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a b s t r a c t 

This article contains data outlining the effects of increased 

storm intensity on estuarine salt marshes, previously eval- 

uated in Pannozzo et al. (2021), using the Ribble Estuary, 

in North West England, as a case study. The hydrodynamic 

model Delft3D was used to simulate various surge height 

scenarios and evaluate the effects of increasing surge height 

on the sediment budget of the system. The data shows that 

an increase in storm intensity (i.e. surge height) promotes 

flood dominance and triggers a net import of sediment, posi- 

tively contributing to the sediment budget of the marsh plat- 

form and the estuarine system. The timing of the storm surge 

relative to high or low tide, the duration of the surge and 

the presence of vegetation do not cause major changes in 

the sediment budget. This dataset could be used to evaluate 

how increased storm intensity might influence the sediment 

budget of estuaries in comparison to other types of coastal 

systems (e.g., bays) to illustrate how the response of salt 

marshes to increased storm intensity varies with a change in 

the hydrodynamics and sediment delivery dynamics of the 

system. 
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pecifications Table 

Subject Geosciences 

Specific subject area Coastal hydrodynamics 

Type of data Table, figure 

How data were acquired Numerical simulations, Delft3D modelling framework 

Data format Analysed data 

Parameters for data collection Gaussian functions were added to the water level time-series at the offshore 

boundary of the domain. 

Description of data collection The model was forced for a month with water level time-series at the offshore 

boundary and water discharge time-series at the landward boundary. 

Data source location University of Liverpool, Liverpool, United Kingdom 

Data accessibility https://doi.org/10.5281/zenodo.4511397 

Related research article N. Pannozzo, N. Leonardi, I. Carnacina, R. Smedley, Salt marsh resilience to 

sea-level rise and increased storm intensity, Geomorphology, 389, 107,825. 

https://doi.org/10.1016/j.geomorph.2021.107825 

alue of the Data 

• The modelled storm surge scenarios can be used to evaluate how increased storm intensity

might influence the sediment budget of salt marshes and estuaries. 

• This dataset can be used by other coastal scientists or engineers to make a comparison with

other types of coastal systems (e. g. bays) to illustrate how the response of salt marshes to

increased storm intensity varies with a change in the hydrodynamics and sediment delivery

dynamics of the system. 

• Data could be used to guide an investigation into sediment delivery dynamics of real storm

surges occurred in the estuary. 

. Data Description 

Scenarios of increased storm intensity modelled for the Ribble Estuary, North-West England,

re presented here. Numerical simulations representing different storm surge heights were con-

ucted using the numerical finite-difference model Delft3D [1] . The main details of the numer-

cal grid used for the Ribble estuary can be found in [2 , 3] and [4] . Each scenario was simulated

or a month from 1st January until 31st January 2008 by varying the timing of occurrence of the

urge with respect to high or low tide, the tidal range, the duration of the surge and the pres-

nce of vegetation. The occurrence of the surge was simulated using a gaussian function that

as added to the initial offshore boundary water level time-series. The various intensities were

odelled by simulating different surge heights: 0 m, 0.25 m, 0.5 m, 1.0 m, 2.0 m, 3.0 m and

.0 m. These values were selected at regular intervals within the range observed by an extreme

alue analysis of storm surge residuals along the UK coastline ( Table 1 ). These scenarios were

epeated using different typical mid-latitude durations of 48 h ( σ = 6 h), 72 h ( σ = 9 h) and

20 h ( σ = 15 h), for surges occurring at spring tide and neap tide and for surges peaking at

igh tide and low tide, with and without the presence of vegetation. The sediment budget at

he end of each simulation was calculated for the marsh platform and for a restricted area of

he estuarine system (restricted domain) to describe the amount of accretion (positive values)

r erosion (negative values) for each scenario [5] . Fig. 1 shows that, for the neap tide scenarios,

he sediment budget of both marsh platform and restricted domain increases with an increase

http://creativecommons.org/licenses/by/4.0/
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Table 1 

Exceedance probabilities (p) of storm surge heights along the UK shoreline with return period (RP) of 2 years, 10 years, 

25 years, 50 years, 100 years and 500 years. Tidal level records from 1952 to 2015 have been downloaded from British 

Oceanographic data centre and residuals have been fitted using a generalized extreme values distribution to obtain the 

heights in the table [6] . 

Station Name 

p = 0.5 

(RP = 2) 

p = 0.1 

(RP = 10) 

p = 0.04 

(RP = 25) 

p = 0.02 

(RP = 50) 

p = 0.01 

(RP = 100) 

p = 0.002 

(RP = 500) 

ABERDEEN 0.88 1.11 1.18 1.22 1.25 1.3 

AVONMOUTH 1.78 2.37 2.6 2.75 2.89 3.14 

BANGOR 1 1.27 1.33 1.36 1.39 1.42 

BARMOUTH 1.39 2.05 2.36 2.58 2.8 3.27 

BOURNEMOUTH 0.81 1.01 1.08 1.13 1.17 1.25 

CROMER 1.53 2.05 2.22 2.32 2.4 2.54 

DEVONPORT 0.78 0.93 0.98 1 1.02 1.06 

DOVER 1.23 1.55 1.68 1.76 1.84 1.99 

FELIXSTOWE 1.58 2.18 2.42 2.59 2.73 3.02 

FISHGUARD 0.81 1.06 1.18 1.26 1.35 1.54 

HARWICH 1.46 1.88 2.04 2.15 2.24 2.4 

HEYSHAM 1.74 2.28 2.45 2.54 2.62 2.74 

HINKLEY 1.51 1.95 2.12 2.23 2.33 2.51 

HOLYHEAD 0.97 1.24 1.34 1.4 1.44 1.52 

ILFRACOMBE 1.07 1.24 1.28 1.29 1.3 1.31 

ISLAY 1.07 1.35 1.45 1.52 1.58 1.68 

JERSEY 1.07 1.31 1.39 1.44 1.48 1.54 

KINLOCHBERVIE 1.06 1.43 1.6 1.73 1.84 2.09 

LEITH 1.06 1.35 1.42 1.46 1.5 1.54 

LERWICK 0.57 0.71 0.77 0.81 0.84 0.9 

LIVERPOOL 1.76 2.24 2.37 2.44 2.5 2.57 

LOWESTOFT 1.52 2.04 2.25 2.4 2.53 2.78 

MILFORD HAVEN 0.91 1.19 1.3 1.36 1.42 1.54 

MILLPORT 1.35 1.66 1.78 1.86 1.93 2.07 

MORAY FIRTH 0.83 1.26 1.61 1.96 2.41 4.01 

MUMBLES 1.1 1.56 1.78 1.94 2.1 2.45 

NEWLYN 0.69 0.88 0.96 1.02 1.07 1.19 

NEWHAVEN 0.87 1.05 1.12 1.16 1.2 1.27 

NEWPORT 1.74 2.29 2.58 2.79 3 3.51 

PORTPATRICK 1.11 1.44 1.54 1.59 1.63 1.69 

PORTRUSH 1.06 1.21 1.24 1.25 1.26 1.26 

PORTSMOUTH 0.84 1.08 1.23 1.34 1.47 1.79 

SHEERNESS 1.75 2.4 2.63 2.78 2.9 3.11 

ST MARY’S 0.6 0.77 0.83 0.87 0.91 0.98 

STORNOWAY 0.84 1.07 1.15 1.21 1.26 1.35 

TOBERMORY 1.21 1.45 1.5 1.52 1.53 1.54 

ULLAPOOL 0.92 1.44 1.79 2.08 2.43 3.42 

WEYMOUTH 0.78 0.94 0.99 1.03 1.05 1.1 

WHITBY 1.2 1.8 2.2 2.56 2.98 4.2 

WICK 0.8 1.01 1.09 1.14 1.18 1.25 

WORKINGTON 1.54 1.9 2.05 2.15 2.24 2.42 

 

 

 

 

 

 

 

 

 

 

in surge height, with no visible alterations between surges peaking at high tide and surges peak-

ing at low tide and between surges of different durations. Tidal analysis ( Fig. 2 ) indicates that an

increase in surge height causes a shift towards a more flood dominated system, which is respon-

sible for an increase in sediment import and explains the increase in sediment budget showed

by Fig. 1 . Fig. 3 shows that an increase in surge height causes a nearshore reduction in friction,

which explains the shift towards flood dominance indicated by Fig. 2 . The presence of vegetation

does not cause major changes to the sediment budget; however, on the marsh platform, it is re-

sponsible for a lower sedimentation at lower surge heights and higher sedimentation at higher

surge heights ( Fig. 1 ). Fig. 4 shows that the water overflows the creeks only for higher water

depths, while it stays constrained in the creeks at lower water depths, explaining the variations
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Fig. 1. Sediment budget integrated across the entire area of the restricted domain (a, c, e) and the saltmarsh (b, d, 

f) for each surge height, for surges occurring at high tide (HT) and low tide (LT) without vegetation (no v) and with 

vegetation (v), for surges of different durations occurring at neap tide; (see Figure 3 in [4] for surges occurring at spring 

tide); scenarios run using an ideal only-mud bed composition. 
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n sedimentation caused by the vegetation. Overall, data shows that storm surges positively con-

ribute to the resilience of salt marshes and estuarine systems. 

. Experimental Design, Materials and Methods 

The data was collected using the FLOW module of the numerical finite-difference model

elft3D, which computes non-steady flow and transport phenomena implementing Navier-

tokes and transport equations [1] . The suspended load is calculated through the advection–

iffusion equation and the bed-load transport through the Van Rijn formulation [8] . These for-

ulations are applied to multiple cohesive and non-cohesive sediment fractions. The upward

iffusion and sediment dropping related to the settling velocities are evaluated to compute the

xchange of non-cohesive sediments between the bed and the flow near the bottom [8] . The

rosion and deposition of cohesive sediments are computed through the Partheniades–Krone

ormulations [9] . The model was constrained for a month within two open boundaries, one

0 km offshore forced with water level time-series and one across the River Ribble forced
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Fig. 2. Difference between tidal distortion (A 4–2 ) and asymmetry ( �θ ) of 0.25 m, 0.5 m, 2 m and 3 m surge scenarios 

and the no surge scenario at current sea-level (see Figure 7 from [4] for the 1 m and 4 m scenarios). When �θ is 

positive there is an increase in ebb dominance with respect to the no surge scenario, when it is negative there is an 

increase in flood dominance; when A 4–2 is positive, the degree of the asymmetry is more significant, vice versa when it 

is negative. The continuous brown lines correspond to the land boundary. The area enclosed by the brown dashed lines 

is the salt marsh. 

 

 

 

 

 

 

 

 

 

with discharge time-series. Details about the set-up of the boundary conditions can be found

in Table 1 and Fig. 2 from [4] . To simulate the effects of storm surges, gaussian functions were

added to the initial offshore boundary water level time-series. The vegetation presence on the

marsh platform and its effect on the flow field were computed following the formulation of

[10] , which models plant stems as rigid cylinders. This allows the model to compute the three-

dimensional effect of vegetation on drag and turbulence, by accounting for an extra source term

of friction force in the momentum equation and for an extra source term of turbulent kinetic

energy dissipation in the k-e equations, both generated by the cylindrical plant structures. The

MATLAB package T-TIDE [11] was employed to analyse the effects of storm surges on the tidal

signal. 
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Fig. 3. Difference between bottom friction in all surge scenarios and the no surge scenario during flood phase. Calcula- 

tion of bottom friction followed [7] . The continuous brown lines correspond to the land boundary. The area enclosed by 

the brown dashed lines is the salt marsh. 
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Fig. 4. Water depth on the salt marsh platform during flood phase for vegetated and hypothetical non-vegetated sce- 

narios for all surge scenarios. The continuous brown lines correspond to the land boundary. 
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