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Key Points summary (147 words) 31 

 Maternal obesity and gestational diabetes mellitus have detrimental short- and 32 

long-term effects for mother and child.  33 

 Metformin is commonly used to treat gestational diabetes mellitus in many 34 

populations worldwide but the effects on fetus and placenta are unknown.  35 

 In a mouse model of diet-induced obesity and glucose intolerance in pregnancy 36 

we show reduced uterine artery compliance, placental structural changes and 37 

reduced fetal growth.  38 

 Metformin treatment improved maternal metabolic health and uterine artery 39 

compliance but did not rescue the obesity-induced changes in the fetus or the 40 

placenta. Metformin crossed the placenta into the fetal circulation and entered 41 

fetal tissue in high quantities.  42 

 Metformin has beneficial effects on maternal health beyond glycaemic control. 43 

But despite improvements in maternal physiology, metformin did not prevent 44 

fetal growth restriction or placental ageing. The high uptake of metformin into 45 

the placental and fetal circulation highlights the potential for direct effects of 46 

metformin on the fetus and the offspring later in life. 47 

 48 
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Abstract (249 words) 60 

Maternal obesity is a global problem that increases the risk of short- and long-term 61 

adverse outcomes for mother and child, many of which are linked to gestational diabetes 62 

mellitus. Effective treatments are essential to prevent the transmission of poor metabolic 63 

health from mother to child. Metformin is an effective glucose lowering drug commonly 64 

used to treat gestational diabetes mellitus; however, its wider effects on maternal and 65 

fetal health are poorly explored. In this study we used a mouse (C57Bl6/J) model of 66 

diet-induced (high sugar/high fat) maternal obesity to explore the impact of metformin 67 

on maternal and feto-placental health. Metformin (300 mg/kg/day) was given to obese 68 

females via the diet one week prior to mating and throughout pregnancy which was 69 

shown to achieve a clinically-relevant concentration in the maternal serum (1669  ± 568 70 

nM at the end of pregnancy). Obese dams developed glucose intolerance during 71 

pregnancy and had reduced uterine artery compliance (p=0.003 vs control dams). 72 

Metformin treatment of obese dams improved maternal glucose tolerance, reduced 73 

maternal fat mass, and restored uterine artery function. Placental efficiency was reduced 74 

in obese dams, with increased calcification and reduced labyrinthine area. 75 

Consequently, fetuses from obese dams weighed less at the end of gestation (E18.5, 76 

0.93±0.07g in obese vs. 1.16±0.03g in control fetuses, n=14 litters for both groups, 77 

p<0.001). Despite normalisation of maternal parameters, metformin did not correct 78 

placental structure or fetal growth restriction (fetal weight at E18.5: 0.96±0.11g, n=13 79 

litters). Metformin levels were substantial in the placenta and fetal circulation 80 

(109.7±125.4 nmol/g in the placenta and 2.06±2.33 nmol/mL in fetal plasma). These 81 

findings reveal the distinct effects of metformin administration during pregnancy on 82 

mother and fetus and highlight the complex balance of risk versus benefits that are 83 

weighed in obstetric medical treatments. 84 

 85 

 86 

 87 

 88 

 89 

 90 
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Introduction 91 

The growing prevalence of obesity worldwide means that in many populations at least 92 

50% of women are overweight or obese at the start of pregnancy (Hill et al., 2019). 93 

Obesity during pregnancy is associated with increased risk of complications, including 94 

preeclampsia, preterm delivery, stillbirth, and importantly gestational diabetes mellitus 95 

(GDM) (Stephenson et al., 2018).  It is now estimated that the prevalence of GDM 96 

ranges from 1% to 30% worldwide (David McIntyre et al., 2019).  97 

Maternal obesity and untreated GDM during pregnancy have direct effects on the fetus, 98 

with implications for long-term offspring health (Alfaradhi & Ozanne, 2011). 99 

Observational studies in humans show increased risks of obesity (Hu et al., 2019), type 100 

2 diabetes (Lahti-Pulkkinen et al., 2019), and cardiovascular disease (Gaillard, 2015) in 101 

offspring born to obese mothers and those with GDM (Mitanchez et al., 2015). Studies 102 

in animal models by our laboratory and others have shown previously that these 103 

relationships are causal. These studies demonstrate that obesity and/or glucose 104 

intolerance during pregnancy lead to cardiac dysfunction (Blackmore et al., 2014), 105 

insulin resistance (Isganaitis et al., 2014), hyperphagia (Steculorum & Bouret, 2011), 106 

obesity (Samuelsson et al., 2008) and fatty liver (Alfaradhi et al., 2014) in young adult 107 

offspring. However, the mechanisms linking fetal development and growth in affected 108 

pregnancies with long-term adverse effects are complex and yet to be fully understood.  109 

The placenta is the key interface between the mother and fetus, and therefore a likely 110 

mediator of the effects of maternal health on the developing fetus. Studies in humans 111 

and in animal models have shown that placentas from obese pregnancies display 112 

lipotoxicity (Jarvie et al., 2010), inflammation (Pantham et al., 2015), and have reduced 113 

placental vessel density (Hayes et al., 2012), highlighting that the protective capacities 114 

of the placenta can be exhausted in diabetic and/or obese pregnancies (Desoye & Wells, 115 

2021).  116 

Interventions need to be carefully assessed to improve maternal and fetal health. 117 

Lifestyle and dietary interventions are generally the first recommendation to treat GDM, 118 

and are successful in >50% of women (ADA, 2019). If these interventions fail, 119 

pharmacological interventions such as metformin, glyburide, or insulin are implemented 120 

(SMFM, 2018). Metformin, a biguanide with glucose-lowering actions, is a pragmatic 121 

alternative to insulin as it can be taken orally, does not need to be refrigerated, and does 122 

not cause hypoglycaemic episodes (Gray et al., 2017). In the UK, National Institute for 123 
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Health and Care Excellence (NICE) guidelines recommend metformin as a first-line 124 

drug therapy for GDM (NICE, 2015) whereas other countries, such as Germany and 125 

Turkey (Schäfer-Graf et al., 2018; SEMT, 2019), are much more cautious regarding 126 

metformin use in pregnancy.  127 

It is well-established that metformin treatment of GDM improves glycaemic control in 128 

the mother and is associated with reduced gestational weight gain (Syngelaki et al., 129 

2016). However, there is relatively little data regarding immediate or long-term effects 130 

of maternal metformin use on the offspring (Tarry-Adkins et al., 2019). Unlike insulin, 131 

metformin freely crosses the placenta and reaches circulating concentrations in the fetus 132 

that match those in the mother (Priya & Kalra, 2018). Human studies looking at 133 

polycystic ovary syndrome, GDM, and type 2 diabetes pregnancies suggest that 134 

intrauterine metformin exposure leads to reduced birthweight followed by increased 135 

adiposity later in childhood (Rowan et al., 2011; Guro et al., 2018; Feig et al., 2020). 136 

However data on immediate effects of metformin on the fetus and placental function are 137 

scarce (Tarry-Adkins et al., 2019). But metformin could have potential negative effects 138 

on the placenta and fetal development due to its inhibition of the mTOR pathway, cell 139 

proliferation and mitochondrial function (Lindsay & Loeken, 2017). 140 

We addressed this knowledge gap by characterising maternal metabolic health, fetal 141 

growth, and placental structure and function using a murine model of metformin 142 

treatment for diet-induced obesity and glucose intolerance in pregnancy.  143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 
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Methods 153 

Ethical approval 154 

Animal studies were approved by the animal welfare ethical review process of the 155 

University of Cambridge (UK Animals Scientific Procedures Act 1986). The study was 156 

performed under the animal project licence P5FDF0206 issued by the UK Home Office  157 

and complies with the standards stated for the Journal of Physiology (Grundy, 2015).  158 

Animal work  159 

A model of maternal diet-induced obesity that is well-established in our laboratory and 160 

is described in detail elsewhere (Fernandez-Twinn et al., 2012) was used. Mice were 161 

purchased from Charles River Laboratories (Cat#000664, RRID: IMSR_JAX:000664) 162 

and bred in house. After weaning at 3 weeks of age, female C57Bl6/J mice were fed ad 163 

libitum either an obesogenic diet high in sugar and fat (10% simple sugars, 20% animal 164 

fat, 23% protein [w/w], 4.5 kcal/g, Special Dietary Services, Cat #824053) together with 165 

condensed milk in glass pots (55% simple sugar, 8% fat, 8% protein [w/w], 3.2 kcal/g, 166 

Nestle, Cat #12029969) and a mineral mix (MP Biomedicals, Cat #AIN93G) or a 167 

control chow diet (RM1, 7% simple sugars, 3% fat, 15% protein [w/w], 3.5 kcal/g, 168 

Special Dietary Services, Cat #801002). In this model there is no difference in protein 169 

intake between the groups as shown previously (Samuelsson et al., 2008; Maragkoudaki 170 

et al., 2020).  Assignment of dietary groups was carried out by an animal technician 171 

who was not involved in any of the subsequent physiological or molecular analyses. 172 

Mice were then mated for a first pregnancy at 6 weeks of age after which they were 173 

allowed at least one week of rest for recovery. Animals on a control diet were mated for 174 

the second experimental pregnancy with a body weight ≤25 g. Mice fed an obesogenic 175 

diet were mated or dosed with metformin once they reached a body weight of ≥35 g. 176 

For all groups this was at approximately at 18 weeks of age. Based on power 177 

calculations 13-14 mice were used per group. Mice were single-housed and kept in 178 

individually ventilated cages with wood chip bedding, free access to food, water, and 179 

environmental enrichment (nesting material and a tunnel) in a 12 h light/dark cycle. 180 

Metformin (MP Biomedicals Cat #02151691-CF) was administered one week prior to 181 

mating and throughout pregnancy in the condensed milk. Weighing of condensed milk 182 

twice a week allowed the calculation and adjustment of metformin intake in mg/kg/day. 183 

The average dose that animals received was 255.2 ± 48.0 mg/kg/day, which lies in the 184 

desired range of 200 - 300 mg/kg/day, based on clinically relevant doses (Salomäki et 185 
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al., 2013). Liquid chromatography - mass spectrometry (LC-MS) showed the mean 186 

serum metformin concentration was 1669  ± 568 nM, which falls within the clinical 187 

range reported in human pregnancies (Liao et al., 2020). The study was designed to 188 

address whether intervention with metformin can improve detrimental effects of a 189 

pregnancy complicated by obesity and GDM, therefore no metformin-treated control 190 

group was used. As metformin is not given to lean pregnant women this is not clinically 191 

relevant. This is in line with the ARRIVE guideline (NC3Rs) so that the minimal 192 

number of animals needed is used.  193 

Intraperitoneal GTT  194 

Dams were fasted for 4 hours on the morning of embryonic day E17.5. Glucose 195 

(1mg/kg) was injected intraperitoneally, and blood glucose levels measured at 0, 15, 30, 196 

60 and 120 minutes using a glucometer (AlphaTRAK, Abbot Logistics). Due to the high 197 

variability in the ipGTT power calculations showed that higher n numbers are needed 198 

for this outcome measure compared to all others, therefore 16 control, 20 obese and 19 199 

metformin dams were included in this analysis. Collection of tail blood was performed 200 

at 0 minutes into capillary tubes (Hirschmann-Laborgeräte). Glucose curves are shown 201 

as percentage of starting glucose. If the glucose levels rose less than 50% between 202 

fasting and timepoint 15 and or 30 minutes the GTT data was excluded. Insulin was 203 

measured with the Crystal Chem Mouse Insulin ELISA (Ultra-Sensitive) kit (Cat 204 

#90080). The HOMA-IR was calculated according to the following formula: fasting 205 

insulin [mU/l] x fasting glucose [mmol/l]/22.5. 206 

Fat mass assessment 207 

Fat mass at E18.5 was assessed via Time Domain Nuclear Magnetic Resonance (TD-208 

NMR, Bruker) measurements.  209 

Ultrasound assessments  210 

Uterine, umbilical and fetal middle cerebral artery function were assessed via ultrasound 211 

in the morning of day E18.5 (FUJIFILM VisualSonics, Vevo3100). Anaesthesia in the 212 

dams was induced with 2% isoflurane and then maintained at 1.5% isoflurane. 213 

Isoflurane is commonly used in ultrasound as it affects heart and respiration rate the 214 

least compared to other anaesthetics (Janssen et al., 2004). Mice were placed on a 215 

heated platform, the electrocardiogram monitored and body temperature measured via a 216 

rectal probe and kept at around 36°C throughout. Uterine artery Doppler measurements 217 

were obtained by using the bladder and the split of the uterine and iliac artery from the 218 
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abdominal aorta as landmarks (Zhang & Croy, 2009). The pulsatility and resistance 219 

index of the uterine artery were corrected for maternal heart rate (Ochi et al., 2003).  220 

Both indices are a surrogate measure for the vessel resistance and vascular compliance 221 

(Holmgren et al., 2020). The umbilical artery was measured in a free loop transverse 222 

section (Hernandez-Andrade et al., 2014). Scanned fetuses were marked on the skin of 223 

the dam so that they could be identified and sexed upon dissection. The Placental 224 

Pulsatility Index (PPI) was calculated using the following formula: PPI = (uterine artery 225 

PI + umbilical artery PI)/2 (Gudmundsson et al., 2017). Analysis of the ultrasound 226 

recordings was performed with the VevoLab software. 227 

Dissections 228 

After the ultrasound measurements were taken, cardiac puncture was performed under 229 

2% isoflurane anaesthesia and death confirmed by cervical dislocation. Tissues of the 230 

dams were collected, and fetuses and placentas dissected out. Fetal weight was 231 

recorded, and biometry measured with a caliper. Amniotic fluid was taken from the 232 

intact amniotic sac via a syringe. Fetal blood was obtained by collecting the blood after 233 

decapitation into capillary tubes. Fetal liver and kidneys were dissected out. Fetuses 234 

were sexed visually by detection of a black spot between tail and genital tubercle 235 

present in male fetuses (Deeney et al., 2016) and subsequently confirmed via molecular 236 

analysis based on a protocol from McFarlane et al. (Mcfarlane et al., 2013). Briefly, 237 

genomic DNA was isolated, and PCR performed (GO Taq G2 DNA polymerase from 238 

Promega, Cat #PAM7841, annealing temperature 57°C) with the following primer: 239 

SX_F, 5ʹ-GATGATTTGAGTGGAAATGTGAGGTA-3ʹ; SX_R, 5ʹ-240 

CTTATGTTTATAGGCATG CACCATGTA-3ʹ. On an agarose gel male samples 241 

display one band at 280bp, female samples show 2-3 bands (480bp, 660bp, 685bp).  242 

sFlt measurement  243 

sFlt (VEGF-R1) was measured in maternal serum by ELISA according to the 244 

manusfacturer’s instructions (R and D Systems, Cat #MVR100).  245 

Histology (liver and placenta)  246 

Dam livers and placentas were immersion-fixed in 10% formalin and processed.  247 

Dam liver sections (one mid-section, 5µm) were stained with Haematoxylin and Eosin 248 

and fat vacuole content quantified with the HALO software (Indica labs). Artificial 249 

intelligence of the software was used to exclude vessels for the subsequent analysis of 250 

the fat vacuoles, via the HALO vacuole quantification module.   251 
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Placental sections (one mid-section, 5 µm) were deparaffinised and rehydrated and 252 

incubated in water for 15 mins. at 60°C. Antigen retrieval was performed (97°C, pH=9, 253 

20 mins., Vector, Cat #H-3301) and the slides blocked with 1x animal-free blocking 254 

solution for 1 hour (Vector, Cat #SP-5030). Slides were incubated with the primary 255 

antibodies for CD31 and Tpbpa (R+D, Cat #AF3628, RRID: AB_2161028 1:40 dilution 256 

and abcam, Cat #ab104401, RRID: AB_10901888, 1:1000 dilution in antibody diluent 257 

(Vector, Cat #SP-5035)) overnight at 4°C. After washing (0.5% Tween in TBS, T-TBS) 258 

the secondary antibodies were applied subsequently for 1 hour at room temperature 259 

(first NL557 (R+D, Cat# NL001, RRID: AB_663766) at 1:200, then Alexa488 260 

(Invitrogen, Cat# A11008, RRID: AB_143165) at 1:1000). After washes in T-TBS and 261 

PBS slides were stained with DAPI for 10 min. in the dark and TrueVIEW quenching 262 

solution (Vector, SP-4800) was subsequently used according to the protocol. Slides 263 

were mounted in Vectashield hard set anti-fade mounting medium (Vector, Cat #H-264 

1400). Analysis of the slides was performed blinded with HALO software by manually 265 

delineating the placental layers.   266 

To analyse placental calcification, Alizarin Red staining was performed (Orchard, 267 

2013). Sections were dewaxed and immediately put into 95% alcohol, slides were air-268 

dried and incubated in Alizarin Red (Sigma-Aldrich, Cat #A-5533) solution for 5 269 

minutes (1% aqueous solution pH=6.4, ammonium hydroxide). After rinsing under 270 

water, slides were counterstained with fast green (0.05% FCF (Sigma-Aldrich, Cat #F-271 

7252) in 0.2% acetic acid for 15 seconds). Slides were washed under water, dehydrated, 272 

cleared and mounted in synthetic resin. Slides were analysed automatically via the 273 

HALO software with a classifier programmed to count Alizarin Red positive and 274 

negative areas within the manually delineated whole placental section.  275 

Quantitative RT-PCR  276 

RNA from placentas, fetal livers and kidneys (5 mg) was extracted with a miRNeasy 277 

Micro kit (Qiagen, Cat #217084), 1 fetus per sex and litter with an n of 3 was used. 278 

Fetal liver and kidney were chosen as two metabolic tissues that can be clearly dissected 279 

out in the E18.5 fetus. DNA was digested on column with a DNase Qiagen set (Qiagen, 280 

Cat #79254). After reverse transcription (RT kit, RevertAid, Thermo Scientific, Cat 281 

#K1691) quantitative PCR was performed with Taqman Master Mix (Thermo 282 

Scientific, Cat #4304437) and the following probes: Mm00457739 (Slc22a4), 283 

Mm00840361 (Slc47a1), Mm00525575 (Slc29a4), Mm00488294 (Slc22a3), 284 
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Mm00456303 (Slc22a1), Mm02601013 (Slc47a2), Mm00472657 (Slc19a3), 285 

Mm00457295 (Slc22a2), Mm00441468 (Slc22a5), Mm00439391 (Slc6a4), 286 

Mm00436661 (Slc6a2). MIQE guidelines were followed for the quantitative RT-PCR 287 

(Bustin et al., 2009). 288 

Liquid Chromatography - Mass Spectrometry (LC-MS) 289 

Metformin and metformin-d6 were purchased from Sigma Aldrich (Cat #PHR1084) and 290 

QMX laboratories (Cat #D-6012) and all solvents/additives were at least HPLC grade. 291 

Metformin was extracted as previously described (Jenkins et al., 2020). Briefly, the 292 

samples were weighed/pipetted into plastic tubes (Eppendorf) with a 5 mm stainless 293 

steel ball. Then, 400 µL of chloroform: methanol (2:1, Sigma Aldrich, Cat #34854 and 294 

Cat #M/4056/17) solution was added. The samples were then homogenised using a 295 

Bioprep-24-1004 homogeniser (Allsheng) run at 4.5 m/s for 60 seconds. 100 µL of the 296 

metformin-d6 (1 µM in water) was added followed by the addition of 600 µL of 297 

chloroform: methanol (2:1) solution and 300 µL of water (Sigma Aldrich, Cat 298 

#1.15333). The samples were vortexed and centrifuged at ~21,000 g for 5 minutes. The 299 

aqueous extracts were transferred into glass vials and dried down using a Concentrator 300 

Plus (Eppendorf) run at 60oC for 180 minutes. The samples were reconstituted in 100 301 

µL of chromatography starting conditions and transferred into glass vial inserts for 302 

analysis. LC-MS analysis was achieved using a HPLC System (Shimadzu UK Limited) 303 

injecting 5 µL of the sample onto a Scherzo SM-C18 column (150 mm * 3 mm I.D., 304 

3 µm) maintained at 40oC. Mobile phase [A] was 30 mM ammonium acetate (Sigma 305 

Aldrich, Cat #17836) in water with 0.02% acetic acid (Sigma Aldrich, Cat # 306 

222142500). Mobile phase [B] was 20% acetonitrile (Sigma Aldrich, Cat #34851), 80% 307 

water with 0.8% acetic acid. The flow was maintained at 0.5 mL/min with the following 308 

gradient: 0.00 minutes_10% [B]; 0.20 min_10% [B]; 1.20 min_99% [B]; 5.00 min_99% 309 

[B]; 5.10 min_10% [B]; 8.00 min_10% [B]. The needle was washed using 50:50 310 

water: acetonitrile solution. An Exactive Orbitrap with a heated electrospray ionisation 311 

source (Thermo Fisher Scientific) was calibrated before sample analysis. The 312 

instrument tune file (positive mode, full-scan: m/z 100 to 200, resolution: 2 Hz) was 313 

optimised for metformin and applied throughout the analysis.  314 

 315 

 316 
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Statistical analyses 317 

The visual difference in body weight of control and obese dams means that it is not 318 

possible to blind the individual carrying out the physiological analysis to maternal 319 

group. However histological analysis was performed following coding and blinding of 320 

the sample group to the individual carrying out the analysis. One- and Two-Way 321 

ANOVA, Pearson correlation and paired t-test were performed with the GraphPad 322 

Prism 9.0.0 Software, statistical outliers were removed following Rout testing and n 323 

numbers are indicated below each Figure and mean ± SD presented in the text and the 324 

Figures. Assumptions for the use of parametric tests were tested via the Shapiro-Wilk 325 

test for normality and the Brown-Forsythe test for equal variance. The fasting insulin, 326 

ipGTT AUC, HOMA-IR and liver steatosis data showed unequal variance and therefore 327 

a Welch ANOVA was performed. All other data met the assumptions required.  The 328 

heatmap, organisation of the data, calculations and linear models were performed in R 329 

Studio (Version 1.3.959). Random-effects models were constructed for the fetal data 330 

(using the lmer4 package in R) to account for litter structure as a random effect, with 331 

sex and the experimental group as fixed effects. Other possible co-variates, for example 332 

litter size and position within the uterus, did not significantly improve the fit of the 333 

model and were therefore not included in the final model for analysis. The model was 334 

used for the analysis of the fetal bodyweight, fetal biometrical measurements, the 335 

placental weight, the body weight to placental ratio where all fetuses in a litter were 336 

included for analysis, however for visualisation the mean ± SD is presented. For the 337 

analysis of the fetal liver weight, the placental structure (placental labyrinth and 338 

Calcium) and the umbilical artery pulsatility index one fetus per litter and sex was 339 

analysed and analysis performed with a Two-Way ANOVA with maternal environment 340 

and fetal sex as the independent variables. 14 control, 14 obese and 13 obese 341 

metformin-treated animals were included in this study (as this number provided 342 

sufficient power for all measurements other than ipGTT where 16 control, 20 obese and 343 

19 obese metformin-treated animals were used), whenever a subset of these animals was 344 

used for a measure the n numbers are indicated in the figure legend or in the text if a 345 

figure is not shown.  346 

 347 

 348 

 349 
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Results 350 

Equal concentrations of metformin are found in the maternal circulation and fetal 351 

circulation  352 

Metformin concentrations in maternal serum (1.67 ± 2.05nmol/mL) on E18.5 of 353 

pregnancy were comparable to those previously reported in pregnant women being 354 

treated for GDM (Liao et al., 2020). Furthermore similar concentrations were present in 355 

fetal plasma (2.06 ± 2.33 nmol/mL, n=13) and the placenta (109.7 ± 125.4 nmol/g, 356 

n=13) on E18.5 of pregnancy. There was therefore a strong positive correlation between 357 

maternal serum, fetal plasma, and placental metformin concentrations at this time point 358 

(Fig. 1A, B). Metformin was also detected at high levels in E13.5 placenta (143.8 ± 359 

118.2 nmol/g, n=4). Consistent with the uptake of metformin into placental tissue, high 360 

levels of expression of 5 of the 11 known metformin transporters (Slc22a3, Slc22a4, 361 

Slc22a5, Slc6a2, and Slc6a4) were detected in the placenta at E18.5 (Fig. 1C). Of these 362 

Slc22a3 (Oct3), Slc6a2 (Net), Slc6a4 (Sert) were expressed at a higher level than 363 

Slc22a5 (Octn2) and Slc22a4 (Octn1) (Fig. 1C). Additional evidence for metformin 364 

passing into fetal circulation was demonstrated by its detection in fetal liver but also at 365 

significantly higher levels in fetal kidneys (Fig. 1D, p=0.02 via Mann-Whitney test). 366 

Accordingly, seven transporters were present in the fetal kidneys: Slc22a2 (Oct2), 367 

Slc22a3 (Oct3), Slc22a5 (Octn2), Slc6a4 (Sert), Slc47a1 (Mate1) and Slc22a1 (Oct1) 368 

(Fig 1C). In the liver only three transporters (Slc22a4 (Octn1), Slc47a1 (Mate1), Slc6a4 369 

(Sert)) were detected (Fig. 1C). Consistent with highest observed levels of metformin 370 

and metformin transporters in the fetal kidneys, and consistent with urinary excretion, 371 

metformin was also detected at high concentrations in the amniotic fluid (Fig 1D). 372 

Metformin treatment in obese dams reduces fat mass at the end of pregnancy  373 

Dams randomised to the obesogenic diet were heavier throughout pregnancy compared 374 

to those randomised to control diet (Fig. 2A). At the end of gestation (E18.5), obese 375 

untreated dams had a significantly higher fat mass than the controls (p<0.0001, Fig. 2B). 376 

Supplementing the obese diet with metformin resulted in a significantly lower fat mass 377 

in the obese metformin-treated group compared to the obese untreated group at E18.5 378 

(p=0.02, Fig. 2B).   379 

 380 
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Metformin supplementation to obese dams improves glucose tolerance and liver 381 

steatosis 382 

Glucose levels after a 4-hour fast were not significantly different between the three 383 

groups (8.9 ± 1.4 mmol/l in control, 9.0 ± 1.9 mmol/l in obese and 10.0 ± 2.1 mmol/l in 384 

obese metformin-treated group, p=0.1 in One-Way ANOVA). However glucose 385 

tolerance at E17.5 (Fig. 2C) was impaired in the obese untreated dams compared to the 386 

controls (area under the curve (AUC): 526 ± 274 in obese untreated vs. 332 ± 108 in 387 

controls, p=0.02, n=16 and 20). Metformin treatment reduced the AUC of the obese 388 

dams (AUC: 380 ± 189 in obese metformin-treated n=19), so it was no longer different 389 

to the controls. Fasting insulin levels were increased in the obese untreated dams 390 

compared to controls (p=0.008, Fig. 2D), which was reduced with metformin treatment 391 

but still significantly increased compared to control dams (p=0.01, Fig. 2D). HOMA-IR 392 

was increased in the obese compared to controls (6.97 ±1.67 in control and 16.84 393 

±11.13 in obese dams, p=0.01) and remained increased compared to the controls after 394 

metformin treatment (14.78 ± 9.22 in metformin-treated dams, p=0.03 compared to 395 

controls).  In addition to impaired glucose tolerance and insulin resistance, obese 396 

untreated dams displayed increased liver fat compared to control dams (p<0.0001). This 397 

was reduced by metformin treatment (p=0.01 versus obese untreated group) but 398 

remained increased compared to controls (p <0.001), Fig.2E and F). Overall, metformin 399 

treatment in pregnancy resulted in improved metabolic health of the obese pregnant 400 

females. 401 

 402 

Metformin treatment in obese dams improves uterine artery compliance and 403 

reduces serum sFlt levels  404 

Doppler ultrasound analysis of the uterine artery blood flow showed an increased 405 

pulsatility index (p=0.003) and increased resistance index (p=0.005) in the obese 406 

untreated dams compared to controls (Fig. 2H, I). The increased indices are indicative 407 

of high resistance in the vessel leading to impaired uterine artery blood flow. The 408 

increased uterine artery resistance in obese dams was rescued by metformin treatment. 409 

Both pulsatility and resistance index (p=0.04 and p=0.03 respectively) were 410 

significantly reduced in obese metformin-treated dams compared to obese untreated 411 

dams and no longer different to controls (p=0.5 and p=0.7 respectively, Fig. 2H, I). 412 

Maternal fasting insulin levels correlated positively with the uterine artery pulsatility 413 
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index (Fig. 2J). Serum sFlt levels (soluble VEGFR-1) were increased significantly in 414 

the obese untreated group compared to control dams (37.3 ± 12.2 ng/mL in obese 415 

untreated vs. 26.2 ± 10.5 ng/mL in controls, p=0.04, n=13 and 14). Metformin 416 

treatment of obese dams reduced sFlt levels (29.5 ± 10.7 ng/mL, n=12) to levels that 417 

were not significantly different to controls (p=0.7).  418 

 419 

Fetuses from obese dams with and without metformin treatment are both 420 

symmetrically smaller than controls 421 

Male and female fetuses from obese dams with and without metformin treatment 422 

weighed less compared to controls (P<0.001, Fig. 3A). Litter size was not significantly 423 

different between groups (7.9 ± 1.6 in control, 8.4 ± 1.7 in obese and 8.6 ± 1.2 in obese 424 

metformin-treated group, p=0.5 in One-Way ANOVA). The reduction in fetal weight 425 

was a result of symmetric growth restriction, with reductions of similar magnitudes in 426 

crown-rump-length, biparietal diameter, head length, abdominal transverse diameter and 427 

fetal liver weight (Fig. 3B-G). As expected, indices of growth were significantly lower 428 

in female fetuses compared to male fetuses (P <0.05). There were no significant 429 

differences in either the umbilical artery pulsatility index (Fig. 3H), the middle cerebral 430 

artery pulsatility index, or the cerebroplacental ratio (CPR) between any of the groups 431 

(data not shown). Placental pulsatility index (PPI), a measure for placental impedance 432 

and a tool to predict fetal growth restriction, was increased in the pregnancies of obese 433 

untreated and obese metformin-treated dams (Fig. 3I). The PPI was significantly 434 

correlated with fetal body weight (Fig. 3J). 435 

 436 

Placentas from obese untreated and obese metformin-treated dams have reduced 437 

labyrinthine area and increased calcification  438 

Male and female placentas from obese untreated but not obese metformin-treated dams 439 

were heavier compared to control placentas (p=0.007, Fig. 4A). The fetal bodyweight to 440 

placental weight ratio was reduced in both obese untreated and obese metformin-treated 441 

animals indicating reduced placental efficiency (p<0.001, Fig. 4B). Across all groups, 442 

placental efficiency was lower in male compared to female fetuses (p=0.001).   443 

Male and female placentas from obese untreated dams had a reduced labyrinthine area 444 

(p<0.0001), the main nutrient exchange zone of the murine placenta (Fig. 4C and 4D). 445 
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This reduction was not prevented by metformin treatment (p=0.002, Fig. 4D). Reduced 446 

placental labyrinth is likely to be a contributor to the reduced fetal growth as shown by 447 

the correlation between the labyrinthine area of the placenta and fetal weight (Fig 4E). 448 

Placental calcification was observed solely in the obese untreated and obese metformin-449 

treated groups but not in the control group (P<0.001 for control vs. obese untreated and 450 

obese metformin-treated group, Fig. 4F, G). In areas with calcium deposits, the 451 

labyrinthine structure was damaged (Fig. 4H).  452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 
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Discussion 472 

Exposure to a maternal high fat/high sugar diet resulted in a pronounced obesity 473 

phenotype and the subsequent development of glucose intolerance, insulin resistance, 474 

and reduced uterine artery compliance during pregnancy. Metformin treatment in our 475 

model resulted in improvement of maternal metabolic and vascular parameters but did 476 

not improve placental or fetal parameters. 477 

Ultrasound imaging of the fetus and the uterine artery is commonly used to assess 478 

human pregnancies throughout gestation and a recent review highlighted the importance 479 

and new opportunities of pregnancy imaging in the field of developmental programming 480 

(Morrison et al., 2021). The physiological drop in uterine artery PI via vascular 481 

remodelling during pregnancy is essential to enable low resistance placental blood flow 482 

and thus support fetal growth. In human pregnancy, maternal overweight/obesity is 483 

associated with an attenuation in the physiological drop in uterine artery PI (Teulings et 484 

al., 2020) and there is increased likelihood of uterine artery PI above the normal range 485 

(Kim et al., 2015). GDM has been associated with impairment of endothelium-486 

dependent vasorelaxation (Knock et al., 1997), which has been demonstrated in a 487 

murine GDM model with consequent increased uterine artery resistance (Stanley et al., 488 

2011). We show for the first time that our mouse model of maternal obesity 489 

recapitulates this, with increased levels of sFlt in the obese dams and reduced uterine 490 

artery compliance that correlates positively with maternal fasting insulin levels. Our 491 

obesity mouse model thereby recapitulates phenotypes of human obese pregnancies as 492 

obesity is a well-known risk factor for the development of preeclampsia (Roberts et al., 493 

2011). SFlt (VEGR-1), which is used as a biomarker for preeclampsia in humans, can 494 

bind vascular endothelial growth factor (VEGF) which leads to an angiogenic 495 

imbalance and endothelial dysfunction (Sones & Davisson, 2016). Metformin treatment 496 

in humans has previously been shown to reduce the incidence of preeclampsia and 497 

hypertensive disorders, potentially via increasing nitric oxide, improving endothelial 498 

dysfunction, and reducing sFlt secretion (Brownfoot et al., 2016; Romero et al., 2017; 499 

Soobryan et al., 2018). In our model, metformin treatment improved uterine artery 500 

compliance and reduced sFlt in the maternal serum, adding novel evidence for 501 

metformin’s potential to prevent preeclampsia and demonstrating that our model 502 

provides an important platform to further elucidate mechanisms. Future work in this 503 
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area will complement currently planned human trials of metformin for preeclampsia 504 

prevention (Cluver et al., 2019). 505 

Currently metformin is used to treat GDM in many settings, however there are wide 506 

global variations in clinical recommendations (Lindsay & Loeken, 2017). Long-term 507 

data about possible impacts of metformin use in pregnancy on offspring adiposity are 508 

starting to emerge, highlighting possible increased adiposity in mid-childhood following 509 

maternal metformin treatment (Tarry-Adkins et al., 2019). Apart from teratology 510 

analyses that show no increased risk of fetal anomaly following maternal metformin 511 

exposure in pregnancy (Given et al., 2018), little data exists from clinical studies 512 

regarding the direct impact of metformin on the placenta or fetus including growth 513 

(Tarry-Adkins et al., 2019). The use of a mouse model allowed us to assess the effects 514 

of in utero exposure on the placenta and the fetus directly. Sheep and rodent models are 515 

commonly used in the field of developmental programming significantly reducing the 516 

time to generate valuable data regarding safe and efficient interventions during 517 

pregnancy (Dickinson et al., 2016). The murine pregnancy is well-characterised and 518 

thereby differences between the human and the murine pregnancy are well-known. The 519 

fetal period compared to the embryonic period is much longer in humans compared with 520 

the mouse that is born less mature. This is apparent when looking at the fat tissue 521 

development at birth with 1-2% of fat in a mouse and 16% of fat in a newborn human 522 

(Widdowson, 1950). Although the human and the mouse both have chorioallantoic and 523 

hemochorial placentas, there are structural differences and the invasion of the placental 524 

trophoblast cells into the uterus is shallower in the mouse compared to the human 525 

(Schmidt et al., 2015). However once the final placenta is established the labyrinthine 526 

zone in the mouse placenta and the chorionic villi in the human placenta are very 527 

similar with regards to the exchange mechanism between maternal and fetal blood 528 

(Rossant & Cross, 2001). The mouse is therefore a useful tool to address important 529 

questions in the field of developmental programming in relation to the placenta, such as 530 

those addressed in the current study. 531 

In the current study, placentas from obese dams showed reduced placental efficiency, 532 

evidenced by increased calcium deposits, and reduced labyrinthine area. As the 533 

labyrinthine zone is the main exchange zone between the maternal and fetal circulation 534 

in the murine placenta the reduced size and the presence of calcium depositions is likely 535 

to reduce efficient nutrient transport to the fetus. Increased calcium depositions are 536 
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associated with placental ageing in human pregnancy and are often observed in 537 

placentas from obese and GDM-affected pregnancies highlighting that our model 538 

mimics features of human pregnancies (Salge et al., 2012). Mechanistic insight into 539 

how reduced labyrinthine area might occur comes from recent transcriptomic analyses 540 

from our laboratory showing downregulation of transcripts involved in labyrinthine 541 

development in placentas from obese dams (De Barros Mucci et al., 2020). We 542 

observed a strong correlation between reduced labyrinthine area, increased placental 543 

impedance (as measured by the PPI (Gudmundsson et al., 2017)), and reduced fetal 544 

growth. Many different factors on the maternal (such as suboptimal nutrition or 545 

smoking) and fetal side (such as genetic factors) can be associated with fetal growth 546 

restriction but a common feature and driving factor is reduced uterine-placental 547 

perfusion and reduced fetal nutrition (Nardozza et al., 2017). It is thereby striking that 548 

despite significant improvements in maternal metabolic health and uterine artery 549 

compliance with metformin treatment, the adverse impacts of maternal obesity on 550 

placental development were not rescued and fetal growth was still significantly 551 

restricted. We hypothesize that mechanisms driving the fetal growth restriction differ at 552 

least partially between the obese untreated and the obese metformin-treated 553 

pregnancies. Overall, the fetal weight and biometry data shows higher variation in the 554 

obese untreated and the obese metformin-treated group compared to the control group 555 

highlighting a different degree of response to the obesogenic diet and the metformin 556 

treatment. The maternal data highlights different degrees of obesity and glucose 557 

intolerance in our model that can be an explanation for the higher variability in these 558 

groups regarding fetal outcomes. In humans metformin treatment fails in 30-50% of 559 

women with GDM who then require additional insulin treatment (Tarry-Adkins et al., 560 

2020). A difference in the response to metformin treatment can therefore also explain 561 

increased variation in the metformin-treated group in our model.  562 

We showed a strong correlation between metformin levels in the maternal and the fetal 563 

circulation and that circulating concentrations were equivalent. This result is consistent 564 

with human studies that demonstrate at least 50% of maternal metformin levels in fetal 565 

circulation (Priya & Kalra, 2018), with some studies showing equal or higher 566 

concentrations in the fetal circulation (Vanky et al., 2005). Importantly, we demonstrate 567 

that as well as entering the fetal circulation, maternal administration of metformin also 568 

led to metformin uptake into fetal liver and kidney, both of which expressed high levels 569 

of known metformin transporters. Metformin was also present in the amniotic fluid, 570 
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highlighting that the fetus is repeatedly exposed to metformin by swallowing. The 571 

immediate and long-term consequences of direct fetal tissue exposure to metformin are 572 

unknown. Data on metformin treatment outside of pregnancy shows that metformin 573 

activates AMPK and can inhibit complex I in mitochondria at high concentrations. 574 

Activation of AMPK leads to reduced mTOR signalling, this is relevant in highly-575 

mitotic tissues such as cancer where metformin can slow cell proliferation (Pernicova & 576 

Korbonits, 2014). Additionally, AMPK activation leads to reduced lipid synthesis and 577 

gluconeogenesis, mediating the beneficial effects on metabolic health in T2D patients 578 

(Rena et al., 2017). Recent data shows that metformin increases GDF-15 which 579 

increases energy expenditure and reduces food intake and thereby body weight (Coll et 580 

al., 2020). It is possible that metformin has similar actions on fetal and placental tissues 581 

leading to altered metabolism and growth, especially given the high degree of cell 582 

proliferation and division during development (Nguyen et al., 2018). This could 583 

contribute to the observed reduction in fetal growth despite the correction of uterine 584 

blood flow by metformin. It has been hypothesized that metformin may also have 585 

epigenetic effects on the fetus that could have long term health consequences via 586 

changes in activity of histone modification enzymes or DNA methylation (Claire et al., 587 

2018; Owen et al., 2021). This highlights the complexity of metformin use in utero and 588 

the need for further research.  589 

In conclusion, our study demonstrates that metformin has beneficial effects on maternal 590 

metabolic health and, consistent with human data, has the potential to prevent 591 

preeclampsia. However, despite the beneficial effects on maternal physiology, it did not 592 

prevent obesity-induced placental ageing and fetal growth restriction. Moreover, 593 

metformin enters the fetal circulation and highly proliferative fetal tissues, the long term 594 

implications of which are currently unknown. These findings highlight the complex 595 

balance of risk versus benefits that are weighed in obstetric medical treatments and 596 

provide a well-characterised platform for further mechanistic research on pregnancies 597 

complicated by obesity and/or GDM and on the actions of metformin in pregnancy.  598 

 599 

 600 

 601 

 602 
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Figures 904 

 905 

Figure 1: Metformin given to the obese mum during pregnancy can reach the fetal 906 

circulation and fetal tissues (A) Metformin concentrations measured in maternal 907 

serum were correlated with fetal plasma concentrations and (B) metformin levels in the 908 

placenta, circles represent female, triangles represent male fetuses. Linear regression 909 

and Pearson correlation coefficient R2 are shown. (C) Expression of ten transporters 910 
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(known for their ability to transport metformin) was analysed in E18.5 placenta, fetal 911 

liver and fetal kidney, n=3 per tissue type and sex respectively. Raw CT values are 912 

shown, ranging from high expression (low Ct values, red color) to low expression (high 913 

CT values, blue color). (D) Metformin was measured in fetal kidney, liver, amniotic 914 

fluid (n=3 female and n=3 male) and placentas (n=7 male, n=6 female) via LC-MS, 915 

fluid samples are expressed in nmol/mL and tissue samples in nmol/mg to allow an 916 

approximate comparison. 917 

 918 

Figure 2: Maternal characteristics (A) Bodyweight of the dams was measured at day 919 

of the plug (E0.5), day 4.5, 6.5, 13.5 and 18.5 of gestation (n=14 for control, n=14 for 920 

obese, n=13 for metformin dams), mean ± SD and mixed model analysis is shown. (B) 921 

On day 18.5 fat mass was measured via TD-NMR (n=5 for control, n=9 for obese, n=7 922 

for metformin dams). (C). An ipGTT was performed after a 4-hour fast on day 17.5 of 923 

pregnancy and glucose levels were measured and presented as the difference to the 924 

starting glucose level (n=16 for control, n=20 for obese, n=19 for metformin dams). (D) 925 

Fasting insulin levels were measured and mean ± SD and Welch ANOVA analysis are 926 
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shown (n=13 for control, n=14 for obese, n=13 for metformin dams). (E) Liver sections 927 

were stained with Haematoxylin and Eosin (representative images shown) and (F) the 928 

fat vacuole content quantified with HALO image analysis platform as a percentage of 929 

the whole liver section (n=14 for control, n=13 for obese, n=14 for metformin dams). 930 

(G) Pulsatility and (H) resistance indices were calculated and corrected for individual 931 

maternal heart rates (n=12 for all three groups). (I) Fasting insulin levels were 932 

correlated with uterine artery pulsatility index and linear correlation and Pearson 933 

correlation coefficient R2 are shown. If not indicated differently statistical analyses in 934 

the figure show One-Way ANOVA followed by Tukey’s multiple comparison test, error 935 

bars show mean ± SD.  936 

 937 

 938 

Figure 3: Fetuses from obese untreated and obese metformin-treated dams show 939 

symmetric growth restriction (A) Fetal weight was taken at E18.5 (male/female 940 

control fetuses from n=14/14 dams, male/female obese from n=13/14 dams and 941 

male/female metformin fetuses from n=13/13 dams).  (B) Fetal biometry was performed 942 
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as shown and (C) crown-rump length, (D) biparietal diameter, (E) head length and (F) 943 

abdominal transverse diameter measured. For the fetal biometry n=14 dams for male 944 

and female control, n=12/13 dams for male/female obese and n=11 dams for male and 945 

female metformin fetuses are shown. Analysis is performed with a linear mixed model 946 

accounting for the dam as a random effect, in the graphs the mean ± SD per litter and 947 

sex is shown. (G) Fetal liver weights were taken at E18.5 in female and male control 948 

fetuses from n=14 dams, female/male obese fetuses from n=10/11 dams and female and 949 

male metformin fetuses from n=11 dams, mean ± SD and Two-Way ANOVA analysis 950 

is shown.  (H) The umbilical pulsatility index (PI) and (I) resistance index were 951 

measured via ultrasound, analysis shows n=13 dams for male and n=11 dams for female 952 

control, n=12 dams for male and n= 8 dams for female obese and n=12 dams for male 953 

and n=11 dams for female metformin fetuses and Two-Way ANOVA (sex and maternal 954 

environment) with Tukey’s multiple comparison test. (J) The placental pulsatility index 955 

(PPI) was calculated via the following formula: mean uterine artery PI + mean umbilical 956 

artery PI) / 2, n=12 dams for male and n=10 dams for female control, n=11 dams for 957 

male and n=7 dams for female obese and n=10 dams for male and n=9 for female 958 

metformin fetuses, Two-Way ANOVA analysis is shown. (K) The PPI was correlated 959 

with the fetal body weight, linear correlation and Pearson correlation coefficient R2 are 960 

shown. 961 

 962 
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 963 

Figure 4: Placentas from obese untreated and obese metformin-treated animals 964 

show pathologies that can explain reduced efficiency (A) Placentas were weighed on 965 

the day of dissection (E18.5) and as an indicator of placental efficiency (B) the ratio of 966 

body to placental weight was calculated (n=14 dams for male and female control, 967 

n=13/14 dams for male/female obese and n=13 dams for male and female metformin 968 

placentas). (C) Placental sections were stained for the trophoblast cell marker Tpbpa 969 

and the endothelial cell marker CD31 via immunohistochemistry to allow delineation of 970 

the trophoblast and labyrinthine layer of the placenta (n=11 dams for male and female 971 

control, n=12/10 dams for male/female obese and n=13/9 dams for male/female 972 

metformin placentas). (D) The percentage of labyrinth to the whole placenta was then 973 

calculated. (E) Fetal body weight was correlated with the labyrinthine area of the 974 

placenta from that individual fetus, one male and one female fetus per litter was 975 

analysed, linear correlation and Pearson correlation coefficient R2 are shown. (F) The 976 

placentas were additionally stained for calcification with an Alizarin Red stain. (G) The 977 

areas stained with Alizarin Red are quantified and expressed as a percentage of the 978 

whole placenta (n=14 dams for male and female control, n=13/14 dams for male/female 979 

obese and n=13/12 dams for male/female metformin placentas). (H) In areas with 980 

calcium deposition the labyrinthine structure was damaged. Mean ± SD is shown and 981 
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Two-Way ANOVA (sex and maternal environment) is performed with a Tukey’s 982 

multiple comparison test.   983 


