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ABSTRACT:  This research proposes the most ideal Wireless Sensor Network (WSN) topology for remote 

integrity monitoring of an offshore gas turbine driven generator. The intention is to design the structure of a 

number of WSNs within the electrical generation system with varying connection types and methods of relaying 

data. The research is concerned only with the design of the WSNs, i.e. the hardware and orientation of the sensor 

nodes and not the software, programming or data protection. This will potentially provide a good base, once an 

ideal WSN design is determined, to expand the network further incorporating more criteria and develop the 

necessary software to complete the WSN. The work applies the Evidential Reasoning approach to a number of 

WSN topologies in order to determine the most suitable based upon an outlined set of performance criteria. 

Axiom based validation of the methodology is also provided within the analysis.  
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 INTRODUCTION 

This research focuses on the development of a Wireless Sensor Network (WSN) for asset integrity monitoring 

for a safety critical offshore system. The system in question is the electrical generation system on board a fixed 

steel platform in the North Sea. The intention is to design the topology of a number of WSNs within the electrical 

generation system with varying connection types and methods of relaying data. The research is concerned only 

with the design and topology of the WSNs. This should provide a good base to expand the network further 

incorporating more nodes and develop the necessary software to complete the WSN. 

The purpose of this research is to begin the development of a WSN that would be able to monitor, detect and 

send information regarding the asset integrity of an offshore system. It has been found in previous research, 

(HSE, 2014) (Loughney, et al., 2017) (Loughney & Wang, 2017), that there are cases where the full extent of 

an incident is not reported, such as a fuel gas release. For example, from 1992 to 2014, 40% of fuel gas and 

power turbine gas releases were not detected by an automatic sensor but were detected by human detection. The 

human detection includes smell, visual and a portable detector. In the instances of human detection, the 

recording of information is scarce, with 56% of fuel gas release incidents having little to no information 

regarding the location and cause of the release and in some cases, the extent of the dispersion. Furthermore, the 

majority of the 56% of releases with incomplete information and data were regarded as “Significant”, in terms 

of their severity level (HSE, 2014). A system must be developed to detect these failures and releases given that 

there is no human presence on board (Loughney, et al., 2017) (Loughney & Wang, 2017) (Zio, 2018). This 

moves the research into the Internet of Things (IoT) and WSNs. The novelty of this research is not only in the 

development of a system that can monitor asset integrity for preventative or predictive maintenance, but also in 

the application of a Multiple Criteria Decision Analysis (MCDA) methodology in order to determine the most 

sufficient WSN topology to achieve this monitoring. 

In the current world smart homes, smart water networks, intelligent transportation networks, etc. are 

infrastructure systems that connect the world together more than was thought possible. This common vision of 

interrelating systems is associated with a common concept, the IoT, where, through the use of sensors, an entire 

physical infrastructure is paired with information and communication technology. Intelligent monitoring and 

management can be achieved through the application of network embedded devices. In these sophisticated and 

dynamic systems, devices are interconnected to transmit useful information regarding measurements and control 

instructions through distributed sensor networks (Zio, 2018) (IEC, 2014) (Chong & Kumar, 2003). Furthermore, 

A WSN is a network formed by several sensor nodes, where each node is equipped with a sensor to detect 

physical phenomena such as: heat, light, sound, pressure, etc. WSNs are considered a revolutionary information 

harvesting method in the building of information and communication systems which will greatly improve the 

systems efficiency and reliability. WSNs feature easy deployment and vast flexibility of devices, and with the 

rapid growth in today’s development of sensor technology, WSNs are becoming the key technology for IoT 

(IEC, 2014) (Fischione, 2014) (Harrop & Raghu, 2018). 
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There is increased demand for diverse applications within the communication services industry, within which 

WSNs gain increasingly more attention. WSN development and deployment has been and is continually being 

enhanced in terms of autonomously supporting a variety of potential applications as well as providing more 

adept solutions. However, decisions lie within the appropriate selection of key WSN features such as topology, 

the number of sensors, and the most efficient pathway for data transfer. This has given rise to the application of 

MCDA techniques to determine the best or most suitable aspects of WSNs for specific deployment scenarios. 

One such example is the work presented by Tang, et al., (2014) in which an algorithm is developed based upon 

multiple criteria decisions making to determine the most energy efficient routing within a WSN. Their research 

considers key factors affecting the network lifetime, and a chaos genetic algorithm to determine the next most 

energy efficient hop in the data route (Tang, et al., 2015) (Jia, et al., 2020). Similarly, a fuzzy decision model 

has been applied to the selection of wireless technology by Jiang, et al., (2012). This work develops an 

evaluation hierarchy with six major criteria and a set of sub-criteria in order to determine the most suitable WSN 

technology for the tracking of construction materials. The work concluded that a Wi-Fi device was the best 

alternative, as opposed to RFID, GPS, ZigBee and UWD devices (Jiang, et al., 2012).  Finally, Gao, et al., (2010) 

propose a novel MCDA approach to cluster head selection within WSNs. The approach combines fuzzy-AHP 

and hierarchical fuzzy integral in order to analyse the optimum criteria that can influence energy efficiency to 

determine the selection of cluster head nodes in the WSN (Gao, et al., 2010).  

This paper produces a brief literature review providing background into the research (Section 2), develops a 

number of WSN options related to the outlined problem and outlines a decision-making methodology (Section 

3), demonstrates the use of the outlined decision-making methodology and presents decision making results 

through a case study (Section 4), and finally presents a brief conclusion (Section 5). 

 BACKGROUND 

The initial development of WSNs was motivated by military applications, such as surveillance in conflict zones. 

In the modern world, they consist of independent devices using sensors to monitor physical conditions with 

applications across industrial infrastructure, automation, health and consumer areas. These sensor devices are 

usually spread over areas of varying size. The sensor nodes are usually transceivers scattered within the sensor 

field where they can detect and transfer information to the gateway or sinkhole for use by the end user (IEC, 

2014) (Fischione, 2014).  

Recent advancements in the fields of communication and micro-electromechanical technology have resulted in 

a significant movement in WSN research. The increasing research of WSNs has put its focus in networked 

information processing and networking technology for application in highly dynamic environments. Similarly, 

sensor nodes have become increasingly smaller in size with greater output potential and a reduction in cost, 

hence many applications in the civilian world have emerged, such as: vehicle sensor networks, environment 

monitoring and body sensor networks. Currently WSNs are viewed as the most important technologies of the 

21st Century, with countries like China incorporating WSNs in their national strategic programmes (Ni, 2008). 
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This has resulted in a massive acceleration in the commercialisation of WSNs and many more technology 

companies are emerging (IEC, 2014).  

Industrial automation is one of the key areas of WSN applications. The Freedonia Group state that the global 

market share of sensors for industrial use is approximately $11 billion USD, and with the cost of installation, 

including cabling costs etc., the usage is up to $100 billion USD. It is this cost that hinders the further 

development of industrial communication technology. WSNs can improve the whole industrial process by 

securing the important parameters that are unavailable through online monitoring due to the costs stated by the 

Freedonia Group (IEC, 2014).  

It has been estimated that 39% of the sensors introduced between 2011 and 2016 have been applied to new, 

innovative applications which have only been made possible by the development of WSNs. IDTechEx research 

has found that the WSN market will grow to $1.8 billion by 2024. These figures refer to WSN defined as 

wireless mesh networks, i.e. self-healing and self-organising (IEC, 2014) (Fischione, 2014) (Harrop & Raghu, 

2018).  

75% of industrial WSN income arises from the process industry, with Oil and Gas being the fastest growing 

sectors. For example, PetroChina is conducting IoT projects across its oil fields, with the focus on the 

reconstruction of more than 200,000 oil wells. The WSN technology applied in the oil wells will provide the 

ability to monitor the oil well production and the integrity of the oil well systems to ensure safe production 

(Halter, et al., 2012) (IEC, 2014) (Harrop & Raghu, 2018) (Raza, et al., 2017).  

Generally, a WSN consists of a number of sensor nodes and a gateway for connection to the internet. The general 

deployment of WSNs follows a number of steps and is shown by Figure 1. Firstly, the sensor nodes will 

broadcast their status to the surrounding environment as well as receiving information regarding the status of 

other nodes in the sensor radius. Secondly, the nodes are organised into a connected network dependant on the 

given topology (single-hop, multi-hop). The final stage is determining the most efficient routes for the 

information to be transmitted through (IEC, 2014) (Mhatre & Rosenberg, 2004).  
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2.1 Single-hop Transmission 

When the transmission ranges of the sensor nodes are large enough or the radius of the sensor cloud is less than 

that of the transmission radius of the sensor nodes, the nodes can transmit their information directly to the 

centralised gateway. They form what is known as a star topology with single-hop communications, as shown 

by Figure 2. When sensors utilise single-hop communication, there is no relaying of packets of information. 

Since the communication is directly between the sensor node and the gateway, each node should transmit their 

data in sequence, i.e. one at a time. In this instance, the lifetime of the network is determined by the node with 

the shortest life span. In a single-hop network, this is the node furthest away from the gateway as it must expend 

the most energy to transmit information (Gupta & Kumar, 1998) (Chhaya, et al., 2017) (Raza, et al., 2017).  

 

 

2.2 Multi-hop Transmission 

It is more common for the transmission ranges of the sensor nodes to be less than the radius of the sensor cloud, 

in which case the transmission range of the sensor nodes is kept at a minimum to conserve battery life. In this 

instance, nodes relay information from one another, utilising the shortest possible route to the gateway. Here 

Figure 1: Organisation and Transmission process of a WSN. A) Waking and Detecting, B) Connecting 

as a network & C) Routing through multi-hop topology (assuming data routing from left to right) 

A 

C 

B 

Figure 2: Star topology with single-hop communication from sensors to a central gateway 
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the nodes form a mesh topology using multi-hop communications. In this topology not only do nodes have to 

capture and process their own data, but they must collaborate to propagate sensor data towards the gateway 

(Fischione, 2014) (Raza, et al., 2017). Figure 3 shows an example of multi-hop routing. When a node serves as 

a relay for multiple routes, it has the opportunity to analyse and pre-process data in the network, which can lead 

to the elimination of redundant information or aggregation of data that can be smaller than the original data set. 

Furthermore, when considering multi-hop communication, each sensor has a communication range R, as shown 

in Figure 3, and R must be sufficiently large to maintain connectivity across the network. Gupta & Kumar (1998) 

developed a lower bound on the communication radius, R, in order to ensure connectivity of the nodes with a 

high probability when n nodes are distributed uniformly or randomly. This development is still highly relevant 

in research today.  

2.3 WSNs in Offshore Industry 

The requirement to collect measurements relating to temperature, flow, pressure and vibration, in often remote 

and unsafe locations is common and vital in the offshore oil and gas industry. The offshore industry is 

continually expanding and progressing, particularly technological advances. This growth in industry and 

technology is also driving the need to measure, record and transmit data in real time. Wireless sensor networking 

is the way to do this without the need for cables and the associated problems that come with unsafe and 

inaccessible locations (Akhondi, et al., 2010).  

 

 

Offshore platforms house an abundance of remote and unsafe locations associated with a variety of systems. 

Wired sensors and equipment require power, cables and conduit to reach devices in remote locations. This is 

costly, inconvenient, time consuming and in some cases impossible. Other factors include the manpower 

associated with the installation, as well as the monitoring recording and data processing. This leave a lot of 

R 

Figure 3: Multi-hop wireless network with indicated sensor communication radii, R 
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room for human error, which is a big concern when operating in high risk and extreme offshore conditions. 

(Lajoie, 2010)  

WSNs can eliminate the expensive and inconvenient conduit and cables of wired networks. Measurement data 

can be collected accurately and in real time for faster response and decision making, with limited loss in the 

system integrity and availability. Similarly, a WSN can minimalize the personal required to perform manual 

duties where there is a high-risk level (Lajoie, 2010).  

The offshore industry includes processes for exploration, extraction, refining, transporting, and marketing of 

products. As the demand for fossil fuels increases, so does the need for offshore companies to develop and 

employ new technologies. There is also a need to improve operations in order to increase productivity, reduce 

injury and fatality and maintain system integrity. WSNs can quickly be organised and continually adapted to 

monitor and control a surrounding environmental conditions and machinery.  

As wireless technologies are being developed, there is an increase in the use of wireless sensors being deployed 

on older, end of life platforms in order to gain new insights and to attempt to optimise the platforms production 

(Carlsen, et al., 2008). However, there are many challenges associated with the deployment of WSNs on 

offshore platforms (Akhondi, et al., 2010).  Studies have shown that required changes in plant work processes 

may be the largest hindrance on the introduction of WSNs into the oil and gas industry. It was noted by Petersen, 

et al. (2008) that problems are typically experienced when human factors are ignored in the adoption of new 

technology. 

WSNs are a key investment across the whole offshore oil and gas industry, including pipelines, exploration, 

production and transportation. By providing secure and reliable wireless communications, WSNs enable 

automation and control solutions that are not feasible with wired networks. It is a multidisciplinary research 

area which requires good collaboration between users, hardware designers and engineers and software 

developers (Akhondi, et al., 2010) (Kumar & Chaurasiya, 2018). There are four main application areas where 

WSNs would be extremely useful on-board offshore platforms: 

Remote monitoring: WSN solutions provide remote monitoring capabilities or the offshore industry to adhere 

to new technology, regulatory and productivity demands. Examples of where WSNs can be applied for remote 

monitoring purposes include (Petersen, et al., 2008) (Coutinho, et al., 2018): 

• Pipeline integrity monitoring. 

• On-board system integrity monitoring. 

• Tank level monitoring. 

• Wellhead automation and monitoring. 

 

Condition monitoring and maintenance: The overall aim of fault diagnostics is the estimation of the status of 

a component through sensor measurements and the monitoring of system components. Equipment diagnostics 
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tries to determine the root cause of a component failure whereas system diagnostics is performed on a system 

of components. Utilising sensor measurements preventative and almost predictive maintenance can be 

performed, and subsequently post-fault diagnostics is improved. The predictive maintenance methodologies 

require that the system be monitored in real time. Sensors may detect vibration, temperature, power consumption, 

gases, performance and electromagnetic properties. When combined with other sensors in a network, these 

continuous signals can demonstrate clear and significant information about the status and integrity of a 

component or system. This allows for the detection, or even prediction, of potential upcoming failures (Ferreira 

& Alves da Silva, 2007) (Coutinho, et al., 2018). 

Toxic substance monitoring: During the exploration and extraction of oil and gas, many types of toxic gases 

are produced as a product or by-product of the production processes. The largest concern, with all toxic 

substances, is the potential for leaks. Not only is this damaging to people and the environment, but also any leak 

in a transport pipeline requires a shutdown of the process. Leakages can be caused by any number of faults, 

such as: corrosion, earthquakes, general wear and tear, material flaws and even sabotage (Akhondi, et al., 2010) 

(Xiaojuan, et al., 2009).  

Due to the extensive installation and maintenance costs, a stationary, wired sensing system may not cover the 

whole containment and transport system. Hence, each crew member must carry a portable sensor device as a 

safety precaution. The application of a WSN here would potentially give a cross section of any leaks for a more 

extensive analysis. Existing sensing systems do not correlate data, sensors produce information independently, 

and so determining the nature of the leak can be difficult and time-consuming (Xiaojuan, et al., 2009). 

Production performance: Given the relevant level and amount of data, from a number of performance aspects 

of an offshore platform facilitated by WSNs, an unsupervised self-organising map can prioritise key sensor 

values and classify operational performance. This can show when a plant is operating normally or abnormally. 

This type of WSN is often used in conjunction with supervised methods. Whereby the unsupervised network 

will perform pre-processing of data and the supervised system will conduct the analysis and estimate the 

associated parameters (Akhondi, et al., 2010).  

2.4 Sensor Placement and WSN Orientation  

2.4.1 WSN Design Outline 

The problem considers a region of an offshore platform to be covered by wireless sensor nodes. The number of 

sensors is determined by the requirements of the application. Typically, each sensor node has a sensing radius 

and it is required that the sensor provides coverage of the specified region with a high probability. The sensing 

and transmitting radius of the node depends on the phenomenon that is being sensed as well as the sensing 

hardware of the node. Hence, in general, the number of sensor nodes is dictated by the application. In this 

research, the application is known and so the problem of where to deploy the sensor nodes is an easy one to 

solve. The application here is the integrity of the electrical generation equipment on board an offshore platform, 

more specifically the Thistle Alpha Platform located in the North Sea. The WSNs to be proposed will focus on 



9 

 

the key areas where integrity of the electrical generation equipment must be maintained. These key areas are 

outlined as Gas Turbine Sensing and Monitoring (Meggitt, 2016) (Raza, et al., 2017).  

In order to first develop the WSNs topology, one must know the domain in which the sensors will be deployed. 

In this problem, the sensors will be distributed within the electrical generators located within the electrical 

generation module of the Thistle Alpha platform. There are a number of steps involved in the generation of the 

domain (Prauzek, et al., 2018) (Sarobin, 2020) (Haque & Baroundi, 2021) 

1. Domain – The domain must first be established in order to definitively and accurately place the sensor 

nodes. 

2. Dimensions – The dimensions of the domain must be specified in order to determine the size of the 

sensor field, as well as to determine the worst-case battery life and in the case of multi-hop connectivity, 

and to determine the average size of each nodes transmitting radius. 

3. Sensor placement – Once the dimensions of the domain are known the sensor nodes can theoretically 

be placed to begin forming the network. The nodes are placed based upon the phenomenon that they 

are going to be detecting.  

4. Data Transmission – Once the sensors nodes have been appropriately placed, a decision is made as to 

whether the network should be single-hop or multi-hop based upon a given set of criteria.  

The WSN designs proposed in this research are only part of the initial stages of developing the Asset Integrity 

Case or NUI-Installations. The WSNs are not to be considered as complete models for real-time application at 

this moment in time (Haque & Baroundi, 2021). 

2.4.2 Establishing the Domain  

The domain has already been identified as the electrical generation module on the Thistle Alpha Platform. The 

Thistle Alpha Platform, located in the North Sea, has three gas turbine driven electrical generators, (termed Unit 

A, Unit B & Unit C), each of which is capable of providing 100% of the platform power requirements. The 

platform is currently part of the Thistle Late Life Extension (LLX) strategy, which aims to recover over 35 

million barrels of oil through to 2025 from the Thistle and Deveron oil fields. In order for the platform to be 

operable to 2025 and beyond, the LLX strategy incorporates a series of major initiatives to improve structural 

and topside integrity, upgrade safety and control systems, improve the oil production and water treatment 

process and provide reliable power. This makes this platform a perfect candidate for the development of 

dynamic asset integrity monitoring. Figure 4 shows the generic outline of the main electrical generation module, 

which houses generator unit’s A and B (Cresswell, 2010). 

While Figure 4 gives a good overview of the generic layout and location of equipment, it is not enough to 

accurately create a size model of the generator module (Module 2). However, it is possible to determine the 

dimensions of the module and the equipment from the plot plans of the Thistle Alpha Platform, which were 

accessible for this research. From these more detailed plans, the dimensions of module 2, the electrical 
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generators and the orientation of equipment in the space can be determined. Table 1 gives an outline of the key 

dimensions, with all equipment dimensions (i.e., turbine and alternator) defined as external measurements. 

 

 

Table 1: Dimensions of module 2 and electrical generation equipment 

Item Measurement 

Module Length 27m 

Module Width 13.8m 

Module Height 10m 

Height to Mezzanine 6m 

Total Generator Length 17m 

Alternator Length 7.8m 

Alternator Width 4.3m 

Alternator Height 4.3m 

Gas Turbine Length 9.2m 

Gas Turbine Width 2.9m 

Gas Turbine Height  3.5m 

Spacing between Alternators 0.9m 

Distance of Unit A from the Module Wall 1.4m 

 

2.4.3 Sensor Placement 

After the domain and dimensions have been identified, it is possible to place the sensor nodes and determine 

the size of the sensor field. The nodes are dependent entirely on what they are detecting and are placed 

R 

Figure 4: Multi-hop wireless network with indicated sensor communication radii, R 
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accordingly. In this research the focus is on the integrity of the gas turbine generator therefore, a finite number 

of nodes are proposed to keep the complexity of the WSNs as low as possible (Kumar & Chaurasiya, 2018) 

(Prauzek, et al., 2018) (Peng, et al., 2018) (Haque & Baroundi, 2021).  

It is necessary to identify where the sensor nodes should best be deployed in order to accurately maintain 

integrity. A key place to begin is to identify where gas turbines and alternators already have wired sensors in 

place to monitor the integrity of equipment. Meggitt Sensing Systems currently identifies a number of key areas 

where wired sensing and condition monitoring takes place within an electrical generation unit (Meggitt, 2016) 

(Raza, et al., 2017) (Peng, et al., 2018) (Sarobin, 2020). These are outlined as follows: 

1. Absolute vibration – The sensors here determine the seismic vibration of the system relative to the Earth 

(Zargar, 2014) (Lu, et al., 2018) (Peng, et al., 2018).  

2. Shaft vibration – These sensors monitor the levels of vibration incurred by the main generator shaft that 

runs through the gas turbine and the alternator. The sensor here provides data on the vibration of the 

shaft against the bearings (Zargar, 2014) (Lu, et al., 2018) (Peng, et al., 2018). 

3. Shaft displacement – Sensors and probes here are used to measure the movement of the shaft in the 

vicinity of the probe. They cannot measure the bending of the shaft away from the probe. Displacement 

probes indicate problems such as unbalance, misalignment, and oil whirl (Zargar, 2014) (Lu, et al., 

2018) (Peng, et al., 2018). 

4. Static oil pressure – Sensors here measure the force per unit area exerted on the walls of a container by 

the stationary fluid. In this case the stationary fluid is the bearing oil (Kiameh, 2003) (Peng, et al., 2018). 

5. Temperature – The sensors here simply measure he temperature of various areas of the generator such 

as: temperature of the combustion, the exhaust gases and the bearing lube oil (Kiameh, 2003) (Peng, et 

al., 2018). 

6. Speed – This sensor measures the speed of the main shaft at the bearings in-between the gas turbine and 

the alternator. This node indicates whether the turbine is in danger of running overspeed or not at the 

required speed. Typically, the gas turbines on the Thistle Alpha platform run at 3,600 rpm (RMRI Plc., 

2009) (Peng, et al., 2018). 

7. Combustion pressure – The combustion section has the difficult task of controlling the burning of large 

amounts of fuel and air. It must release the heat in a manner that the air is expanded and accelerated to 

give a smooth stream of uniformly-heated gas at all starting and operating conditions. This must be 

accomplished with minimum pressure loss and maximum heat release. Therefore, monitoring the 

combustion pressure is vital for the operation of the turbine (Kiameh, 2003). 

8. Blade Health – Heavy duty industrial gas turbines are widely used in power generation plants worldwide. 

Axial flow compressor and expansion turbine are key subsystems of the gas turbine. Due to inlet air 

flow aero dynamic load and rotor rotation, various mode displacement and vibration on the turbine 

blades are excited. Excessive vibration may accumulate high cycle fatigue and thermal mechanical 

stress on a rotor blade, and cracks may initiate and propagate over time. Having sensors here to detect 
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and monitor blade cracks and provide early warning before material liberation is the main focus for any 

blade health monitoring system (Yu & Shrivastava, 2016). 

9. Emissions – The purpose of sensors here is to detect the quality of the exhaust emissions from the gas 

turbine. There are strict regulations in place that regulate the levels of NOx and CO2 in turbine emissions. 

Most air pollution NOx measurements are done on a volumetric concentration basis, in parts per million 

by volume (ppmv) or in some cases in a weight/volume fraction such as mg/m3. Uncontrolled gas 

turbine NOx emissions are in the 150–300 ppmv range (about 300–600 mg/m3) (Klein, 2012). 

10. Alternator discharge – Sensors here measure the level of partial electrical discharge from the alternator. 

Partial discharge is an electrical discharge that occurs across a localised area of the insulation between 

two conducting electrodes, without completely bridging the gap. It can be caused by discontinuities or 

imperfections in the insulation system. Discharge monitoring thus gives an indication of deterioration 

of the insulation and is an indicator of incipient faults (HVPD, 2016) (Peng, et al., 2018). 

After these key areas have been identified and outlined, the locations of the sensors can be assigned. Figure 5 

shows the prime locations for the wireless sensor nodes within the gas turbine and the alternator. 

As shown in Figure 5, there are 31 proposed sensor nodes within each generator unit, hence the sensor field is 

comprised of 62 sensor nodes at this initial stage. Starting from the left of Figure 5, it can be seen that there are 

3 nodes on the first bearing set, monitoring the absolute vibration, the static oil pressure and the temperature. 

This arrangement at the first bearing is coherent with Meggitt, (2016) application of probes and sensors at this 

position. Following this to the compressor turbine, there are 8 nodes monitoring the blade health, and 2 

monitoring the power turbine. There are combustion pressure sensors monitoring the combustion chambers due 

to the small margins of pressure loss available.  

Continuing through the generator to the exhaust of the power turbine and the bearings between the turbine and 

the alternator. There are 2 nodes monitoring the emissions of the turbine as well as 6 nodes on the bearing. 

There are more nodes here due to it being a midpoint location on the main shaft. Therefore, along with the 

absolute vibration, oil pressure and temperature sensors, there are also nodes monitoring the speed of the shaft 

at the exit of the power turbine, the relative vibration of the shaft to the middle bearing and the displacement of 

the shaft (Lu, et al., 2018). Monitoring the displacement and relative vibration of the shaft here are key as it is 

a potential vibration node point of the shaft, due to its locating from the two end bearings (Kiameh, 2003). 

Moving through the alternator, there are 4 nodes monitoring the partial discharge. Finally, there are 4 further 

nodes on the final bearing after the alternator. The nodes here again include absolute vibration, static pressure 

and temperature nodes, just as the first bearing. However, there is also a relative shaft vibration sensor due to 

there being an exciter after the alternator, which does not form part of the analysis but must still be treated as 

though it is there in relation to the operation of the generator (RMRI Plc., 2009) (Kiameh, 2003). 
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2.4.4 Data Transmission 

As a number of sensors, with a stated purpose, have been proposed, then it is possible to determine the method 

of data transmissions. There are two main data transmission types: single-hop and multi-hop, as outlined in 

Sections 2.1 and 2.2. However, it is possible to split these further. It is possible to have single-hop routing 

directly to the gateway node and single-hop transmission via cluster heads. Similarly, it is possible to have 

multi-hop connectivity based upon the size of each sensor’s average radius of connectivity, i.e. multi-hop with 

a large individual sensor radius (R), and multi-hop with a small individual sensor radius (Kumar & Chaurasiya, 

2018) (Prauzek, et al., 2018) (Anand & Pandey, 2020) (Sarobin, 2020).  

In this research and analysis four types of data transmission are to be analysed and compared against a set of 

criteria to determine the most applicable for use in integrity monitoring in an offshore environment. It is 

important to note that the gateway node is assumed to be on the top of the offshore module and any cluster head 

nodes are assumed to be on the mezzanine deck in Module 2, shown in Figure 4. These four forms of 

transmission are outlined as follows: 

A. Single-hop - Nodes connect directly to the Gateway node. Due to congestion, Nodes transmit data in 

sequence. i.e. Node 1 transmits data, Node 2 cannot transmit until the gateway has received information 

from Node 1, and so on. Complexity is not applicable to the Single-hop design as all nodes send data to the 

same destination and do not relay data, as shown in Section 2.1 (Prauzek, et al., 2018). 

Figure 5: Proposed locations of the wireless sensor nodes within the electrical generator 
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B. Single-hop with Cluster nodes - Nodes transmit data to the nearest cluster node in sequence. Hence, several 

nodes can transmit simultaneously to different cluster nodes. Theoretically this requires less battery power 

than Single-hop as there are two short connections from the node to the cluster and from the cluster to the 

gateway, as opposed to one connection over a longer distance (Haque & Baroundi, 2021) (Prauzek, et al., 

2018) (Anand & Pandey, 2020). 

C. Multi-hop with a smallest sensor node radius - Nodes relay (transmit/ receive) information from each 

other to achieve the best route from the source node to the cluster node. The small radius denotes the smallest 

transmittable distance of the node. i.e. it would require more connections to reach the cluster node. 

Theoretically this requires more battery than Single-hop as the nodes must transmit and receive data (Kumar 

& Chaurasiya, 2018) (Anand & Pandey, 2020) (Haque & Baroundi, 2021).  

D. Multi-hop with a larger sensor node radius - The theory is the same for the Multi-hop (Small R), however, 

nodes have a larger sensor radius and can transmit/receive data from nodes further away, meaning fewer 

connections to the cluster node. This requires an  increase in battery power to transmit/receive over a large 

area. Due to the large area, the network can almost act as a single-hop cluster network (Kumar & Chaurasiya, 

2018) (Haque & Baroundi, 2021) (Prauzek, et al., 2018). 

2.5 Evidential Reasoning approach 

Numerous decision-making problems in management and engineering involve several criteria of both a 

qualitative and quantitative nature. It is the normal handling of qualitative criteria along with uncertain or 

incomplete information that causes complexity in multiple criteria assessments. There has been an increase in 

the development of theoretically sound methods and tools which deal with MCDA problems in a coherent, 

rational, reliable and repeatable manner (Yang, 2001) (Yang & Xu, 2002) (Chen, et al., 2013) (Chhaya, et al., 

2017) (Zhang, et al., 2019).  

There has been considerable research conducted on integrating techniques from Artificial Intelligence to 

Operational Research for handling uncertain information. From this line of research, the Evidential Reasoning 

(ER) approach was developed for MCDA. This method of decision-making is based on an evaluation analysis 

model and the Dempster-Schafer (D-S) theory of evidence. In more recent times, the ER approach has been 

applied to decision-making problems in engineering, design and safety and risk assessment and supplier 

assessment. For example, motorcycle assessment, cargo ship design (Yang & Xu, 2002) and marine system 

safety analysis (Ren, et al., 2005). The key component of the ER approach is an ER algorithm developed around 

a multi- criteria evaluation framework or hierarchy and the evidence combination rule of D-S theory (Yang & 

Xu, 2002) (Chen, et al., 2013) (Chen, et al., 2018) (Jia, et al., 2020) (Du & Zhong, 2021).  

This ER algorithm can be used to aggregate criteria in a multilevel structure, and a rational aggregation process 

needs to satisfy certain self-evident rules, commonly referred to as synthesis axioms. Suppose there are two 

levels of criteria with general criteria at the top and several basic criteria at the bottom level. Each basic criterion 

can be assessed against a given set of evaluation grades. A criterion may be assessed against an individual or a 
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subset of the evaluation grades, with different degrees of belief (Yang & Xu, 2002) (Chen, et al., 2013) (Fu, et 

al., 2019) (Du & Zhong, 2021). 

 METHODOLOGY 

When developing a decision-making methodology it is important to clearly define the domain that it is to 

represent. The criteria must be appropriately allocated, with careful attention being paid to what each criterion 

shall represent and where they shall rank in the evaluation hierarchy. The fundamental part of developing a 

coherent decision-making method, with the ability to deliver coherent results, lies in its evaluation hierarchy 

and the allocation the belief degrees and weights. With this in mind, a decision-making method has been 

established to ascertain the most suitable WSN design for use in the asset integrity monitoring of an offshore 

electrical generation system. To ensure that a coherent method was established, knowledge was obtained 

through reviewing literature and conversing with industrial experts.  

There are a number of steps involved in the procedure for applying a decision-making algorithm to a problem. 

Having a number of steps is key for maintaining consistency throughout the process and offers and element of 

confidence to the final analysis. There are key elements that the procedure must follow, these are outlined as 

follows. 

3.1 Establish the domain and definition. 

This involves putting boundaries in place in order to prevent the process from becoming too complex. It has 

already been stated in Section 2 that the WSNs shall be incorporated into the electrical generation system and a 

finite number of wireless sensor nodes have been established in key areas of the machinery. 

3.2 Identify the objective. 

This involves stating what results are to be expected to be achieved from the problem-solving process. For this 

procedure and analysis, the goal is to determine the most suitable WSN based upon a set of criteria related to 

the design of a WSN. Furthermore, the evidential reasoning approach is utilised for the decision-making process.  

The first 2 steps of the decision-making methodology have been followed and identified by Section 2.4.  

3.3 Identify a set of criteria relative to the problem. 

This involves filtering possible criteria that are relative to the description and the objective. For this problem, 

the criteria were devised from literature studies based upon the key hardware criteria and criteria of a WSN. It 

is necessary to keep the criteria to a sensible number at this stage to avoid over complications when applying 

the decision-making algorithm.  
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In order to apply the ER algorithm to the decision of the most suitable WSN design for use in an offshore system, 

a set of variables and a hierarchical structure of general and basic criteria must first be defined. The variables 

and hierarchical structure are based upon the hardware requirements for a WSN and for application on an 

offshore platform. In this analysis, there are three general criteria outlined and eight basic criteria. 

The criteria have been outlined based upon the requirement of WSN hardware in relevant literature studies (IEC, 

2014) (Harrop & Raghu, 2018) (Chhaya, et al., 2017) (Akhondi, et al., 2010) (Carlsen, et al., 2008) 

(Chandrasekaran, et al., 2016). These general criteria are outlined as follows: 

• Complexity (x) is defined as the intricacy of the WSN. Usually, this would be the number of nodes and 

their location, however, this is already bounded by the scenario on board an offshore platform. Hence, 

the complexity is defined by three basic criteria relating to the design and hardware: 

o Transmission over the shortest possible route (e1): The ability of the network to transmit 

information over the shortest possible route from one sensor node to the Gateway node. 

o Transmission over the longest possible route (e2): The ability of the network to relay 

information over the longest possible distance to the Gateway given that one or more nodes fail 

to transmit/receive data. 

o Large number of cluster head nodes (e3): The necessity of the network to have many cluster 

nodes in order to reliably transmit data to the Gateway. 

• Resilience (y) is defined as the WSNs ability to deal with faults to the system. As this research does not 

include any software analysis, the issue of cyber-attacks cannot be fully analysed therefore, the 

resilience of the WSNs is determined by two basic criteria. 

o Battery power (e4): This has already been outlined in some detail, and in this analysis, it is 

defined as: The ability of the network to have a substantial source of battery power for the 

longevity of the network life and reduced time between maintenance. Battery power must be 

sufficient to power the sensors, initially, for several months. 

o Relaying data (e5): This is a key criterion as it deals with the ability of the network to relay 

information between nodes in the event of sensor node failures and/or network disruptions. 

• Maintainability (z) focuses on the capability of the WSN design to be easy to maintain, its self-

sustainability and the costs incurred by installation and maintenance. It is outlined by three basic 

criteria: 

o Ease of Maintenance (e6): This is dependent on the Complexity of the nodes, i.e. the number of 

components within the nodes (sensor, transmitter, receiver, battery size). Location is not a 

factor as all nodes in this study are located within the electrical power generator. 

o Auto-Configuration (e7): The ability of the network to auto configure on start-up and after 

maintenance. Nodes that can relay information can ease this issue, however, it is easier to 

program networks to auto-configure with less complex and fewer connections.  
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o Cost (e8): The cost of the network is determined by the number of nodes required (including 

cluster nodes), the sophistication of the nodes (battery size, transmitters, receivers and sensors) 

and the cost of maintenance. 

3.4 Develop the evaluation hierarchy. 

Once the criteria have been established, a hierarchy must be determined in order to coherently develop a solution 

to the problem. This hierarchy groups certain criteria under one general criterion. This allows for a smaller 

number of criteria to be aggregated gradually to reduce the calculation complexity of the decision-making 

algorithm (Yang, 2001) (Yang & Xu, 2002) (Wang, et al., 1995) (Sadeghi, et al., 2018). 

The hierarchical structure is demonstrated by Figure 6. It can be seen from Figure 6 that WSN 1 (Single-Hop) 

is not associated with the first two general criteria Complexity and Resilience. This is due to a number of reasons; 

firstly, as the network is single-hop, the issue of transmitting over the shortest or longest route is not applicable. 

As previously outlined, the single-hop transmission has each node transmit their data one after another in 

sequence, directly to the gateway. Hence there is only one possible transmission route that each node can 

transmit data. Secondly, there are not any cluster heads associated with this transmission type, therefore it is not 

possible to associate WSN 1 with any number of cluster heads, and subsequently cannot relate it to the general 

criterion, Complexity. Thirdly, as the data is theoretically transmitted over only one possible route for each node, 

there is no ability or need for WSN 1 to relay data. Similarly, WSN 1 cannot be assessed to the general criterion 

Resilience as this criterion contains the basic criterion regarding the relaying of data, and WSN 1 does not have 

the ability to relay data between nodes. However, it can be included in the analysis for Maintainability as all 

basic criteria are relatable to WSN 1. The dotted and dashed connectors in Figure 6 outline the connections, in 

the hierarchy, from each WSN design. 

3.5 Outline suitable evaluation grades. 

Subjective judgements may be used to distinguish one alternative from another in terms of qualitative criteria. 

For example, to evaluate the Maintainability of a WSN some typical judgements may be that “the 

maintainability of the WSN is poor, average or good” (Yang & Xu, 2002) (Ren, et al., 2005). These five 

evaluation terms have been outlined, with Hn denoting the nth evaluation grade. This is demonstrated by 

Equation 1: 

𝐻𝑛 = {𝑃𝑜𝑜𝑟 (𝐻1), 𝐼𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 (𝐻2), 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝐻3), 𝐺𝑜𝑜𝑑 (𝐻4), 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 (𝐻5)}  

     (1) 

3.6 Develop the belief degrees and criteria weights for MCDA analysis. 

The weights of the criteria are calculated through Pairwise Comparison (PC) and Analytical Hierarchy Process 

(AHP), and are determined by qualitative assessment from expert judgement, using questionnaires. This step is 
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further outlined in the analysis in Section 4.1. PC and AHP are selected as they are efficient methods of applying 

a qualitative data gathering mechanism to a quantitative methodology. The method of utilising PC and AHP to 

determine subjective quantitative data for application in a relative weighting system is exceptionally useful in 

filling gaps in data for additional analysis techniques, such as with the ER or Bayesian Network approaches. 

It is supposed that there is a simple two-level hierarchy. Suppose there are L basic criteria ej (j=1… L) associated 

with general criterion E. Similarly, suppose the normalised weights of each general criterion are given as ω1, 

ω2 … ωi … ωL (i =1… L) where, ωi is the relative weight of the ith general criterion (Ei) with 0 ≤ ωi ≤ 1 and ωij 

is the weight of the basic criterion (ei) 0 ≤ ωij ≤ 1, where j represents the jth basic criterion under the ith general 

criterion. For example, the weighing of general criterion, Complexity, is represented by ωi and the weight of 

the 3rd basic criterion under logistics, (Large Number of Cluster Heads, e3) is represented by ω13. See Figure 6 

which outlines the evaluation hierarchy and contains the allocated notation related to the weighting of criteria. 

Furthermore, let βn, i denote the belief degree of the basic criterion ei to the evaluation grade Hn, where βn, i ≥ 0 

and ∑ 𝛽𝑛,𝑖
𝑁
𝑛=1 = 1  Finally, S(ei) is the assessment of an alternative under criterion ei,. This assessment can be 

represented by Equation 2 (Yang & Xu, 2002) (Ren, et al., 2005) (Li & Liao, 2007) (Loughney, 2018).  

𝑆(𝑒𝑖) = {(𝐻𝑛, 𝛽𝑛,𝑖), 𝑛 = 1, … , 𝑁}  𝑖 = 1, … , 𝐿 

   (2) 

Figure 6: Evaluation Hierarchy for the four WSN designs 
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The assessment of a criterion, S(ei) is complete if the sum of the belief degrees is equal to 1, i.e.  ∑ 𝛽𝑛,𝑖
𝑁
𝑛=1 = 1. 

3.7 Evidential Reasoning Algorithm and Data Aggregation 

Suppose mn,i is the probability mass representing the degree to which ei supports the hypothesis that the general 

criterion E is assessed to Hn, and is calculated by Equation 3 (Yang & Xu, 2002) (Li & Liao, 2007) (Loughney, 

2018). 

𝑚𝑛,𝑖 = 𝜔𝑖𝛽𝑛,𝑖     𝑛 = 1, … , 𝑁 

    (3) 

Similarly, for basic criteria, Equation 3 is rewritten as Equation 4: 

𝑚𝑛,𝑗 = 𝜔𝑖𝑗𝛽𝑛,𝑖     𝑛 = 1, … , 𝑁 

    (4) 

 

where, mn,j is the probability mass of the basic criteria ej assessed to Hn. Also, EI(j) must be defined as the subset 

of the j basic criteria under the Ith general criterion, as given by Equation 5. 

𝐸𝐼(𝑗) = {𝑒1   𝑒2 … 𝑒𝑗} 

    (5) 

mn,I(i) is the probability mass defined as the degree to which all criteria in EI(i) support the hypothesis that E is 

assessed to the grade Hn. Similarly, mH, I(i) is the remaining probability mass which is unassigned to individual 

grades after all the basic criteria in EI(i) have been assessed. The terms mn,I(i) and mH, I(i) can be determined by 

combining the basic probability masses mn, and mH,j for all values of n=1, …, N and j=1, …, i (Yang & Xu, 

2002) (Li & Liao, 2007) (Loughney, 2018). Thus, the Evidential Reasoning algorithm is expressed through 

Equations 6, 7, 8 & 9. 

𝐾𝐼(𝑖+1) = [1 − ∑ ∑ 𝑚𝑡,𝐼(𝑖)𝑚𝑧,𝑖+1

𝑁

𝑧=1
𝑧≠𝑡

𝑁

𝑡=1

]

−1

𝑖 = 1, … , 𝐿 − 1 

    (6) 

𝑚𝑛,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1) (
𝑚𝑛,𝐼(𝑖)𝑚𝑛,𝑖+1 + 𝑚𝑛,𝐼(𝑖)𝑚𝐻,𝑖+1

+𝑚𝐻,𝐼(𝑖)𝑚𝑛,𝑖+1
)       𝑛 = 1, … , 𝑁 

 (7) 

𝑚𝐻,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1)𝑚𝐻,𝐼(𝑖)𝑚𝐻,𝑖+1 

    (8) 

 

𝛽𝑛 =
𝑚𝑛,𝐼(𝐿)

1 − 𝑚𝐻,𝐼(𝐿)
,         𝑛 = 1, … , 𝑁, 𝑖 = 1, … , 𝐿 

  (9) 
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where 𝐾𝐼(𝑖+1)  is a normalising factor so that ∑ 𝑚𝑛,𝐼(𝑖+1)
𝑁
𝑛=1 + 𝑚𝐻,𝐼(𝑖+1) = 1 and βn is the combined belief 

degree of the aggregated assessment for the criteria (Yang & Xu, 2002) (Li & Liao, 2007).  

3.8 Utiliy Assessment and Ranking 

The criteria must be ranked based upon their aggregated belief degrees from the ER algorithm. Suppose the 

utility of an evaluation grade, Hn, is denoted by u(Hn). The utility of the evaluation grades are assumed to be 

equidistant as follows, with u(H1)=0, u(H2)=0.25, u(H3)=0.5, u(H4)=0.75 and u(H5)=1 (Yang, 2001). The 

estimated utility for the general and basic criteria, S(ei), is given by Equation 9 (Yang & Xu, 2002) (Loughney, 

2018): 

𝑢(𝑆(𝑒𝑖)) = ∑ 𝑢(𝐻𝑛)𝛽𝑛

𝑁

𝑛=1

(𝑒𝑖) 

    (10) 

3.9 Validation of the decision-making process. 

Validation is a key aspect to the methodology, as it provides a reasonable amount of confidence to the results. 

In current literature, there is an axiom-based validation procedure, which is useful for validation of the process. 

The aggregation process may not be rational or meaningful if it does not follow certain axioms. The application 

of axioms is consistent with the partial validation procedure applied to the ER approach and is widely utilised 

in literature (Yang & Xu, 2002) (Durnbachm, 2012) (Loughney, 2018). The four axioms to be assessed are as 

follows: 

• Axiom 1. 

A general criterion must not be assessed to Hn if the basic criteria are not assessed to Hn. 

• Axiom 2. 

The general criterion should be precisely assessed to Hn, provided all basic criteria are assessed to 

Hn. 

• Axiom 3. 

If all basic criteria, under a general criterion completely assessed to a given subset of evaluation 

grades, then the general criterion should be assessed to the same subset of grades. 

• Axiom 4. 

If an assessment for basic criteria is incomplete, then the assessment for the general criterion should 

be incomplete to a certain degree. 
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 CASE STUDY 

4.1 Determining the Belief Degrees and Criterion Weights 

In this section, the ER algorithm is applied to analyse the suitability of four different WSN designs for use in 

asset integrity monitoring of an offshore electrical power generator. The four WSN designs are based around 

the type of data transmission, they are as follows: Single-hop transmission, Single-hop transmission with cluster 

head nodes, Multi-hop transmission with a small sensor node radius and multi-hop transmission with a large 

sensor node radius. The four WSNs shall be denoted as WSN 1, WSN 2, WSN 3 and WSN 4 respectively.  

Before the analysis can be conducted, the weights of each criterion, both general and basic must be determined 

and the belief degrees of the basic criteria must be determined based upon a set of evaluation grades. The weights 

of the criteria are calculated through PC and AHP, and both the weights and the belief degrees are determined 

by qualitative assessment from expert judgement, through the use of questionnaires. 

As outlined previously, three general suitability criteria are considered, which are Complexity, Resilience and 

Maintainability. These criteria are generic and difficult to assess directly, therefore, lower-level criteria are 

required. The evaluation hierarchy is shown in Figure 6, along with the notation for each criterion and their 

weights (ωi and ωij).  

Similarly, the belief degrees must be determined against the evaluation grades for each basic criterion. Five 

experts and their judgements were used to complete the qualitative questionnaire across disciplines of offshore 

engineering and computer science. This allowed for a more comprehensive view point as the designs of the 

WSNs are to be used on-board an offshore platform. The five experts are to remain anonymous, however, their 

expertise and experience are outlined as follows: 

Expert 1 is currently an employee of a leading classification society and holds a university qualification at the 

MSc. Level. This person has 8 years of experience at sea and more than 5 years as an offshore safety manager. 

Expert 2 is currently an employee of a leading provider of risk management services and holds a university 

qualification at Ph.D level. This person has 10 years of experience as an offshore technical director.  

Expert 3 is currently a CEO of a leading energy service and holds a university qualification at Ph.D level. 

Expert 4 is currently an employee of a UK university as a senior lecturer and researcher. This person has 10 

years’ experience in research areas involving the progression of the Internet of Things and interdisciplinary 

technologies. This person also holds a university qualification at Ph.D level. 

Expert 5 is currently an employee of a UK university as a senior lecturer and researcher. This person has 10 

years’ experience in research areas involving the progression of the Internet of Things and Computer, 

communication and control technologies. This person also holds a university qualification at Ph.D level. 
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The PC and AHP methodologies and calculations are not demonstrated in this paper, however some applications 

and examples can be found in the following studies (Loughney & Wang, 2017) (Saaty, 1980) (Saaty, 1990) 

(Saaty, 1994) (Ahmed, et al., 2005) (Koczkodaj & Szybowski, 2015). 

However, the Consistency Ratios (CR) of the PC and AHP analyses can be stated for completeness. The CR 

value of the main criteria (x, y, and z) was calculated as 0.011. This means that the degree of consistency within 

the pairwise comparison is acceptable as the CR value is less than 0.10. Similar calculations were conducted 

for the other sub-criteria in the PC, with the other CRs calculated as 0.01 for the Complexity criteria (e1, e2 and 

e3), and 0.06 for the Maintainability criteria (e6, e7 and e8). These again are acceptable as they are less than 0.10. 

CR calculations are not possible for matrices of less than 2×2 as the Saaty RI values for 2×2 matrices are zero. 

This is the case with the Resilience criteria (e4 and e5). Utilising the PC and AHP methods, the weights for all 

of the basic and general criteria are calculated and are demonstrated in Table 2.  

 

Table 2: Calculated weights for the general and basic attribute for use in the ER algorithm 

x y z SUM 

21.34% 49.86% 28.80% 100.00% 

e1 e2 e3 e4 e5 e6 e7 e8   

53.09% 16.18% 30.73% 65.08% 34.92% 53.62% 20.46% 25.92%   

SUM SUM SUM   

100.00% 100.00% 100.00%   

 

Each of the five experts completed the questionnaire which allowed for the completion of the belief degrees for 

the basic criteria. The hierarchy and normalised weights of all criteria is demonstrated in Table 3 as well as the 

completed belief degrees for each basic criterion. 

Table 3: Generalised decision matrix for WSN suitability assessment with relative weights and basic attribute belief degrees 

General Attributes 

  WSN 1 WSN 2 WSN 3 WSN 4 

Evaluation Grades 
Basic Attributes Single-Hop 

Single Hop 

(Cluster) 

Multi-Hop 

(Small 

Radius) 

Multi-Hop 

(Large 

Radius) 

Complexity (x) (ω1 = 

0.2134)  

Transmission over the 

shortest route (e1) (ω11 = 

0.5309)  

 

0.6 0.2 0.2 H1 Poor 

  0.2   H2 Indifferent 

0.4 0.6 0.2 H3 Average 

      H4 Good 

    0.6 H5 Excellent 

Transmission over the 

longest route (e2) (ω12 = 

0.1618)  

   

  0.4 0.8 H1   

  0.2   H2   

0.6 0.4 0.2 H3   

      H4   

0.4     H5   
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Large number of Cluster 

nodes (e3) (ω13 = 

0.3073)  

  

0.6 0.2 0.6 H1   

      H2   

  0.2 0.3 H3   

0.2 0.2 0.1 H4   

0.2 0.4   H5   

Resilience (y) (ω2 = 

0.4986) 

Battery Power (e4) (ω21 

= 0.6508)  
  

    0.2 H1   

0.2 0.2   H2   

0.2     H3   

0.4 0.2 0.2 H4   

0.2 0.6 0.6 H5   

Relaying Data (e5) (ω22 

= 0.3492)  
  

0.2     H1   

      H2   

  0.2 0.4 H3   

0.2     H4   

0.6 0.8 0.6 H5   

Maintainability (z) 

(ω3 = 0.288) 

Ease of Maintenance 

(e6) (ω31 = 0.53.62)  

    0.2 0.4 H1   

  0.4     H2   

  0.2 0.4   H3   

0.5 0.4 0.4 0.4 H4   

0.5     0.2 H5   

Auto-Configuration (e7) 

(ω32 = 0.2064)  

    0.2 0.4 H1   

0.2 0.2     H2   

0.2 0.4 0.4 0.4 H3   

0.2 0.4 0.2   H4   

0.4   0.2 0.2 H5   

Cost (e8) (ω33 = 0.2592)  

0.2   0.4 0.4 H1   

  0.4     H2   

0.2 0.4     H3   

0.6   0.6 0.2 H4   

  0.2   0.4 H5   

 

4.2 Aggregation Assessment through Evidential Reasoning Algorithm 

The problem now is how the judgements in Table 3 can be aggregated to arrive at an assessment as to the best 

suited WSN for asset integrity monitoring on and offshore platform. To demonstrate the procedure of the ER 

algorithm the detailed steps of the calculation shall be shown for generating the assessment for the WSN 3’s 

Complexity (y), by aggregating the three basic criteria Transmission over shortest route (e1), Transmission over 

the longest route (e2) and large number of cluster nodes (e3). The evaluation grades have been defined in 

Equation 1. From Table 3 and Equation 2 the following can be stated: 

𝛽1,1 = 0.2, 𝛽2,1 = 0.2, 𝛽3,1 = 0.6, 𝛽4,1 = 0, 𝛽5,1 = 0  

𝛽1,2 = 0.4, 𝛽2,2 = 0.2, 𝛽3,2 = 0.4, 𝛽4,2 = 0, 𝛽5,2 = 0  
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𝛽1,3 = 0.2, 𝛽2,3 = 0, 𝛽3,3 = 0.2, 𝛽4,3 = 0.2, 𝛽5,3 = 0.4  

As the weight have been calculated the basic probability masses can be calculated utilising Equations 3 and 4. 

𝑚1,1 = 0.2 × 0.5309, 𝑚2,1 = 0.2 × 0.5309, 𝑚3,1 = 0.6 × 0.5309, 𝑚4,1 = 0, 𝑚5,1 = 0,

∑ 𝑚𝑛,1

𝑁

𝑛=1
= 0.531, ∴ 𝑚𝐻,1 = 0.469 

𝑚1,2 = 0.4 × 0.1618, 𝑚2,2 = 0.2 × 0.1618,    𝑚3,2 = 0.4 × 0.1618,    𝑚4,2 = 0, 𝑚5,2 = 0,

∑ 𝑚𝑛,2

𝑁

𝑛=1
= 0.162, ∴ 𝑚𝐻,2 = 0.0.838  

𝑚1,3 = 0.2 × 0.3073,    𝑚2,3 = 0, 𝑚3,3 = 0.2 × 0.3073, 𝑚4,3 = 0.2 × 0.3073,

𝑚5,3 = 0.4 × 0.3073, ∑ 𝑚𝑛,3

𝑁

𝑛=1
= 0.307, ∴ 𝑚𝐻,3 = 0.693 

It is now possible to use Equations 6, 7 and 8 to calculate the combined probability masses. Firstly, criteria e1 

and e2 are to be aggregated. Equation 6 is solved in stages to find KI(2). 

∑ 𝑚𝑡,𝐼(1)𝑚𝑗,2

5

𝑡=1
𝑗≠𝑡

= (𝑚1,1𝑚2,2) + (𝑚1,1𝑚3,2) + (𝑚1,1𝑚4,2) + (𝑚1,1𝑚5,2)

= ((0.2 × 0.5309). (0.2 × 0.1618)) + ((0.2 × 0.5309). (0.4 × 0.1618)) + (0) + (0)

= 0.01031 

∑ 𝑚𝑡,𝐼(1)𝑚𝑗,2

5

𝑡=2
𝑗≠𝑡

= (𝑚2,1𝑚1,2) + (𝑚2,1𝑚3,2) + (𝑚2,1𝑚4,2) + (𝑚2,1𝑚5,2)

= ((0.2 × 0.5309). (0.4 × 0.1618)) + ((0.2 × 0.5309). (0.4 × 0.1618)) + (0) + (0)

= 0.01374 

∑ 𝑚𝑡,𝐼(1)𝑚𝑗,2

5

𝑡=3
𝑗≠𝑡

= (𝑚3,1𝑚1,2) + (𝑚3,1𝑚2,2) + (𝑚3,1𝑚4,2) + (𝑚3,1𝑚5,2)

= ((0.6 × 0.5309). (0.4 × 0.1618)) + ((0.6 × 0.5309). (0.2 × 0.1618)) + (0) + (0)

= 0.03092 

∑ 𝑚𝑡,𝐼(1)𝑚𝑗,2

5

𝑡=4
𝑗≠𝑡

= (𝑚4,1𝑚1,2) + (𝑚4,1𝑚2,2) + (𝑚4,1𝑚3,2) + (𝑚4,1𝑚5,2) = (0) + (0) + (0) + (0) = 0 

∑ 𝑚𝑡,𝐼(1)𝑚𝑗,2

5

𝑡=5
𝑗≠𝑡

= (𝑚5,1𝑚1,2) + (𝑚5,1𝑚2,2) + (𝑚5,1𝑚3,2) + (𝑚5,1𝑚4,2) = (0) + (0) + (0) + (0) = 0 

𝐾𝐼(2) = [1 − (0.01031 + 0.01374 + 0.03092)]−1 = 1.058 
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Given that the value of 𝐾𝐼(2) has been determined Equations 7 and 8 can now be utilised, along with the basic 

probability masses. 

𝑚1,𝐼(2) = 𝐾𝐼(2)(𝑚1,1𝑚1,2 + 𝑚1,1𝑚𝐻,2 + 𝑚𝐻,1𝑚1,2) = 0.1335 

𝑚2,𝐼(2) = 𝐾𝐼(2)(𝑚2,1𝑚2,2 + 𝑚2,1𝑚𝐻,2 + 𝑚𝐻,1𝑚2,2) = 0.1138 

𝑚3,𝐼(2) = 𝐾𝐼(2)(𝑚3,1𝑚3,2 + 𝑚3,1𝑚𝐻,2 + 𝑚𝐻,1𝑚3,2) = 0.3364 

𝑚4,𝐼(2) = 𝐾𝐼(2)(𝑚4,1𝑚4,2 + 𝑚4,1𝑚𝐻,2 + 𝑚𝐻,1𝑚4,2) = 0 

𝑚5,𝐼(2) = 𝐾𝐼(2)(𝑚5,1𝑚5,2 + 𝑚5,1𝑚𝐻,2 + 𝑚𝐻,1𝑚5,2) = 0 

𝑚𝐻,𝐼(2) = 𝐾𝐼(2)𝑚𝐻,1𝑚𝐻,2 = 0.4161 

The first two basic criteria, e1 and e2, have been aggregated, and it is possible to combine the above results with 

the third criterion e3. This calculation is the same as above however it utilises the subjective data in Table 3 for 

the criterion e3 and the probability masses calculated above.  

Given the results of the aggregation, the assessment for the Complexity of WSN 3 by aggregating Transmission 

over the shortest route (e1), Transmission over the longest route (e2) and large number of cluster heads (e3), is 

given by: 

𝑆(𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) = 𝑆(𝑒1⨁𝑒2⨁𝑒3) = {(𝑃𝑜𝑜𝑟, 0.225), (𝐼𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡, 0.141), (𝐴𝑣𝑒𝑟𝑎𝑔𝑒, 0.498), 

 (𝐺𝑜𝑜𝑑, 0.046), (𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡, 0.091)} 

It is important to note that changing the aggregation order does not change the final results in any way.  

4.3 Results and Analysis of ER aggregation 

The calculations demonstrated in Section 4.1 for the assessment of WSN 3 in terms of its Complexity were 

repeated for the other basic criteria for each of the proposed WSNs. The results were then aggregated further to 

give the overall beliefs for the general criteria for each of the WSNs. All of the calculations were completed 

using Microsoft Excel as it provided a simple way of inputting the ER algorithm and displaying the results 

clearly. Table 4 shows the aggregated assessment for the general criteria for each WSN design. 

From Table 4 it is possible to distinguish some of the differences between the WSNs and rank them. However, 

this can be very difficult, for example, it is difficult to determine the most suitable WSN in terms of complexity. 

Similarly, in the only case where WSN 1 is assessed, under the criterion Maintainability, it is the best performing 

WSN design as its highest-ranking beliefs are across the evaluation grades of good and excellent. However, 

WSN 1 cannot be assessed in Complexity or Resilience as it is a very simple design in terms of its data 

transmission. It therefore makes sense that WSN 1 performs better than the other WSNs in terms of 
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Maintainability. Furthermore, it can be seen that in terms of Resilience both WSNs 3 and 4 outperform WSN 2. 

However, it is difficult to determine which of the WSN designs perform better in terms of their resilience.  

 

Table 4: Aggregated belief structure for the general attributes for each WSN 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continuing the procedure of ranking the WSNs, it is necessary to determine their overall performance and 

suitability for offshore use. This is done by aggregating the general criteria still further using the ER algorithm. 

This demonstrates the overall suitability of WSNs 2, 3 and 4. Table 5 and Figure 7 demonstrate overall 

suitability beliefs for the WSN configurations. 

It can be seen by Figure 7 that it is difficult to ascertain the most suitable WSN configuration for use for offshore 

asset integrity monitoring. However, what can be said is that WSNs 3 and 4 just outperform WSN 2 as they 

both have their highest beliefs at the top evaluation grade, excellent. In order to more accurately rank the WSNs 

in terms of their performance and suitability, the utility estimation analysis outlined in Section 4.2, by Equations 

13 and 14, shall be applied further to determine the ranking of each WSN. 

 

 

General 

Attributes 

WSN 1 WSN 2 WSN 3 WSN 4 

Evaluation 

Grades Single-Hop 
Single Hop 

(Cluster) 

Multi-

Hop 

(Small 

Radius) 

Multi-Hop 

(Large 

Radius) 

Complexity 

(ω1 - 21.34%) 

  0.561 0.225 0.405 H1 Poor 

  0.000 0.141 0.000 H2 Indifferent 

    0.309 0.498 0.226 H3 Average 

    0.044 0.046 0.123 H4 Good 

    0.086 0.091 0.342 H5 Excellent 

Resilience (ω2 

- 49.86%) 

  0.041 0.000 0.135 H1   

  0.143 0.129 0.000 H2   

    0.143 0.037 0.078 H3   

    0.359 0.129 0.135 H4   

    0.313 0.704 0.652 H5   

Maintainability 

(ω3 - 28.80%) 

0.035 0.000 0.238 0.423 H1   

0.026 0.380 0.000 0.000 H2   

  0.063 0.276 0.306 0.052 H3   

  0.505 0.309 0.430 0.285 H4   

  0.371 0.035 0.026 0.240 H5   
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4.3.1 Utility Ranking  

The WSN designs can be ranked based upon their aggregated belief degrees from the ER algorithm, and this 

can be done through utility assessment. If there is not preference information available then the values of u(Hn) 

can be assumed to be equidistant, as outlined in Section 3.8. The estimated utility for the general and basic 

criteria, S(z(ei)), given the set of evaluation grades, is given by Equation 10. 

Equation 10 can be used as it is because the belief degrees sum to equal 1, therefore there can be no upper or 

lower bound limit on the utility estimation, just one utility value for each WSN. Each WSN can be ranked both 

in terms of each general criterion and the overall suitability of the WSNs. By applying Equation 10 and the data 

in Table 5 to the general criterion Complexity for WSN 3, its utility score can be determined.  

𝑢(𝑆(𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)) = (𝑢(𝐻1)𝛽1) + (𝑢(𝐻2)𝛽2) + (𝑢(𝐻3)𝛽3) + (𝑢(𝐻4)𝛽4) + (𝑢(𝐻5)𝛽6)

= (0 × 0.2225) + (0.25 × 0.141) + (0.5 × 0.498) + (0.75 × 0.046) + (1 × 0.91) = 0.409 

The utility estimation is calculated the same way for each WSN given each general criterion, and for the overall 

suitability for each WSN. These results are tabulated and the WSNs can be ranked accordingly. 

Table 6 shows that WSN 4 performs better in terms of the network’s ability to deal with complex transmissions 

and connections, with WSN 3 fairing much better than WSN 2. In terms of their ability to deal with complex 

transmissions and connections the WSNs are ranked as follows: 

 

 

Figure 7: Graph showing the overall aggregated assessment for the WSNs (1=Poor, 2=Indifferent, 3=Average, 

4=Good, 5=Excellent) 
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Table 5: Utility values and ranking of WSNs 2, 3 and 4 for the general attribute complexity. 

Complexity (x) belief 

Grades u(Grades) WSN 2 WSN 3 WSN 4 

H1 Poor 0 0.561 0.225 0.405 

H2 Indifferent 0.25 0.000 0.141 0.000 

H3 Average 0.5 0.309 0.498 0.226 

H4 Good 0.75 0.044 0.046 0.023 

H5 Excellent 1 0.086 0.091 0.347 

    u(Total) 0.274 0.409 0.477 

    Ranking 3 2 1 

 

𝑊𝑆𝑁 4 > 𝑊𝑆𝑁 3 > 𝑊𝑆𝑁 2 

The ranking order of the WSNs for the criterion Resilience is as follows: 

𝑊𝑆𝑁 3 > 𝑊𝑆𝑁 4 > 𝑊𝑆𝑁 2 

Continuing on with the ranking of the WSNs based on their performance against each general criterion, the 

utility values were calculated for Maintainability. WSN 1 outperforms WSNs 2, 3 and 4 in terms of their 

capabilities as an easily maintainable network. The ranking of the WSNs in terms of maintainability are as 

follows: 

𝑊𝑆𝑁 1 > 𝑊𝑆𝑁 3 > 𝑊𝑆𝑁 2 > 𝑊𝑆𝑁 4 

Finally, the WSNs are ranked based upon their overall performance, with the exception of WSN 1 which cannot 

be included as it was not assessed against general criteria complexity and resilience. Based upon the utility 

ranking for the overall suitability, WSN 3 was determined to be the most suitable design and data transmission 

choice for offshore applications. This provides some clarity to the analysis of Figure 7 where it could not be 

seen whether WSN 3 or WSN 4 would be the most suitable configuration based upon the analysis. The ranking 

order for overall suitability is as follows: 

𝑊𝑆𝑁 3 > 𝑊𝑆𝑁 4 > 𝑊𝑆𝑁 2 

4.3.2 Results comparison of calculated weights and normalised weights 

In addition to the analysis presented in Sections 4.1 and 4.2, further calculations were conducted in order to 

compare the calculated weights of the criteria with a normalised set of weights. In this case normalising the 

weights mean evenly distributing the values from 100%. For example, in the event that the weights are 

normalised, the weights of the main criteria would all equal 1/3 (33.33%). In theory, the application of calculated 

weights through expert judgement and AHP analysis should prove to be more accurate than the method of 

normalising the relative weights of criteria. Table 7 shows the utility values and rankings of each WSN against 

the general criteria and the final overall assessment for both the calculated weights and the normalised weights.  
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It is immediately apparent from Table 7 that the utility values and ranks of the WSNs are not completely the 

same for normalised weights as they are for calculated weights. If the  complexity criterion is highlighted it can 

be seen that the ranks are slightly different. For the normalised weighting system WSN 3 performs the best with 

WSN 4 performing the worst. However, when the calculated weights method is used, WSN 4 is apparently the 

most preferred method of data transmission. Furthermore, the utility values for the normalised weight method 

show very little difference in terms of the actual values: 0.404, 0.409 and 0.306 for WSNs 2, 3 and 4 respectively. 

However, when the calculated weights are used, the utility values differ much more drastically; 0.274, 0.409 

and 0.477 for WSNs 2, 3 and 4 respectively. This shows that the equal assignment of weights has a large effect 

on the outcomes of the ranking estimations. Typically, one would expect WSNs 3 and 4 to be able to cope much 

better with more complex data transmissions than WSN 2 (Mhatre & Rosenberg, 2004) (Fischione, 2014).  This 

pattern is demonstrated throughout Table 7, particularly in the overall suitability ranking. Therefore it is possible 

to state that utliising calculated weights as opposed to normalised weights generates more accurate results when 

compared against real world applications. 

Table 6: Utility estimations and ranks of each WSN for the general attributes and overall assessment for normalised weights and 

calculated weights 

 WSN 1 WSN 2 WSN 3 WSN 4 

Complexity (x) 

Normalised 

u(Total) - 0.404 0.409 0.306 

Ranking - 2 1 3 

Calculated 

u(Total) - 0.274 0.409 0.477 

Ranking - 3 2 1 

Resilience (y) 

Normalised 

u(Total) - 0.718 0.879 0.809 

Ranking - 3 1 2 

Calculated 

u(Total) - 0.690 0.852 0.792 

Ranking - 3 1 2 

Maintainability (z) 

Normalised 

u(Total) 0.719 0.508 0.502 0.466 

Ranking 1 2 3 4 

Calculated 

u(Total) 0.788 0.500 0.501 0.480 

Ranking 1 3 2 4 

Overall 

Normalised 

u(Total) - 0.550 0.597 0.525 

Ranking - 2 1 3 

Calculated 

u(Total) - 0.576 0.694 0.669 

Ranking - 3 1 2 
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4.4 Partial Validation 

In order to verify the method of applying the ER algorithm to the decision-making process, it must first satisfy 

the four axioms stated in Section 3.10. The overall beliefs and the general criterion beliefs are very much reliant 

on the magnitude of the belief degrees of the basic criteria.  Each axiom shall be identified, and cross examined 

individually. 

• The independence axiom: where a general criterion must not be assessed to an evaluation grade, Hn, if 

none of the basic criteria, under the general criterion, are assessed to Hn.. This axiom can be said to be 

satisfied because when the aggregation of the general criterion maintainability is analysed, for WSN 

2. It can be seen that none of the basic criteria are assessed to the grade poor, i.e. βn, i = 0 for i = 1, …, 

L. Because of this, the belief degree of the evaluation grade, indifferent, for the general criterion 

maintainability, should also be equal to 0, i.e. βn, = 0, and it is. Hence, in this instance the independence 

axiom is satisfied.  

• The consensus axiom: where the general criteria should be precisely assessed to a grade Hn, if all of the 

basic criteria in E are assessed to Hn. This axiom can be said to be satisfied by the example of the 

aggregation of the basic criteria of Maintainability for WSN 2. The initial belief degrees for the 

evaluation grades, poor, indifferent and excellent of the basic criteria e6, e7 and e8 are poor (0, 0, 0), 

indifferent (0.4, 0.2, 0.4,) and excellent (0, 0, 0.2) respectively. For the three basic criteria, there are 

similar values of belief degree. The axiom is satisfied, in this case, by the aggregated belief degree of 

the basic criteria for the grades poor, indifferent and excellent, which are poor (0.000), indifferent 

(0.380) and excellent (0.035). This trend can be seen across all of the data aggregation for all of the 

criteria. Hence, the ER analysis satisfies the consensus axiom.  

• The completeness axiom: where if all basic criteria, under a general criterion, are completely assessed 

to a subset of evaluation grades, then the general criteria should be completely assessed to the same 

subset of grades. This is true throughout the entire analysis whereby all criteria are assessed to the same 

set of evaluation grades of: poor, indifferent, average, good and excellent. Therefore this axiom can be 

said to be satisfied. 

• The incompleteness axiom: where if an assessment for any basic criterion in E is incomplete, then the 

assessment for the general criterion should be incomplete to a certain degree. This is consistent 

throughout the analysis as there are not any incomplete belief degrees, and all belief degrees sum to 

equal one for each criterion. This can be seen throughout the entire analysis. The initial belief degrees 

for the basic criteria sum to one for each criterion. Subsequently, the aggregated belief degrees for the 

general criteria also sum to equal one, and finally, the overall assessment beliefs for each WSN also 

sum to one. Therefore, there are no incomplete assessments and the axiom can be said to be satisfied. 

Having satisfied the four outlined axioms for the ER algorithm, it can be said that the methodology and process 

are partially validated. 
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 DISCUSSION  

While the analysis presented in this research proved to be conclusive, there is still room for improvement. The 

initial designs of the wireless sensor networks are only concerned with hardware and transmission 

configurations and not any software at all. Immediately this is an area for improvement. The software plays a 

key role in the operation and resilience of a WSN, in terms of the data that can be detected and transmitted and 

the issue of cyber-protection. The authors feel that further study is need in the area of software design and 

selection, in relation to the designs and assessment outlined in this research. 

In terms of the decision-making algorithm, there are a number of areas that would benefit from further work 

and improvement. Initially the assessment contains eight basic criteria and three general criteria, which can be 

extended given the application of software analysis. This would inevitably make the analysis and results much 

more coherent, by covering the comparison of a number of WSN designs based upon the application of software. 

It is also possible to apply a larger selection of evaluation grades. In this work five evaluation grades were used 

to reduce complexity in the decision-making algorithm, but more grades can be utilised. For example, Ren,  et 

al. (2014) apply the use of three different evaluation grading systems for three risk assessment areas. Each 

evaluation grading system contains seven evaluation grades. This provides a much more accurate generation of 

the basic criteria belief degrees. However, utilising an increased number of evaluation grades requires further 

aggregation through the use of fuzzy reasoning. 

A further path to expand upon the decision-making within this research is to apply extended ER algorithms to 

the outline situation. One unique ER rule in particular has been developed by Yang & Xu (2013). Their research 

establishes a unique ER rule to combine multiple pieces of independent evidence conjunctively with weights 

and reliabilities. They propose a novel concept of Weighted Belief Distribution (WBD) extended to WBD with 

Reliability (WBDR) to characterise evidence in complement of Belief Distribution (BD) introduced in the D–S 

theory of evidence. Hence, the new ER rule constitutes a generic conjunctive probabilistic reasoning process, 

which is applicable to combine multiple pieces of independent evidence with different weights and reliabilities 

in a wide range of areas such as multiple criteria decision analysis. Application of this ER rule could improve 

the analysis as it can determine if there is conflict between subjective information sources, and hence one may 

be reliable. In the event that two pieces of evidence conflict, the weighted average rule is applied to the belief 

degrees and in theory increases the reliability of the belief degrees (Yang & Xu, 2013).  

 CONCLUSION 

Real world decision problems and assessments are often complex and involve multiple criteria with high 

uncertainty. Hence, it is essential to conduct a coherent, rational, reliable, and transparent decision analysis. 

This research investigated the possible configurations and designs of WSNs that could feasibly operate within 

an offshore electrical power generator for the purpose of asset integrity monitoring. A set of qualitative criteria 
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and criteria were outlined to assist with the decision. Similarly, the ER approach was investigated and utilised 

for the purpose of determining the most suitable WSN design by aggregating the multiple criteria.  

The ER approach establishes a nonlinear relationship between an aggregated assessment for general criteria and 

an original assessment of basic criteria. The numerical analysis of the research dealt with the design selection 

problem outlined previously with key information and data taken from literature and expert judgements. It 

demonstrated that the ER approach could accurately be used as a viable decision-making tool in the design 

selection of WSN. Furthermore, the application of estimated weights and calculated weights demonstrates how 

sensitive the ER algorithm is to changes in initial data entries. From the analysis, it is clear that the ER approach 

can be applied to a number of MCDA problems with or without uncertainty. 

This research set out to outline a number of WSN configurations for use in the offshore industry and determine 

the most suitable based upon a set of design criteria. Four WSN configurations were proposed: i) WSN 1 – 

Single-hop, ii) WSN 2 – Single-hop with cluster nodes, iii) WSN 3 – Multi-hop with a small sensor radius, and 

iv) WSN 4 – Multi-hop with a large sensor radius. Following this a qualitative evaluation hierarchy was 

established to further solve the decision-making problem, i.e. which WSN would be most suitable for 

application within an electrical power generation module. The ER approach was applied to each of the WSNs 

based upon the outlined evaluation hierarchy. The subsequent analysis determined that a multi-hop 

configuration with a small sensor radius (WSN 3) would be the optimum solution to asset integrity monitoring 

of an offshore, gas turbine driven electrical generator.  
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