

LJMU Research Online

Al-Hamar, Y, Kolivand, H, Tajdini, M, Saba, T and Ramachandran, V

Enterprise Credential Spear-phishing attack detection

http://researchonline.ljmu.ac.uk/id/eprint/15437/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Al-Hamar, Y, Kolivand, H, Tajdini, M, Saba, T and Ramachandran, V (2021) Enterprise Credential Spear-phishing attack detection. Computers and Electrical Engineering, 94. ISSN 0045-7906

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Enterprise Credential Spear-phishing Attack Detection

3

Yuosuf Al-Hamar ¹, Hoshang Kolivand ^{1,2}, Mostafa Tajdini ², Tanzila Saba ³, Varatharajan Ramachandran ⁴

6
7 ¹ Department of Computer Science, Liverpool John Moores University, L3 3AF, Liverpool, UK; Yalhamar@hotmail.com
9 ² Staffordshire University, UK

- 10 ³ Prince Sultan University, Riyadh, Saudi Arabia
- ⁴ Bharath University Chennai, India
 12
- 13 * Correspondence: h.kolivand@ljmu.ac.uk

14 Abstract:

15 The latest report by Kaspersky on email Spam and targeted Phishing attacks, by percentage, 16 highlights the need of an urgent solution. Attachment-driven Spear-phishing struggles to succeed 17 against many email providers' malware-filtration systems, which proactively check emails for 18 malicious software. In this paper, we provided a solution that can detect targeted Spear-phishing 19 attacks based on required similarities in the specific domain which it has been targeted. The strategy 20 is to figure out whether the domain is genuine or a forgery, which is to be evaluated by multi novel 21 grading algorithms. Therefore, this research addresses targeted attacks on specific organisations by 22 presenting a new enterprise solution. This detection system focuses on domain names, which tend 23 to be registered domain names trusted by the victims. The results from this investigation show that 24 this detection system has proven its ability to reduce email phishing attacks significantly.

- 25 Keywords: Spear-phishing, phishing attacks, phishing detection, anti-phishing
- 26

27 **1. Introduction**

Neutralising the threat of phishing for cybersecurity is not easy; over the years, the attacks have exponentially gained sophistication, adapting to the ever-more stringent parameters and new techniques applied by anti-phishing strategists [1], [2]. By using a variety of social engineering methods and hoodwinking web-surfers, phishing poses a risk to the cyber-security of users, often extracting crucial, confidential information using these 33 methods [3]. Even web-surfers who are not naïve to the risk of phishing can still be vulnerable to 34 these attacks [4], because their ability to discern between legitimate and illegitimate pages may be 35 confounded by a false web page that is designed by phishers to accurately emulate the features of the 36 legitimate site it is imitating.

In the last half of 2014, the anti-phishing working report discovered 132,972 unique phishing attacks between July and December, globally [5]. The industries which are most likely to come under attack are e-commerce, banks, and money transfer companies, for an obvious reason- these promise the most lucrative reward for phishers. The following top-tier domains were utilised by 75% of phishing pages: .net, .cf, .pw, .tk, and .com.

The report also found that during the given time period, the median uptime for phishing sites (i.e. uptime) increased to 10 hours and 6 minutes. In 2015's first three quarters, the financial service sector and banking sector ceased to be the most vulnerable sector, falling into third and second place respectively. Evidently, attackers began to prioritise Internet Service Providers (ISPs) during this time-frame, with them taking first place as the most commonly targeted industry sector [6].

47 The reason for this change of tactic becomes clear when we consider the opportunities ISP 48 accounts offer phishers for gleaning confidential information such as credit card and identification 49 data [7]. Once gained, this personal information can even be utilised for further phishing endeavors; 50 for example, attackers are able to use hacked accounts to send spam mail. The Business Email 51 Compromise (BEC) fraud of 2015 exemplifies a serious case where a successful phishing attack cost 52 industries large amounts of money [6]; with the use of Spear-phishing methods, the phishers were 53 able to dupe their targets into making transfers and fraudulent transactions. Blacklisting, as 54 previously mentioned, is commonly used to guard users against phishing. Often, these mechanisms 55 are embedded within web browsers as plug-ins which perform a check on every URL and operate on 56 the basis of phishing identification measures which include user votes. This then alerts users of the 57 malicious nature of pages they are trying to visit when a domain appears in the blacklist and blocks 58 the connection to protect them. Some examples of this type of anti-phishing plug-in are as follows:

Google-safe browsing for Firefox [8], phishing filter for Internet Explorer [9]. The blacklist, though, needs to be constantly updated for these measures to be effective, and the update process is often not as speedy as it needs to be, especially considering the fact that many phishing websites typically have short life-spans, with up-times of only a few hours.

Our approach is designed to detect Spear-phishing attacks by analysing the sender domain
name. Ransom-ware attack is categorised as drive-by-download attacks and it is beyond the scope of
this paper as we have focused on targeted attacks.

This paper is organized as follows. Overviews of existing literature is presented in Section 2. Section 3 presents the proposed method which is divided into two subsections. The results obtained from the proposed method is presented in Section 4. Section 5 reveals some related discussions and comparisons with existing methods. The paper ends with complete collusion based on the outcomes of the presented method.

71 2. Background

Spear-phishing refers to an attack targeted specifically against a group, organisation or individual [10], [11]. This method has grown in popularity [12], superseding that of more conventional techniques like random and mass email phishing. The reason for this is that Spearphishing has a far higher success rate than the other, more generalised methods [12]. This is because the content of the phishing email is tailored to the receiver, therefore it is less likely to arouse suspicion.

Spear-phishing is much more successful because people generally trust communications which come from entities whom they already hold an account with or are familiar with [13]. Phishing sites that imitate organisations which users have previously interacted within their legitimate forms are less likely to arouse suspicion and cause them to check the authenticity closely. Some phishers even impersonate specific users' friends [14] or colleagues [15] to ensure a higher success rate. Phishers can, for instance, contact a staff member in an organisation whilst pretending to be a colleague from another department, who for legitimate-seeming reasons asks the victim to respond with important
login details or open malicious attachments.

86 This technique can yield great success and lead to entire data networks being compromised in 87 an institution [16]. This is the preferred method for phishers carrying out what is described as an 88 Advanced Persistent Threat (APT) attack [17], which is an attack targeted at a specific organization, 89 with specific goals. The personalised nature of Spear-phishing makes it an ideal means of attaining 90 this goal. APT attacks are typically carried out over a long time, and care is taken to avoid drawing 91 any attention to the infiltration before the set objectives are achieved. Making use of malware or zero-92 day vulnerability exploits, phishers launch APT attacks in order to achieve goals such as sabotage or 93 espionage [18].

94 To create personalised Spear-phishing emails, it is first necessary to obtain some data about the 95 target. One means of achieving this is browser sniffing [14], which is a technique of "sniffing" out the 96 websites that a target has visited by viewing access times for certain cache cookies, DNS caching, and 97 URL [19]. If access time for a certain DNS lookup or URL is brief, this is evidence that the user has 98 accessed the website before, since a DNS cache already exists for the DNS entry, or the browser has 99 created a cache for quick access to the site. Cache cookies also allow phishers to monitor which sites 100 are frequently accessed by their victims. This enables the development of a personally targeted attack 101 which draws on what the phisher knows to be the victim's established network of interests and 102 affiliations. This sniffing technique can be deployed by embedding JavaScript containing malware 103 into websites, web-ads, HTML emails, or search engine optimisation, and sending links to these in 104 emails [20]. Once installed, the malware will report back to the phisher all of the victim's access times, 105 allowing a personalised attack to be devised.

106 **3. PROPOSED METHOD**

107 *3.1 Attack Taxonomy*

Spearfishing differs from attacks which use software and protocol weaknesses and technical vulnerabilities to infiltrate machines. The engineering that goes into a Spear-phishing attack can be described as social rather than technical. Spear-phishing entails sending specially designed emails which are bespoke to the victim, intended to hoodwink victims into carrying out an action which benefits the predator. Due to the nature of the attack, very little technical knowledge is necessary on the part of the attacker. Unlike other types of phishing, Spear-phishing does not prey on the functional vulnerabilities of machines and software but rather relies on the gullibility of users, which means attacks are difficult to deflect through automated technical defense systems.

The relatively high success rate of Spear-phishing results from the fact that emails are easy to spoof and the considerable time attackers invest in creating emails designed specifically for a particular victim. Hence, as of yet, effective measures or tools for identifying or defending against Spear-phishing do not exist.

120 whilst Spear-phishing emails are made bespoke to victims with particularly valuable 121 information, capabilities, or access to resources. The attacks are designed with a very specific aim in 122 mind, which makes it possible to tailor every detail in such a way as to increase convincingness.

Phishers are forced to carry out expensive zero-day exploits in order to succeed against meticulous technical defense systems. Conversely, the barriers set up against credential Spearphishing are very low; phishers need only to cleverly construct a bespoke email and host a spoof website in order to hoodwink their victims.

To hoodwink targets into performing actions on behalf of the phisher, Spear-phishing emails must instill trustworthiness by a demonstration of authority or legitimacy. Usually, this is attained by impersonating trusted entities who are already known to the target. Then, the phisher impersonating the authority figure will ask the target to carry out an action which benefits the phisher, such as transferring funds or breaching sensitive data.

132 *3.2 Threat Model*

133 In this work, we specifically focus on an "Enterprise Credential Spear-phishing" threat model,

134 where the attacker tries to fool a targeted enterprise's victim into revealing their credentials.

135	In the tests that we did on the Liverpool John Moores University email system, we found that					
136	the attacker can bypass detection by changing one character of a legitimate domain name. In this test,					
137	we register the domain "ljmuac.uk". The only difference between our registered domain name and					
138	the legitimate Liverpool John Moores University domain name "ljmu.ac.uk" is that ours has one less					
139	full stop or dot. As shown in Figure 1, we sent an email from					
140	dontreply@ljmu.ac.uk <dontreply@ljmuac.uk>.</dontreply@ljmuac.uk>					
1 / 1						
141	from: dontreply@ljmu.ac.uk <dontreply@ljmuac.uk></dontreply@ljmuac.uk>					
	to: @ljmu.ac.uk					
	date: Oct 3, 2018, 12:35 PM					
	subject: Status Report					
142	mailed-by: ljmuac.uk					
143	Figure 1: Registered domain name					
144	In our threat model, the real email is xxx@ljmu.ac.uk, where "xxx" can be any name such as					
145	dontreply, ITHelpDesk, or even a person's name.					
146	The adversary can send arbitrary emails to the victim and convince the recipient to click on URLs					
147	embedded in the adversary's email (Figure 2). To impersonate a trusted entity, the attacker may set					
148	any of the email header fields to arbitrary values.					
	Please change your password immediately					
	dontreply@ljmu.ac.uk <dontreply@ljmuac.uk> Mon, Oct 15, 1:54 PM 🔂 🔦 1</dontreply@ljmuac.uk>					
	Dear Yuosuf, We have been noticing strange internet traffic originating from your computer. It appears there has been a small outbreak of viruses that may have spread across the network. We are attempting to remove these infections, however need you to change your password immediately. You can change your password from <u>Here</u> or follow this link: <u>https://myaccount.ljmu.ac.uk/</u>					
	Best Regards					
149	LIMU IT Security Team https://myaccount.ljmuac.uk					
150	Figure 2: Send email to user					
151 152	This paper is focused on attacks which entail masquerading as a trusted entity, with the payload					
153	being a link to a credential harvesting phishing page.					
154	Figure 2 shows an email we sent to LJMU students, informing them of strange internet traffic					
155	originating from their computers, and telling them that there appears to have been a small outbreak					
156						
	of viruses that may have spread across the network. We reassure the user that we are attempting to					

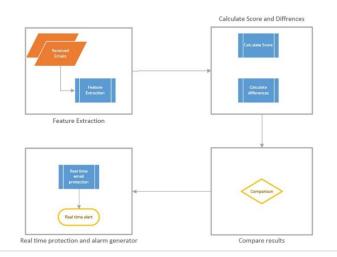
is asked to click on a link. The link redirects the user to a cloned website where we present a clonedversion of a legitimate website.

- 160 To gain more trust, we placed "https://myaccount.ljmu.ac.uk/" over the hyperlink text which 161 sends users to our cloned website "https://myaccount.ljmuac.uk/".
- 162 We asked 50 different people (40 students and 10 staff) to read the email and click on the link.
- 163 Once they read it and opened the link, we asked if they noticed anything wrong with the email and
- 164 the page. Only 2 people (1 student and 1 staff member) noticed that firstly, the sender of the email is
- 165 not Liverpool John Moores University, and none of them spotted that the web page they browsed is
- 166 a cloned version of a legitimate page

As shown in Figure 3, we were able to obtain user usernames and passwords. Once the user clicks on the login button, they are redirected to the legitimate address, which in this case is ''http://stureg.ljmu.ac.uk'', and they think that they might have inputted their username and password incorrectly without even realising that their username and password has been stolen.

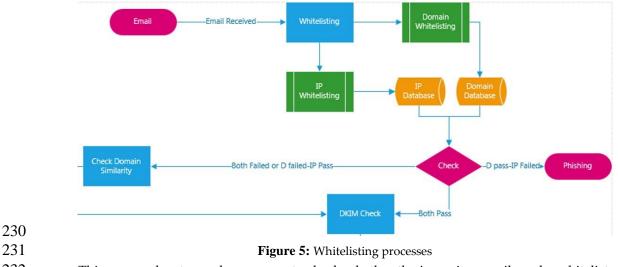
171 Therefore, this Spear-phishing attack was successful in stealing the victim login credentials.

[*] WE	GOT A HIT! Printing the output:
PARAM:	LASTFOCUS=
PARAM:	detail_ToolkitScriptManager1_HiddenField=
PARAM:	EVENTTARGET=
PARAM:	EVENTARGUMENT=
PARAM:	VIEWSTATE=/wEPDwUKMTYwMTg10Tk4N2QYAQUeX19Db250cm9sc1JlcXVpcm
PARAM:	VIEWSTATEGENERATOR=C2EE9ABB
PARAM:	EVENTVALIDATION=/wEdAAUSFPG18W2NaR9Tmh3oBF8Eyh1HDN25acBMNcp5
POSSIBI	E USERNAME FIELD FOUND: ctl00\$detail\$tbUsername=test
POSSIBI	E PASSWORD FIELD FOUND: ctl00\$detail\$tbPassword=test
	ct100\$detai1\$btnSubmit=Log+On
[*] WHE	EN YOU'RE FINISHED, HIT CONTROL-C TO GENERATE A REPORT.


Figure 3: Sniffed username and password

During our test phase, we successfully bypassed the email protection that the university put in place to protect users. A dialogue was established with the university IT department, to find out what types of protection they employ and how they tackle phishing attacks.

Unfortunately, they had no idea what we were talking about. There is a difference between spam and phishing emails. Spam emails can be phishing emails, but Spear-phishing emails cannot be spam and will bypass the spam scoring system if the attacker crafts the email carefully. Therefore, the


180 "Trend Micro Email Protection" system is impractical in guarding against Spear-phishing attacks on

- 181 Liverpool John Moores University staff or students, as demonstrated by the fact that we successfully
- 182 launched a Spear-phishing attack and bypassed the detection system.
- 183 During the literature review phase, we could not find any solution that tackles "Enterprise
- 184 Credential Spear-phishing", where attackers carefully plan attacks. These types of attacks normally
- 185 deploy by the following steps:
- Step 1: Identifying the victim: At the beginning of each phishing attack, an attacker needs to find a target.
 Since Spear-phishing is a targeted attack, the attacker must specifically identify the victim.
- Step 2: Gathering information about victim: Once the attacker identifies the victim, they need to gather
 intel about the victim using search engines or social networks such as name, location, place of work,
 close friends, favourite brands, and favourite things to do.
- Step 3: Choosing techniques: Based on the information gathered from the previous step, now the attacker
 will choose their attack techniques. In our threat model, the attacker has chosen Spear-phishing,
 typosquatting and credential harvesting.
- Step 4: Preparing tools: Based on techniques selected in step 3, the attacker now prepares the tools that are
 suited to the planned attack.
- Step 5: Register domain(s): In this step, the attacker will register a domain name designed to establish the victim's trust. For example, for a victim working in a company with the web address www.abcd ef.co.uk., the attacker will register a domain name similar to that with 1 or 2 characters different, e.g. www.abcedcf.co.uk.
- Step 6: Craft email template: To gain more trust, the attacker must construct an email template carefully.
 Once a victim cannot identify anything suspicious in a spoofed email, 99% of their trust is established.
- Step 7: Clone targeted website: Because of the nature of the techniques chosen, the attacker needs to clone
 the targeted website that he wants to send to the victim in order to extract their credentials.
- 205 Step 8: Send email
- 206 Step 9: Credentials Obtained
- 207 Therefore, to tackle this type of attack, we proposed a solution that can detect an "Enterprise
- 208 Credential Spear-phishing" attack, where the attacker uses a similar domain name to gain the victim's
- 209 trust and to trap the victim into the attack. The proposed solution, at a high level, has four stages as
- 210 illustrated in Figure 4.

212 Figure 4: Overview of the proposed protection system 213 As shown in Figure 4, the first process is feature extraction, then the extracted features are 214 processed to calculate scores and differences. These two processes are the most important parts of 215 our proposed solution. Once the scores and differences are calculated, the result will is compared 216 with the database and threshold values. If there is a match, an alert is created and the email is 217 quarantined for further investigation. 218 3.2.1Feature Extraction 219 220 In this process, the proposed system extracts the following features from the received email 221 domain: Count number of characters (Cnoc), Count number of unique characters (Cnouc), Count 222 number of dots (Cnod), Count number of numeric values (Cnonv), Count number of hyphens 223 (Cnoh), Extract domain extension after (Ede), Count number of charter before the first dot (Cnocb 224 f d), Incoming mail IP address (INi p), Valid IP address (VI P), Similar characters place (SCP), 225 Similar domain name (Sdomain), Number of common characters (NCC), Similar domain name 226 length (SDNL)

As shown in Figure 5, the proposed solution starts to work once the email is received by the system. At the first stage, the email domain is whitelisted through the first process, which is the "whitelisting" process.

232 This process has two sub-processes to check whether the incoming email can be whitelisted or

233 not. The first sub-process is to check the domain against a valid domain database. This process will

check if the incoming email domain name (i.e. ljmu.ac.uk) exists in the domain database. Then, the next sub-process will check the sender IP address (i.e. 1.1.1.1) against the IP database to see if the sender IP address exists in that database.

Afterward, the results are compared to make a decision about the email. In the "Check" process, the system will mark the email as phishing if the domain name is the same (result pass), but the IP address is different (result fail). This means an attacker is trying to spoof a valid domain name to send the phishing attack, but the IP address is not similar to the valid IPs.

If both checks fail, then the email is forwarded to another process, which is "Check DomainSimilarity". This is because neither the domain nor the IP is valid.

243 If the domain check result is failed but the IP address is valid, the email is still sent to the "Check

244 Domain Similarity" process again for further examination. If both the domain and IP pass, the

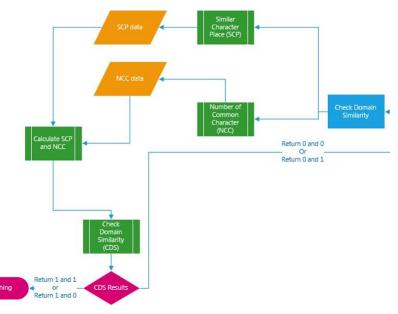
245 proposed solution sends the email to another process named "DKIM and SPF" checker.

246 3.2.2 Algorithm 1: Whitelisting

In this part, we propose an algorithm for whitelisting the incoming email domain name. The
proposed algorithm has two parts, "Function Domain Whitelisting" and "Function IP address
Whitelisting".

250 Function Domain Whitelisting

251 This function whitelists the domain name using the valid domain database, where INdomain is


the incoming email domain name and Vdomain is a whitelisted domain in the valid domain database.

253 Function IP address Whitelisting

- 254 This function whitelists the sender IP address(Figure 6) using the valid IP address database, where IN_{IP} is the
- 255 sender IP address and V_{IP} is the whitelisted IP address in the valid IP address database.

	Received: from [127.0.1.1] [167.99.81.250] by smtp.gmail.com with ESMTPSA 1d 125-v6sm9501157wmr.2;
	for <h.kolivand@ljmu.ac.uk></h.kolivand@ljmu.ac.uk>
256	(version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bit: Mon03_Dec_2018_06.27.440800_(DST)
257	Figure 6: Send IP address

- 258 Once an email is received, the process starts to work by checking and validating two factors. The 259 first factor is the domain name and the second one is the sender IP address. If the result is pass, then 260 the email is valid and moves to the next layer of processing, which is the Domain Keys Identified 261 Mail (DKIM) and Sender Policy Framework (SPF).
- This is because if INdomain = Vdomain, then it means the sender domain is the same as the domain in the whitelisted database. To avoid address spoofing, we check the sender IP address against the valid IP address. If INI P = VI P then it means the email was sent from one of the trusted domains. In this case, we send the email for future checks to the DKIM and SPF process. If both fail, then the email is sent to the next function, "Check Domain Similarity".
- 267 3.2.3 Algorithm 2: Check Domain Similarity
- 268 This process starts to work by evaluating the incoming email domain name. As shown in Figure
- 7, this process has two sub-processes, Similar Character Place (SCP) and Number of CommonCharacters (NCC).

- 271 272
- Figure 7: Check domain similarity process
- 273 Similar Character Place (SCP) looks for common character placements between incoming the
- 274 email domain name and valid domain addresses. In theory, this will help to prevent attack techniques
- such as "Typo squatting". In "Typo squatting", attackers use a similar domain to a legitimate domain.

For example, an attacker might use "ljmuac.uk" as the email domain name to send an email to the victim, which is close to "ljmu.ac.uk".

278 To achieve this, we proposed an algorithm named "Similar Character Place (SCP)" to find 279 similar character placements in both domains. If the "SCP" is more than the threshold value, it is 280 given a "1" score, if it is less the score is "0". The threshold value is half of the valid domain name. 281 As an extra security precaution, we proposed another algorithm named "Number of Common 282 Character". This sub-process counts the number of common characters in both domains, minimising 283 the risk of the attacker evading detection. The idea behind this is that normally, attackers use words 284 similar to a target address. For example, an attacker might send an email from "insatgarm.com", 285 trying to pretend that the email is from "instagram.com". This domain has eight common characters 286 with the domain "Instagram.com". As with SCP, if the threshold is met, then the system gives a score 287 of "1", and if it is not met then the score is "0". The threshold value for this process is one-third of the 288 number of characters in the valid domain address.

289 Once both Similar Character Place and Number of Common Character are calculated based on

290 the following presented algorithms:

291 Function Similar Character Place (SCP) () {
292 *def1: Find*

def1: Find SCP 293 Read From (V_{domain}) 294 Input IN_{domain} 295 String []SP1; 296 String []SP2; 297 Counter Index = 0;For I = 1 to V_{domain} . length[] 298 299 For J = 1 to IN_{domain}. length[] 300 $IFV_{domain}[I] = IN_{domain}[J]$ 301 SP1.append(I); 302 } 303 Function Number of Common Character (NCC) () { 304 def2: Find NCC 305 $s1 = set(Read From Database(V_{domain}));$ 306 $s2 = set(Input IN_{domain});$ 307 $common_{char} = s1 \& s2;$

308	$remove_{dots} = ([s.strip('.')for s in s2])$				
309	IF $len(common_{char}) < 1'$:				
310	$return (list(set(s1).intersection(remove_{dots})))$				
311 312	else: return 0				
313 314	} Then the result is forwarded to another sub-process called "Check Domain Similarity". If the result				
315	of both is "1", then the incoming email is classified as "Phishing". This is because the proposed sub-				
316	processes, Similar Character Place and Number of Common Character, detected a high chance of				
317	similarity to the valid domain; therefore, the email is marked as phishing.				
318	If the Similar Character Place score is "1" and the Number of Common Character score is "0",				
319	again the proposed system has detected a high chance of the incoming email having a Similar				
320	Character Place to the valid email.				
321	If one of the SCP or both of them return "0", then the domain will forward the email to DKIM				
322	for further examination of the domain.				
323 324	DKIM and SPF Process				
325	This process was designed and added as an extra layer of security to make sure that the emails				
326	reaching users are 99% clean and valid.				
327	Once an email is received, first the process checks the Domain Keys Identified Mail (DKIM) with				
328	a public DNS server. Once the result comes back from the Public DNS Server, the next process checks				
329	the Sender Policy Framework (SPF) with a Public DNS Server to hinder the ability of attackers to send				
330	email spoofing a domain name, as shown in Figure 8.				

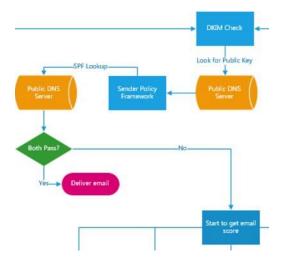


Figure 8: DKIM and SPF proceSS

333 If both the DKIM and SPF check pass, then the system will deliver the email. This is because,

334 after the previous processes and this one, the proposed system believes that the email is 99.9% clean.

335 However, if both of the checks or one of them failed, then an extra layer of filtering and checks are

- 336 put in place to make sure that the email sender is legitimate.
- 337 Step 1: Read "DKIM" and "SPF" from DNS Domain Check with Public DNS Server to see if SPF record 338 is valid and authorised
- 339
- Retrieve Public Key with Public DNS Server to verify sender key
- 340 Step 2: IF Both Pass = yes => Deliver Email
- 341 Step 3: IF Both Pass = No => Check Domain Similarity IF either of them pass = NO => Check Domain

342 Similarity Domain Keys Identified Mail (DKIM): is a protocol used by email systems to verify the

- 343 sender and integrity of a message and prove that spammers did not modify an incoming message
- 344 while in transit.

345 The DKIM key is used by recipient mail servers to decrypt the message's signature and compare

- 346 it against the domain DNS record. If the values match, then it will prove that the message is authentic
- 347 and unaltered in transit, therefore, not forged or altered.
- 348 Sender Policy Framework (SPF): SPF prevents spammers or attackers from sending emails with
- 349 a spoofed domain name as the sender. SPF adds IP addresses to a list of servers that are authorised
- 350 to send email from your domain. It verifies that messages sent from your domains originated from
- 351 the listed server, which reduces the amount of backscatter that you receive.
- 352 An example of received email by Gmail with DKIM and SPF results is shown in Figure 9.

353	dkim=pass header.i=@ljmuac.uk header.s=default header.b=dFP3P197; spf=pass (google.com: domain of dontreply@ljmuac.uk designates 10
354	Figure 9: Example from received email by Gmail
355	ingare st Example from received chain by Ontain
555	
356	Complimentary Filtering and Checks
357	In this process, we used an existing solution which was designed to prevent spam emails,
358	because we believe that the same system to prevent spam can be used in conjunction with the
359	proposed method to increase the detection rate.
360	If the results of DKIM and SPF failed, then the incoming email is forwarded to this process. This
361	process has five sub-processes. An incoming email is passed to each of these five sub-processes for
362	further checks. Each of these sub-processes has a scoring limit, which if exceeded, will categorise the
363	email as phishing. Each filter below contributes to a SPAM/Phishing scoring. If the received email
364	returns a total score greater than the "Pre-defined Scoring Limit", then the message will be blocked.
365	Compared to the Bayesian option, the Hidden Markov Model (HMM) produces results that are more
366	exact.
367	Step 1: Check with RBL Filter
	Step 1: Check with RBL Filter This filter extracts the sender IP address from the email header and checks it with the configured
367 368 369	Step 1: Check with RBL Filter This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by
368	This filter extracts the sender IP address from the email header and checks it with the configured
368 369	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by
368 369 370	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is
368 369 370 371	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email.
368 369 370 371 372	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score:
368 369 370 371 372 373	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score
368 369 370 371 372 373 374 375 376	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing
368 369 370 371 372 373 374 375 376 377	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password",
 368 369 370 371 372 373 374 375 376 377 378 	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score.
 368 369 370 371 372 373 374 375 376 377 378 379 	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. Calculate Score:
 368 369 370 371 372 373 374 375 376 377 378 379 380 	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score
 368 369 370 371 372 373 374 375 376 377 378 379 380 381 	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing
 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: <i>IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score</i> <i>IF Pre-defined Score Exceed = Yes => Label Email as Phishing</i> Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. <i>IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score</i> <i>IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score</i> <i>IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score</i> <i>IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score</i> <i>IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score</i> <i>IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score</i> <i>IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score</i> <i>IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score</i> <i>IF Pre-defined Score Exceed = Yes => Label Email as Phishing</i> Step 3: HMM Filter Calculate Score:
 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score
 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed =
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 3: HMM Filter Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 4: Suspicious HELO Calculate Score:
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 3: HMM Filter Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 4: Suspicious HELO Calculate Score:
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386	This filter extracts the sender IP address from the email header and checks it with the configured RBL one at a time. If the check returns a positive result, it means the sender IP address is listed by one of the RBL servers and a spam score equal to the RBL server's assigned confidence level is assigned to the email. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = Yes => Label Email as Phishing Step 2: Check Bayesian Filter This scoring filter adds to a message's score if contains specific words, and when it exceeds a pre-defined score, it categorises the message as phishing/spam. An example is "Share Password", which would surely give a high score. Calculate Score: IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score IF Pre-defined Score Exceed = No => Send to Total Pre- defined Score

390 IF Pre-defined Score Exceed = Yes => Label Email as Phishing

391 4. Test and results

392 This chapter has two parts, which provide an evaluation of the proposed solution and the 393 awareness-training framework by performing different tests. The first part covers the proposed 394 technical solution, which we call ECSPAD (Enterprise Credential Spear-phishing Attack Detection) 395 and the second part covers the evolution of the proposed awareness- training framework. At the end 396 of the tests, by comparing the results, we have validated that the proposed solutions achieved the 397 main aim of this paper, which is to develop a solution that can detect an Enterprise Credential Spear-398 phishing Attack. The other aim of this paper is to develop an awareness-training framework for the 399 state of Qatar, to train users to reduce the impact of phishing attacks. There is a proverb saying, 400 "Prevention is better than a cure".

401 ECSPAD – (Enterprise Credential Spear-phishing Attack Detection)

402 Test – ljmu.ac.uk

In this part, we performed a series of tests to evaluate the proposed method. In Table 1, we have
a valid domain name set to "ljmu.ac.uk". The Similar Character Place (SCP) Threshold Value and
Number of Common Characters (NCC) are calculated based on the valid domain name.

406	TABLE 1 SCP and NCC for ljmu.ac.uk						
		Valid Domain	<u>Ljmu.ac.uk</u>				
		SCP Threshold value	2				
		NCC Threshold value	2				
407	Once the SCP and NCC	Threshold value was cal	lculated, we then u	sed the domain "ljmuac.uk"			
408	as the phishing domain name	e. As the results show in	Table 2, we assum	e that the attacker registered			
409	the domains to perform the "Credential Spear-phishing Attack" by choosing the same domains as						
410	the victim domain name.						
411	Once an email is receive	ed from "user@ljmuac.u	k", the proposed s	ystem starts to work. In the			
412	beginning, the system extracts the following features from an incoming email domain name.						
413 414		TABLE 2 Result of the pro					

Incoming email domain	Classified as Phishing?
<u>ljmuac.uk</u>	Yes
<u>Ljmu.acuk</u>	Yes
Limu.a.c.uk	Yes
<u>Ljm.ac.uk</u>	Yes
<u>Ljmuu.a.c.u.k</u>	Yes
<u>Ljmuacuk</u>	Yes

421

Valid Domain = LJMU.AC.UK

417 Incoming mail Domain = LJMUAC.UK

418	Step 1: Whitelist domain: Verify if the incoming email domain name is the same as the valid
419	domain name.

- 420 Step 2: Whitelist IP: Verify if the incoming email IP is the same as the valid IP.
- 422 The result for this process will be "fail" as "INi p 192.168.1.11" is not the same as "Vi p =
- 423 192.168.1.10"
- 424 of Common Characters extracted from "Step4" and it will compare to TVNCC (threshold value)

425 which is calculated previously. Because both "Step1" and "Step2" result came back as "fail", the email

- 426 will forward to the next step to perform further examinations.
- 427 Step 3: Find Similar Character Place (SCP): Find similar character places between Vdomain and

428 INdomain. As shown in Figure 10 (top), the SCP between Vdomainand INdomain is just 4

- 429 characters. The result of this process is "4".
- 430 Step 4: Find Number Common Character (NCC)
- 431 The result from this step is shown in Figure 10(middle), and the result of this process is "7".

432 Step 5: SCP and NCC Calculation

- To calculate the SCP, we propose the following algorithm which the results is shown in Figure10(buttom).
- 435 *def* 3: Calculate SCP
- 436 IF $RSC \ge PTVSC P$ Then:
- 437 *Return 1*
- 438 *Else*:
- 439 Return 0
- 440

	Valid Domain: ljmu.ac.uk Incoming Email Domain: l j l j j m m u u . a a c c . u u k		
	Similar Character Place:	['l', 'j', 'm', 'u']	
Valid Domain: ljmu.ac.uk Incoming Email Domain: l	.jmuac.uk		ain: ljmu.ac.uk Email Domain: ljmuac.uk
Common Characters: ['a', Number Common Characters:	'c', 'k', 'j', 'm', 'l', 'u 7	1]	SCP result: 1 Place(sp):
Figure 10: (t	op): SCP result, (middle): NCC	C result, (buttom): Calcul	ate SCP result

444 445 We need to calculate the TVsc p. The TVsc p is half of the length of the valid domain name 446 (Sdomain = limu). Therefore, TVsc p is "2". Based on the result from "Step 3" which is "4", the result

446 (Sdomain = ljmu). Therefore, TVsc p is "2". Based on the result from "Step 3" which is "4", the result
447 of Calculate SCP is "1".
448 Now, it is time for the NCC calculation process to begin. The following algorithm has been

448 Now, it is time for the NCC calculation process to begin. The following algorithm has been
 449 proposed, where RNCC is the Number of Common Characters that were extracted from "Step4", and
 450 is compared to the TVNCC (threshold value) which was calculated previously.

- 451 *def* 4: Calculate NCC
- 452 IF RNCC \geq TV NCC Then:
- 453 *Return 1*
- 454 Else:
- 455 *Return 0*

The RNCC is "7", and the TVNCC is "2". Therefore, the result of this should be "1", as theNumber of Common Characters is greater than the threshold value.

458

441

442 443

459 Step 6: Check Domain Similarity

Based on the results from previous processes, the domain is now classified as Phishing, Suspected as Phishing, or send to the next step, which is DKIM and SPF check. Based on the results, the proposed system classified the email as phishing, because the SCP score is "1", the NCC score is "1", and the proposed algorithm calculated a high similarity between the incoming domain name and the valid domain name. Table 3 shows the results of the tests we did with different domains that we registered for the presented Spear-phishing targeted attack.

	TABLE 3
VALID	DOMAIN EXTRACTED FEATURES

Feature Name	Ljmu.ac.uk	Ljmuac.uk	INSTAGRAM.COM	insatgarm.com	ALPINA.QA	ALPNIA.QA
VCnoc	10	9	13	13	9	9
VCnouc	7	7	10	10	6	6
VDomain	ljmu.ac.uk	ljmuac.uk	instagram.com	insatgarm.com	alpina.qa	alpnia.qa
SDomain	ljmu	ljmuac	instagram	insatgarm	alpina	alpnia
VCnod	2	1	1	1	1	1
VCnonv	0	0	0	0	0	0
VCnoh	0	0	0	0	0	0
V Ede	ac.uk	ac.uk	com	сот	qa	qa

	VCnocb f d	4	6	9	9	6	6
	Vi p	192.168.1.10	192.168.1.11	192.168.12.100	192.168.15.15	192.168.20.100	192.168.22.100
470							
471	Table 4 s	shows that the	e only detecti	on system that	detected all of	the tests is th	ne proposed
472	method. However, from the result, we can see that the Gmail email server detection was able						
473	to detect our "Instagram.com" phishing attack and the motc.gov.qa was able to detect the						
474	attack that we sent from our registered domain "motcgv.qa".						
475							

TABLE 4							
TARGETED	SPEAR-PHISHING ATTACK	TEST RESULTS					

Domain	TrendMicro	Outlook	Gmail	Yahoo	Live	ESCPTAD
ljmuac.uk	pass	pass	pass	pass	pass	detected
instagram.com	pass	pass	detected	pass	pass	detected
motcogv.qa	pass	pass	pass	pass	pass	detected
<u>alpina.qa</u>	pass	pass	pass	pass	pass	detected

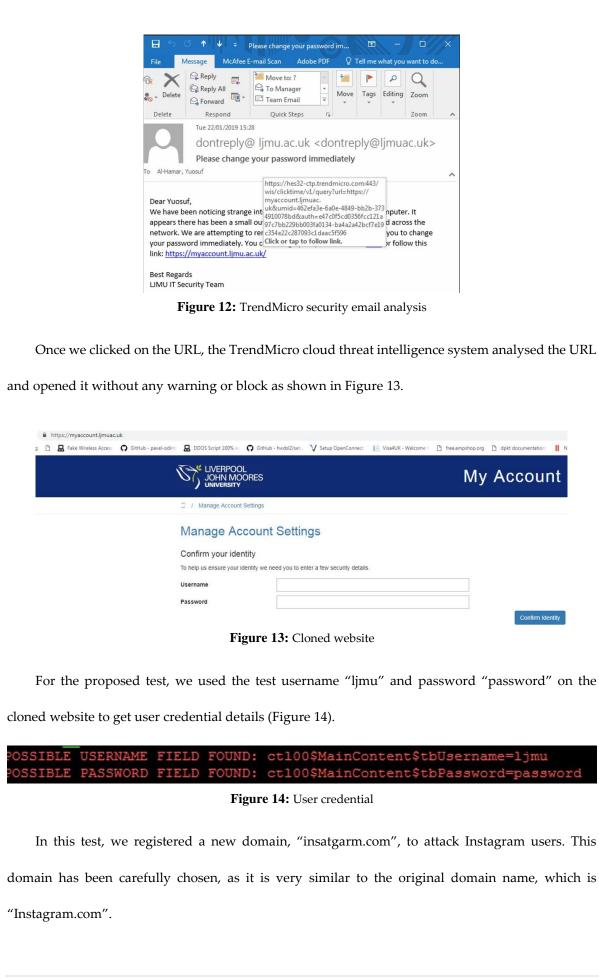
476 477 478

480

481 5 Discussion

In this part, we made a comparison between the results of ECSPAD and other enterprise solutions and research solutions. Because the nature of the attack is targeted, and the victim will be selective rather than mass email sending, we performed a target test rather than analysing a database to find the phishing. Based on the conducted research, we could not find any solution exactly designed for Credential Spear-phishing attacks.

487 Liverpool John Moores University uses TrendMicro Email Security as the enterprise approach 488 to provide a secure environment for email. As mentioned by TrendMicro on their website, "A good 489 technique for hunting and detecting suspicious domains is to also use a similar modus that 490 cybercriminals typically employ: patterns. DNS data (i.e., a passive system of record of DNS 491 resolution data), for instance, provides information security professionals and system administrators 492 insight on how a particular domain changes over time. Not only does this help them correlate 493 indicators of compromise, but also provides the context needed for identifying related or additional 494 suspicious domains. Domain registration information also helps unmask a cybercriminal's


495 infrastructure by correlating a specific suspicious domain to others registered using similar496 information."

Trend Micro InterScan Messaging Security claims that it can stop email threats in the cloud with global threat intelligence, identify targeted email attacks, social engineering attacks, and identify targeted attack emails by correlating email components such as the header, body, and network routing. Our research proves that those claims are not valid, at least for Enterprise Credential Spearphishing attacks, by comparing the results of an email sent to a user in Liverpool John Moores University with TrendMicro as their email security system versus ECSPAD. As shown in Figure 11, an email was sent to users saying "Please change your password

504 immediately". In the content, we asked users to change their password due to strange internet traffic

505 originating from their computers.

	Please change your password immediately					
		dontreply@ljmu.ac.uk <dontreply@ljmuac.uk> to y.k.alhamar,</dontreply@ljmuac.uk>	Mon, Oct 15, 1:54 PM	☆ ♠	:	
506	https://mva	Dear Yuosuf, We have been noticing strange internet traffic originating from outbreak of viruses that may have spread across the network. however need you to change your password immediately. You link: https://myaccount.ijmu.ac.uk/ Best Regards LIMU IT Security Team ccount.ijmuac.uk	We are attempting to remove these	infections,		
507		Figure 11: Targeted Spear-	phishing amail			
		0 0 I I	e e			10 11
508	Then we as	ked them to follow a link to reset the	eir password. As sno	wn in i	igui	the 12, the
509	embedded Trend	Micro email security system has a featu	ıre named "Unknown	URL pr	otec	tion" that
510	blocks emails wit	th malicious URLs before delivery and	re-checks URL safety	when a	user	clicks on
511	it.					

529 We sent an email to Instagram users to reset their password. The emails asked the user to click 530 on a link to go to a password reset page.

As shown in Figure 15(left), the email successfully bypassed the Microsoft Email Phishing Detection system. As shown in Figure 15(right), it also successfully bypassed the Yahoo Email Phishing Detection system. Therefore, the user would receive this email as a genuine email.

534

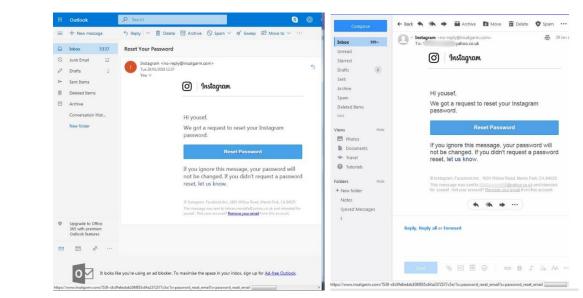


Figure 15: (left) Instagram phishing to live, (right): Instagram phishing email to yahoo

537

However, as shown in Figure 16(left), Gmail detected the email that was sent to our victim. By doing further tests and analysis, we found that Gmail uses content analysis; therefore, it found "Instagram" in the content and classified the email as phishing. As has been shown in Figure 16(right), we cloned Instagram's main page on our host to get the victim's usernames and passwords.

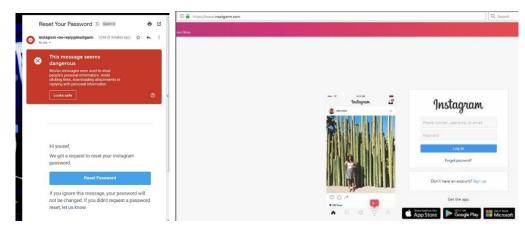


Figure 16: (left) Instagram phishing to Gmail, (right): Cloned Instagram page

544 6. Conclusion

545 This paper presents a real-world example of targeted Spear-phishing attacks, where attackers 546 use a mixture of different techniques such as Spear-phishing, Typosquatting, and Credential 547 harvesting to bypass detection and perform successful attacks.

To detects and combat such attacks, a multi-layered method, called ECSPAD (Enterprise Credential Spear-phishing Attack Credential), is presented in this chapter which has provided multiple-layered algorithms for the complex task. The presented method was developed specifically to detect "Enterprise Targeted Spear-phishing Attacks", where attackers select their targets and launch personalised attacks to harvest personal information from social networks.

553 Our research displays the results of our original study on how well users and email hosts can 554 detect and prevent spear-phising attacks. We spoof an email, claiming to be from Instagram, while 555 changing one letter, which our research showed is common phishing technique, to evaluate the 556 relative success of ECSPAD. The results were then compared to existing Spear-phishing defense 557 methods, especially LJMU's Trend Micro, which failed to capture our spoofed email. Our results were 558 also compared to popular web hosts' defense mechanisms. A successful Spear-phishing attack on the 559 Liverpool John Moores University email system could be a catastrophic event potentially leading to 560 credential theft, identity theft, Malware download, and Ransomware attack. The attack method 561 proposed in this paper showed how an enterprise security system like TrendMicro could be 562 vulnerable to Spear-phishing attacks. The proposed method can be used to detect whaling attacks 563 when attackers use a similar domain name to bypass the email security system and gain the target's 564 trust.

This study's goal is to design a solution that can detect a targeted attack based on the domain it has used. Our research has shown that the success rate of SpearPhishng/whaling attack when attackers use a similar domain is significantly high, therefore we worked to provide a solution that can overcome this issue, and our tests showed that the current email security system and email providers are vulnerable to such attacks.

- 570 The enterprise email phishing detection system has been tested successfully both in the UK, and
- 571 Qatar. We continuously sent those emails on 4 months intervals from Oct 2018, with an average of 10
- 572 emails per month. The last test was carried out on 22/01/2019, which clearly shows that the
- 573 TrendMicro intelligence security system is unable to even determine the pattern of these attacks,
- 574 while ECSPAD did successfully detect them.
- 575 Our investigation show ECSPAD performs an excellent detection result as compared to five
- 576 standard and widely used email system (built-in with Phishing Detection Mechanism).
- 577 **Conflicts of Interest:** We confirm that there is no conflict of interest for this paper.

578 Reference

579 [1] A. G. Mishra and B.B., "Hybrid solution to detect and filter zero-day phishing attacks," 8 2014, pp.
580 373–379.

- 581 [2] K. Parsons, A. McCormac, M. Pattinson, M. J. Butavicius, and C., "The design of phishing studies:
- 582 Challenges for researchers," Computers & Security, vol. 52, pp. 194–206, 2015.
- [3] A. Almomani, B. B. Gupta, S. Atawneh, A. A. Meulenberg, and E., "A survey of phishing email
 filtering techniques," IEEE communications surveys &, vol. 15, no. 4, pp. 2070–2090, 2013.
- 585 [4] S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L. F. Cranor, J. N. Hong, and E., "Anti-phishing
- 586 phil: the design and evaluation of a game that teaches people not to fall for phish," 7 2007, pp. 88–99.
- 587 [5] "APWG report available at," Accessed, vol. 30, 11 2015. [Online]. Available:
- 588 http://www.antiphishing.org/download/document/
- 589 245/APWG_Global_Phishing_Report_2H_2014.pdf.
- 590 [6] "APWG Q1-Q3 2015 Report available." [Online]. Available: http:
- [7] R. M. Saad, A. Almomani, A. Altaher, B. M. Gupta, and S., "ICMPv6 flood attack detection using
 DENFIS algorithms," Indian Journal of Science and Technology, vol. 7, no. 2, pp. 168–173, 2014.
- 593 [8] E. Alomari, S. Manickam, B. B. Gupta, P. A. Singh, and M., Design, deployment and use of HTTP-594 based botnet (HBB) testbed. IEEE, 2 2014.
- 595 [9] F. Schneider, N. Provos, R. Moll, M. Chew, and B. Rakowski, "Phishing protection design 596 documentation," 2007. [Online]. Available: https://wiki.mozilla.org/Phishing_Protection
- 597 [10] N. P. Singh, "Online frauds in banks with phishing," The Journal of Internet Banking and 598 Commerce, vol. 12, no. 2, pp. 1–27, 1970.
- [11] K. Krombholz, H. Hobel, M. W. Huber, and E., "Advanced social engineering attacks," Journal
 of Information Security and applications, vol. 22, pp. 113–122, 2015.
- 601 [12] F. S. Rietta, "Application layer intrusion detection for SQL injection," 3 2006, pp. 531–536.
- [13] J. S. Downs, M. C. Holbrook, and L.F., "Decision strategies and susceptibility to phishing," 7
 2006, pp. 79–90.
- [14] T. N. Jagatic, N. A. Johnson, M. M. Jakobsson, and F., "Social phishing," Communications of theACM, vol. 50, no. 10, pp. 94–100, 2007.
- 606 [15] T. Halevi, N. N. Memon, and O., "Spear-phishing in the wild: A real- world study of personality,
- 607 phishing self-efficacy and vulnerability to spear-phishing attacks," 2015.
- 608 [16] A. Elledge, Phishing: An analysis of a growing threat. GIAC Security Essentials Certification.
- 609 GSEC) Practical, SANS Institute, 2007.
- [17] T. Micro, "Spear-phishingemail: Most favored APT attack bait. Research Paper . Trend MicroIncorporated," 2012. "Symantec," Symantec Corporation, 2011.
- 612 [18] E. S. Felten and M.A., "Timing attacks on web privacy," 11 2000, pp. 25–32.

- 613 [19] E. E. Bursztein and V., "Internet-wide efforts to fight email phishing are working. Google
- 614 Security Blog, https://security," 2013, googleblog. com/2013/12/internet-wide-efforts-to-fight-email.
- 615 html.
- 616 [20] D. P. Patil and J.B., "Survey on malicious web pages detection tech-niques," International Journal
- of U-and E-service, Science and Tech- nology, vol. 8, no. 5, pp. 195–206, 2015
- 618
- 619 Yousef Al-Hamar received his MSc from Loughborough university and his PhD from Liverpool John
- 620 Moores University, UK. He is currently working in Qatar Foundation. His current research interest
- social engineering attacks , cyber security, user behavior impact on security and user trainingawareness.
- Hoshang Kolivand is a senior lecturer at LJMU. His recearly interest is HCI, Computer Graphics andcyber security.
- Mostafa Tajdini is a lecturer at University of Staffordshire, UK. His research interest is Cyber
 Security and Network Security. He is working on the IPv6 Evasion Detection System, which can
- 627 detect IPv6 Advanced Evasion Techniques.
- 628 Tanzila Saba is serving as a Research Professor and Associate Chair of Information Systems
- 629 Department in the College of Computer and Information Sciences Prince Sultan University Riyadh
- 630 KSA. Her primary research focus in recent years is medical imaging, pattern recognition, data mining,
- 631 MRI analysis, and Soft-computing.
- 632 Ramachandran Varatharajan received his B.E., M.E. and Ph.D. degrees all in Electronics and
- 633 Communication Engineering from Anna University and Bharath University, India. His main area of
- research activity is Medical Image processing, Wireless Networks, Network security and Green
- 635 engineering.