that

the merger rate density is not significantly affected by considering initial eccentricity
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distributions compatible with astrophysics scenarios such as populations field binaries

or collisional systems. This result also applies to the fraction of survivors with negative

effective spins χeff.
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Electromagnetic counterparts to

neutron star mergers
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Chapter 6

Neutron star mergers and gamma ray

bursts

The detection of a short gamma ray burst around 2 seconds after that of the neutron

star merger GW170817 was a revolutionary moment in astronomy. For the first time

gravitational waves and electromagnetic waves were to be combined to study a single

event. This was an important step forward for multimessenger astronomy. The kilonova

and afterglow of GW170817 was observed extensively across the EM spectrum by

means of a unprecedented observational effort.

In this chapter1. a brief introduction to observational aspects of short gamma ray bursts

and their afterglows is given in sections 6.1 and 6.2 respectively. After this the kilonova

emission is discussed in section 6.3. In 6.4 the focus is then shifted to GW170817. The

material in this chapter is in great part a summary of the extensive reviews of Piran

(2005), Berger (2014), Kumar & Zhang (2015) and Metzger (2019); and references

therein.
1The results in this chapter have been published as Fernández et al. (2021)

70
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6.1 Short Gamma Ray Bursts

Gamma ray bursts (GRBs) are short and highly luminous pulses of gamma radiation

which appear up to several times a night at random locations in the sky (Kumar &

Zhang, 2015). They can be broadly classified into two groups, according to the distribution

of T90, defined as the interval during with 90% of the GRB energy is released. The two

groups are short GRBs (sGRB), with a duration T90 < 2s, and long GRBs (lGRBs)

with T90 > 2s. The former tend to have harder spectra. While this classification

is widespread, it can also be misleading. The apparent duration of the burst can

be detector-dependent. Different, more thorough criteria have been proposed which

take into account the duration, luminosity, association with other transients such as

supernovae (SNe) and host galaxy characteristics (Berger, 2014).

For as long as they last, GRBs rival the most luminous transients in the Universe,

with an energy output similar to the combined emission of all other EM sources.

The explosion giving rise to a GRB releases an isotropic equivalent energy of ∼

1048−1054 ergs. However, as is discussed below, GRBs are almost certainly generated

by a narrow, collimated jet, which reduces the required energy by several orders of

magnitude.

There is ample evidence to support that lGRBs originate from the collapse of the core

of a massive star. Evidence pointing to this includes their association with type Ic

SNe, precise localization revealing that they are hosted by late-type galaxies, and their

location within the hosts, which indicates their distribution traces star formation (Levan

et al., 2016).

Several lines of evidence indicate that sGRBs can originate from compact mergers such

as NS-NS or NS-BH mergers. The detection of the coincident NS-NS merger event

GW170817 and sGRB170817 confirmed that at least a subgroup of sGRBs originate

from these kind of compact mergers. Rapid accretion onto magnetars has also been

proposed as a potential precursor of sGRBs (Piran, 2005; Lee & Ramirez-Ruiz, 2007;

Kumar & Zhang, 2015).
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In contrast to lGRBs, sGRBs have not been successfully associated with type Ic SNe.

This discards the collapse of massive stars as a possible origin. sGRBs are found to

happen in spiral and elliptical galaxies. As was discussed in chapter 2 and shown in

equation 2.12, the GW coalescence time of a compact binary depends on the initial

separation and masses of its members as τgw ∼ a4/m1m2m (Peters, 1964). Given

a large enough separation, the delay between the formation and merger of a binary

can vary by many orders of magnitude. Therefore, the coalescence which triggers the

sGRB may occur while the galaxy still forms stars or long after it has consumed all its

gas. In addition, afterglow observations (described in section 6.2 below) have allowed

for the location of sGRBs to be obtained with enough precision to determine that these

events often take place far from the star-forming regions of their host galaxies. This

can be attributed to the natal kick a binary receives when one of its members collapses

to a compact object. Some sGRBs (around 10%) are likely to originate in globular

clusters from dynamically induced compact mergers (Berger, 2014).

In the compact merger picture, the central remnant can be surrounded by debris left

behind from the event. In the case of a NS-NS binary, tidal forces can rip material

from the surfaces of the binary components. In addition, the collision itself will also

release a significant amount of debris. Similarly, in the case of a NS-BH merger the BH

member can tidally disrupt the NS. Fast accretion onto the compact remnant acts as a

central engine, powering a relativistic jet of particles which is launched into the debris.

Mechanisms which could power this engine include neutrino-antineutrino annihilation

(Rosswog et al., 2003; Lee & Ramirez-Ruiz, 2007) (however simulations indicate this

process may not be sufficient to account for inferred GRB energies, e.g. Berger 2014),

electromagnetic processes such as the Blandford-Znajek mechanism (Blandford &

Znajek, 1977) or a magnetized accretion disk (Berger, 2014).

Once launched, the jet drills through the surrounding material (Granot et al., 2018;

Gottlieb et al., 2020). The prompt GRB emission is generated by the dissipation of

kinetic energy in this jet. The question of how the GRB emission is produced is

still open. Internal shocks due to variability in the jet have been proposed as the

underlying mechanism, e.g. Kobayashi et al. 1997; Daigne & Mochkovitch 1998).
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Magnetic dissipation has also been proposed as an alternative mechanism (Zhang &

Yan, 2010). The specific radiative process (or processes) responsible for the emission is

also uncertain (suggested processes include synchrotron radiation or inverse-Compton)

(Kumar & Zhang, 2015).

6.2 GRB afterglows

After the jet emerges from the debris, it collides with the circumburst medium (CBM),

launching a forward and reverse shock2. The forward shock (blast wave) compresses,

thermalizes and accelerates the initially cold CBM particles. Magnetic fields are believed

to be generated via shock instabilities, which in turn leads to the production of synchrotron

radiation as shock heated electrons girate around the field lines. This process persists

on a scale of weeks to years, giving rise to a broadband, long-lasting emission known

as the GRB afterglow (Meszaros & Rees, 1997; Sari et al., 1998). Similarly, the

reverse shock propagates into and shocks the jet ejecta, giving rise to the reverse shock

emission (Sari & Piran, 1995; Sari & Piran, 1999; Kobayashi, 2000; Sari & Piran,

1999; Lamb & Kobayashi, 2019). This emission is relevant very early on and peaks in

the optical wavebands, giving rise to an optical flash (Sari & Piran, 1999; Sari et al.,

1999; Kobayashi, 2000). Its polarization can be used to study the magnetic properties

of the jet ejecta (for example, see Kobayashi 2017, 2019).

GRB afterglows were described, before their first detection, as a consequence of GRB

shock propagation into the circumburst medium or CBM (e.g. Meszaros & Rees 1997),

and have proven to be a key tool for GRB astrophysics. The launch of the space mission

Swift (Gehrels & et al., 2004; Barthelmy et al., 2005) in 2004 made it possible for

rapid follow-up to start, around 1 minute after the GRB trigger, in the X-ray (Burrows

et al., 2005), optical and ultraviolet (UV) wavebands (Roming et al., 2005). Because

of the relativistic beaming effect (see section 7.3 in the next chapter), if the jet axis is

inclined with respect to the observer line of sight the observed emission is significantly

2In the simplest picture the jet propagates essentially unimpeded until it has swept up a CBM mass
m such that mc2 = E/Γ2

0, where E is the explosion energy. At this point it begins to decelerate.
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weakened. In some cases, if the jet is pointing away from the observer, the afterglow is

detected without a GRB trigger. In this case it is known as an orphan afterglow (Huang

et al., 2002; Levinson et al., 2002; Roming et al., 2005; Cenko et al., 2013).

6.2.1 Anatomy of a GRB afterglow

The details of afterglow lightcurves depend on the frequency ν, observing time T and

inclination θobs, for a given jet. In terms of the inclination, if θJ is the jet half-opening

angle, then the lightcurve depends on whether the jet is observed on-axis (θobs < θJ )

or off-axis (θobs > θJ ). The flux density depends on the time-evolving synchrotron

spectrum. This spectrum is well described by a broken power-law with segments

connected by what are known as the break frequencies.

In the on-axis case the flux typically grows as Fν ∝ T 1/2 until νm = ν and then decays

as Fν ∝ T 3(p−1)/4 (Sari et al., 1998). Here νm is the critical frequency associated with

the minimum electron energy, p the index of the electron Lorentz factor power-law

distribution and Γ the bulk Lorentz factor of the shock (see the next chapter for details).

The early rise is often observed for bright enough events in the optical and radio bands.

However in X-ray the afterglow lightcurve is generally seen at a times when νX > νm

and this change in slope is not observed. Another change in slope in the lightcurves

is expected when Γ ≈ 1/θJ . Due to the relativistic beaming effect (e.g. Rybicki &

Lightman 1985 and chapter 7, section 7.3) only a limited area of the jet is visible, with

angular scale θ ∼ 1/Γ, and the observed flux is the same as in the case of a spherical

explosion. This region grows as the jet decelerates until the entire system is visible to

the observer. At this point the collimated nature of the jet becomes apparent, leading to

a steeper decay than that expected in the spherical case. This change in slope is known

as the jet break. The break is expected to be achromatic and to be observed at the same

time across different wavebands. After this, analytic estimates indicate that the flux

decays as Fν ∝ t−p (Rhoads, 1999; Sari et al., 1999). In practice the decay index may

vary and is steeper due to deviations from the simple analytic models.

For a jet observed off-axis much of the frequency dependence is lost, except for the
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normalization of the light curve. The flux Fν initially rises, and as the jet decelerates,

the relativistic beaming effect becomes less important and the jet core eventually becomes

visible. After this the flux decreases and asymptotically approaches the decay expected

in the collimated case Fν ∝ t−p (Rhoads, 1999; Lamb & Kobayashi, 2017).

The data available for sGRB afterglows is significantly sparser than in the case of long

GRBs due to the lower energetics of the jets and ambient densities, which leads to

weaker emissions. Consequently the rate of observable on-axis sGRBs is expected to

be low (Berger, 2014).

However, the features described here have been observed for several events, including

among others GRB 160812B (Troja et al., 2019; Lamb et al., 2019), GRB111020A

(Fong et al. (2012) and references therein) or GRB130603B (Fong et al., 2013).

GRB 111020A was detected on 20th October 2011 by the Burst Alert Telescope (BAT)

on board of Swift, and consisted of an sGRB with duration T90 = 0.40± 0.09 seconds.

The Swift X-ray telescope, Swift-XRT began observations at T = 72.6 seconds after

the trigger. XMM-Newton joined the observation effort at T = 0.65 days, and additional

Chandra data was obtained at 2.9 and 10.1 days after the burst. In total, the X-ray

afterglow was well sampled from around T = 100 s to T = 10 days. They key finding

from the lightcurve was evidence of the jet break at T ≈ 2 days, which implies a jet

opening angle of θJ ≈ 3◦ − 8◦. No optical or UV sources were detected for this event

(Fong et al., 2012).

Follow-up of sGRB 130603B led to the detection of optical and radio afterglows, in

addition to the X-ray signal (Fong et al., 2013). The γ-ray pulse was detected by BAT

on 3rd June 2013 and had T90 = 0.18 ± 0.02 s. The X-ray afterglow was detected

at T = 59 s by XRT and decayed below the observational threshold after 2 days.

Optical observations began 2.7 hours after the trigger with ground-based facilities, and

two Hubble Space Telescope (HST) epochs were also obtained. The radio follow-up

with the Jansky Very Large Array (VLA) began at T = 8.8 hr and also detected a

source with a consistent location with the X-ray and optical data. The jet break was

detected at T = 0.47 days, and was clearest in the radio data as an inflection point
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in the lightcurve (the observations were obtained at frequency ν = 6.7 GHz > νm

and therefore the radio lightcurve initially rises). It can also be observed as a change

in decay index in the optical and X-ray data (see figure 2 in Fong et al. 2013). An

opening angle of 4◦ − 8◦ was inferred from the break.

sGRB 160821B was discovered by BAT and Fermi/GBM independently on 21st August

2016. These facilities reported a γ-ray pulse duration of τ = 0.48 ± 0.07 s and

τ ≈ 1 s respectively (both compatible with the standard sGRB classification). The

afterglow of this event was detected in X-ray, optical, near infrared (NIR) and radio.

The observations of this event revealed a more complicated behaviour which includes

reverse shock emission, excess in the optical band due to kilonova emission (see

section 6.3 below). The data found was compatible with a structured jet viewed slightly

off-axis. A jet-break at T = 3.5 days, implying a jet core size of θc ≈ 0.2 rad (in a

structured jet the energy depends on the angle with respect to the jet axis and the core

contains most of the energy) (Troja et al., 2019; Lamb et al., 2019).

6.2.2 Radio imaging of afterglows

Since GRBs generally happen at cosmological distances, observations with conventional

telescopes in the X-ray, optical/NIR and radio wavebands, while providing detailed

lightcurves, are unable to provide detailed information about the spatial structure of

the emitting region. By combining multiple telescopes or antennae (Jennison, 1958),

Very Long Baseline Interferometry (VLBI) is capable of reconstructing this structure

to produce spatially resolved images of the source (Cohen, 1973), in contrast to the

effective point source which conventional telescopes observe.

This technique has been used most notably in the extreme case of the Event Horizon

Telescope (EHT), which used a global radio telescope network to image to central

massive black hole in the local group galaxy M87 (Akiyama et al., 2019). Radio

imaging has also been employed to study gas kinematics in AGN host galaxies (Molyneux

et al., 2019) or star formation (Zhang et al., 2019). In the context of GRB astrophysics,

VLBI imaging was most notably used to obtain radio images of the sGRB170817
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afterglow in Mooley et al. (2018) and Ghirlanda et al. (2019) (see section 6.4 below).

As mentioned above, radio imaging can provide insight to the spatial structure of the

emitting region of an afterglow. A direct application of this is determining whether an

expanding radio source is due to isotropic or jet-like ejecta (e.g. Gill & Granot 2018).

In general, if the source is a spherical shock the brightness-weighted centroid of the

image is expected to remain at the explosion location. This also holds for a jet-like

ejecta viewed on axis. However, if it is observed off-axis the centroid should move

away from the origin in the imaging plane. As is shown in chapter 8, this can be used

to constrain the viewing angle of the jet. The evolution of the image size can also be

used to constrain the CBM density profile (e.g. Pihlstrom et al. 2007).

GRB 030329 was a lGRB detected in the pre-Swift era by the High Energy Transient

Explorer-2 (HETE-2) on 29th March 2003. A peculiarity of this event was that it

produced first radio afterglow bright enough for VLBI imaging to be successfully

obtained (Taylor et al., 2004). In Pihlstrom et al. (2007) constraints were placed on

the growth of the source size and the proper motion of the image centroid. These were

found to present superluminal phases, i.e. with apparent velocity in the sky βapp > 1.

The possibility of apparent superluminal motion was suggested by Rees (1966) for

radio sources moving at suitable angles with respect to the observer’s line of sight.

The afterglow image was found to have grown in size of 0.176 mas at 217 days to

0.347 mas at 806 days, which for this system implies an expansion of 1.6 light years

and a mean velocity of βapp ≈ 1. Taking into account that the system is decelerating,

this in turn implies βapp > 1 at earlier times (Taylor et al., 2005).

6.3 Neutron star mergers and the kilonova emission

When a NS-NS binary merges significant quantities of neutron-rich material is ejected

from the system. There are two sources of this ejecta, known as disk ejecta and

dynamical ejecta (Metzger, 2019).

Disk ejecta is made up of tidally disrupted material. When the binary members inspiral



6.3. Neutron star mergers and the kilonova emission 78

tidal forces can disrupt the surface of the neutron stars. This material builds up on the

equatorial plane of the binary, and forms an accretion disk around the central remnant

of ∼ 0.01− 0.3 M� (this estimate is sensitive to the neutron star equation of state and

the binary member masses and spins). Winds in this disk lead to an isotropic expansion

of the disk material (Metzger, 2019; Ascenzi et al., 2021) .

Dynamical ejecta is launched by two processes. When the neutron stars collide, on

the contact interface between the members matter is compressed. Shocks generated in

this process expel material along and around the polar axis of the binary. In addition,

the material in spiral arms formed by tidal forces during the inspiral also results in

dynamical ejecta which spreads outwards from the equatorial plane. Simulations indicate

that this ejecta has mass in the range∼ 10−4−10−2 M� in the case of NS-NS mergers,

and is launched at speeds of ∼ 0.1− 0.3 c (Fernández & Metzger, 2016).

As the different ejecta expand, heavy nuclei present in the progenitor objects, such

as 56Fe, are bombarded with neutrons. The resulting nuclei, which reside on the

neutron-rich side of the nuclear stability valley, are unstable and subject to β-decay.

If the characteristic time for neutron capture is shorter than that for decay this results

in the synthesis of elements heavier than iron. This process is known as rapid neutron

capture and its products as r-process elements (Burbidge et al., 1957; Lippuner &

Roberts, 2015; Ascenzi et al., 2021).

The elements formed in the ejecta depend on the electron fraction Ye. Assuming the

neutron star material is uncharged, this is given by Ye = np/(np + nn), where np

and nn are the number of protons and neutrons respectively (Burbidge et al., 1957).

Dynamical ejecta is heated by shocks, which leads to pair production. Hence this

component is relatively rich in electrons and have Ye ∼ 0.05 − 0.4. The disk ejecta

has lower Ye (Ascenzi et al., 2021). It must be noted that simulations show that the

electron fractions are sensitive to the collapse time of the merger remnant and the NS

equation of state (Metzger, 2019).

The dynamical ejecta, which has high Ye, and consequently relatively small neutron

fraction, forms elements with atomic masses A in the range 90 ≥ A ≥ 130. In
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particular, this ejecta does not produce lanthanides. The ejecta launched from the

equatorial plane, with lower Ye, can in principle form the entire range of r-process

elements, including the lanthanides (Ascenzi et al., 2021) (these determine the opacity

and hence colour of the emission, see below).

The radioactive decay heats the ejecta, powering an EM transient known as a kilonova

or macronova (Metzger, 2019). The kilonova signal peaks at IR/optical wavelengths.

The detailed properties of this emission, such as the peak time and colour depend on the

elements formed in the ejecta (which determine the opacity) and the observing angle. If

the observer is aligned with, or close to, the binary rotation axis, the kilonova emission

is dominated by the dynamical ejecta. Simple models (e.g Metzger (2019)) predict the

emission will peak around T ∼ 1 day in the R and I bands. This is known as the blue

kilonova. If the observer LOS is aligned close to the equatorial plane the emission is

dominated by disk material, which is rich in lanthanides. The abundance of transition

lines in the UV and optical suppresses the emission, delays the peak time and moves

the peak frequency towards redder wavelengths. Hence this component is known as

the red kilonova. In practice a mix of these components will be observed, depending

on their relative velocities and the viewing angle (Ascenzi et al., 2021; Fernández &

Metzger, 2016).

Kilonovae can be detected as a flux excess in the optical or near IR bands. The first

detected kilonovae was associated with sGRB130603B. This event presented excess

NIR flux, when compared to expectations from afterglow-only models, around 7 days

(Tanvir et al., 2013) and 9 days (Berger et al., 2013). Therefore an additional source

was needed to explain these observations. Modelling for this event showed the observations

were compatible with an ejecta of Mej ∼ 10−2 − 10−1 M� with velocity vej ∼

0.1 − 0.3c. Similarly, an optical and IR excess was detected in the follow-up of

sGRB160821 between 1 and 5 days. Modelling in this case showed that the excess

is well explained by a wind-driven ejecta with mass Mw = 10−2M� and a dynamical

ejecta Mdyn = 10−3M� with velocity vej ∼ 0.1− 0.15c (Lamb et al., 2019).
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6.4 The neutron star merger GW170817

On 17th August 2017, during their second operational run the aLIGO-aVirgo interferometer

network detected a signal which was found to originate from a neutron star-neutron star

merger. The total mass of the binary was found to be M = 2.74+0.04
−0.01M� (Abbott et al.,

2017c). This merger was the most precisely localized GW signal to date, constrained

to originate from an area of 28 deg2 in the sky, due to two factors. The first was the

proximity of the event (the distance inferred from the GW signal was 40+8
−14 Mpc). The

second was that aVIRGO did not detect the signal, which significantly limits the region

of the sky where it could originate from.

The precise localization allowed for a rapid search for associated electromagnetic

counterparts. A sGRB was detected by the space telescope Fermi, taking place 1.7

seconds after the binary coalescence (Abbott et al., 2017c). This event originated from

the galaxy NGC4993 at a distance of ∼ 40 Mpc, compatible with the localization

constraints of GW170817 (Valenti et al., 2017). The sGRB was uncharacteristically

weak. This particular feature was explained by considering the GRB was seen off-axis

at a large angle, and that the jet had to penetrate through a cocoon of ejecta surrounding

the merging site (Kasliwal et al., 2017; Gottlieb et al., 2018). It must be noted that the

sGRB was detected independently of the GW detection.

An EM transient, dubbed AT2017gfo, was detected around 11 hours after the merger

in the optical, NIR and UV (Soares-Santos et al., 2017). This transient faded rapidly,

peaking in the UV on the order of days and IR of a few hours (Abbott et al., 2017e;

Troja et al., 2018). This emission was found to be compatible with a kilonova produced

by an ejecta with mass Mej ∼ 0.05M� moving at subrelativistic velocities vej ∼ 0.1c

(Kasliwal et al., 2017; Cowperthwaite et al., 2017; Nicholl et al., 2017). The fast

evolution of this transient and its spectral features were key to link AT2017gfo to a

sGRB and discard the possibility of a long GRB originating from stellar collapse.

An extensive follow-up campaign ensued to obtain detailed observations of the event.

The GRB afterglow was detected ∼ 9 days later by in X-ray wavelengths by Chandra

(Troja et al., 2017). A radio counterpart was detected 16 days post-merger by VLA
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(Hallinan et al., 2017) and 110 days post-merger the optical component was found by

HST (Lyman et al., 2018), among other facilities. The afterglow presented an initial

rise roughly described by the power law Fν(t) ∝ t0.8 and after peaking at T ∼ 150

days began to decay as Fν ∝ t−ω, where ω ∼ 2 (Troja et al., 2019; Makhathini & et.

al, 2020). The afterglow was still detectable in X-rays at T ∼ 1000 days (Troja et al.,

2020). The rise of the light curve is attributed to the afterglow having been observed

off-axis and the jet structure (e.g Lyman et al. 2018; Troja et al. 2019; Lamb et al.

2019; Fong et al. 2019; Salafia et al. 2019; Lamb et al. 2019)

The extensive data set available for GW170817/AT2017gfo is unprecedented for a

single event (Makhathini & et. al, 2020). However, in principle the afterglow lightcurve

observations are compatible with several different physical origins, including different

structured jet models and choked jet scenarios in which the jet is not successfully

launched but instead heats up a (close to) isotropic cocoon of slow-moving ejecta

(Mooley et al., 2018). VLBI images of the afterglow obtained at T ≈ 75 days and

T ≈ 230 days were presented in Mooley et al. (2018), and an additional image at

T ≈ 207 days in Ghirlanda et al. (2019). The centroid of these images was found to

present apparent superluminal motion, which is expected for anisotropic, jet-like ejecta

(Gill & Granot, 2018; Mooley et al., 2018; Ghirlanda et al., 2019).

The combination of sGRB, kilonova, afterglow lightcurves and radio images allows

for a complete picture of the event to be constructed: after the GW inspiral, material

is ejected away from the central object. Rapid accretion onto the remnant powers

a relativistic jet which is launched through this material, heating and inflating it, and

forming a cocoon. The jet manages to drill through the cocoon, emerging and releasing

a sGRB. The synthesis and subsequent radioactive decay of r-process elements gives

rise to the kilonova emission, and the deceleration of the relativistic jet as it shocks the

CBM gives rise to the afterglow, visible from radio to X-ray wavelengths.



Chapter 7

GRB afterglow physics

Simple semi-analytic models have been useful to explain the main features of GRB

afterglows. In the simplest cases the dynamics is obtained by considering energy

conservation, and the jet evolution is described by a broken power law. More sophisticated

treatments can be used to better describe the transition between the relativistic and

Newtonian phases of the evolution.

In this chapter the physics of GRB afterglows is reviewed. Details of the dynamics

of jet expansion and radiation processes are discussed. Relativistic effects which also

significantly affect the observational properties of the afterglows are discussed.

7.1 Dynamics of GRB jets

Relativistic explosion in a cold ISM

Consider a spherical shell, with energyE, massM = E/Γ0c
2 expanding with an initial

Lorentz factor Γ0 into a cold and uniform circumburst medium (CBM) of particle

density n. The shell decelerates when a significant fraction of the kinetic energy is

given to the ambient material. If the shell expands up to a radius R, the CBM mass

swept-up by the shell is ∼ 4πnR3/3. Since it is shock heated and expanding with Γ0,

82
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the shocked material carries an energy of ∼ 4πnR3Γ2
0/3.

Equalizing the shock energy with the shell energy, the deceleration radius Rd is given

by

Rd ≡
(

3E

4πnmpΓ2
0c

2

)1/3

, Γ(R ≤ Rd) = Γ0. (7.1)

The shocked ambient material forms a blast wave and approaches the Blandford-Mckee

self-similar solution (Blandford & McKee, 1976). Conservation of energy leads to

E =
4

3
πmpnΓ2c2R3 =⇒ Γ(R > Rd) = Γ0

(
R

Rd

)−3/2
, (7.2)

Equation 7.2 holds while the shock is ultra-relativistic. As it decelerates, it leaves

this regime to become trans-relativistic and at late times Newtonian (e.g Kobayashi

et al. 1999), where the dynamics is described by the Sedov-Taylor solution (Taylor,

1950a,b).

To appropriately describe the evolution of the shock, and capture the transitions between

the different regimes, conservation of the full stress-energy tensor must be considered.

This approach was taken in Pe’er (2012), and for an adiabatic expansion leads to

dΓ

dm
= − γ̂(Γ2 − 1)− (γ̂ − 1)Γβ2

M +m[2γ̂Γ− (γ̂ − 1)(1 + Γ−2)]
, (7.3)

where β =
√

1− Γ2 is the velocity of the shock in units of c and γ̂ is the adiabatic

index of the fluid. In the relativistic and Newtonian limits the adiabatic index of an

ideal fluid is γ̂ = 4/3 and γ̂ = 5/3. When solving numerically solving equation 7.3 γ

is obtained using the procedure detailed in Pe’er (2012).

Lateral spreading of GRB jets

Because of the relativistic beaming effect, the radiation from a jet can be described

by a spherical model with an isotropic explosion energy E. The actual energy in

the jet with a solid angle Ω is given by (Ω/4π)E. This spherical model holds while
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Γ � 1/θJ , where θJ is the half opening angle of the jet, as the bulk of the system is

causally disconnected from its edge. As the jet decelerates, information about pressure

gradients, transported by sound waves, can reach the edges, forcing them to spread

laterally. This is expected to occur around the jet break, when roughly Γ ∼ 1/θj and

the initially anisotropic jet evolves towards being isotropic (Granot, 2007; Granot &

Piran, 2012).

The timescale on which the system approaches a spherical flow depends on the exact

details of the spreading, which are still uncertain. In particular, it has been difficult

to reconcile simple (semi-) analytic considerations (Panaitescu & Meszaros, 1999;

Panaitescu & Kumar, 2000) with the results of numerical simulations (e.g. van Eerten

& MacFadyen (2012)). The former predict in many cases very fast lateral spreading,

with an exponential growth in the jet opening angle after deceleration (Granot, 2007).

In contrast, hydrodynamics simulations indicate that the expansion is much slower,

not becoming significant until the blastwave has become mildly relativistic (Lyutikov,

2012).

Consider a uniform jet (i.e. with constant energy per unit solid angle ε and initial

Lorentz factor Γ0 throughout) with sharp-edges at θj . This is known as a top-hat jet

model. The simplest model of lateral expansion considers that the edges of the jet

spread at the local sound speed cs in the co-moving frame of the jet, so that the lateral

size of the jet R⊥ ≈ Rθj (θj � 1) evolves with radius as

dR⊥
dR
≈ θj +R

dθj
dR

= θj + cs
dt′

dR
, (7.4)

dR⊥
dR
≈ θj +

cs
cΓ
. (7.5)

Combining 7.4 and 7.5 yields a simple expression for the evolution of θj ,

dθj
dR

=
cs
cΓR

=⇒ dθj
dln R

≈ cs
cΓ
∼ 1

Γ
, (7.6)

where the last step approximately holds when the fluid is relativistic and cs ∼ c. It
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can be shown that this description leads to exponential growth of θj after Γ > 1/θj

(Granot, 2007; Kumar & Granot, 2003a; Granot & Piran, 2012).

As was discussed in Granot & Piran (2012) a more sophisticated, relativistic model

can be obtained by considering the shock jump conditions. In particular, the conditions

imply that the local velocity of the material behind the shock is perpendicular at any

point to the shock front (Landau & Lifshitz, 1987; Blandford & McKee, 1976; Granot

& Piran, 2012).

The shape of the shock front can be parametrized by a smooth curve r(ξ), where ξ is

an arbitrary parameter. Then a small change in position along r(ξ) can be expressed as

∆r = ∆rr̂ + r∆θθ̂, (7.7)

where r̂, θ̂ are unit vectors indicating the radial and polar angle directions. The tangent

vector to this curve is defined as

T ≡ dr

dξ
r̂ + r

dθ

dξ
θ̂ =

dr

dθ
r̂ + rθ̂,

where in the last step ξ = θ is set. In general, the shape of the shock front also depends

on time, hence r = r(θ, t). Therefore in the previous equation dr/dθ → ∂r/∂θ. The

instantaneous shock velocity is given by

v = vrr̂ + vθθ̂.

By definition the velocity and tangent vector of the shock front are perpendicular, v ·

T = 0, from where it follows that

βθ
βr

= −1

r

∂r

∂θ
. (7.8)

As was mentioned above, for any shock front the velocity of the material just behind it

β, as measured by the upstream (unshocked) observer, is normal to the shock front. If

n̂ is the unit vector normal to the front, then β̂ = β/|β| = n̂. The angle α between n̂
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and r̂ is given by cosα = n̂ · r̂ = β̂ · r̂. It follows that

tanα =
βθ
βr

= −1

r

∂r

∂θ
= −∂ ln r

∂θ
, (7.9)

where equation 7.8 was used in the second equality. Until equation 7.9 the analysis is

exact. The expression can be further simplified by considering that, as long as Γ� 1,

R ∼ βct. Therefore,

∂ ln r

∂θ
∼ ∂ ln β

∂θ
.

Now consider u ≡ βΓ. By definition, it follows that β = u/
√

1 + u2 and the right

hand side of the previous equation can be rewritten as

∂ ln β

∂θ
=

∂

∂θ

[
lnu− 1

2
ln (1 + u2)

]
=

1

1 + u2
∂ lnu

∂θ
.

Therefore, from the definition of u it follows that

∂ ln β

∂θ
=

1

Γ2

∂ lnu

∂θ
. (7.10)

Now, the u changes by a factor of∼ u from the centre to the edges of the jet (assuming

slow moving edges),

∂ lnu

∂θ
=

1

u

∂u

∂θ
∼ − 1

∆θ
.

Inserting this result in equation 7.10, and combining with 7.8 then

βθ
βr
∼ − 1

Γ2∆θ
. (7.11)

In the relativistic regime, Γ� 1, α� 1 and βr ∼ 1. Collecting these considerations,

βθ ∼
1

Γ2∆θ
≈ 1

Γ2θJ
, (7.12)

where in the last equality a top hat jet with half-opening angle θJ is considered. Now,
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considering that the lateral size of the jet is R⊥ ≈ RθJ , then

dR⊥
dR

=
dθJ
dR

+ θJ ≈ (θJ + βθ) (7.13)

and therefore

dθj
dR

=
1

Γ2θjR
=⇒ dθj

dln R
=

1

Γ2θj
, (7.14)

where in comparison with the previous case eq. 7.6 there is an extra factor of 1/Γθj

(Shapiro, 1979; Kumar & Granot, 2003b; Granot & Piran, 2012). Initially, while

Γθj � 1, this significantly suppresses lateral spreading, but after the jet break when

Γ ∼ 1/θj grows quickly (e.g. Granot & Piran 2012 and the next section).

For compactness, following Granot & Piran (2012), eqs. 7.6 and 7.14 can be summarized

as

dθj
dln R

=
1

Γa+1θaj
, a = 0, 1. (7.15)

For a uniform, isotropic CBM with particle density n the swept-up mass m by a

laterally spreading shell with half-opening angle θj at a radius R is given by

dm

dR
= 2πnmp

[
(1− cos θj)R

2 +
1

3
sin θjR

3dθj
dR

]
. (7.16)

The previous equation assumes that the jet is at all times a conical section of a sphere.

Dynamical evolution

Equations 7.3, 7.15 and 7.16 govern the evolution of Γ, θj and m respectively as a

function of the radius of the blast wave R. The time since the explosion as measured

in the progenitor’s rest frame is given by
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Figure 7.1: Diagram of the system set-up. A moving, synchrotron emitting source is moving
at a direction forming an angle θ with respect to the line of sight of a observer. The source
and observer are separated by a large distance DL. During the duration of the experiment, the
source moves a distance R� DL.

Eiso (ergs) Γ0 n (cm−3) θj,0 (deg)
5× 1051 100 10−3 10

Table 7.1: Simulation parameters for the example system discussed in section 7.1

tlab(R) =

∫ R

0

dR

βc
, (7.17)

The arrival time of photons emitted from a fluid element (emitter) at time tlab and

radius R is given by

T (R, θ) = tlab(R)− R

c
cos θ, (7.18)

where θ is the angle between the direction of motion of the emitter and the observer

LOS. T = 0 was chosen so that photons arrive at the observer at T = 0 if they were

emited at the moment of the explosion (tlab = 0, R = 0, see diagram 7.1).

To illustrate the typical jet evolution, the system with parameter set given listen in the

in table 7.1 is considered. In this section the on-axis case is assumed (θ = 0). The

dynamical equations 7.3, 7.15 and 7.16 are solved using a fourth-order Runge-Kutta

scheme. The radiusRwas discretized by uniformly sampling this variable in logarithmic

space. To ensure the dynamics were captured correctly the minimum value Rmin was

set to 10−2Rd. In what follows an on-axis observer (θ = 0) is considered. The
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Figure 7.2: Evolution of the opening angle θj in units of its initial value θj,0 for a top hat jet
model with parameters give by 7.1, and a = 1.

deceleration radius for these parameters is Rd = 4.3× 1017 cm, which corresponds to

Td ≈ 717s ∼ 10−2 days. Figure 7.2 shows the evolution of the opening angle θj in

units of its initial value θj,0. The opening angle initially grows slowly. By jet break,

when Γ ∼ 1/θj at T ≈ 10 days the opening angle has grown a factor of two. As the

swept-up mass m ∝ (1 − cos θ)R3, the spreading jet will accumulate slightly more

particles at smaller radii, which hastens its deceleration.

This is illustrated in figure 7.3, which shows the evolution of the R (left panel) and Γ

as a function of T . The solid blue line corresponds to a laterally spreading jet. The

red dashed line corresponds to the collimated case (constant θj = θ0) for comparison.

The collimated jet begins to overtake the spreading jet after tlab ∼ 0.1 days, and by

tlab = 100 days has a radius which is a factor of 2 larger than the spreading jet. The

evolution of the Lorentz factor in both cases is similar. After the initial coasting phase it

decreases as Γ ∝ T−3/8, as is expected for the relativistic Blandford-Mckee blastwave.

As the systems become mildly relativistic they move away from this scaling. After

T ≈ 10 days the evolution of the two systems separate. The spreading jet presents

a steeper decay until T ≈ 185 days, when its Lorentz factor begins to flatten as the

system approaches the Newtonian regime.
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Figure 7.3: Left panel: the shell radius R as a function of tlab. Right panel: evolution of the
Lorentz factor as a function of tlab. In both cases θ = 0. The dashed red curve corresponds to
a collimated jet, and the solid blue curves to a laterally spreading jet with a = 1.

7.2 Afterglow radiation physics

As was discussed in the previous section, as the shock expands it sweeps up and

heats-up the CBM particles. It is typically assumed that the CBM are accelerated

by a Fermi process in the shock to a power law distribution in the Lorentz factor such

that N(γe)dγe ∝ γ−pe . It is also assumed that γe ≥ γm, where γm is the minimum

Lorentz factor, and p > 2 (Sari et al., 1998).

The microphysics of the electrons is summarized in two equipartition parameters.

The first of these is the fraction of shock energy transferred to the electrons εe. The

shocked material has a particle density 4Γn and energy density 4Γ2nmpc
2 (Blandford

& McKee, 1976; Sari et al., 1998). With this, the total energy contained in the electrons

and the number density of electrons behind the shock can be written as

4Γ2nmpc
2εe =

∫ ∞
γm

γemec
2Nedγe ∝

∫ ∞
γm

mec
2γ−p+1
e dγe,

4Γn =

∫ ∞
γm

Nedγe ∝
∫ ∞
γm

γ−pe dγe



7.2. Afterglow radiation physics 91

whereme is the electron mass and the proportionality constant in the second step is the

same for both equations. Combining them and evaluating the integrals it is found that

γm = εe
p− 2

p− 1

mp

me
Γ. (7.19)

The second equipartition parameter is the fraction of the shock energy in magnetic

field energy density εB. The magnetic field intensity B behind the shock is (Sari et al.,

1998)

B2

8π
= εBe, (7.20)

where e is the thermal energy density, given by the jump conditions,

e =
γ̂Γ + 1

γ̂ − 1
(Γ− 1)nmpc

2 ≈ 4Γ2nmpc
2, (7.21)

where the last step holds for Γ� 1, as for a relativistic fluid γ̂ = 4/3. Therefore,

B =

[
8πεB

γ̂Γ + 1

γ̂ − 1
(Γ− 1)nmpc

2

]1/2
≈ (32πnmpεb)

1/2 cΓ. (7.22)

For the purpose of the numerical calculations presented in chapter 8 the full expressions

(after the first equality) where used for B and e.

Synchrotron power and spectrum

Synchrotron radiation is generated by the gyration of relativistic electrons around

magnetic field lines. The synchrotron power of a single electron received by an observer

at an angle θ is given by

P (γe) =
σT cB

2γ2eβ
2
e

6π
δ2, (7.23)

where βe = (1 − γ−2e )1/2, σT the Thompson scattering cross-section (Rybicki &

Lightman, 1985) and δ = [Γ(1−β cos θ)]−1 is the Doppler factor, which transforms the
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power from the fluid co-moving frame to that received by the observer. The spectrum

of a single electron is given P (ν) ∝ ν1/3 for ν < νsync and an exponential decay for

ν > νsync. The spectrum peaks at νsync, given by

νsync(γe) =
eBγ2e
2πmec

δ, (7.24)

The peak spectral power Pν,max is given by

Pν,max ≈
P (νsync)

νsync
=
σTmec

2β2
eB

3e
δ. (7.25)

The previous formulae is often simplified by setting βe ≈ 1 (e.g. (Sari et al., 1998),

Kumar & Zhang (2015)), which holds in the relativistic regime. In this limit and for

θ = 0 the Doppler factor becomes δ ≈ Γ.

The single-electron spectrum described above is modified if a significant fraction of the

particle’s energy can be lost via synchrotron radiation. This can be the case if γe > γc,

where γc is the Lorentz factor of electrons such that

Γγcmec
2 = Γ2P (γc)T =⇒ γc =

6πmec

σTΓB2T
, (7.26)

where T is the observer time given by eq. 7.18 for θ = 0. The associated synchrotron

frequency νc ≡ νsync(γc). Cooling adds a new arm to the synchrotron spectrum. If an

electron has γe > γc, it cools via the synchrotron process. The frequency will decrease

as ν ∝ γ2e and its energy as νe. Therefore, the spectral power varies as P ∝ ν1/2 in this

regime.

Similarly, the frequency associated with γm is νm ≡ νsync(γm). νc and νm are known

as break frequencies, as they separate branches of the spectrum. The total spectrum is

obtained by integrating over the electron Lorentz factor distribution. If γm > γc, case
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know as fast cooling, the flux is given by

Fν
Fν,max

=


(ν/νc)

1/3, νc > ν,

(ν/νc)
−1/2, νm > ν > νc,

(νm/νc)
−1/2(ν/νm)−p/2, ν > νm.

(7.27)

In the case γc > γm, known as slow cooling, the spectrum reads

Fν
Fν,max

=


(ν/νm)1/3, νm > ν,

(ν/νm)−(p−1)/2, νc > ν > νm,

(νc/νm)−(p−1f)/2(ν/νc)
−p/2, ν > νc.

(7.28)

Here Fν,max is the maximum synchrotron flux, given by

Fν,max =
NePν,max

4πD2
L

δ2, (7.29)

where Ne is the number of emitting electrons and DL is the luminosity distance to the

source. The factor δ2 in due to the relativistic beaming effect: the isotropic emission in

the electron co-moving frame is beamed into a cone of solid solid angle Ω = 4π/δ2 in

the lab frame (see section 7.3). Therefore with this it holds that Fν = δ3F ′ν′ , which is

consistent with the transformation of the Lorentz invariant specific intensity, for which

Iν/ν
3 = I ′ν′/ν

′3 (e.g. Rybicki & Lightman 1985).

7.3 Special relativistic effects

In the previous section the break frequencies and peak synchrotron spectral power

were obtained as measured by a stationary observer. In this section the relativistic

transformations used to obtain these formulae are justified.

Additionally, the apparent superluminal motion of relativistic sources is discussed.

This effect is especially important for the analysis of afterglow images (see chapter
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8).

Time dilation and the relativistic Doppler effect

Consider the situation illustrated in figure 7.1, which shows a stationary reference

frame K and and a frame K ′ moving towards it with velocity β = v/c and Lorentz

factor Γ. Elementary special relativity shows that a time interval ∆t measured in K

between two events is related to the interval ∆t′ in K ′ by ∆t = Γ∆t′ . Consequently,

photons radiated by an emitter which moves withK ′ of frequency ν ′s will have frequency

νs = ν ′s/Γ in K ′, where s indicates the source frequency (Landau & Lifshitz, 1980;

Rybicki & Lightman, 1985).

Therefore, as Γ ≥ 1, time dilation will redshift the photons. An additional effect

which must be accounted for is the change in photon arrival time due to the motion of

the source.

In the frame K the photon travels a distance equal to its wavelength λs = c/νs in a

time ∆t = 1/νs (one period of radiation). During this time the source will have moved

a distance d = v∆tcosθ towards the observer. The difference in arrival time ∆tA of

photons emitted from the source before/after the displacement is ∆tA = ∆t − d/c =

∆t(1− β cos θ). It follows that the frequency measured by the observer is

νr = ∆t−1A =
νs

1− β cos θ
=

ν ′s
Γ(1− β cos θ)

= δν ′s, (7.30)

where, as was discussed about, δ ≡ [Γ(1− β cos θ)]−1 is known as the Doppler factor

(Rybicki & Lightman, 1985). For simplicity, the subindex is dropped on the received

frequency, ν ≡ νr.

Relativistic beaming and the spectral flux

Relativistic beaming is a consequence of the relativistic velocity addition formula when

applied to photons (Einstein, 1905; Landau & Lifshitz, 1980; Rybicki & Lightman,
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1985). If the emission from the source in the previous discussion is isotropic in K ′,

in the K-frame it is beamed in the direction of motion of the source. In particular, if

photons are emitted at an angle θ′ with with respect to the x′-axis in K ′, then the angle

θ in K obeys

tan θ =
sin θ′

Γ(cos θ′ + β)
, cos θ =

cos θ′ + β

1 + β cos θ′
. (7.31)

For photons emitted in the perpendicular direction to β, that is, θ′ = π/2, it follows

that sin θ = 1/Γ. Therefore, the isotropic emission in K ′ is beamed into a narrow cone

of opening angle θ ∼ 1/Γ if Γ� 1.

This result is relevant for the spectral flux calculation, which is defined as

F ′ν =
1

D2
L

dE ′

dt′dΩ′dν ′s
, (7.32)

where DL is the luminosity distance between the source and the receiver. Hence the

previous formula gives the flux received by the observer as measured from K ′.

The energy is the time-like component of a four-vector. Therefore, it transforms to

the observer frame as dE ′ = dE/Γ(1 − β cos θ) = δdE ′ (Landau & Lifshitz, 1980).

As was discussed in the previous section, time and frequency have transform as dt′ =

δdt and dν ′s = dν/δ, hence dt′dν ′s = dtdν. The solid angle element is given by

dΩ′ = d(1 − cos θ′)dφ′ = sin θ′dθ′dφ′. From eq. 7.31 it can be shown that sin θdθ =

δ2 sin θ′dθ′, and as the azimuth angle φ = φ′ is Lorentz invariant, dΩ = dΩ′/δ2.

Therefore, the spectral flux in the observer frame is (Rybicki & Lightman, 1985)

Fν = δ3F ′ν , (7.33)

This result can be compared to 7.29
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Apparent superluminal motion

Consider the setup in 7.1. A stationary observer is required to measure the apparent

velocity of a mobile emitter. The true velocity β of the particle forms an angle θ with

respect to the observer line of sight LOS. If the distanceD between them is much larger

than the displacement of the emitter in the duration of the experiment, the stationary

observer will only measure motion in the plane perpendicular to its line of sight.

The emitter moves a distance ∆R = R2 − R1 = βc∆tlab in the stationary lab frame

in its proximity. The distant observer will measure a displacement ∆R sin θ. As the

source moves towards the observer, photons emitted at R2 have a shorter travel time

than those emitted at R2. Due to this, the distant observer measures a compressed time

interval ∆t = ∆tlab(1− β cos θ). Therefore, the apparent velocity of the source is

βapp =
∆R sin θ

c∆t
=

∆R sin θ

c∆tlab
=

β sin θ

1− β cos θ
, (7.34)

where β = ∆R/∆tlab by definition. If θ = 0 all of the motion is along the LOS of the

observer and no motion is observed. If θ = π/2, βapp = β, as all of the particles motion

is perpendicular to the LOS. It can be shown that the maximum apparent velocity is

achieved when cos θ = β, and βapp,max = Γβ. As Γ ≥ 1, βapp can be larger than 1, that

is, the observer can measure apparent superluminal motion. If the emitter is relativistic

β ∼ 1, then βapp ≈ Γ (Rybicki & Lightman, 1985) .



Chapter 8

Synthetic images of laterally spreading

GRB jets

Shortly after the detection of the binary neutron star merger GW170817 its EM counterpart

was discovered in the S0 galaxy NGC4993. This transient was subject to an unprecedented

follow-up campaign across the EM spectrum. The counterpart was found to be made

up of several components: a prompt sGRB detected 1.7s after the merger, a kilonova

and a broad synchrotron afterglow, first detected 9 days post-merger at X-ray wavelengths.

In addition to light curves, ubiquitously obtained for GRB afterglows, VLBI radio

images were also obtained. Mooley et al. (2018) presented radio images obtained 75

and 230 days post-merger. They found an image centroid displacement of ∼ 2.67 ±

0.2 mas in the sky, implying a mean apparent velocity of βapp = 4.1 ± 0.5. This

broke the degeneracy between a wide, quasi-isotropic ejecta and an isotropic narrowly

non-spreading jet, confirming the emission was dominated by the latter. This result

was further confirmed by further a radio imaged obtained at 207 days post merger,

reported in Ghirlanda et al. (2019).

VLBI images are also important for breaking degeneracies in parameter estimation

from light curves. As Nakar & Piran (2021) discussed, afterglow light curves observed

around their peak time Tp cannot constrain the observing angle θobs well. The width of

97
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the light curve peak can determine only the ratio of the observing angle θobs to the jet

opening angle (or core size for a structured jet dominated by the central elements) θc.

This leads to degeneracy among the parameters {θobs, θc, l, εB}, where l = (E/nmpc
2)1/3

is the Sedov length. It is known that the degeneracy can be broken by the observation

of afterglow images (the centroid shift around the peak time) or the decay index of the

late time afterglow light curve (the transition to the Newtonian phase) (Nakar & Piran,

2021).

In this chapter we discuss the properties of synthetic radio images of merger jets.

The images are obtained using the semi-analytic formalism presented in chapter 7.

We consider laterally spreading/non-spreading jets to evaluate the afterglow images.

The results are applied to a GW170817-like system. We explicitly show how the

combination of afterglow light curve and image observations can break the degeneracy.

Implications for determination of the Hubble constant H0 are also discussed.

8.1 Description of the numerical model

8.1.1 Discretization of the system

We consider an axis-symmetric jet and assume that all jet and shocked ambient material

is confined to an infinitely thin surface (this is known as the thin-shell approximation).

The jet is initially a polar region of a sphere with half opening angle θJ . In general

the jet will deviate from this shape at late times as different regions can have different

initial velocities.

Figure 8.1 shows the coordinate system used to describe the jet. It is chosen so that the

z-axis coincides with the jet symmetry axis. Without loss of generality we can assume

that the observer’s LOS is contained in the yz-plane.

For numerical purposes the jet is divided into a single central spherical cap and n − 1

rings centered on the jet axis. The central spherical cap is labelled with k=0, and the

concentric rings by k = 1, 2, ..., n − 1. The spherical cap has a polar angle θb,1, and
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Figure 8.1: Reference frame used for the numerical calculations. The origin of the reference
frame is taken to be the explosion locus. The jet symmetry axis coincides with the z-axis.
Coordinates in the imagine plane are denoted by x̃ and ỹ

the k-th ring is bounded by two concentric circles on the sphere with θb,k and θb,k+1

given by

θb,k = 2 sin−1
(
k

n
sin

θj
2

)
. (8.1)

The spherical cap is regarded as a single region, and the k-th ring is divided in the

azimuth direction φ into 2k+1 equal size regions (see figure 8.2. for the case of n = 3)

with boundaries φkl = 2πl/(2k + 1), where l = 0, 1, ... k. This division yields a total

of
∑n−1

k=0(2k + 1) = n2 regions each subtending a solid angle of 2π(1 − cos θj)/n
2.

Having divided the jet, the positions of the regions are defined by the radius R and the

angles (θk, φkl), where θk = (θb,k + θb,k−1)/2, φkl = (φkl + φkl−1)/2. The coordinate
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Figure 8.2: Illustration of the jet partition, projected onto the xy-plane, for the simple case of
n = 3.

vector rkl (xkl, ykl, zkl) of the fluid elements kl has components
xkl = R sin θk cosφkl,

ykl = R sin θk sinφkl,

zkl = R cos θk.

(8.2)

Given a set of initial conditions, these components only evolve radially in the case of

a non-spreading jet. For a laterally spreading jet the angles θk also evolve as we will

discuss in section 8.2.

8.1.2 Construction of light curves and synthetic images

To obtain light curves we use the procedure outlined in Lamb & Kobayashi (2017)

and Lamb et al. (2018). Consider an observer located in the yz-plane with the LOS

forming and angle αwith respect to the jet-axis. The direction along the LOS is defined

by the unit vector n̂obs = sinαŷ + cosαẑ. The angle between the observer and the

direction of motion of the fluid element rkl, for a non-spreading jet, is given by αkl =

cos−1 (rkl · n̂obs). The contribution of this cell to the light curve at time T is obtained

by inverting equation 7.18 to obtain the observed radius Rkl(T ), which determines the

emission with the formalism detailed in chapter 7. For a laterally spreading jet the fluid

element also has sideways expansion velocity. However, the lateral velocity is much
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smaller than the radial velocity. The Doppler factor is evaluated by using the radial

motion. The light curve is obtained by adding up the contribution of each individual

fluid element, i.e. Fν(T ) =
∑

k,l Fν,kl(T ).

The imaging plane is perpendicular to the LOS of the distant observer, and is defined

by n̂obs. Two mutually perpendicular directions in this plane are given by the basis

vectors ˆ̃x = sinαẑ − cosαx̂, ˆ̃y = x̂, where the tildes indicate vectors in the imaging

plane, as seen by an observer off-axis. This basis chosen so that the principal jet moves

moves in the positive x̃-direction in the imaging plane. Having defined the unit vectors

in the imaging plane, the coordinates of the fluid elements in the image are given by

x̃kl = rkl · ˆ̃x, ỹkl = rkl · ˆ̃y. This geometry is detailed in figure 8.1. The specific intensity

or brightness of a given fluid element is obtained from the spectral flux as

Iν,kl(T ) =

[
D

Rkl(T )

]2
Fν,kl(T ), (8.3)

where D is the luminosity distance to the source.

8.1.3 Jet structures

Full hydrodynamics simulations show that when a merger jet needs to drill through

surrounding ejecta, the emerging jet has a specific structure in energy and Lorentz

factor distributions (De Colle et al., 2012; Xie et al., 2018; Gottlieb et al., 2020). These

structures affect the time evolution and shape of afterglow light curves (e.g. Granot

et al. 2002; Wei & Jin 2003; Zhang & Meszaros 2002; Rossi et al. 2004; Granot &

Kumar 2003; Salafia et al. 2015; Lamb & Kobayashi 2017; Beniamini et al. 2020).

Here we consider the Gaussian jet model. This is characterized by a core with semi-opening

angle θc, within which most of the energy is contained. The energy per unit solid angle

and initial Lorentz factor distributions are
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ε(θ) = εce
−θ2/α1θ2c

Γ0(θ) = 1 + (Γc − 1)e−θ
2/α2θ2c ,

(8.4)

where the values α1 = 1, α2 = 2 are assumed (Resmi et. al 2018, Lamb et. al 2018).

For these coefficients the deceleration radius Rd does not depend on θ. The structure

is imposed as initial conditions for the dynamics.

8.1.4 Implementation of lateral spreading for structured jets

From equation 7.5 it can be seen that the degree of lateral spreading depends on the

Lorentz factor of the jet and that spreading becomes significant when Γ ∼ 1/θJ . To

include this effect in the dynamics of a top-hat jet equation 7.5 is simply applied for

the edges and the spreading is applied to each fluid element, as was shown in chapter

7.

For structured jets the implementation is slightly more complex. The initial conditions

are given as a function of θ by equations 8.4, and the discretization described above

divides the jet into rings of constant ε(θk), Γ0(θk). Each of these rings has slightly

different dynamical evolution. Each ring is assumed to be part of a top hat with

initial opening angle θb,k+1. Neglecting the interaction between rings, the dynamical

evolution of each ring, including the spreading effect, is approximated by using the

top-hat jet model. Similar approaches have been considered in previous studies including

Lamb et al. (2018) and Ryan et al. (2020).

8.2 Synthetic radio images of GRB afterglows

Recently 2D (Granot et al., 2018) and 3D hydrodynamics models (Zrake et al., 2018)

have been used to obtain synthetic images in the context of the NS merger event

GW170817. Semi-analytic models have been used extensively for light curve calculation,
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both for simple top-hat jets and diverse structured jets. Lateral spreading is generally

introduced in semi-analytic models by assuming a simplified model, such as the formalism

presented in Granot & Piran (2012). Ryan et al. (2020) and Lamb et al. (2018)

take similar approaches, modelling this feature as sound-speed expansion of the jet

edges. However, the application of semi-analytic models to imaging in the literature

is generally limited to non-spreading jets. Semi-analytic imaging was presented in

Gill & Granot (2018) for Gaussian and power law structured, non-spreading jets. In

Lu et al. (2020) a semi-analytic effective 1-D formalism is presented for which lateral

spreading is derived by considering momentum conservation and pressure gradients.

In this paper the authors show the evolution of the numerical grid points, but explicit

imaging is not provided.

Following Granot & Piran (2012), lateral spreading begins after the jet expands to a

radius R = Rd. Once the solid angle of the jet increases, the jet decelerates faster.

The effect of lateral spreading is not significant in the rising part of the light curves.

However, the light curve peaks earlier for laterally spreading jets. The decay index

after the peak depends on the lateral spreading.

In this chapter the synthetic radio images of laterally spreading GRB jets are obtained

using the semi-analytic model which is described in the previous chapter. The deceleration

of the jet is caused by mass build-up on the shock shell and is governed by equation

7.3. The swept-up mass is given by 7.16. The evolution of the opening angle is given

by 7.15, with a = 1.

Radio imaging has been proposed as a tool to break the degeneracy between radial and

angular structured jets (Gill & Granot, 2018) or between isotropic and jet-like ejecta

(Mooley et al., 2018). In particular, obtaining the image centroid, defined as the surface

brightness-weighed centre of the image,

x̃c =
1∫

Iνdx̃′dỹ′

∫
x̃′Iνdx̃

′dỹ′, (8.5)

was key for this purpose. For spherical blast waves the centroid does not move x̃c = 0.

This is also the case for jets observed exactly on axis (when the LOS runs exactly
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E (ergs) Γ0 n (cm−3) θc,0 (deg) θj,0 (deg) εe εb p
5× 1051 100 0.01 3 20 0.1 0.01 2.16

Table 8.1: Jet parameters used to illustrate the properties of synthetic radio images.

along the jet axis). For jets observed off-axis, at early times x̃c moves in the principal

jet direction. For relativistic jets we could observe the superluminal motion of the jet

in the sky.

To illustrate this, consider a typical jet with parameters given in table 8.1 (e.g. Lamb

& Kobayashi 2017; Zrake et al. 2018). Figure 8.3 shows the light curves obtained

for α = 0◦, 20◦ , 30◦ and 45◦. The on-axis light curves are very similar for the

non-spreading (left panel) and spreading cases (right panel), with the latter presenting a

slightly dimmer peak. For the off-axis cases, the light curves obtained for the laterally

spreading jet show a slightly faster at early times, an earlier peak time and a faster

asymptotic decay. The early brightening is due energy spreading to the wings of the

jet, which are closer to the observer LOS. The steeper decay after peak time is again

due to lateral spreading transporting energy away from the core (Lu et al., 2020). The

peak times for the non-spreading case are Tp ≈ 1.4, 33, 97 and 284 days, and for

the spreading-jet Tp ≈ 0.8, 20, 51 and 122 days (for α = 0◦, 20◦ , 30◦ and 45◦

respectively).

Figure 8.4 shows synthetic radio images of the afterglows for α = 20◦ from the jet axis,

at times T = 44, 75 and 230 days after the initial explosion. The surface brightness in

each image is normalized to the mean brightness Iν,mean, with the colour map covering

the range 0.01Iν,mean − Iν,mean. The red crosses indicate the position of the centroid

in each image. Note that distances in the imaging plane scale with distance as 41.3

Mpc/D. The counter-jet does not appear in the images as its brightness falls below the

brightness threshold.

In the non-spreading case (left column) the principal jet always moves in the positive

x̃-direction (the counter-jet moves in the opposite direction but is not shown in the

figure), leaving the explosion origin behind (x̃ = 0) in the imaging plane. The images

resemble a sliced ellipsoid, and present a gradual decrease in brightness from front
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(right-most edge) to back (left-most edge). The extension along the x̃-direction is

around 2− 4 times that along ỹ. In contrast, the morphology of the laterally spreading

jet images is much closer to circular, as they present excess (reduced) growth along ỹ

(x̃). In both cases the counter jet can be seen at T = 230 days. In the non-spreading

case as a small, round feature close to the explosion origin. In the spreading case as an

excess brightness, as lateral spreading leads the principal jet to overlap the counter jet

in the imaging pane.

Figures 8.5 shows images for the same times corresponding to α = 30◦. In this case

the morphological and structural properties are similar to those found for α = 20◦.

The images for α = 45◦ are presented in figure 8.6. The non-spreading jet images

(left column) are initially rounder, with the asymmetry developing later on, as can be

seen for T = 230 days. The laterally spreading images (right column) are flatter, and

a structure similar to the previous cases develops by T = 230 days, when a dim ring

encircles a central bright section. In contrast to the previous two laterally spreading

cases, the principal and counter jets do not overlap at T = 230 days for α = 45◦.

In addition, lateral spreading also causes the fluid elements to rotate around the origin

of the imaging plane. When the jet-opening angle has matched the observing angle,

θj = α, the apparent motion of the outermost components is in the negative x̃- direction.

This gives rise to the features described in following sections, such as the centroid

motion reversal.

8.2.1 Evolution of the centroid of jet images

The difference in the dynamical evolution of the two cases (non-spreading and spreading)

results in significantly different evolution for the centroid shifts. This is illustrated in

figures 8.7-8.9. In figure 8.7 the evolution of the image centroid is shown for jets

observed at angles α = 20◦, 30◦ and 45◦. For the non-spreading jet the centroid

quickly moves away from the explosion point in the sky. As the jet decelerates so

does the apparent motion of the centroid. At very late times (T ∼ 1000 days in all

three cases), the centroid reverses its motion. The evolution in the case of the laterally
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Figure 8.3: Light curves for a Gaussian jet obtained at frequency ν = 5 GHz for a
non-spreading jet case (left panel) and a case which includes lateral spreading (right panel).
The light curves correspond to an on-axis observer (solid blue lines), and observers at α = 20◦

(orange dashed lines), α = 30◦ (green dashed-dotted lines) and α = 45◦ (red dotted lines).

spreading jet is similar, but the maximum displacement of the centroid is reached much

earlier, at T ∼ 340, 335 and 330 days for α = 20◦, 30◦ and 45◦ respectively. By these

times, the light curve fluxes decrease by a factors of ∼ 180, 45 and 7 for the spreading

jet. The centroid position continues to move backwards and crosses x̃ = 0. The

centroid motion reverses once more and asymptotically approaches x̃ = 0 after several

thousand days.

The centroid behaviour here described for the non-spreading case can be compared to

other semi-analytic calculations. In Gill & Granot (2018) semi-analytic simulations

of non-spreading jets are presented for several structures, including Gaussian jets,

power-law jets and quasi-sperhical ejecta. In this work the authors use the fluxes

of the individual fluid elements, instead of the surface brightness, as weights in the

centroid calculations. The two approaches were compared using the model described

this chapter and the parameters reported in Gill & Granot (2018) for the Gaussian

jet. The flux-weighted and brightness-weighted calculations agree until the centroid

displacement of the latter approaches peak displacement. The flux-weighted centroid

displacement peaks later (at T ≈ 4700 days post-merger for the flux-weighted calculation
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Figure 8.4: Radio images (ν = 5 GHz) at times 44, 75 and 230 days after explosion for an
observer with line of sight at α = 20◦ from the jet axis and a distance of D = 41.3 Mpc from
the source. The left and right columns are for non-spreading and spreading jets respectively.
The images are normalized to the mean brightness Iν,mean in each frame, with a background
threshold set at 0.01Iν,mean. The red crosses mark the position of the image centroid.
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Figure 8.5: The same as figure 8.4 for α = 30◦.
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Figure 8.6: The same as figure 8.4 for α = 45◦.
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Figure 8.7: Evolution of the image centroid position x̃c as a function of observer time T and
observing angle α (blue: α = 20◦, orange: α = 30◦, green: α = 45◦). The solid lines are for
a non-spreading jet and the dashed lines for a laterally spreading jet.

in contrast to ≈ 2500 days when surface brightness is used).

The results presented for α = 20◦ were also compared with the model in Ghirlanda

et al. (2019) (private communication with Ohm Salafia, January 2021). While the

surface brightness distributions are rather different, the centroid displacements in this

case are ∼ 10% smaller than those reported in this chapter. The differences are due

to the model in Ghirlanda et al. (2019) using a Blandford-Mckee profile for each fluid

element, resulting in an extended shell, in contrast to the thin-shell approximation used

here.

To explain the origin of this behaviour the contributions to x̃c of the principal and

counter jets to the centroid are separated in figure 8.8 (orange and green dashed lines

respectively). The solid, blue line shows the overall centroid evolution for comparison.

Initially, the contribution of the principal jet dominates. The counter-jet is beamed

away from the observer, resulting in a comparatively weak flux and negligible contribution

to the calculation at early times. In the non-spreading case (bottom panel), when the
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Figure 8.8: Position of the image centroid x̃c (solid blue curve) as a function of time T for a
non-laterally spreading jet (left column) and laterally spreading jet (right column). The top,
middle and bottom rows are obtained for observers at α = 20◦, 30◦ and 45◦ respectively. The
brightness-weighted contribution of the principal jet (dashed orange curves) and counter jet
(dashed green curves) are also shown.
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Figure 8.9: Apparent velocity of the centroid in units of c. Solid lines correspond to
non-spreading jets, dashed lines to laterally spreading jets.

principal-jet decelerates sufficiently the counter-jet contribution becomes relevant and

the centroid motion reverses. At very late times T ∼ 1200 days the principal jet

centroid also reverses its motion as the jet decelerates, the emission region becomes

closer to homogeneous and the centroid approaches the geometric centre.

Two factors contribute to the earlier onset of centroid motion reversal for laterally

spreading jets. As in the previous case, the motion of the counter jet contributes to the

reversal, but this happens at much earlier times. In addition, when the edges of the jet

expand to θJ > α, the emission approaches that of an on-axis system. For images of

on-axis jets, x̃c = 0, as the emission is isotropic in the imaging plane. When θJ >

α, part of the shell begins to move backwards in the imaging plane. Consequently,

the expansion becomes less anisotropic, which slows down the principal jet centroid

displacement and eventually also contributes to the reversal.

In figure 8.9 apparent velocity of the centroid in units of c, βapp, is shown as a function

of T . For all cases considered the centroid displacement is initially superluminal,

βapp,c > 1. The apparent velocity presents a much steeper decrease in the case of
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θobs βapp (coll./spread.) Inferred ∆θ (coll./spread.) % error
20◦ 3.5/4.2 16◦/14◦ 6% / 15%
30◦ 2.4/2.7 22◦/21◦ 15% / 22%
45◦ 1.5/1.6 3◦/32◦ 21% / 24%

Table 8.2: Angles ∆θ = θobs − θc inferred from the apparent velocity of the radio image
centroid at light curve peak time.

laterally spreading jets. The threshold βapp < 0 corresponds to the reversal of the

centroid motion, which in all cases peaks at subluminal velocities. After becoming

negative, the velocity asymptotically approaches βapp → 0 as both the principal and

the counter jet decelerate (this is not shown in the figure for the non-spreading jets).

The apparent velocity of the centroid at the peak time of the light curve has been

used to estimate ∆θ ≡ θobs − θc (e.g. Mooley et al. 2018; Nakar & Piran 2021). A

relativistic point-particle moving at at angle ∆θ with respect to the LOS of a distant

observer has maximum apparent velocity for β = cos∆θ, when βapp = βΓ ≈ Γ.

The light curve peaks when for the core Γ ∼ 1/∆θ, i.e. when the beaming cone

of the core fluid elements has expanded to the LOS. Therefore, if the apparent core

velocity is taken to be the centroid velocity, at peak time βapp ∼ Γ. The apparent

velocity can still be used when the system is only mildly relativistic as the previous

result can be written as βapp = Γβ = β/(1 − β2)1/2, from where it follows that

β = cos ∆θ = βapp/(1 + β2
app)

1/2 (note that here Γ and β refer to the core values).

According to these analytic estimates, at the peak time of the light curve Tp, βapp ≈

3.3, 2.0 and 1.1 for the jets viewed at θobs = 20◦, 30◦ and 45◦ respectively. The values

of βapp found from the images and the inferred θobs are shown in table 8.2. The values

of βapp found are larger than those expected from the analytic estimates. This implies

that ∆θ is underestimated by this calculation. The percentage errors are also provided

in 8.2. The error incurred increases with the inclination θobs. This is to be expected as

for larger inclinations the extended wings of the jet contribute more to the calculation,

and the motion will differ more than that of a true point emitter.
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8.2.2 Image structure

The centroid is a robust characteristic of a jet image which can be relatively easily

obtained from observations. For brighter jets it might be possible to carry out more

detailed analysis to obtain other properties, such as the lateral extension or a measure

of the anisotropy of the jet, and better characterize the jet properties.

To illustrate this figure 8.10 shows the vertical mean surface brightness distributions

for the principal jet (which dominates at early times), defined as

Iν,mean(x̃) =

∫
Iν(x̃, ỹ)dỹ

∆ỹ
, (8.6)

at times T = 44, 75 and 230 days after the explosion. The top, middle and bottom rows

correspond to α = 20◦, 30◦ and 45◦ respectively. A brightness threshold Iν/Iν,mean ≥

0.01 was set in each image.

The distributions trace the morphology of the full images in figure 8.4. For α = 20◦

and the non-spreading jet (left column), the edges of the distribution increase from

the rear edge to the front edge and present a small dip. The distributions move to

larger x̃, following the motion of the images. The non-spreading jet distributions for

α = 30◦, α = 45◦ present similar behaviour. In particular, the dip is only present in the

T = 75 and T = 230-day distributions for α = 30◦, and is not clearly discernible for

α = 45◦. For the laterally spreading jets (left column), in addition to the forwards bulk

motion the rear edge can also move in the negative x̃-direction, and the distributions

overlap each other.

These results indicate that lateral spreading introduces distinguishable features in the

distributions from the non-spreading case. In particular, if an extension of the distribution

edge against the forward motion of the jet is observed this would constitute a sign of

lateral expansion as it would require θJ > α. However this would also require the

event to be bright enough, as the time at which this feature becomes apparent increases

with α.

Figure 8.11 shows the full width at half maximum (FWHM) along the ỹ-direction, as
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measured at x̃ = x̃c. The case of the non-spreading jet presents modest growth event at

late times as the expansion of the jet is preferably along x̃. As lateral spreading leads

to significantly enhanced growth in ỹ, the FWHM grows much faster, roughly as the

physical size of the image in the sky.

8.3 Breaking degeneracy with VLBI images

GRB afterglow light curves have served as powerful tools to understand the jet physics.

However, as we have discussed there is degeneracy among the system parameters.

Consequently, a given light curve can be compatible with a wide range of models, with

varying micro- and macrophysical parameters, type of structure (radial or angular) or

synthetic structures (for example top hat, Gaussian or power law jets).

As was discussed in Nakar & Piran (2021), the main features of the afterglow light

curves (i.e. peak time/width) can give constraints only on the angle ratio θobs/θc, but

not on these angles individually.

The light curve peaks when the jet decelerates so that the core becomes visible to the

observer. This happens when Γ∆θ ∼ 1, where the Lorentz factor of the core depends

on the Sedov length l ∼ (E/nmpc
2)1/3 of the core (the Sedov length is the radius at

which a spherical blast would have swept up a rest-mass energy equal to the isotropic

equivalent energy of the explosion, e.g. Piran 2005). The peak time satisfies

Tp ∝ l∆θ2. (8.7)

Unless there is an additional constraint on l, we can not determine the angle ∆ by using

the peak time Tp. Since the peak flux depends on additional unknown microphysics

parameters,

Fν ∝ εp−1e ε
(p+1)/4,
B (8.8)

the peak flux also does not provide a useful constraint on the angles (Nakar & Piran,
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Figure 8.10: Lateral ỹ-averaged brightness distributions for T = 44, 75 and 230 days (blue,
orange and green). Left column: non-spreading jet. Right column: laterally spreading jet. The
top, middle and bottom rows are for α = 20◦, 30◦ and 45◦ respectively.
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Figure 8.11: Vertical extent of the radio images, defined as the full width at half maximum
(FWHM) in the ỹ-direction at x̃ = x̃c. The solid lines are for a non-spreading jet, the dashed
lines for a laterally spreading jet.

2021).

The light curve peaks when Γ(Tp)∆θ ∼ 1 is satisfied. The light curve decay becomes

similar to the one seen by an observer that is along the jet axis when the whole jet core

becomes visible to the observer, when it holds that

Γ(Tp + ∆Tp)(θobs + θc) ∼ 1. (8.9)

For an on-axis observer the Lorentz factor of the emitting region decays as a power-law

Γ ∝ T−k, where k ∼ 1/2. The peak width satisfies the following relation:

Tp + ∆Tp
Tp

=

[
Γ(Tp + ∆Tp)

Γ(Tp)

]−1/k
=

[
1 + θc/θobs
1− θc/θobs

]−1/k
. (8.10)

For a given jet core, a larger viewing angle results in a narrower peak. Afterglows

with different core and viewing angles produce a similar peak width if they have

the same angular ratio θobs/θc. This implies very different physical conditions can
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E (ergs) Γc εe D (Mpc) p
1052.4 300 10−1.4 41.3 2.16

n (cm−3) εB θc (rad) θJ,0 (rad) θobs (rad)
Model 1 1.7× 10−5 0.04 0.05 0.16 0.23
Model 2 4.8× 10−5 0.02 0.06 0.19 0.28
Model 3 1.7× 10−4 0.008 0.07 0.23 0.33
Model 4 4.8× 10−4 0.004 0.08 0.26 0.37
Model 5 1.2× 10−3 0.003 0.09 0.30 0.42

Table 8.3: Simulation parameters. Top table: parameters which are constant in the models.
Bottom table: parameter which vary from model to model following the analytic scalings
described in section 8.3.

result in almost identical light curves. To illustrate this, five different Gaussian jets

are considered, with parameters given in table 8.2. The model spans two orders of

magnitude of n and one of εB, and are chosen to roughly match radio (ν = 3 GHz)

data for the afterglow of the NS merger GW170817. The light curves are shown in

figure 8.12. At peak time the light curves are indistinguishable and remain identical

until well after Tp.

The properties of radio images depend directly on the geometry and dynamics of the

shock, and in particular on the apparent size of the emitting region. As was discussed

in the previous section, the apparent velocity of the image centroid can be used to

estimate ∆θ. Therefore these observables provide an avenue to distinguish between

models. Figure 8.13 shows radio images obtained for models 1 − 5 at 75 and 230

days (the days for which VLBI images for GW170818 were reported in Mooely et. al

2018), and around the peak time at 150 days.

In this case the model images also present a brightness distribution which decreases

gradually from front to back. Note that the morphology is constant up to scaling of

the image size in the sky for the different models. The position of the centroid in

each image (red crosses) and the displacement with respect to the position at 75 days

(solid red lines) are also shown. At 75 days the centroid calculation is dominated by the

leading bright point in the image. As lateral spreading slows the radial expansion of the

wings of the shell the centroid falls behind the front of the image, which can be seen in

the images for 150 and 230 days post-merger. The values of the centroid displacement
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Figure 8.12: Synthetic light curves for GW17017-like systems obtained using the parameters
in table 8.3. Data points for 3 GHz VLA observations (from Makhathini & et. al (2020)) are
shown as black circles.

between T = 75 days and T = 230 days, and the apparent velocity computed as

βapp = ∆xc/c∆T are reported in table 8.4. The angle ∆θ is also computed from βapp

using the point particle approximation as θobs ≈ β−1app + θc. In this case the analytical

results provide a much better estimate of the inclination, with deviations of the order

of a few percent.

The observed centroid displacement obtained from VLBI imaging between 75 and 230

days post-merger, as reported in Mooley et al. (2018), is shown for comparison (green

solid lines delimited by crosses). They found a centroid displacement of 2.7 ± 0.3

mas, equivalent to an apparent velocity βapp = 4.1 ± 0.5. Figure 8.13 quickly shows

how radio imaging can be used for parameter inference, even in cases when the point

particle approximation cannot related βapp and ∆theta accurately. While the details of

the morphology of the images is the same for all models, the evolution of the centroid

is determined by growth of the emitting region, which in turn is related to how fast the

shock can expand. For example, model 1 (5) encounters the least (the most) resistance
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from the surrounding medium as the density is the lowest (highest) in the set. Visual

inspection shows that model 1 (5) results in excess (too little ) centroid displacement to

be compatible with observations. Models 2, 3 and 4 provides a centroid displacement

in agreement within error with the observational value. More fine analysis would lead

to tighter constraints on θobs independently of any other approximations or assumptions

on the properties of the system except those made to calculate the model (e.g. without

the point particle approximation on the centroid motion). As the degeneracy is generated

by sets of appropriately scaled parameters, determination of θobs automatically puts

constraints on the full set {θc, θobs, n, εb}, given a set of fixed parameters like that in

table 8.3.

The two methods described above make it possible to break the degeneracy in the light

curves using two radio images. Figure 8.14 shows the centroid evolution for each of

the five models. The x̃c−T curves do not overlap as long as the centroid does not move

backwards. Given a well localized explosion locus, in principle a single radio image

and the corresponding centroid position can provide enough information to distinguish

the model parameters {θc, θobs, n, εb} which best agree with observations. In all cases

the curves behave as broken power-laws xc ∝ Tα. It is found that α ≈ 0.85 provides a

good fit until the light curve peak time T ∼ 150 days (dashed lines in the figure), and

to a lesser degree α ≈ 0.4 from thereon until T ∼ 2000 days (not shown in the figure).

If the images are obtained around or after the time of the peak centroid displacement it

is possible that one of the images may correspond to a time when the centroid has

reversed its motion. This could in principle affect the parameters estimated from

images. Hence three images could be needed to ensure that the correct phase of

the centroid displacement (that is, forward or reverse) is identified. In the case of

GW170817 the third image presented by Ghirlanda et al. (2019), obtained at 207 days

post-merger confirms that the centroid has not reversed its motion.

For the GW170817-like models discussed in this section we find from figure 8.14 that

the centroid continues to move away from the explosion locus until long after the light

curve peak time Tp. This also holds for the models considered in section 8.2.1. It can

be expected that in similar situations the centroid forward motion will continue until
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∆xc (mas) βapp ∆θ (rad) % error
Model 1 3.7 5.6 0.22 4%
Model 2 3.1 4.7 0.27 4%
Model 3 2.6 4.0 0.32 3%
Model 4 2.3 3.5 0.37 0.5%
Model 5 2.0 3.1 0.41 2%

Table 8.4: Observable parameters extracted from the synthetic radio images shown in 8.13.

long after Tp. As the centroid displacement is most interesting for parameter estimation

when obtained around peak time, information from two images should be sufficient, in

most cases, to break light curve model degeneracies.

8.4 Discussion and conclusions

GRB jets have been studied extensively in the literature with varying degrees of detail.

Semi-analytic models have been particularly successful in modelling light curves of

GRB afterglows. This type of model often assumes a non-spreading jet, with fixed

opening-angle and purely radial expansion. However, different physical or analytic

arguments, later confirmed by hydrodynamics simulations, suggest that the opening

angle of the jet should also grow. In particular, it is expected that this feature should

become especially relevant around the light curve peak time, when the jet has decelerated

significantly.

VLBI radio images have recently proven to be important tools to determine whether

a successful, narrow jet was launched after the neutron star merger GW170817, or

whether some form of wide-angle outflow was responsible for the afterglow. In addition,

radio images have be proposed as a complementary observable to afterglow light

curves which can break degeneracies in afterglow models.

In this chapter the properties of synthetic images of both non-spreading and laterally

spreading jets are studied. The images were calculated using a semi-analytic code built

on the dynamics described in Pe’er (2012) and the lateral spreading description from

Granot & Piran (2012).



8.4. Discussion and conclusions 122

Figure 8.13: Synthetic radio images corresponding to the degenerate light curves in figure
8.12. The rows correspond to models 1 − 5 respectively. The left, central and right columns
correspond to times T = 75, 150 and 230 days. The centroid positions are shown with red
crosses, and the centroid displacement with respect to T = 75 days are shown with red lines.
The centroid displacement reported in Mooley et al. (2018) is shown with green lines.
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Figure 8.14: Centroids of the images for models 1− 5. The dashed lines are for power-law fits
x̃c ∝ t0.86. The color scheme is the same as in figure 8.13.

The most robust quantity which can be obtained from images is the brightness-weighted

image centroid. The time evolution of this quantity is characterized in detail. It

is found that it initially moves away from the explosion locus reaching a maximum

displacement, and then is reversed. This effect happens much earlier in the case of

laterally spreading jets than non-spreading jets due to the faster deceleration of the

shock. The broad details of the centroid evolution are found to be consistent with

that of other semi-analytic (Gill & Granot, 2018) and hydrodynamic simulations (e.g.

Zrake et al. 2018; Granot & Piran 2012). The centroid apparent velocity, βapp, is also

obtained. Simple analytic estimates show that point emitters moving at relativistic

velocities can present apparent superluminal velocities in the sky. This is also found

for the centroid of radio images. It is found that the βapp decreases below 1 much

sooner for laterally spreading jets than for non-spreading jets. The centroid reverse

motion is found to be subluminal. Other potential observables are characterized, such

as the FWHM of the image and the lateral brightness distributions. However, these

quantities will depend on the details of the image structure and may be difficult to
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obtain except for extremely bright, close or favourably inclined events.

The detectability of the centroid displacement is mainly limited by two factors: the

detection threshold of the radio flux and the uncertainty on the centroid position. An

upper-bound on the distance at which the centroid displacement can be detected can

be found by determining the limiting distance for these two factors and taking the

smallest of them. For the models in this chapter the distance between the source and

the observer was fixed to D = 41.3 Mpc. The centroid displacement at two luminosity

distances D, D′, with corresponding redshifts z, z′ are related by

∆xc(D
′) = ∆xc(D)

D

D′

[
1 + z′

1 + z

]2
≈ ∆xc(41.3Mpc)

(
D′

41.3Mpc

)−1
(1 + z′)2, (8.11)

where in the second line we have assumed the distance to GW170817 and taken z ≈ 0.

Setting the minimum detectable centroid displacement to the uncertainty in the VLBI

measurements reported in Mooley et al. (2018) then the maximum distance at which

the displacement could be detected, given a large enough radio flux, is Dmax,xc ≈ 370

Mpc (for this estimate the approximation z ≈ H0D/c, valid at small redshifts, was

assumed for simplicity). The peak radio flux was estimated in Makhathini & et. al

(2020) to be F3GHz ≈ 100µJy, with a reported late-time flux of 4.9µJy at T = 767

days. Taking this last data point as the detection threshold, the maximum distance at

which the peak would be detectable is given by Dmax,Fν ≈
√

100/4.9 × 41.3Mpc ≈

190Mpc. As Dmax,Fν < Dmax,xc , the detection of centroid displacement is flux-limited

in distance.

Gravitational waves from compact binary mergers provide a luminosity distance D

which is independent of the cosmological distance ladder (Schutz, 1986; Holz & Hughes,

2005). Therefore, well localized GW signals can be used to estimate Hubble’s constant

H0. However, this kind of measurement is subject to several uncertainties. Firstly,

impossible to determine the redshift z of the event with GWs alone. Equal GW strains

at different z can obtained by rescaling the binary member masses. The localization

uncertainty of GWs makes it hard to pinpoint the host galaxy of the merger and
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indirectly obtain the redshift of the event. In addition the distance D and inclination

with respect to the binary plane θobs are entangled in the GW strain as h× ∝ cos θobs/D

and h+ ∝ (1 + cos2 θobs)/D for the × and + polarization states respectively (Misner

et al., 1973; Holz & Hughes, 2005). Without accurate polarization measurements to

obtain θobs, which would require at least three interferometers on different baselines

(Hayama & Nishizawa, 2013), this degeneracy leads to additional uncertainties in D.

Notwithstanding, the GW signal was sufficient to obtain a constraint on the Hubble

constant of H0 = 70+12
−8 km s−1Mpc−1 (Abbott et al., 2017c).

These problems can be partially solved if an accompanying EM counterpart is observed,

such as in the case of GW170817. The EM counterpart localizes the host galaxy and

provides a redshift estimate. In addition, observation of the long-lasting components of

the counterpart such as an afterglow provide an avenue to obtain the θobs. However, as

was discussed above, degeneracies in the light curves themselves can make it difficult

to disentangle θobs. The combination of GW and EM information resulted in H0 =

74+12
−8 km s−1Mpc−1 (Guidorzi et al., 2017).

As was illustrated in the previous section, including centroid displacement measurements

from images breaks this degeneracy. The combination of GWs, light curves and images

should provide the best parameter estimation. Imaging data was used in Mooley et al.

(2018) to constrain θobs. This was subsequently used in Hotokezaka et al. (2019) to

constrain the Hubble constant to H0 = 68.9+4.7
−4.6km s−1Mpc−1. It must be noted that

the theoretical models used in this work were limited to non-spreading models.

The inclination θobs was constrained in (Mooley et al., 2018) by using the point particle

approximation as θobs ≈ 1/βapp. The results in this chapter suggest that this approximation

can be inappropriate for inclined, laterally spreading jets under certain conditions.

While this approximation provided good estimates for θobs in the case of the jets

considered in 8.3, for the jets in 8.2 large discrepancies were found, of up to 25%

for α = 45◦.

The θobs estimates for the light-curve degenerate models in 8.3 al return discrepancies

of similar order, in the range 2 − 4 % (except in the case of model 4, for which the
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discrepancy was 0.5%). These models were obtained by means of analytic scalings

for which θobs/θc is constant. In contrast, among other differences, in 8.2 this ratio

changes, as θc is kept constant while θobs varies. This raises the question of the

relationship between θobs/θc and how well θobs can be estimated. An additional source

of uncertainty can be the observing window. In other words, if the apparent velocity is

estimated as ∆xc/∆T , where ∆T = T2 − T1 and T1,2 are two times before and after

Tp, how does the choice of these times affect the estimate of θobs?

While an in-depth analysis is out of the scope of this work, these points are illustrated

in figure 8.15. In this plot the percentage discrepancy between the true value of θobs

and that inferred from synthetic images is shown for model 3 in table 8.3. Note that

θc is constant. Two different observing windows around the light curve peak Tp are

considered: T1 = 0.5Tp, T2 = 1.5Tp, and T1 = 0.75Tp, T2 = 1.25Tp. For both

windows the discrepancy increases θobs, reaching its maximum value at θobs/θc ≈ 11.5,

and then decreases. It can also be seen in this figure that the estimate is sensitive to the

times around the peak used to obtain βapp. However, the results indicate that the extra

error incurred by changing the observing window is around an order of magnitude

smaller than that due to the point particle approximation. The relationship between

θobs and βapp in the context of afterglow parameter estimation will be explored further

in future work.

Even if the point-particle approximation cannot provide accurate estimates of θobs,

the centroid motion can still provides an avenue for breaking degeneracies in the set

Φ = {θc, θobs, n, εB}. With all other parameters fixed by light curves, it is found that

the centroid displacement or equivalently βapp uniquely determine the parameter Φ for

the system by direct comparison (this was illustrated in 8.13). From a computational

perspective, obtaining a synthetic image is equivalent to calculating a single time-point

of a light curve. Therefore, including imaging information in parameter fitting routines

should, in principle, introduce little extra computational overhead.
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Figure 8.15: Error in the estimation of ∆θ from synthetic images as a function of θobs/θc for
two different observing windows.



Chapter 9

Conclusions and future work

9.1 Conclusions

The aim of this thesis was to contribute to two important aspects of gravitational wave

astronomy: the pre-merger physics of compact stellar binaries and the post-merger

physics, in particular the electromagnetic counterpart of NS mergers.

In part I we propose and study a new formation channel of compact binary mergers:

the tidal encounter of binaries with a massive BH. Hypervelocity stars indicate that

stellar binaries can undergo tidal encounters with galactic centre massive black holes.

In these encounters the binary can be disrupted, with one of its components launched

away from the nuclear star cluster at a speed larger than the galactic escape velocity,

while the other component is captured by the MBH.

However, binary disruption is not the only possible outcome. Sari et al. (2010) and

Brown et al. (2018) showed that, under very general conditions, binaries can survive

the encounter even for deep penetrations into the tidal sphere of the MBH. Although

the HVSs described so far are main-sequence stars, the same mechanism is applicable

to BH-BH, BH-NS and NS-NS binaries. The survivors are generally deformed by the

tidal encounter, which can hasten their merger due to GW radiation. With this in mind,

the properties of the tidal encounter survivors were characterized in detail in chapters

128



9.1. Conclusions 129

4 and 5.

The merger rate density obtained for initially circular binaries to beR ≈ 0.6 Gpc−3yr−1,

by using a Drake equation-like approach. The dominating source of uncertainty in

this estimate is that of the binary tidal encounter rate inferred from hypervelocity

star observations. The obtained R due to the is ∼ 50 times smaller than the current

upper-bound on the total merger rate inferred from LIGO/VIRGO Observations (Abbott

et al., 2020b). While this will certainly not be the dominating process leading to BH

mergers, in upcoming years the order of one to several detected mergers may be due to

the tidal encounter channel.

By considering different initial spin set-ups (BH spins aligned with the binary angular

momentum, and uniformly or normal distributed BH spin orientations in a cone of

opening angle π/4 around the binary angular momentum), it was found that ∼ 19%

(∼ 39%) of binaries with merger times reduced by a factor of > 102 (> 105) emerge

with χeff < 0 (in the latter case the distribution is rather flat, with a peak at χeff ≈ 1).

The analysis was subsequently extended to populations of initially eccentric binaries,

considering three eccentricity distributions compatible with different stellar populations.

When considering survivors with merger times less than the age of the Universe (and

hence of interest in the context of GW detections) it was found that their statistical

properties were broadly identical in all three cases. The survivor effective spin distributions

were also found to not be significantly modified by considering eccentric binaries, and

any change in the merger rate density compared to the initially circular case was also

found to be unimportant when compared to the other sources of uncertainty.

In part II the focus was shifted to the post-merger physics, in particular to modelling

radio images of GRB afterglows. GW170817 confirmed that sGRBs and their afterglows

can follow from neutron star mergers (Abbott et al., 2017c,e). In the case of this event,

radio imaging provided key insight to determine the jet-like nature of the emission

source (Mooley et al., 2018; Ghirlanda et al., 2019).

A systematic study of synthetic radio images of afterglows was presented. The images

of collimated and laterally spreading jets were obtained using a semi-analytic code.
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While these methods have been used previously to obtain lightcurves of laterally spreading

jets, to the knowledge of the author this is the first time semi-analytic calculations have

been used to obtain images of these systems.

The analysis was limited to Gaussian structured jets. However the method and code

used can be generalized to include different structures, such as power-law or two-component

jets (Lamb & Kobayashi, 2017). Quantities of interest, such as the brightness-weighted

centroid or the FWHM of the images were obtained. For a jet with typical parameters,

the time evolution of the centroid and its apparent velocity were characterized. The

image centroid was found to initially move away from the explosion locus at superluminal

speeds. Eventually, it reaches a maximum displacement and turns back. For late

enough observing times, when the principal-jet has decelerated significantly and the

counter-jet dominates the motion, the centroid can move to the opposite side of the

explosion origin. This behavior was associated with the evolution of the principal and

counter jets. The results found qualitatively agree with hydrodynamic simulations in

the literature, showing the same features.

The discussion then moved onto an application of radio imaging: breaking degeneracies

in parameter estimation from lightcurves, and in particular determining the viewing

angle θobs. The key result of this section is shown in figures 8.12 and 8.13. In these

figures the lightcurves (in rough agreement with 3 GHz VLA data for neutron star

merger event afterglow) and corresponding radio images at different times are shown

for five jets with differing parameters (ranging for example two orders of magnitude

in ambient density and viewing angles between 13◦ and 24◦). While the lightcurves

are identical during the rise and around the peak time, their images present different

apparent sizes, centroid displacements and hence apparent centroid velocities. Using

these images it is explicitly shown how the comparison of two or more radio images

can break the degeneracy in lightcurves. With this approach, the viewing angle of the

GW170817 afterglow-like light curves is found to be ∼ 18◦.
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9.2 Future Work

In chapters 4 and 5 the discussion is limited to the properties of the surviving binaries.

However, from the point of view of GWs there are two more systems to consider. First,

the survivor plus MBH system. While the restricted parabolic formalism remains valid

to describe the trajectory of the survivors, it is possible than enough energy can be

exchanged between the system degrees of freedom for the survivor to become bound

on a closed orbit to the MBH. For example, if the binary is stretched by the tidal

encounter the necessary energy must be removed from the COM orbital energy, which

can slightly modify the orbit. Second, in the case of disrupted binaries one of the binary

components again also bound to the MBH. Either of these situations could constitute

a source of extreme mass ratio inspirals (EMRIs, Berry & Gair 2012), prime GW

sources for the future space-based GW interferometer LISA (Babak et al., 2017). A

more detailed investigation of the dynamics of these systems is required to determine

if they are viable EMRI sources and the event rate which can be expected from them.

As the treatment of the problem was classical, the BH spins were considered constant

throughout the dynamical evolution. Nonetheless, for narrow enough binaries relativistic

effects can become relevant and the BH spins and binary angular momentum can

couple. While a full general relativistic treatment of the problem would be complex,

post-Newtonian terms can be included in the dynamics which account for these extra

couplings (Blanchet, 2014). This can be used to quantify relativistic effects on the

expected χeff or eccentricity distributions.

It is expected that extended GW network made up of the aLIGO, aVirgo and Kagra

detectors will be sensitive to eccentricities as small as e ∼ 10−3 (Gondán et al., 2018).

As some of the binaries emerge from the tidal encounter with large eccentricities, they

may not fully circularize before passing different detector bands. Peter’s equations

2.11 can be used to obtain the evolution of the binaries in the a − e plane and the

corresponding GW strain due to the binary inspiral (Peters, 1964). This can be used

to constrain the detectability of the binaries in different frequency bands, and whether

they have enough residual eccentricity to distinguish them from circular inspirals.
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The image study presented in chapter 8 can be extended to consider different jet

structures. In the case of angular structures in which an energetic core dominates the

energy distribution the general, qualitative properties of the images are not expected

to change drastically. However, images of jets with radial structure, such as refreshed

shocks (e.g. Lamb et al. 2020) could lead to significant qualitative and quantitative

changes in the behavior of the images. In addition, with the code used in this work

other lateral expansion laws can be tested, as long as they can be encoded in the form

dθ/dR = f(R,Γ, θ), where f is some function of the jet parameters (e.g. the a = 0

case from Granot & Piran 2012).

In chapter 8 the point-emitter approximation for obtaining the viewing angle from the

superluminal motion is shown to present varying degrees of accuracy, depending on

the ratio θobs/θc. Understanding the origin of this dependence is important for the

estimation of θobs, and could potentially be used to inform fitting routines for the range

of possible θobs explored.

Light curves, superluminal motion and gravitational wave data have already been

combined to obtain an estimate of the Hubble Constant H0 (e.g. Hotokezaka et al.

2019). However, the semi-analytic models used in these works and others did not

consider lateral spreading in their calculations. This can lead to an underestimate

of the ratio of the jet energy to the ambient density or of the viewing angle (as the

laterally spreading jet lightcurve peaks earlier than that of a collimated jet with the

same energy). This in turn can introduce uncertainties in the Hubble constant estimate.

The semi-analytic formalism used here allows for the dynamics of laterally spreading

jets to be obtained without the need for costly hydrodynamics simulations. Therefore,

the method used in this thesis can be used to obtain constraints onH0 with the additional

dynamical feature of lateral spreading.
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