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Abstract

The majority of disc galaxies have a bar, and bars play a major role in the evolution

of galaxies and their properties. Given the cumulative influence that bars can have

over the properties of their host, determining the epoch of their formation becomes

a fundamental step in understanding disc galaxy evolution. However, this is not a

straightforward task. The stars that make up the bar are not necessarily formed there

and bars can radially move both gas and stars within a galaxy which makes determining

a bar’s age from the properties of its stellar population unreliable. Additionally, while

bars grow as they age, this is not a linear process and bar growth progresses differently

for different galaxies. In this thesis I have explored how the effects of bars on the star

formation and stellar dynamics of galaxies can be used to recover the ages of bars using

a sample of cosmological zoom-in re-simulations of galaxies in isolated environments.

I first explored the effect of the bar on the star formation desert (SFD) in 6 of the

isolated zoom-in cosmological re-simulations. The SFD is a region within the inner

ring, lying either side of the bar in the area that the bar sweeps out. James and Perci-

val (2016) found these regions had very little to no star formation and theorised that

if star formation is suppressed by the bar the youngest stars in these regions should

correspond to the age of the bar. I found that the removal of gas within the SFD oc-

curs within 1-2 Gyr after the formation of the bar indicating there is little to no in-situ

star formation after that time. We would, therefore, expect to see a sharp truncation in

the star formation history. However, I found a gradual downturn in the star formation

history of the SFD region in comparison to that of the bar, so all stars 1-2 Gyr younger

than the bar must radially migrate into the SFD region. I propose that the onset of this
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downturn could still be used to recover the age of the bar, although the interpretation

is more difficult than anticipated. However, I also present the discovery that the SFD

is a region where any young stars must be radial migrators. By combining this with a

bar age it would allow us to probe the timescales and efficiency of radial migration and

thus gain unparalleled insight into the chemo-dynamical evolution of the SFD region.

I also explored the effect of bars on galaxy stellar dynamics. As bars evolve they

vertically thicken. Therefore, younger bars have a velocity dispersion similar to that

of the disc while in older bars the difference is greater. I built on this by looking

at features in the vertical velocity dispersion of the bar with a sample of 15 zoom-in

cosmological re-simulations and 3 simulations of isolated galaxies.

I uncovered a special feature in the vertical velocity dispersion of the bar. The location

of this feature is remarkably stable with time and on average is 1.5 kpc shorter than

the initial length of the bar. By taking the difference between the σz of this feature

and the bar ends I calculated a value I call ∆σz. I was able to recover ∆σz in both

cosmological and isolated simulations and found this value increases monotonically

with the age of the bar at the same rate for all the bars in the sample.

The growth of ∆σz is influenced by two factors: the lengthening of the bar, and the

vertical thickening of the bar. At early times after bar formation the lengthening of

the bar is the main contributor to the increase seen in ∆σz. However, after the bar

buckles, the vertical thickening becomes the main contributor to the increase of ∆σz.

Therefore ∆σz is a powerful tracer of bar growth as it is entirely constrained by the

evolution of the bar. Thus I present a new bar dating method which uses ∆σz to infer

both the formation time of the bar and an estimate of the initial length of the bar. I have

tested this new method on MUSE data of IC1438 and have found good agreement with

literature data. This confirms that it is both possible to apply this method to current

observational data and that the bar ages recovered are reasonable. This new method

presents an exciting avenue for the reliable recovery of quantitative bar ages.

By applying these methods and findings to large statistical surveys we can begin to

explore the time of disc settling and the onset of secular processes. I conclude that this
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presents us with an exciting opportunity to explore how the formation of the bar can

impact galaxy evolution.

CHARLOTTE DONOHOE-KEYES SEPTEMBER 17, 2021
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Chapter 1

Introduction

A galaxy is a collection of stars, gas, and dark matter which is gravitationally bound to-

gether. Due to the significant timescales over which galaxies evolve, direct observation

of their formation and evolution is not possible. However, by observing many galax-

ies at different evolutionary stages we can piece together the information important to

understanding the details of their history.

One powerful tool in understanding galaxy evolution is the classification of their vi-

sual morphologies. The most recognisable scheme of galaxy morphology is credited to

Edwin Hubble who created the ‘Hubble Tuning Fork’ (Hubble, 1926, see Figure 1.1).

In this classification scheme Hubble divided galaxies into two main types: ellipticals

which range in oblateness from E0 which are round to E7 which have a ellipticity of

0.7, and spirals classified from Sa to Sc based on the size of their bulges compared to

their discs and how tightly wound their spiral arms are. Spirals were then further split

based on the presence or absence of a bar into SBa-SBb-SBc and Sa-Sb-Sc respec-

tively. Later added to the Hubble tuning fork were lenticular galaxies (Hubble, 1936),

also referred to as S0 galaxies, which bridged the gap between ellipticals and spirals.

There is an additional third classification which is not part of the original tuning fork

comprising of irregular ‘I’ galaxies that show no dominant nuclei or rotational sym-

metry. This classification scheme has undergone multiple revisions since it was first

introduced but perhaps the most notable was that done by de Vaucouleurs (1959) who

1
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Figure 1.1: The Hubble Tuning Fork with the revised addition of lenticular (S0) galaxies. On
the left-hand-side are the ellipticals or early-type galaxies, and on the right-hand-side are spirals
or late-type galaxies which are further subdivided into barred and un-barred. Credit: SDSS,
http://skyserver.sdss.org/dr1/en/proj/advanced/galaxies/tuningfork.asp

proposed two additional classes of spiral galaxy: ‘d’ for dwarf galaxies and ‘m’ for

Magellanic spirals named after their prototype the Large Magellanic Cloud. de Vau-

couleurs also added three sub-classes for each spiral type: SA for non-barred galaxies,

SB for strongly barred galaxies and SAB for weakly barred galaxies.

In addition to their morphology, galaxies can also be classified by their colours. This

colour classification led to the discovery of bimodality between the ‘blue cloud’ and

‘red sequence’, with the transition region between them commonly referred to as the

‘green valley’. The so-called ‘red sequence’ is predominantly populated by massive

spheroidal systems, while the ‘blue cloud’ is mostly made up of spirals (Baldry et al.,

2004; Bell et al., 2004; Driver et al., 2006; Faber et al., 2007; Blanton and Moustakas,



3

2009). However, both spirals and ellipticals can be found in both categories (Schaw-

inski et al., 2009; Masters et al., 2010; Fraser-McKelvie et al., 2016). While these

categories are linked to the colour of the galaxies it is actually the presence or ab-

sence of star formation which separates them (Noeske et al., 2007; Peng et al., 2010;

Rodighiero et al., 2011).

Galaxies which lie in the red sequence have had their star formation quenched, while

those in the blue cloud are actively star forming (Faber et al., 2007). The galaxies

which reside in the green valley are few and are thought to be actively undergoing star

formation quenching (Faber et al., 2007; Schawinski et al., 2007, 2014). There appears

to be no clear causal link between galaxy morphological classification and presence

within the green valley, although they tend to be of intermediate morphological types

such as lenticulars or early-type barred galaxies (Schawinski et al., 2014; Cano-Dı́az

et al., 2016; Sánchez et al., 2019). These categories not only differ in star formation

but stellar populations in galaxies residing in the blue cloud are younger than those in

the green valley which are younger than those in the red cloud (Pan et al., 2013). These

two factors support a evolutionary scenario in which galaxies transition from the blue

cloud to the red sequence via the green valley as a result of some quenching mechanism

(Bell et al., 2004; Faber et al., 2007), although it should be noted the reverse may be

possible with red sequence galaxies being rejuvenated through the addition of fresh

gas (Thomas et al., 2005, 2010).

However, the precise nature of the quenching mechanism is difficult to establish and

there may be different mechanisms at play for different galaxies (Schawinski et al.,

2014; Taylor and Kobayashi, 2015; Bremer et al., 2018; Eales et al., 2018). Both ob-

servations and simulations suggest at least two main evolutionary channels to quench

galaxies: rapid quenching of early-type galaxies, and the gradual quenching of late-

types through secular processes (Schawinski et al., 2014; Smethurst et al., 2015). There

are many proposed quenching mechanisms which can be broadly divided into environ-

mental and mass quenching. Environmental quenching pertains to processes which

quench galaxies as a result of their interactions with their surrounding area such as

strangulation (Balogh and Morris, 2000; Peng et al., 2015), ram pressure stripping
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(Gunn and Gott, 1972; Moore et al., 1999; Barsanti et al., 2018), galaxy merging

(Lotz et al., 2011), galaxy harassment (Moore et al., 1996), and tidal stripping (Merritt,

1983). Mass quenching pertains to those processes depending on the internal, or intrin-

sic, properties of galaxies such as AGN feedback (Di Matteo et al., 2005; Silk, 2013;

Somerville and Davé, 2015; Penny et al., 2018), morphological quenching (Martig

et al., 2009) and gas outflows from stellar feedback or supernovae explosions (Dekel

and Silk, 1986; Dalla Vecchia and Schaye, 2008). In all cases these mechanisms act to

deplete the reservoir of star-forming gas available to a galaxy, resulting in a suppres-

sion of the star formation rate.

Bars have been implicated as one mechanism through which a spiral galaxy may be

gradually quenched (Gavazzi et al., 2015). In this thesis I focus on investigating the

effects bars have on a galaxy’s evolution through their influence on the star formation

and stellar dynamics. In particular I explore how these effects might be able to indicate

the time of bar formation and thus allow us to determine when discs begin to settle and

secular processes begin to dominate a galaxy’s evolution.

In this chapter I will first give a general overview of how galaxies are formed and the

physical processes which influence their evolution. I shall then focus on describing the

structure and properties of the bar, explaining the main effects of bars on galaxy evo-

lution and their formation and destruction. Finally, I shall review the current methods

used to determine the time of formation of the bar before outlining the layout of this

thesis.

1.1 A general description of galaxy formation and evo-

lution

1.1.1 Formation of primordial galaxies

The Lambda Cold Dark Matter (ΛCDM) model is the most favoured cosmological

model successful at explaining the formation of large scale structure in the Universe
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Figure 1.2: Comparison of the distribution of galaxies from galaxy redshift surveys (blue) and
mock surveys from the Millennium simulation (Springel et al., 2006). There is a remarkably
good agreement between predictions and observation of the ΛCDM model.

and which is in agreement with observations of the Comic Microwave Background

(CMB) (see Figure 1.2) (Peebles, 1982; Blumenthal et al., 1984; Davis et al., 1985;

Springel et al., 2006; Percival et al., 2007; Sánchez et al., 2009). Within this frame-

work, observations point towards a Universe that is 13.7 billion years old comprised

of 73.5% dark energy, 22% dark matter and 4.5% baryons (Cole et al., 2005; Percival

et al., 2007; Kowalski et al., 2008; Dunkley et al., 2009; Vikhlinin et al., 2009; Rozo

et al., 2010).

Fluctuations in the CMB

In this model the early universe is made up of a hot plasma of baryons, photons and

dark matter. Small perturbations travel collisionally through this plasma as sound

waves which creates over- and under-densities (Hu and White, 2004). In the cold

dark matter (CDM) paradigm the dark matter component of this plasma only inter-

acts gravitationally which acts to enhance some over-densities while negating others.

When recombination begins (hydrogen begins to form) these density fluctuations be-

come frozen and are preserved in the CMB.



1.1. A general description of galaxy formation and evolution 6

Collapse of cold dark matter

The CDM contracts and then collapses into the over-dense regions, attracting more

material from its surroundings causing the under-dense regions to become emptier.

As the dark matter collapses it acquires angular momentum through tidal interactions

or mergers with other collapsing halos and settles at virial equilibrium (White, 1984;

Maller et al., 2002; Vitvitska et al., 2002). This process results in the filamentary

cosmic web seen in the observations and cosmological simulations of today (Press and

Schechter, 1974; Lacey and Cole, 1993; Frenk and White, 2012, see Figure 1.2).

Collapse of gas

Primordial gas collapses alongside the dark matter acquiring the same density profile

and angular momentum (Rees and Ostriker, 1977; White and Frenk, 1991; Somerville

and Davé, 2015). Unlike dark matter, gas can cool radiatively allowing it to collapse

towards the centre of the dark matter halo. The collapsing gas settles into a rotationally

supported disc whose orientation is determined by angular momentum (Abel et al.,

2002; Bromm et al., 2009).

The first stars

Within these discs the gas cools forming H2 molecules which collapse into dense

clouds causing the formation of the first stars (Bromm et al., 2002; Bromm, 2013;

Yoshida, 2008). While no examples of these ‘Population III’ stars have been observed,

they are thought to be massive and, due to their size, short-lived. When they explode

as supernovae they eject the heavy elements (metals) formed in their interiors, enrich-

ing the interstellar medium (Benson and Madau, 2003). The metals ejected by these

dying stars allow for more efficient cooling of gas and the subsequent formation of

Population II stars.
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Figure 1.3: Timeline of the evolution of the Universe. After the Big Bang small perturbations
are imprinted on the CMB at the time of recombination. These over-densities grow due to
gravitational instabilities and collapse to form dark matter halos. Gas collapses along-side the
dark matter and cools radiatively to form galaxies (image credit: NASA/WMAP science team).

1.1.2 Hierarchical growth

In ΛCDM small low mass structures are the first to form with objects of increasing

size, mass and complexity forming later (Baugh et al., 1996; Baugh, 2006; Cole et al.,

2000, see Figure 1.3). This formation scenario is commonly referred to as hierarchical

growth (White and Rees, 1978; Baugh et al., 1999; Fakhouri and Ma, 2008).

Galaxies are more concentrated than the dark matter due to the dissipative cooling of

gas so are able to survive the merging of their parent halos. This leads to a scenario

where a dark matter halo contains one central massive galaxy with several satellite

galaxies. As the satellite galaxies orbit the massive central galaxy they lose orbital en-

ergy as a result of dynamical friction (Chandrasekhar, 1943). When the satellite moves

through the halo it attracts material to it causing a wake of higher density material to

form behind it. This acts to break the forward motion of the satellite galaxy as it feels a

stronger gravitational pull from the region it has just travelled through than the region

it is about to enter. The loss of energy as a result of dynamical friction causes the satel-
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Figure 1.4: A schematic showing the process of a galaxy merger (Baugh, 2006). Two halos
which both contain a progenitor galaxy come close enough to become trapped in a gravitational
well. The halos merge and the more massive galaxy is placed at the centre of this new halo.
The smaller galaxy becomes a satellite of this halo and dynamical friction causes the satellite
galaxy to spiral into the centre. If this processes is shorter than the halo lifetime then the
galaxies merge.
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lite galaxy to spiral in towards the massive central galaxy (Binney, 1977, see Figure

1.4). If the timescale of this process is shorter than the time between halo mergers then

the satellite galaxy will merge with the galaxy in the centre of the halo.

This process of galaxy merging is violent and can have dramatic effects on the mor-

phologies and star formation histories of the resulting galaxies. In the next section

I will review the physical processes involved in galaxy formation beginning with an

overview of the consequences of galaxy mergers and then discussing another avenue

for galaxy growth through gas accretion.

1.1.3 Physical processes in galaxy formation

Mergers

One of the key predictions of ΛCDM model, and a cornerstone idea for how galaxy

formation occurs, is galaxy merging. Mergers have a significant impact on galaxy

evolution through transforming galaxy morphology, changing galaxy kinematics, fa-

cilitating mass growth, and triggering star formation episodes.

Galaxy mergers can be broadly placed into two categories: major mergers which have

mass ratios greater than 4:1, and minor mergers with mass ratios less than 1:4. These

categories can both be further subdivided into dry and wet mergers. Dry mergers

have a very low gas content so can be considered collisionless, while in wet mergers

(which are gas rich) gas plays a much more significant role which can act to alter the

morphological outcome of the merging event. As such the morphology of a galaxy at

z = 0 is partially dependent on not only the mass ratio of the merging galaxies but also

their gas content.

One would expect that in a hierarchical universe there should be a large number of

mergers so constraining the merger rate over cosmic history is key for understanding

galaxy evolution and for testing current evolutionary models. However, while there

are many observational and theoretical studies on defining merger rates as a function

of time, this is not a trivial process.
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Figure 1.5: The cumulative fraction of galaxy mergers predicted by the Eagle simulation (Font
et al., 2017a). The merger mass ratio is given by X = M sat/M star,host. The solid lines
represent a merger event defined by crossing the r200=(z) radius, with dashed lines representing
merger events defined at crossing a fixed radius of 20 kpc.

Observational efforts in determining a merger rate rely on capturing a galaxy during the

process. This can be through identifying galaxy pairs to find galaxies before the merge,

or galaxies with distorted morphologies which can appear prior, during or post merger.

However, the identification of galaxy pairs requires precise redshift measurements to

eliminate background and foreground galaxies, and identifying the morphological dis-

tortions becomes increasingly difficult at higher redshifts (Patton et al., 1997, 2002; Le

Fèvre et al., 2000; López-Sanjuan et al., 2011, 2012).

Another route for determining merger rates it to use statistical studies of large scale

cosmological simulations (see Figure 1.5). This requires the use of halo finding algo-

rithms and merging criteria. However, different algorithms can result in vastly different

results and a merging halo does not guarantee galaxy mergers.

Despite the difficulties with measuring a merger rate it is generally agreed that merger

fraction evolves as (1+z)m, where m can take a value between 2 and 4. However,
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most of these methods (the observational ones in particular) are biased towards major

mergers as they cause stronger effects on the merging galaxies (Bluck et al., 2009,

2012; Bridge et al., 2010). Due to their smaller mass ratio the effects of minor mergers

are weaker making it even more difficult to determine a merger rate.

Major mergers can quickly transform disc galaxies into ellipticals through violent re-

laxation. This is where strong fluctuations in the gravitational potential of chaotic

systems allows particles to quickly exchange energy and settle back into equilibrium

(Lynden-Bell, 1967). However, these events are expected to be rare. Minor mergers

are both predicted (Maller et al., 2006; Stewart et al., 2008; Fakhouri and Ma, 2008;

Kaviraj et al., 2009) and observed (Lin et al., 2004; Jogee et al., 2009; López-Sanjuan

et al., 2010) to be at least 3-4 times more common than major mergers. While minor

mergers result in less dramatic consequences such as the thickening of galactic discs,

a high frequency of minor mergers may also result in morphological changes (Bour-

naud et al., 2007). However galaxy merging is not sufficient, on its own, to explain the

evolution of galaxies.

Gas accretion

In addition to galaxy mergers, mass can also be assembled via gas accretion. In the

ΛCDM model massive dark matter halos hosting galaxy clusters are predicted to reside

in the nodes of a large filamentary structure called the “cosmic web”. Observational

evidence for this cosmic web comes in the form of large surveys (Colless et al., 2001)

which show that galaxies are also distributed along filaments which have large voids

of space between them. Theory predicts that these filaments are made up of both dark

matter and diffuse gas. While there is remarkably good agreement between simula-

tions and the observed distribution of galaxies from both a statistical and qualitative

standpoint, the diffuse gas component is rarely if ever observed (Hoyle et al., 2002;

Springel et al., 2006; Umehata et al., 2019).

Gas accretion is an important process not only in the formation of galaxies but also in

the sustainability of star formation in the universe: without continuous accretion galax-
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Figure 1.6: A schematic representation of the main mechanisms for gas accretion in galax-
ies (Putman, 2017). The red shows hot gas and the blue cool gas. a) Cold mode accretion
bringing gas from inter-galactic filiments. b) Gas heated by feedback mechanism can cool
and re-accreate back on the disc. c) Hot gas stripped from satellite galaxies or heated through
merging events can cool and accrete onto the disc.

ies would exhaust their gas reserves within a few gigayears (Gyr) (Bigiel et al., 2008,

2011; Leroy et al., 2008, 2013; Rahman et al., 2012). High resolution cosmological

simulations have found that gas accretion comes in two main flavours: hot and cold.

These mechanisms are summarised in Figure 1.6. In hot mode accretion as the dark

matter of a galaxy settles to virial equalibrium the infalling gas is shocked (Rees and

Ostriker, 1977; Silk, 1977; Binney, 1977; White and Rees, 1978). If this gas is able to

cool on a timescale shorter than the dynamical time then it is able to fall towards the

centre and accrete onto the galaxy isotropically. If the cooling timescale is longer than

the dynamical time then this gas is not able to cool and it forms a hot hydrostatic halo

atmosphere which is stabilised against gravitational collapse by pressure (Birnboim

and Dekel, 2003; Dekel and Birnboim, 2006). Specifically, hot mode accretion refers

to gas accreted from the gas which has been shock heated to the virial temperature of

the halo.
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However, gas can also be heated as a result of various feedback mechanisms. These

feedback mechanism act to heat the gas, and in some cases expel it from the galaxy.

The kinematic signatures of these feedback mechanisms heating gas into the halos of

galaxies have been observed numerous times (Heckman et al., 1990; Shapley et al.,

2003; Martin, 2005; Weiner et al., 2009; Rubin et al., 2014). While these processes

can remove gas from a galaxy, the gas which is not removed from the galaxy through

outflows can then cool and fall back onto the disc. While this process does not in-

troduce new material in a global sense, it does act to prevent runaway star formation

and to replenish the disc with gas. The most common candidates implicated in this

process are supernovae possibly augmented by stellar winds (Heckman et al., 1990;

Hopkins et al., 2012b) and active galactic nuclei (Silk and Rees, 1998; Bower et al.,

2006; McNamara and Nulsen, 2007, AGN).

In cold mode accretion the gas is not heated allowing it to free-fall into the central

regions of galaxies (Kereš et al., 2005, 2009). Cold accretion is thought to play a more

dominant role at higher redshifts bringing gas directly from the cosmic web into the

central regions of low mass halos and in low mass galaxies today via filaments and

gas rich minor mergers. The high density of filamentary gas at early times facilitates

rapid cooling rates and the lack of hot halos prevents the efficient shock heating of

gas (Kereš et al., 2005; Benson and Bower, 2011). As halos begin to heat up towards

later times shock heating becomes more efficient which prevents material reaching the

galaxy at the centre, although cold gas may also be able to penetrate massive hot halos

if the gas streams are sufficiently dense and cool efficiently (Dekel et al., 2009).

Cosmological simulations have predicted that most if not all galaxies experience a

phase of growth facilitated by cold accretion (Kereš et al., 2005; van de Voort et al.,

2011). As such, cold mode accretion is predicated to play a pivotal role in the formation

and early growth of galaxies while hot mode accretion, which becomes more dominant

at later times, is important in the continuous evolution of galaxies.
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1.1.4 The formation, growth and evolution of disc galaxies

In this section I will describe how the processes involved in the formation, growth and

evolution of galaxies affect the formation and preservation of disc galaxies.

Early violent processes

One of the long-standing issues in ΛCDM cosomology is recovering the local abun-

dance of disc galaxies (Weinmann et al., 2006; Park et al., 2007). In the hierarchical

galaxy formation scenario the vast majority of galaxies are expected to have undergone

major merger events and in some cases multiple merging events (Toth and Ostriker,

1992; Stewart et al., 2008; Boylan-Kolchin et al., 2010). In a naive outlook one would

expect very few disc galaxies would survive to today, however we commonly see disc

galaxies in the local universe (Park et al., 2007; Kelvin et al., 2014).

Initial studies into the merging of disc galaxies were based on simulations involving

little to no gas. In these cases the internal stellar structures of the discs were completely

destroyed and the scattered stars form a spheroidal or ellipsoidal structure (Toomre

and Toomre, 1972; Toomre, 1977; Hammer et al., 2009; Taranu et al., 2013; Deeley

et al., 2017). This led to the (now discarded) conclusion that disc galaxies must evolve

quiescently, with little to no merger events. While 1:1 mergers are generally considered

to be rare for Milky Way-like systems it is expected that approximately 70% of them

have undergone mergers with a mass ratio greater than 1:10 (Stewart et al., 2008; Font

et al., 2017a). While not all of these are major mergers in the classical definition (mass

ratio>1:4) multiple minor mergers can result in the destruction of a disc. Even just

looking at the major mergers, approximately 20-35% of all disc galaxies in the local

universe are thought to have undergone major disc destroying mergers (López-Sanjuan

et al., 2009). Therefore, to explain the local fraction of disc galaxies one must discard

the paradigm which promotes a quiescent history for disc galaxy formation.

By including gas within galaxy mergers (making them no longer collisionless) it be-

comes easier to reconcile a hierarchically driven universe with the observed disc galaxy
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population, although explaining bulgeless galaxies remains an outstanding issue. In

fact, both isolated and cosmological simulations find that major mergers of discs can

even result in a disc galaxy with the inclusion of gas (Athanassoula et al., 2016; Rodi-

onov et al., 2017; Peschken et al., 2017; Sparre and Springel, 2017). In these scenarios

the disc galaxies each contain a hot gaseous halo. The initial merger event results in

the formation of a classical bulge through both the collisionless interaction between

the stellar component and a rapid burst of merger driven star formation using up the

cold gas of the discs. After some time the gas in the hot halo cools and is accreted onto

the merger remnant alongside accretion from cold gas filaments. If this merging event

happens at an intermediate or high redshift then the cumulative gas accretion, from

cooling of hot gas and from cold filaments, results in a disc-dominated galaxy with a

classical bulge as seen today.

Mergers between galaxies of unequal mass are both predicted (Maller et al., 2006;

Stewart et al., 2008; Fakhouri and Ma, 2008; Kaviraj et al., 2009; Hopkins et al., 2009)

and observed (Lin et al., 2004; Jogee et al., 2009; López-Sanjuan et al., 2010) to be

3-4 times more common than major mergers; this is especially the case at later times.

While many minor mergers acting on one system can morphologically transform discs

to ellipticals (this is actually the method proposed to produce realistic ellipticals) a

minor merger will not usually destroy a galaxy disc. In fact, minor mergers have

been implicated as an effective way to both vertically thicken and radially extend disc

galaxies through dynamical friction (Hopkins et al., 2009). If there is a significant

amount of gas within the galaxy disc, however, it can act to dampen this effect by

absorbing some of the kinetic energy from the impact and through the re-formation of

a thin stellar disc post-merger (Moster et al., 2010; Villalobos et al., 2010).

Minor mergers can also play a role in the formation of galaxy bulges. The accretion

of a minor satellite causes instabilities in the disc. This results in a transfer of angular

momentum causing stars to fall into the centre. The gas contained within the satellite

also falls towards the galaxy centre as it cools and triggers central star formation re-

sulting in the formation of a dispersion dominated bulge component. If these mergers

are particularly gas rich they can result in the formation of massive clumps at large
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radii which can cause clumpy irregular discs (Elmegreen, 1993; Taniguchi and Shioya,

2001; Robertson and Bullock, 2008; Bournaud et al., 2008; Overzier et al., 2008). Ad-

ditionally, stars from the merging satellite may also spiral into the central regions of

the galaxy helping to build up the bulge.

However, even when including gas rich mergers and minor mergers reconciling the

currently accepted hierarchical galaxy formation scenario with the number of bulge-

less galaxies observed in the universe is still a significant problem (Stinson et al., 2010).

Many galaxies do not have bulges (Dutton, 2009), and even when considering massive

galaxies many of them do not host classical bulges (Kormendy et al., 2010; Fisher and

Drory, 2010). These galaxies may instead have a central component that looks simi-

lar to a bulge but with properties similar to the disc (referred to in the literature as a

pseudo-bulge) (Kormendy and Kennicutt, 2004). This suggests that many disc galax-

ies have not undergone major merger events and instead have had a quieter history,

acquiring their baryonic matter through other means.

Evidence suggests that the majority of a galaxy’s baryonic matter is not obtained

through mergers but through cold gas flows (Agertz et al., 2009; Ocvirk et al., 2008;

Kereš et al., 2009; Brooks et al., 2009; Dekel et al., 2009). These cold gas flows are

more dominant at higher redshifts for lower mass galaxies where the cold streams can

easily penetrate though the hot halos (Ocvirk et al., 2008; Dekel et al., 2009). This can

also result in turbulent, gas-rich discs which are prone to internal instabilities. The gas

then fragments into massive star forming clumps (Bournaud et al., 2008; van Starken-

burg et al., 2008) which (if the clumps are big enough) migrate into the galaxy centre

providing another avenue for the formation of a galaxy bulge while preserving the disc

(Elmegreen and Elmegreen, 2005; Genzel et al., 2008; Bournaud et al., 2008).

Discs at high redshift

Generally, bars are expected to form in discs once they are sufficiently massive and dy-

namically cold (Ostriker and Peebles, 1973; Sellwood and Wilkinson, 1993; Athanas-

soula and Misiriotis, 2002, see Section 1.4 for more details), and mark the onset of
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secular processes (see Section 1.1.4). The formation of stellar bars in discs is expected

to be a relatively quick process, occurring over a few Myr (Ostriker and Peebles, 1973;

Athanassoula and Misiriotis, 2002; Athanassoula, 2003a). However, at high redshifts

there are few galaxies which show morphologies like the disc galaxies we see in the

local universe (Beckwith et al., 2006) with the presence of bars decreasing with in-

creasing redshift. Instead as redshift increases we see an increase in galaxies with

clumpier morphologies which are not just features in otherwise normal spirals and el-

lipticals (Elmegreen, 1993). Understanding why these discs do not form bars and for

how long they remain stable against bar formation is key in determining the timescales

of disc galaxy evolution. Deep surveys resolving these galaxies at z≥1 show these

galaxies can generally be classified into chains and clump-clusters. In chain galaxies

the clumps are aligned in a linear arrangement while clump clusters show a rounder

arrangement of clumps (Elmegreen et al., 2004, see Figure 1.7).

These chain and clump-clusters tend to dominate star formation at high redshifts with

the clumps themselves being massive star forming regions. Similarities in colours,

apparent magnitudes and the distribution of the ratio of axes among clump cluster and

chain galaxies show that clump-clusters are the face-on counterparts to chain galaxies

(Elmegreen et al., 2004; Elmegreen and Elmegreen, 2005). While there is some debate

on whether these clump systems could be interacting galaxies (Overzier et al., 2008),

the general consensus is that they are the result of turbulent discs since their kinematics

show ordered rotation which would not be the case if they were merging galaxies

(Elmegreen et al., 2006; Bournaud et al., 2008).

When observing high redshift galaxies in the i-band it actually corresponds to their

rest-frame UV. In local galaxies observations in the UV show a more clumpy frag-

mented structure. This means that the clumpy morphology we see in high redshift

disc galaxies might only be a by-product of the band-shifting which results in us see-

ing them in their rest-frame UV (Kuchinski et al., 2001). However, Elmegreen et

al. (2007) found that this clumpy morphology persists when observing in the J band

(which corresponds to an optical rest-frame) which classifies these objects as different

from local and high redshift spiral galaxies (see Figure 1.8.
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Figure 1.7: The various morphologies observed in the high redshift galaxies of the Hubble
Ultra Deep Field (Elmegreen, 2007). Each row shows different examples of a single morpho-
logical class with redshift increasing from left to right. From top to bottom: chains (12% show
this morphology), doubles (13%), tadpoles (11%), clump-clusters (19%), spirals (31%) and
ellipticals (13%).
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Figure 1.8: Comparisons of clumpy galaxies observed in i (rest-frame UV) and J (rest-frame
optical) bands (Elmegreen, 2007). The clumpy morphology remains visible when observing in
the J band which traces global mass distribution. This distinguishes these massive clumps as
different objects from the star forming regions observed in local spiral galaxies.

There have been various debates over the origin of these clumps resulting in two pos-

sible formation scenarios. The clumps could be a result of external processes such as

minor mergers or galaxy interactions (Hopkins et al., 2013; Mandelker et al., 2017).

These clumps may be satellite galaxies in the process of merging or alternatively the

merging event may induce instabilities within a disc. In these instabilities gas can accu-

mulate to high enough densities that result in bursts of star formation. There has been

some support for this from various observational studies (Puech et al., 2009; Puech,

2010; Wuyts et al., 2014; Straughn et al., 2015; Ribeiro et al., 2017; Zanella et al.,

2019), however the preferred method is formation through violent instabilities within

a turbulent disc. In this scenario the intense inflow of cold gas, which is predicted to

be a dominant mode of mass growth in the early universe (Kereš et al., 2005; Dekel

and Birnboim, 2006; Dekel et al., 2009) , causes turbulence within the disc. Regions of

dense gas cause gravitational instabilities driving turbulence in the disc which causes

gas to collect in larger and larger clumps. When the densities of these clumps are high

enough bursts of star formation are triggered forming the massive star forming regions

observed in the chain and clump cluster galaxies (Bournaud et al., 2007, 2009; Dekel

et al., 2009; Ceverino et al., 2010, 2012; Inoue et al., 2016). Observational support for

this process, which is referred to as violent disc instability, comes from analysing the

properties of these clumpy features (Elmegreen, 2007; Bournaud et al., 2008; Fisher

et al., 2017). Although it has also been suggested that while violent disc instabilities

are likely the origin of clumps in more massive galaxies the merger driven origin may

better explain clump formation in low mass galaxies (Guo et al., 2015).
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In addition to their origin the longevity and consequent evolution of these clumps is

also a topic of some debate. In one scenario the clumps are short lived features be-

ing easily broken up by stellar feedback from their own starbursts which results in the

thickening of the disc (Bassett et al., 2014; Inoue and Saitoh, 2014). Indeed there are

several studies which support this narrative where clumps are quickly disrupted (Mur-

ray et al., 2010; Genel et al., 2012; Hopkins et al., 2012a; Buck et al., 2017). However,

observed galacto-radial gradients in the colours of these clumps (Förster Schreiber

et al., 2011; Shibuya et al., 2016) and ages calculated for the clumps themselves (Soto

et al., 2017; Guo et al., 2018) suggests they are more long lived features. In simulations

where clumps are long lived features they end up migrating towards the centre of the

galaxy through dynamical friction and contribute to the build up of a bulge component

which can then act to stabilise the disc against further instabilities (Bournaud et al.,

2007; Elmegreen et al., 2008; Mandelker et al., 2014, 2017).

Secular evolution

[] While violent processes such as mergers and rapid internal evolution from violent

disc instabilites play a pivotal role in shaping the early formation and evolution of disc

galaxies, as the universe expands and mergers become less common (Toomre, 1977;

Conselice et al., 2003) later evolution is thought to take place through internal secular

processes. These secular processes act over timescales much larger than the dynamical

time of the galaxy. Figure 1.9 represents this hypothesis visually. The top half of

the figure denotes the fast processes, initial protogalactic collapse and galaxy-galaxy

mergers. This is what we think of in the hierarchical collapse theory of the Universe’s

formation. These processes act quickly and can act to change the galaxy’s structure

and properties over fast timescales. While in the bottom half are secular processes.

These processes can also act to transform the galaxy’s properties and structure but

much more slowly, much longer than a crossing time (the time taken for a star to

complete one orbit). These fast and secular processes can be further split into those

which occur internally (LHS of the figure), within the halo of the galaxy, and those

which are caused by external perturbers (RHS of the figure). In the center of the figure
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Figure 1.9: Diagrammatic representation of the different processes involved in galaxy evolution
(Kormendy, 2013). The top half represents fast processes happening on dynamical timescales,
while the bottom half shows slow processes which happen over many galaxy rotations. The
diagram is also divided horizontally with internal processes shown on the left and environmen-
tally driven processes on the right. In the centre are processes which are present at all stages of
galaxy evolution. As the Universe continues to expand secular processes are though to become
the dominate mode for further galaxy evolution.
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are processes which are present at all stages of galaxy evolution. As mergers become

less common the secular processes will become the more dominant mode of galaxy

evolution.

Thin discs, both stellar and gaseous, are prone to instabilities. At scales smaller than

the Jeans length, LJ , a disc can be supported against instability by the random motion

of its stars (velocity dispersion). At large scales, Lrot, the rotation of the disc supports

it from collapse. Therefore, the disc is prone to instabilities at all radii satisfying LJ <

L < Lrot. This has been extensively investigated by Toomre (1964) who developed

the Toomre Q parameter for a stable stellar disc:

Qs =
σsκ

3.36GΣs

> 1 (1.1)

where σs is the one-dimensional velocity dispersion of the stars in the radial direction,

Σs is the stellar surface density of the disc and κ is the epicyclic frequency. Similarly,

the stability of a gaseous disc is given by:

Qg =
σgκ

πGΣg

> 1 (1.2)

where σg is the one-dimensional velocity dispersion of the gas in the radial direction

and Σg is the surface density of the gas disc.

However, it is rare that purely gaseous or stellar discs exist and predominantly the two

appear in concert. This increases the likelihood of instability as where a gaseous disc

might have been stable on its own, gravitational effects from the stellar disc can induce

an instability in the gas disc and visa versa. This results in the combined Toomre

parameter (Romeo and Wiegert, 2011) for a gas disc embedded in a stellar disc:

Qtot
−1 =

WQg
−1 +Qs

−1 if(Qg > Qs)

Qg
−1 +WQs

−1 if(Qg < Qs)

(1.3)

where

W =
2σgσs

σg
2 + σs

2
. (1.4)
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However, even if Q>1 everywhere in the disc they can still be prone to instability.

The majority of disc galaxies contain bars (Eskridge et al., 2000; Erwin, 2005) making

the bar instability (which I shall describe in more detail in Section 1.4.1) one of the

most common non-axisymmetric instabilities. Other instabilities can result in other

easily identifiable features of spiral galaxies such as the spiral arms themselves and

oval distortions. These non-axisymmetric structures act to redistribute the angular mo-

mentum and material of the disc. In particular, they can act to move large amounts of

gas into galaxy centres which can result in the formation of pseudo-bulges and cause

discs to spread through movement of material to the outer regions.

While I shall go into more depth on how bars can drive the evolution of the disc galax-

ies which host them, I shall briefly introduce pseudo-bulges here. A pseudo-bulge,

while having a superficial similarity to merger-built classical bulges, actually has prop-

erties more in line with that of the disc. Pseudo-bulges have flatter shapes than classical

bulges, are more dominated by rotation than random motions, have nearly exponen-

tial surface brightness profiles, bluer colours, and may contain nuclear bars or even

spiral structure within them (Kormendy, 1993; Kormendy et al., 2006; Andredakis

and Sanders, 1994; Carollo et al., 1997; Gadotti and Dos Anjos, 2001; Erwin and

Sparke, 2002; Fathi and Peletier, 2003; Fisher, 2006; Fisher and Drory, 2008a; Drory

and Fisher, 2007).

As bars are thought to strongly drive gas towards the central regions resulting in the

formation of a pseudo-bulge, the presence of a bar is a clear indicator that secular

processes are occurring within a galaxy. Additionally, bars, and indeed discs, can

be easily disrupted and destroyed by merging events (Pfenniger and Friedli, 1991;

Athanassoula, 1996a, 1999; Berentzen et al., 2003; Sheth et al., 2012) so the presence

of a bar is also indicative of a lack of major mergers. Thus, identifying when bars

begin to form could allow us to determine when secular processes begin to have a

more dominant role in the evolution of disc galaxies, which is key for understanding

the cosmological history of the universe.
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1.2 Structure and dynamics of barred galaxies

Bars are common and easily identified features of spiral galaxies. Optically, bars are

found in over half of all local disc galaxies (Marinova and Jogee, 2007; Reese et al.,

2007; Barazza et al., 2008). When also considering near-infrared imaging this fraction

rises to approximately 70% (Knapen et al., 2000; Eskridge et al., 2000; Menéndez-

Delmestre et al., 2007). There is substantial evidence that this fraction remains con-

stant out to a redshift of z≈1 (Jogee et al., 2004; Elmegreen et al., 2004; Barazza et al.,

2008). However, there is also significant evidence to the contrary with bar fraction

rapidly declining with increasing redshift (Sheth et al., 2008; Melvin et al., 2014; Sim-

mons et al., 2014).

There is also evidence that the bar fraction correlates with Hubble type, however the

precise nature of this is widely debated. In some cases bar fraction is found to increase

in early-type spirals which are massive, red, gas-poor, and bulge dominated (Sheth

et al., 2008; Aguerri et al., 2009; Laurikainen et al., 2009; Cheung et al., 2013; Con-

solandi, 2016). There is also evidence that the opposite is true and bars are more likely

to be found in late-type spirals which are less massive, blue, gas-rich, and disc domi-

nated (Barazza et al., 2008, 2009; Aguerri et al., 2009; Buta et al., 2015; Erwin, 2018).

Alternatively, it is also possible that both of these cases are true and indeed there is

evidence of a bimodal peak of bar fraction in correlation with Hubble sequence with

a peak in both early- and late-type spirals (Knapen, 1999; Nair and Abraham, 2010;

Masters et al., 2011; Oh et al., 2012; Dı́az-Garcı́a et al., 2016).

1.2.1 Major properties of bars

Bars can be identified and categorised by their visual properties. They vary signifi-

cantly in their length, how prominent the bar appears, and in the shape of the central

region. In this section I will review the three main visual identifiers for bars: length,

strength, and the presences of a boxy/peanut structure.
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Bar length

One of the most easily identifiable characteristics of bars is their size or length. Al-

though there are numerous methods with which bar lengths can be recovered, observed

bars are, on-average, expected to have a typical radius of 2-5 kpc (Marinova and Jogee,

2007; Barazza et al., 2008; Durbala et al., 2008; Aguerri et al., 2009; Gadotti, 2011).

While in the Eagle simulation (Algorry et al., 2017) the range of bar lengths agrees

well with the observational results of Gadotti (2011), bars in simulations are typically

found to be longer (Berentzen et al., 1998; Athanassoula and Misiriotis, 2002; Valen-

zuela and Klypin, 2003; Holley-Bockelmann et al., 2005; Erwin, 2005). The deficit of

short bars could be a result of having either too kinematically hot central regions or

having large halos in comparison to the size of the disc (Valenzuela and Klypin, 2003).

Additionally, bars in simulations can grow large quickly, within 1-2 Gyr of the bars

formation (Martinez-Valpuesta et al., 2006), which may not actually be the case (I will

touch on this further in Section 1.4.2). If the majority of bars lie within the 2-5 kpc

range then at high redshifts observations may be biased towards only the largest bars,

since resolving small bars at high redshifts becomes increasingly difficult. This may

cause the observed bar fraction at higher redshift to be lower than the true bar fraction

(Erwin, 2005).

It has been shown that bar lengths correlate with the galaxy type, with the bars in

early-type spirals tending to be longer than their late-type counterparts (Erwin, 2005).

However, this is not a smooth linear change and the smallest bars are usually found

in galaxies of the morphological type Sbc (Martin, 1995; Laurikainen et al., 2007;

Dı́az-Garcı́a et al., 2016; Font et al., 2017b). With morphology being linked with

colour, there should also be a correlation between bar length and galaxy colour. Redder

colours are a common feature of early-type discs so one would expect that redder

galaxies should host longer bars, while late-type discs tend to be more blue as they are

currently star forming so should host short bars. Indeed, Hoyle et al. (2011) find that

longer bars are more commonly found in the redder galaxies in agreement with the

previous studies which identified the link between bar lengths and morphology.
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Bar length can also be linked with the prominence of the galaxy bulge. As the size

of the bulge increases the bar length also increases (Hoyle et al., 2011). This is not a

unexpected effect since bars are associated with the growth of pseudobulges through

secular evolution. Indeed the link between increased bar length and increased bulge

prominence is expected from simulations (Athanassoula and Martinet, 1980; Athanas-

soula, 2003a). This suggests that as the bar builds the bulge they increase with length

through the exchange in angular momentum between the bars and the bulge they build.

By making comparisons between observations and simulations Cheung et al. (2013)

found a clear correlation between bars and pseudobulges in agreement with bar-driven

secular evolution.

Bar strength

Generally bar strength is a parameter that measures the non-axisymmetric torques of

the bar in galaxy discs (Laurikainen and Salo, 2002). Intuitively, the differences be-

tween a weak and strong bar are clear, with stronger bars appearing longer, encom-

passing a larger proportion of the galaxies mass and more visually distinct features,

with their minor axis much smaller than their major. Weaker bars are shorter with the

bar itself less easy to visually identify, and sometimes appearing more oval in shape.

While there is no unique definition of bar strengths, there are various methods with

which they can be measured.

Bar strengths can be recovered by measuring bar ellipticity (Martinet and Friedli,

1997; Whyte et al., 2002; Marinova and Jogee, 2007; Aguerri et al., 2009), compar-

isons of the surface brightness profiles of the major and minor bar axes (Kim et al.,

2016), measuring bar torques (Combes and Sanders, 1981; Buta and Block, 2001;

Laurikainen et al., 2007; Salo et al., 2010), and Fourier decomposition of the galaxy

light (Aguerri et al., 2000; Athanassoula and Misiriotis, 2002; Laurikainen et al., 2005;

Garcia-Gómez et al., 2017). Similarly to bar length, bar strength is also correlated with

Hubble type, although the exact nature of the relationship between the strength of the

bar and the galaxy morphology depends on the method for recovering bar strengths. If
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bar strengths are calculated via bar torques then there is a clear increase of bar strength

from early-type to late-type discs (Buta et al., 2004; Laurikainen et al., 2007). It is

possible that there is a similar correlation when bar strength is measured through ellip-

ticity, although if there is it is significantly weaker (Laurikainen et al., 2007). In fact

Marinova and Jogee (2007) find that the ellipticity of the bar is independent of Hubble

type.

The increase in bar strength with Hubble type seems in tension to the decrease in

bar length with increasing Hubble type. Longer bars are more commonly found in

early-type galaxies and indeed when using Fourier decomposition, which is closely

associated with bar length, to measure strength the correlation between Hubble type is

reversed (Laurikainen et al., 2007).

The disparity between the nature of the correlation of Hubble type and bar strength is

due to the dilution of tangential forces caused by the bar in the more massive bulges

of early-type discs (Buta et al., 2004). Therefore, while the bars in early-type discs are

commonly longer, they have weaker torques resulting in weaker strengths when the

bar torque method is implemented in calculating the strength of the bar.

Peanuts and boxy bulges

Nearly half of all edge-on disc galaxies display central components which are boxy-,

peanut-, or X-shaped structures (these are commonly referred to as boxy/peanut or b/p

bulges) (Lütticke et al., 2000; Yoshino and Yamauchi, 2015; Erwin and Debattista,

2017). While their nomenclature refers to them as bulges, and indeed they fall under a

sub-classification of pseudobulges, numerical simulations have demonstrated that they

are actually a feature of an edge-on bar (Combes et al., 1990; Martinez-Valpuesta et al.,

2006).

While very few face-on barred galaxies show boxy, peanut or X-shaped structures,

they do play host to barlenses. A barlens is a lens-like structure embedded in the bar

which covers approximately half the length of the narrow bar (Laurikainen et al., 2011).

Orientated along the major axis of the bar, their shapes can vary from oval to more
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Figure 1.10: Examples of boxy/peanut and barlens galaxies (Laurikainen et al., 2014a). The
top row shows two galaxies with the characteristic X-shaped structure associated with the
boxy/peanut bulges. The bottom row shows galaxies with a more boxy, or barlens-like shape.
The galaxies on the left side are viewed nearly edge-on, while those on the right are closer
to face-on views. The centre of each row is an unsharp mark of the left side galaxies clearly
showing the X-shaped structure.

circular (Laurikainen et al., 2013). Due to their roundness barlenses can be erroneously

associated with classical bulges, however the similarity between the optical colours of

barlenses and bars suggest they are actually a feature of the latter (see Figure 1.10)

(Herrera-Endoqui et al., 2015).

If barlenses and boxy/peanuts are the same phenomena, as has been suggested (Lau-

rikainen et al., 2007, 2014b; Athanassoula et al., 2015), then they should share ob-

served properties. By looking at galaxy orientation in comparison to barlens mor-

phology, Laurikainen et al. (2014b) (see also Laurikainen and Salo (2017); Salo and

Laurikainen (2017)) found that the distribution of minor-to-major axis ratios (b/a) for

galaxies with barlenses and boxy/peanut shapes is flat when both are considered to-

gether. This strongly implies that they are the same feature just seen at different incli-

nations. Additionally, boxy/peanuts show similar surface brightness profiles (Athanas-

soula et al., 2015), colours (Herrera-Endoqui et al., 2015) and kinematics (Debattista

et al., 2005). Numerical simulations have found that the barlens is, indeed, a face-on

view of the boxy/peanut (Athanassoula et al., 2015).
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1.2.2 The orbital structure of the bar

The movement of stars is determined by the gravitational potential in which they are

situated. Unlike systems with a central point mass like the solar system, in discs the

mass is distributed radially. Gas is dissipational and can remove energy from a system,

however angular momentum must remain conserved. Circular orbits have the mini-

mum amount of energy for a given amount of angular momentum. Any stars born

from this gas thus move on nearly circular orbits. In the inertial frame of the rotating

disc stellar orbits can generally be defined as unclosed rosettes (Binney and Tremaine,

1987; Sellwood and Wilkinson, 1993).

Small radial deviations from the circular motion of the stars are called epicycles. The

epicyclic motion for disc stars can effectively be broken down into two parts: the

orbital motion of a guiding centre, and the rapid oscillations about the guiding centre.

The frequency, κ, of these oscillations is given by the epicyclic approximation:

κ2 =
2v

r

(
v

r
+
dv

dr

)
(1.5)

where v is circular rotation velocity as function of radius r, and the angular frequency

of stars about the centre is Ω = v/r (Binney and Tremaine, 1987).

When non-asymmetric features are present in the galaxy they interact with the material

in the disc distorting orbits. In particular, some orbits may experience resonances

caused by coupling between the motion of the stellar material in the orbits and the

motion of the non-axisymmetric structure.

Resonances

Bars interact with the galactic material resulting in distortion of the stellar orbits. Since

bars also rotate within the disc they cause resonances to form. Resonances, in barred

galaxies, form where the motion of the stars is coupled with the rotation of the bar (the

particular rate of the bars rotation is referred to as its pattern speed Ωp).
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In the frame of the bar (where the bar is considered stationary) an orbit can be consid-

ered as resonant if it satisfies the condition:

lκ+m(Ω− Ωp) = 0 (1.6)

where (l:m) are a pair of integers describing the resonance in the disc. Stars which are

in resonant orbits will periodically return to the same position with respect to the bar,

and they are closed orbits (Lichtenberg and Lieberman, 1983).

There are three important resonances in barred galaxies: corotation (0:1), the inner

Lindblad resonance (-1:2), and the outer Lindblad resonance (1:2). A schematic rep-

resentation of these resonances is shown in Figure 1.11. At the corotation radius grav-

itational and centrifugal forces cancel out in the rest frame of the bar so, as long as the

pattern speed of the bar remains fixed, the positions of the stars do not change with

respect to the bar. This means that if the pattern speed of the bar can be recovered then

the corotation radius (RCR) can be determined with:

RCR = V c/Ωp (1.7)

where V c is the circular velocity of the disc. Using this and the bar length (ab) bars can

be described by a distance independent parameter.

R = RCR/ab (1.8)

Any self-consistent bar requires that R > 1.0, as such bars cannot extend beyond

the corotation radius (Contopoulos, 1980; Athanassoula and Martinet, 1980). This

parameter can also be used to categorise bars into fast (1.0 < R < 1.4) and slow

(R > 1.4) rotators. The vast majority of bars lie in the fast regime (Elmegreen et al.,

1996; Rautiainen et al., 2008; Portail et al., 2017) while only a few have been found to

lie in the slow (Bureau et al., 1999; Rautiainen et al., 2008).

In addition to the corotation resonance, barred galaxies may also contain inner and

outer Lindblad resonances. At these resonances the closed orbits have exactly two
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Figure 1.11: A schematic showing the 3 major resonances (dashed lines) seen in barred galax-
ies, the shape of their periodic orbits (solid lines) and an unclosed rosette orbit all in the rest-
frame of the bar (Combes, 2001). At the inner Lindblad resonance (ILR) the orbit is elongated,
oscillating twice in the radial direction, here the particle moves faster than the bar. At corotation
(CR) there is only the epicyclic motion and the guiding centre of the orbit remains stationary
in the bars rest-frame. At the outer Lindblad (OLR) resonance the orbit is again elongated with
two radial oscillations, here a particle moves slower than the bar so appears to move backwards.
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radial oscillations during one angular revolution resulting in a orbit with an ellipsoidal

shape. At the inner Lindblad resonance, which lies inside the corotation radius, the

star rotates faster than the bar. Therefore a particle will be at the top of its epicycle

when the end of the bar swings by and will be at the top of its epicycle again when the

opposite end of the bar swings by. Particles in the outer Lindblad resonance, which

lies outside corotation, rotate slower than the bar. This means that a particle that will

be at the top of its epicycle when the end of the bar swings by will be at the top of its

epicycle again after two full rotations of the bar.

In some cases the inner and outer Lindblad resonances can be traced by rings. Inter-

stellar gas collects at the resonances due to torque produced by the bar pattern. At

these locations where the gas is dense it may result in star formation causing bluer star

forming rings to form that trace the shape of the resonances (Athanassoula et al., 1982;

Sellwood and Wilkinson, 1993; Rautiainen and Salo, 2000; Buta, 2017). As a result

of this, many of these resonant rings are aligned with the bar (de Vaucouleurs, 1964;

Schommer and Sullivan, 1976). In cases where there is not an alignment it is possible

these resonances are the result of other physical mechanisms such as the pattern speed

of the spiral arms which is decoupled from the bar (Comerón et al., 2014).

Important orbital families

As touched on in the previous sections, the presence of a bar disrupts the orbital struc-

ture of the disc. As such, there are several important orbital families associated with

bars. These orbits are mostly periodic, meaning that they close after one or more revo-

lutions of the bar and that the star will forever trace the same path (assuming there are

no changes to the galaxy’s structure).

The periodic orbits are the building blocks of a galaxy’s structure, describing the shape

of the stellar density distribution. Non-periodic orbits can become trapped, oscillating

about one periodic with a similar shape forming an orbital family. Additionally, there

are also chaotic orbits which can change in unpredictable ways; a small perturbation

could result in a significant change in the orbit. There are numerous periodic orbits
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Figure 1.12: A schematic showing two of the most important families of periodic orbits in the
bar (Contopoulos and Papayannopoulos, 1980). In this co-ordinate system the bar is parallel
to the x-axis. The x1 family is extended parallel to the bar, while the x2 family is extended
perpendicular to the bar.

contained within a galaxy but here I will only touch on those most important to the

bar; the x1, x2, x3, and the retrograde x4 orbital families. The x1 and x2 orbital

families are illustrated in Figure 1.12.

The x1-family are one of the most important orbits with regards to the bar and are gen-

erally considered to be the backbone of the bar. The x1 orbits are elongated along the

major axis of the bar and can trap other orbits alongside them. These orbits are stable

within corotation, becoming unstable outside it (Contopoulos and Papayannopoulos,

1980; Athanassoula et al., 1983; Contopoulos and Grosbol, 1989). As such, the bar

does not exist beyond the corotation radius.

Other periodic orbits which are considered important for bar dynamics are the x2-

family and x3-family. These orbits are perpendicular to the bar, acting to weaken it,

and lie within the inner Lindblad resonance. The x3 orbits are more extended than the
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x2 orbits but are always unstable.

The final important periodic orbit for the bar is the x4 orbit. This orbit is retrograde,

meaning it appears to move backwards with respect to the bar’s frame of reference.

At small radii it is elongated perpendicular to the bar but becomes rounder with in-

creasing radius (Athanassoula et al., 1983). These orbits have been associated with the

formation of the boxy/peanut structure due to their prominence in the vertical direction

(Athanassoula, 1990).

While the stars on these orbits are collisionless, the gas is not. Where these orbits inter-

sect the gas can form shocks causing it to fall into the central regions to prevent further

destabilisation. This prompts an exchange of angular momentum which causes the

stellar orbits to elongate and the bar to grow. This process aids the formation of struc-

tures commonly associated with barred galaxies such as inner rings and pseudobulges

(Kormendy and Kennicutt, 2004).

1.3 Effects of bars on galaxy evolution

Barred galaxies evolve through secular processes which transport angular momentum

from the inner to the outer parts of a galaxy. The efficiency at which bars are able

to redistribute angular momentum means that they are likely to play a key role in the

evolution of disc galaxies via a number of processes. In this section I will touch on a

few of the most important: (1) the formation of internal substructures such as pseudo-

bulges and inner rings; (2) changing the rate of star formation; (3) the fueling of active

galactic nuclei (AGN); and (4) redistribution of the stellar and gaseous components.

1.3.1 Exchange of angular momentum

Non-axisymmetric features in disc galaxies facilitate the transfer of angular momen-

tum. Bars dynamically excite the galaxies in which they reside and are a key mecha-

nism which allows for the transfer of angular momentum between the inner and outer
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regions of the disc (Athanassoula, 2003b).

There are several different processes through which angular momentum can be trans-

ferred which are associated with the bar. Bars experience dynamical friction against

the dark matter halo, transferring both energy and momentum, causing the bar to both

slow and grow. As bars grow they can trap material in the disc onto elongated or-

bits, and the orbits of material in the bar may also become more elongated as a result

(Athanassoula, 2003b). This requires angular momentum to be transferred to other

parts of the galaxy to conserve the angular momentum of the disc.

As angular momentum is transferred, the bar slows and lengthens which causes an

increase in the radii at which the corotation and Lindblad resonances lie (Chiba et al.,

2021). This can be visualised like the rings of a growing tree with those orbits trapped

at the core of the resonance being the first with newly trapped stars located at distances

sequentially further from the resonance core (Chiba et al., 2021). Chiba and Schönrich

(2021) used the sequential trapping of orbits in a tree ring structure to estimate that

the corotation radius of the Milky Way has moved by more than 1.6 kpc since the

formation of the Galactic bar.

1.3.2 Formation of pseudo-bulges

As I described in Section 1.2, the presence of the bar both signifies and drives secular

evolution. The material that bars drive to the central regions acts to form a pseudo-

bulge. Pseudo-bulges differ from classical bulges in several ways. Firstly, the surface

brightness profile of pseudo-bulges is near exponential with the decline in light in-

tensity (I) described by the Sérsic (1963) profile I ∝ r1/n where n < 2 (Courteau

et al., 1996; Carollo, 1999; Seigar et al., 2002; Fisher and Drory, 2008b); for classi-

cal bulges n > 2 (Fisher and Drory, 2008b). Additionally, pseudo-bulges show on-

going star formation and often have young populations of stars (Peletier et al., 2007),

while classical bulges are considered to be red and dead generally having formed early

in a galaxy’s history. Indeed, specific star formation rates (sSFR) in the centres of

barred galaxies are consistent with the formation of pseudo-bulges (Fisher et al., 2009),
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making it plausible that these structures were formed through secular processes (Ko-

rmendy, 1979; Kormendy and Kennicutt, 2004), whereas classical bulges are thought

to be built by mergers (Hopkins et al., 2012a; Martig et al., 2012). Finally, pseudo-

bulges are more rotationally dominated (Kormendy, 1993; Falcón-Barroso et al., 2006;

Kormendy, 2008) with lower velocity dispersion than a classical bulge. This makes

pseudo-bulges more similar to discs.

Pseudo-bulges often show internal structure when observed at high resolutions. Ob-

servations of the inner regions of pseudo-bulges show the existence of nuclear bars

(Shaw et al., 1995; Erwin and Sparke, 2002; Erwin, 2004, 2011; Bittner et al., 2021),

spiral arms (Courteau et al., 1996; Erwin and Sparke, 2002; Kim, 2018), nuclear rings

(Erwin and Sparke, 2002; Li et al., 2015; Kim, 2018), and intense regions of star for-

mation (Benedict et al., 2002; Knapen et al., 2006; Lin et al., 2017; Kim et al., 2020;

Lin et al., 2020). Large-scale bars have been shown to contribute to the growth of

pseudobulges in galaxies with gas (Cheung et al., 2013). It is also possible for both

a pseudo-bulge and a classical bulge to exist in concert (Méndez-Abreu et al., 2014;

Erwin et al., 2015), pointing towards a formation scenario for bulges that can be both

secular and merger driven.

1.3.3 Enhancing central star formation

When a bar is present the gas inside the corotation radius tends to settle on the x1-

family of periodic orbits which are aligned parallel to the major axis of the bar (Con-

topoulos and Papayannopoulos, 1980; Binney et al., 1991; Morris and Serabyn, 1996),

while gas outside of corotation remains confined to the disc (Sanders and Huntley,

1976; Athanassoula, 1992; Berentzen et al., 1998; Kim and Seo, 2012; Cole et al.,

2014). Because gas is collisional (unlike stars), the gas settled on the x1 orbits shocks,

losing angular momentum, falling into the central regions, and settling on x2 orbits.

The shocking process repeats until the gas settles near the inner Lindblad resonance

(Simkin et al., 1980; Maciejewski, 2000). Here the gas may become trapped, unless

other internal structures are present to funnel the gas further into the centre (Athanas-
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soula, 1992; Quillen et al., 1995; Erwin and Sparke, 2002; Kim, 2018; Bittner et al.,

2021). The build up of cold gas in the galaxy centre (Sakamoto et al., 1999; Sheth et al.,

2005) can trigger intense episodes of star formation (Ellison et al., 2011; Catalán-

Torrecilla et al., 2017). Indeed, many numerical simulations demonstrate this is an

efficient way to supply gas to galaxy centres enhancing the efficiency of star formation

there (Athanassoula, 1994; Sellwood and Wilkinson, 1993; Combes, 2001; Kim et al.,

2011; Kim and Seo, 2012; Shin et al., 2017).

Observationally, barred galaxies are often found to have higher central gas concentra-

tions and central star formation rates than their mass matched unbarred counterparts

(Sakamoto et al., 1999; Knapen et al., 2002; Sheth et al., 2005; Ellison et al., 2011;

Oh et al., 2012; Wang et al., 2012; Consolandi et al., 2017). Barred galaxies also tend

to have younger and more metal-rich central regions than non-barred galaxies (Coelho

and Gadotti, 2011; Ellison et al., 2011; Pérez and Sánchez-Blázquez, 2011). Observa-

tions of HI gas tends to show holes in the disc where the gas has been swept up by the

bar and funneled into the central regions (Newnham et al., 2020). The effects described

above tend to be stronger in galaxies with stronger bars (Ho et al., 1997; Gavazzi et al.,

2015; Kim et al., 2017) which are more efficient at funneling gas into the galaxy centre

(Athanassoula, 1994; Sheth et al., 2005; Kim and Seo, 2012).

1.3.4 Fueling AGN

An active galactic nucleus (AGN) is an energetic phenomenon powered by the accre-

tion of gas onto a supermassive black hole (SMBH) located in the nucleus of a massive

galaxy (Rees, 1984). Due to the efficiency at which bars funnel gas into the central

regions of a galaxy, they are often associated with the fueling of AGN when they are

present (Combes, 2003). While there is substantial evidence that this is the case (Hao

et al., 2009; Oh et al., 2012; Alonso et al., 2013; Galloway et al., 2015), there is also

a compelling amount of evidence in contradiction to this outlook (Lee et al., 2012;

Cheung et al., 2015; Cisternas et al., 2015; Goulding et al., 2017).

These controversial results come down to a debate over how efficient bars are at trans-
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porting material directly into the regions close to the SMBH (Knapen, 2005). One

explanation is that smaller scale phenomena are needed to transport material from the

central few pc down to the black hole. It has been proposed that the presence of small

non-axisymmetric substructures, such as nuclear bars (Shlosman et al., 1989) or spirals

(Martini et al., 2003), can bridge the gap between the gas transported by the bar and

the accretion disc of the SMBH at the galaxy centre. Observational studies have found

nuclear bars in galaxies with AGNs (Martini et al., 2001). However, they also revealed

dust spirals which connect the bar to the nuclear region. While this is a promising

mechanism for the transport of material down to the black hole, these dust spirals are

present in both active and inactive galaxies (Martini et al., 2003). It may be the case

that these different structures all act in concert and represent a hierarchy of mecha-

nisms over different spatial scales which act to transport material down to the SMBH

(Haan et al., 2009).

1.3.5 Formation of rings

The presence of a bar in a galaxy will often coincide with the presence of rings. There

are three main types of rings (Buta et al., 2015) which are named based on their location

in the galaxy: nuclear rings which are found in the central regions of a galaxy; inner

rings which lie just outside the radius of the bar; and outer rings which lie further out

in the disc.

Most rings in galaxies are thought to be formed from gas which collects near reso-

nances in the disc. In numerical simulations, nuclear rings are linked to the presence

of the inner Lindblad resonance, with inner rings commonly associated with the ultra-

harmonic 4:1 resonance and outer rings associated with the outer Lindblad resonance

(Athanassoula et al., 1982; Sellwood and Wilkinson, 1993; Rautiainen and Salo, 2000;

Buta, 2017). However, collection of gas at resonances is not the only mechanism

through which rings are thought to form.

The manifold theory is one alternative model that results in the formation of inner and

outer rings (Romero-Gómez et al., 2006; Voglis et al., 2006; Romero-Gómez et al.,
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2007; Tsoutsis et al., 2008; Athanassoula et al., 2009). In this theory the rings are

formed as a result of gas and stars on chaotic orbits which are trapped in tubes that

connect the Lagrangian points at the ends of the bar (Romero-Gómez et al., 2006,

2007; Athanassoula et al., 2009, 2010; Athanassoula, 2012), whereas nuclear rings

may be formed due to the shocking of gas encountering the centrifugal barrier in the

inner region of the galaxy (Kim and Seo, 2012).

If rings are the result of either manifolds or resonances then they should be aligned

with the bar, and while some rings are so aligned, Comerón et al. (2014) found that

nearly 50% of rings in late-type spirals have random orientations. This may be a result

of measurement errors, since in later galaxy types rings are more difficult to define, or

could be due to spiral modes rotating at a pattern speed different than that of the bar

(Rautiainen and Salo, 2000).

The fraction of rings in galaxies increases with increasing stellar mass (Dı́az-Garcı́a

et al., 2019), with inner rings being more common than outer rings (Buta and Combes,

1996; Comerón et al., 2014). They are found across all morphological types, however

they are observed to be larger, relative to disc size, in early-type spirals with inner ring

size increasing with increasing Hubble type (Dı́az-Garcı́a et al., 2019). While the outer

ring size is not correlated with bar strength, the size of inner rings increases in radial

extent and ellipticity with increasing bar strength (Dı́az-Garcı́a et al., 2019), however

the link between strength and ellipticity is weaker than expected from numerical sim-

ulations (Sellwood and Wilkinson, 1993). This gives some support to the hypothesis

that rings are formed as a result of resonances since as the bar grows in length and

strength its pattern speed decreases which moves the resonances further out into the

disc.

While rings are predominantly found in barred galaxies, about a third of galaxies which

have rings have no bar (Dı́az-Garcı́a et al., 2019). A bar is generally considered impor-

tant for the formation of rings (Schwarz, 1981; Sellwood and Wilkinson, 1993; Buta

and Combes, 1996), although it may also be possible to form rings without the pres-

ence of a bar (Sil’chenko and Moiseev, 2006). It has been suggested that rings could

outlive the bar, remaining after the bar has been dissolved (Athanassoula, 1996b). Al-
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ternatively a bar might still exist but only be observable in the infra-red (Casasola et al.,

2008).

1.3.6 Suppression of star formation

While there is evidence that bars can enhance the central star formation in galaxies at

the nuclear scale, not all barred galaxies have high central gas concentrations or star

formation rates (SFRs) when viewed at a larger scale encompassing the bar (Martinet

and Friedli, 1997; Sheth et al., 2005; Cullen et al., 2007; Fisher et al., 2013; Abdurro’uf

and Akiyama, 2017). This suppression of star formation in the central regions of barred

galaxies was first noticed by Tubbs (1982). The very ability of bars to efficiently

transport gas into the centre of a galaxy can result in the removal of gas from within

the corotation radius of the bar: while gas inside corotation is funneled to the centre,

gas outside corotation is driven outwards into the disc (Kalnajs, 1978; Bournaud and

Combes, 2002; Combes, 2008; Spinoso et al., 2017) preventing the lost gas inside the

corotation radius from being replaced. Alternatively, gas may be present but its star

formation efficiency may be low. Strong bars which produce strong shocks combined

with gas shearing could stabilise the gas against efficient star formation (Reynaud and

Downes, 1998). Gas might also be stabilised as a result of the gas velocities induced

by bars, even in regions of high density gas (Verley et al., 2007).

Observations of the bar region in narrow-band Hα can reveal the complete suppression

of star formation within the radial range swept out by the bar called the star formation

desert (SFD) (James et al., 2009; James and Percival, 2015, 2018). Observations in HI

reveal holes in the gas disc which the bar sweeps out confirming that it is likely that gas

is removed from the region by the bar (Laine and Gottesman, 1998; Newnham et al.,

2020). The appearance of a SFD often coincides with a slight increase in star forma-

tion in both the centre and the ends of the bar, and in the inner ring which surrounds

the bar. Further supporting evidence of the suppression of star formation within the

SFD comes from the deficit of core-collapse supernova observed in the radial range

swept out by the bar (Hakobyan et al., 2016). Star formation deserts are also found in



1.3. Effects of bars on galaxy evolution 41

simulations which confirm that strong bars are capable of depleting the gas in the bar

region, effectively quenching star formation on approximately Gyr timescales (Fanali

et al., 2015; Khoperskov et al., 2018; Spinoso et al., 2017) and leaving the region ‘red

and dead’. However, whether bars can act to transform a galaxy from star forming in

the ‘blue cloud’ to quenched on the ‘red sequence’, or if their suppression effects only

effect the SFD, is still up for debate.

There is substantial evidence linking bars to galaxy quenching, however the exact

nature of the process and its extent remains unclear. In comparisons with unbarred

galaxies of the same mass, galaxies with bars have lower atomic gas fractions and

star formation rates (Masters et al., 2012; Krishnarao et al., 2020). Bars are also more

commonly found in optically redder galaxies than their unbarred counterparts (Masters

et al., 2011; Vera et al., 2016; Kruk et al., 2018), with longer bars being more common

in redder discs (Hoyle et al., 2011). The bar fraction is higher for galaxies of higher

mass (Masters et al., 2012; Melvin et al., 2014; Gavazzi et al., 2015), with the bars in

these galaxies also being stronger (Erwin, 2019). Bars are more numerous in galaxies

with early-type morphology (Elmegreen and Elmegreen, 1985; Martin, 1995; Erwin,

2005; Menéndez-Delmestre et al., 2007; Lin et al., 2014; Dı́az-Garcı́a et al., 2016; Er-

win, 2019) and galaxies in denser environments (Skibba et al., 2012). Evidence shows

that the majority of the star formation in barred galaxies happens much earlier than

their mass-matched unbarred counterparts (Fraser-McKelvie et al., 2020b) suggesting

that barred galaxies are quenched earlier. The aforementioned evidence points towards

a scenario in which bars quench the galaxy. However, simulations find that bars form

more easily in gas-free discs (Athanassoula, 2013), such as those which have been

quenched early. Disentangling these two scenarios, in which bars help quench a galaxy

or form more easily because of quenching, is difficult because it requires knowledge

of both the time of quenching and bar formation. There is currently a lack of methods

with which we can observationally age date the bar and until more methods are made

available the relationship between bars and quenching will remain unclear.
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1.4 Bar formation and destruction

1.4.1 Bar formation through disc instabilities

Rotationally supported discs can become unstable when Q<1 (this is the Toomre pa-

rameter as described in Section 1.3 Toomre (1964)). N-body simulations of isolated

galaxies have shown that when a rotationally supported stellar disc becomes unstable a

bar shaped structure is formed in response (Ostriker and Peebles, 1973; Toomre, 1977,

1981; Sellwood and Wilkinson, 1993; Binney and Tremaine, 1987). Toomre (1981)

argued that the bar can be considered as a standing wave between corotation and the

galaxy centre. The leading wave is reflected back at corotation, rotating it 180◦ into

a trailing wave which amplifies the pattern through swing amplification, the superpo-

sition of a leading and trailing wave. This standing wave is a weak bar which then

elongates and strengthens through the exchange of angular momentum between the

inner and outer Lindblad resonances (Lynden-Bell and Kalnajs, 1972).

While the above is a good explanation for how bars might grow in isolated envi-

ronments, bars are more frequently observed in dense environments such as clusters

(Elmegreen et al., 1990). Interacting galaxies in dense environments can cause tidal

distortions in the disc, these distortions cause non-axisymmetric instabilities that re-

sult in the formation of a bar (Noguchi, 1987). The resulting strengths of bars formed

in this way are dependent on the mass ratios of the interacting galaxies and the mass

ratios of the bulge and halo of the main disc (Noguchi, 1987). In comparison to bars

formed in isolated environments, these bars tend to have slower pattern speeds and

altered inner Lindblad resonance positions (Miwa and Noguchi, 1998).

Despite their generally destructive nature, even galaxy-galaxy mergers can result in

the formation of a bar (Peirani et al., 2009; Lotz et al., 2010). When a minor merger

occurs it is a relatively slow process in comparison to major mergers (Cavanagh and

Bekki, 2020). As the minor galaxy spirals in, it causes tidal distortions in the disc

which causes the bar to form (Peirani et al., 2009; Di Matteo et al., 2010). With each

successive spiral, material is stripped from the minor galaxy until by the time it merges
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with the disc it does not destructively warp or disturb it (Cavanagh and Bekki, 2020).

The process is slightly different for major mergers which act on faster time scales.

Most major mergers will destroy galaxy discs, however if the galaxies merge in very

specific circumstances (related to their orientations) then a bar can survive (Cavanagh

and Bekki, 2020).

The effect of gas on bar formation

The majority of the N-body simulations of bar formation discussed above do not in-

clude how the gaseous component of the disc responds to the bar. Gas is collisional

so will form shocks where orbits intersect (Athanassoula, 1992). When included in

simulations, the effects of gas on the formation of bars is varied. Athanassoula et al.

(2013) found that bars in galaxies with a high gas fraction grow slowly, and Wozniak

and Michel-Dansac (2009) reported that in some cases a high gas fraction may inhibit

the formation of a bar completely. In contradiction, Robichaud et al. (2017) showed

that bars can form earlier in discs with a high gas fractions if feedback from AGN is

included. However, Berentzen et al. (2007) identified no link between bar formation

time and galaxy gas fraction. In those simulations where a bar does form the inclusion

of gas results in shorter and weaker bars (Berentzen et al., 1998; Athanassoula, 2003a;

Berentzen et al., 2007; Athanassoula, 2013; Cheung et al., 2013).

The effect of the halo on bar formation

All galaxies are believed to reside inside large dark matter halos which make up the

majority of their total mass. If the dark matter halo is massive, dynamically hot, and

non-rotating it can act to stabilise the disc against perturbations and subsequent bar

formation (Hohl, 1976; Efstathiou et al., 1982). A halo that rotates in the opposite

direction to the disc can also act to suppress the formation of the bar (Saha and Naab,

2013). However, if the halo rotates in the same direction as the disc then it can act to

encourage the formation of a bar (Saha and Naab, 2013).
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The ability of a bar to grow is dependent on how efficiently angular momentum can be

exchanged in a galaxy (Athanassoula, 2003a). In a static potential the dark matter halo

is considered as rigid and so cannot contribute to the exchange of angular momentum

with the bar. As a result the bar can only evolve by exchanging angular momentum

with the outer Lindblad resonance in the disc removing angular momentum from the

material in the bar and transporting it to the outer Lindblad resonance which allows the

disc to spread. While the exchange of angular momentum in the disc is more efficient,

the rate at which angular momentum is exchanged is also dependent on mass. As

a result, bars develop slower in galaxies with rigid halos. However, if the galaxy is

assumed to have a ‘live’ halo (made up of particles), then angular momentum can be

absorbed at all resonances in the halo. While this is less efficient than absorption by

the outer Lindblad resonance of the disc, the halo has significantly more mass allowing

for bars to evolve quicker and, ultimately, stronger (Debattista and Sellwood, 1998;

Athanassoula and Misiriotis, 2002; Saha et al., 2012).

Halo mass can also effect the rate of bar growth. If the mass of the halo dominates

in the central regions it can delay the formation of the bar since it acts to dampen

perturbations. However, if the disc mass dominates then the bar tends to form fast

and earlier. In addition, the shape of the halos can also affect the formation time and

evolution of the bar (Athanassoula, 2013). Triaxial halos cause bars to form faster but

they grow more slowly and are weaker overall than bars which develop in galaxies

with spherical halos.

Suppression of bar formation in ‘hot disks’

Simulations show that bar formation is delayed in dynamically hot discs (Athanassoula

and Sellwood, 1986; Athanassoula, 2003a) due to the large amount of random motions

preventing the bar instability from growing quickly. In some cases this may prevent bar

formation from occurring at all (Sheth et al., 2012). These results are in agreement with

the lack of bars observed in clump-cluster and chain galaxies seen at high redshifts as,

while they do have rotation, they also have high amounts of dispersion in their discs.
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Additionally, bars in simulations tend to form earlier in more massive discs compared

to the more dispersion dominated low-mass discs.

1.4.2 Bar slow down and growth

The interaction between bars and the material of the disc through the exchange of

angular momentum can result in the slow down of bar pattern speed. Because the

length of the bar is limited by the radii of corotation, the decreases in pattern speed

moves the radial position of corotation further into the disc. This allows for the trap-

ping of more material onto elongated bar orbits, forging a longer and stronger bar

(Lynden-Bell, 1979; Sellwood, 1981; Solway et al., 2012). In simulations where the

bar slows due to dynamical friction with the halo bars can become almost as large as

their discs (Athanassoula and Misiriotis, 2002; Martinez-Valpuesta et al., 2006; Villa-

Vargas et al., 2009). However, as bars as large as discs are not seen in observations bar

growth must be mediated by more than just dynamical friction with the halo (Erwin,

2005). A substantial gas component can delay or even halt the formation of the bar,

and in cases where the bar does form result in weaker bars overall. Alternatively, bar

growth can be interrupted by a process called buckling.

Instability and buckling

The orbits in bars, and indeed galaxies, are not constrained to just two-dimensional

motion but also extend up into the vertical plane. The vertical motion of stars in the

bar can result in the distortion of material up out of the disc plane.

While the precise nature of this distortion is still debated, there are currently three

popular mechanisms proposed. Firstly, as the bar grows it can become dynamically

unstable which causes the bar to buckle vertically out of the plane of the disc, ef-

fectively thickening the central regions (Binney, 1981; Pfenniger and Friedli, 1991;

Skokos et al., 2002; Portail et al., 2015; Collier, 2020). This instability is commonly

referred to as the fire-hose instability. Secondly, the vertical motions of stars in the bar
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may gradually increase through interactions with vertical resonances (Quillen et al.,

2014). Finally, stars on x1 orbits may become trapped within a vertical resonance of

the bar, gradually building up its vertical height (Quillen, 2002; Sellwood and Gerhard,

2020).

Numerical simulations find that the bar buckles out of the plane shortly after its forma-

tion (Pfenniger and Friedli, 1991; Sotnikova and Rodionov, 2003; Martinez-Valpuesta

and Shlosman, 2004), with the buckling phase itself only lasting for a few hundred

Myr (Athanassoula et al., 2016). After buckling, the resulting bar is weaker but much

thicker in vertical height (Martinez-Valpuesta et al., 2006). Due to the rapidity of the

buckling phase, very few observations show bars in the process of buckling (Erwin and

Debattista, 2016; Li et al., 2017). However, simulations show that the buckled bar set-

tles into a boxy/peanut shape commonly associated with edge-on bars. In some cases

it may be possible for the bar to undergo several buckling episodes. These secondary

buckling events act over longer time periods, taking between 2-3 Gyr (Martinez-Valpuesta

et al., 2006; Łokas, 2019), but are expected to occur less frequently than the initial

buckling episodes (Smirnov and Sotnikova, 2019).

Gas can also have significant effects on the onset and outcome of buckling bars. Bars

are efficient transporters of gas to the central regions. The build up of central mass

through bars in gas rich discs can act to either completely suppress the buckling in-

stability (Berentzen et al., 1998; Debattista et al., 2006; Berentzen et al., 2007; Villa-

Vargas et al., 2010; Athanassoula, 2013) or result in the destruction of the bar (Bour-

naud and Combes, 2002; Bournaud et al., 2005). The lack of buckled bars with

boxy/peanuts or barlens structures in late-type galaxies (Erwin and Debattista, 2017;

Li et al., 2017) points towards the former being the case.

1.4.3 Are bars long-lived features?

Bars have been found present in galaxies up to z≈2 and they clearly have an influ-

ence on galaxy evolution. As bars are implicated in the formation of pseudo-bulges

through secular processes, a pivotal issue is the long-term stability of bars: can a bar
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be destroyed, and if so can it then be reformed?

Bar destruction

As bars are efficient in funneling material into the central regions, determining their

stability in the presence of a central mass concentration such as a super-massive black

hole is important. Some models find that bars rapidly dissolve in the presence of central

mass concentrations (Bournaud and Combes, 2002; Bournaud et al., 2005; Hozumi and

Hernquist, 2005; Hozumi, 2012). In contrast, others have shown that unrealistically

massive black hole masses 4% of the total stellar mass are required for the destruction

of large-scale bars (Shen and Sellwood, 2004; Athanassoula, 2005; Debattista et al.,

2006). However, Du et al. (2017) found that a black hole mass≈0.1% of the total stel-

lar mass would effectively destroy short bars (where short is considered as <1.5kpc)

irrespective of whether they co-exists with a larger outer bar. In cases where the bar is

not destroyed it can be weakened as the central mass concentration can alter the orbital

structure of the central regions (Bournaud et al., 2005).

The first self-consistent numerical simulations containing gas showed that bars can be

destroyed (Friedli and Benz, 1993). While initially this was thought to be the result of

the build up of a central mass component, the gas itself can also act to destroy the bar:

gas is driven into the central regions of galaxies by bar torques, but the gas also exerts

an opposite torque which can weaken and destroy the bar (Combes, 2008). While

simulations show that an unrealistically massive central mass concentration is required

for bar destruction (Shen and Sellwood, 2004), the gas infall need only be 1-2% of the

disc mass to destroy a bar (Friedli et al., 1994; Berentzen et al., 1998; Bournaud et al.,

2005; Combes, 2008). The bars in these gas-rich galaxies are short-lived and predicted

to be destroyed within 1-2 Gyr of formation (Bournaud et al., 2005).

Galaxy-galaxy interactions and mergers could also result in the destruction of a bar

since they can alter the dynamics of the galaxy. However, major mergers can destroy

the disc as well resulting in the formation of a spheroid. Although minor mergers or an

interaction between the galaxy and a satellite could disrupt and destroy the bar, since



1.4. Bar formation and destruction 48

bars can be tidally induced by such events they may reform after the disc has once

again settled.

Bar reformation

If a bar is destroyed then the disc will be dynamically hot and must cool before a bar

can be formed again. As mentioned previously in this section, a bar that is destroyed

through a minor merger or galaxy-galaxy interaction may reform after a disc has set-

tled. Bars which have been destroyed by gas inflow may also reform once new gas

has been accreted, replenishing the disc and making it again unstable to bar formation

(Combes, 2008). Those bars which have been destroyed by a central mass concentra-

tion will be prevented from reformation as a result of the altered dynamical structure

of the galaxy (Sellwood and Moore, 1999).

Observational evidence of bar destruction and reformation is difficult to come by since

we only ever see a snapshot of a galaxy’s evolution. In simulations Bournaud and

Combes (2002) and Combes (2008) found that galaxies can have multiple episodes of

bar formation if the galaxy has a high gas accretion rate. However, each cycle of bar

destruction and reformation requires additional accretion of mass, and since bars can

easily transport material into the centre of the galaxy, the disc becomes more centrally

concentrated acting to stabilise the disc against further bar formation (Sellwood and

Moore, 1999).

However, some statistical surveys show that the bar fraction remains constant out to

a redshift of z≈1 and in massive galaxies strong bars have been found up to redshifts

of z≈2 (Simmons et al., 2014) which implies that either bars are long-lived features

or that barred galaxies are destroyed and reformed in equal measure. Although I have

described several methods through which bars can be destroyed it appears difficult

to destroy them once they become sufficiently strong (Athanassoula, 2005). Indeed,

there are several theoretical predictions from simulations that find bars are actually

robust and long-lived structures (Debattista et al., 2006; Curir et al., 2008; Kraljic

et al., 2012a).
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1.5 Determining the time of bar formation

Many observational methods have been proposed for the recovery of bar ages which

could not only shed light on the lifetime of bars but also constrain the evolution of

bar properties and the time of disc settling with cosmological epoch. As previously

mentioned, studies of bar fraction with redshift indicate that bars are in place early and

seem to have lifetimes which exceed 2 Gyr (Jogee et al., 2004).

More specific investigations into bar ages used optical spectroscopy to investigate the

properties of the stellar populations in bars, recovering a wide range of ages (Pérez

et al., 2009; Pérez and Sánchez-Blázquez, 2011; Gadotti and de Souza, 2006). How-

ever, these results must be taken with a element of caution since ages are recovered

for the stellar populations in the bar which may not related to the age of the bar itself

(Wozniak, 2007). An alternative method proposes that the age of the stellar population

in the nuclear ring could be related to the age of the bar since nuclear rings are thought

to form only after the formation of the bar itself (Gadotti et al., 2015).

Looking at the influence of a bar on the galaxy, (James and Percival, 2016) proposed

that the region which the bar sweeps out, the star formation desert (SFD), could be

closely linked with the time of bar formation since bars are expected to remove gas

from the region inside corotation on fast timescales. By recovering the star formation

history of this region a truncation time might be recovered which identified a lower

limit on the time of bar formation. Alternatively, looking at the star formation history

of the central regions on the barred galaxy could show a peak in star formation around

the time of bar formation (Carles et al., 2016) due to the same process, the efficient

movement of gas inside the corotation radius into the centre of the galaxy.

Aside from using the properties of the stellar populations, other methods proposed

for recovering bar ages use properties of the bar itself. Gadotti and de Souza (2005)

measured the vertical velocity dispersion of bars in simulations and found that older

bars have a higher velocity dispersion than younger bars. Kim et al. (2014) found

that the light profiles of bars changes from exponential and disc-like to flat as the bar

becomes older. While both of these methods could be used to determine whether a bar
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is recently formed or old they do not recover specific bar ages.

1.6 Layout for thesis

In this thesis I analyse the effects bars have on the star formation and stellar dynamics

of their host galaxies using numerical simulations. In Chapter 2 I give an overview of

the technique used for the high resolution simulations in which I do the majority of my

analysis, as well as the numerical method used to recover the bar properties.

Chapter 3 is devoted to analysis of the effect of the bar on the star formation in the

star formation desert region and its implications for determining the time of bar for-

mation. I also explore how the star formation desert might be an important asset for

understanding the influence of the bar on radial migration.

In Chapter 4 I explore the effects of the bar on the stellar dynamics, describing how

the bars kinematical properties can provide insight into bar formation times and even

bar evolution.

In Chapter 5 I provide my final conclusions and present potential avenues for future

work.



Chapter 2

Methods

As described in the previous chapter, bars are an extremely complex phenomenon that

can have a significant impact on the structure and evolution of a galaxy. One way

in which we can study the impact of bars is through numerical simulations. In this

thesis I have used zoom-in cosmological re-simulations to study the effects of bars on

the dynamics and star formation of galaxies. In this chapter I describe the simulation

technique and also the algorithm used to recover bar length and strength properties.

2.1 Simulation technique

In this thesis I analyse barred galaxies from a sample of zoom-in cosmological re-

simulations presented in Martig et al. (2012). These are simulations performed in a

cosmological context which achieve a high resolution at a galactic scale. The technique

requires two parts. First, the full history of a galaxy is extracted from a low-resolution

cosmological simulation. Second, this is used in a high resolution re-simulation of

only the target galaxy including mergers and gas accretion as prescribed by the cos-

mological simulation. I describe each part of the simulation process in more detail in

the following subsections.
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Cosmological simulation

The entire history of a galaxy is extracted from a low resolution dark matter-only cos-

mological simulation run with the adaptive mesh refinement code RAMSES (Teyssier,

2002). The simulation box has a comoving length of 20 h−1 Mpc and contains 5123

particles each with a mass of 6.9×106M�. Halos are detected with the HOP algorithm

(Eisenstein and Hut, 1998) and those of interest are selected such that at z=0 they are

considered isolated with no massive halos found within a 2 Mpc radius.

Once a halo of interest is identified the most massive progenitor is identified in each

snapshot tracing back to the main progenitor at a redshift of z=5. A spherical boundary

defined by the virial radius of the main halo at z=0 is then considered. At high redshift

the diffuse particles and halos within this boundary are considered as part of the initial

conditions. All halos and diffuse particles crossing this boundary in each snapshot are

then recorded to build-up the merger and accretion history of the galaxy from z=5 to

z=0.

High resolution re-simulation

The target halos are then re-simulated at higher resolution. The re-simulations begin at

z=5 with a seed galaxy containing stars, gas and dark matter. The total galaxy mass is

divided into 17% baryons and 83% dark matter (with the dark matter mass as the mass

from the initial comological simulation. Gas content is prescribed according to redshift

and galaxy mass. For large discs at high redshift the gas fraction is 30% reducing

to 15% at lower redshifts in accordance to high and low redshift observations. For

small galaxies (M ≤ 1011M�) gas fraction is always 30% of the baryonic mass. This

galaxy’s evolution is followed down to z=0 with mergers, as well as dark matter and

gas accretion, prescribed by the cosmological simulation. Tests have shown that the

initial properties of the seed galaxies have little impact on the evolution of the galaxy

from z=5 to z=0 due to the small mass of the seed and the rapid evolution at high

redshifts (Martig et al., 2009). I refer the reader to Martig et al. (2012) for details on

the properties of the incoming galaxies.
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The zoom-in re-simulations have a spatial resolution of 150 pc, mass resolution of

1.5× 104M� for gas particles, of 7.5× 104M� for star particles (or 1.5× 104M� for

star particles formed during the simulation from the gas) and 3× 105M� for dark mat-

ter particles in a box of 800 kpc. Gravity for gas, stars and dark matter is modelled

using the particle mesh-code described in Bournaud and Combes (2002) and Bournaud

et al. (2003), with gas dynamics modelled using a sticky particle algorithm. The sticky

particle algorithm impedes the accuracy of the simulation at high mass due to the poor

treatment of the hot gas phase, thus limiting us to low mass galaxies where the cold

mode gas accretion is dominant.

Star formation is modeled using a Kennicutt-Schmidt relation (Kennicutt, 1998) with

a 1.5 exponent and a star formation threshold of 0.03M�pc−3. This means that the

star formation rate surface density scales by power of 1.5 of the gas surface density.

Kinetic feedback from supernovae is included such that 20 percent of supernova energy

is redistributed to the gas particles, and stellar mass loss is also taken into account

(Martig et al., 2012).

Simulations performed in this way have the advantage of a lower computation time

allowing for the potential of statistical studies. Additionally, galaxies with all types

of merger histories can be explored, including mergers at z≈0. This is in contrast to

standard zoom simulations which need to include and follow all of the components of

a galaxy at high resolution from the initial stages down to z=0, which could result in

the high-resolution sub-volume being very large.

However, there are also disadvantages with one of the most significant being the large

number of free parameters in the structure and baryonic content of galaxies interacting

with the main galaxy. This is especially true of the galaxies at z=5 where there is little

observational data available for comparison.

The resulting galaxies at z = 0 have inner and thick disc scale heights that vary be-

tween 0.1 to 1 kpc and 0.5 to 3 kpc respectively (Garcı́a de la Cruz et al., 2021). The

bulge fractions range between a B/T of 0.02 and 0.80 with bulges varying in radial size

between 0.6 and 12.5 kpc (Martig et al., 2012). However, even with this large variation
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the simulations are unable to account for the large number of observed bulgeless galax-

ies. In addition the simulated galaxies tend to be in more isolated environments than

their mass-matched observed counterparts. There also does not appear to be any corre-

lation between bulge content and stellar mass in the simulations. This differs from the

from the expected trend in observations which finds higher bulge fractions associated

with higher stellar masses (Weinzirl et al., 2009). However, this could be a result of the

limited sample size or differences between the methods used to measure stellar mass

in simulations and observations.

The majority of the simulated galaxies have a low Sérsic index, with many falling be-

low 2 which indicates that the majority of the bulges are likely pseudobulges in agree-

ment with observations of local discs (Laurikainen et al., 2007). Additionally, 70%

of the simulated disc galaxies contain bars which matches the observed bar fraction

of 60-70% when galaxies are viewed in the infra-red (Eskridge et al., 2000; Marinova

and Jogee, 2007).

2.2 Additional simulations

In addition to the simulations described above I also use three simulations of galaxies

in isolated environments. Two of the simulations are collisionless N-body simulations

(isolated:N-body A and isolated:N-body B) which are presented in Fragkoudi et al.

(2017) while, the third is a hydrodynamical simulation run with RAMSES (isolated:N-

body+gas) to be presented in Fragkoudi & Bieri, in prep. In all cases the simulations

start with a fully formed disc at the time of bar formation. Here I summarise the most

important details with the full details of these simulations given in Chapter .

The isolated:N-body simulations were run employing the Tree-SPH code of Semelin

and Combes (2002) without the SPH component of the code as neither isolated:N-

body A or B contain gas. The isolated:N-body simulations contain both a thin and

thick disc with respective scaleheights of 0.3 and 0.9 kpc. The number of total disc

particles is ndisc = 1 × 106 each with a mass of mdisc = 9.2 × 104M� making a
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combined baryonic disc mass (thin+thick disc) of M∗ = 1 × 1011M� with the mass

of the thick disc comprising 30% of the combined disc mass. The dark matter halo

contains nhalo = 5×105 particles, each with a mass of 3.2×105M� making for a total

halo mass of MH = 1.6 × 1011M�. A Plummer sphere (fixed potential halo) is used

to model the dark matter halo which has a characteristic radius of rH = 10kpc. Both

isolated:N-body A and B are simulated with time steps of ∆t = 0.25Myr which begin

at the time of bar formation. Isolated:N-body A has a peanut that forms shortly after

the time of bar formation, while in isolated:N-body B the formation of the peanut is

delayed by several Gyr. I refer the reader to Fragkoudi et al. (2017) for more details

on the simulation method for both isolated:N-body A and B.

The third simulation I use (isolated:N-body+gas) is a simulation of an isolated Milky

Way-mass galaxy with both a collisionless and collisional component, i.e. a stellar

disc+dark matter component, together with a gaseous disc. This model is part of a

suite of models that will be presented elsewhere (Fragkoudi & Bieri, in prep.). Here I

describe the main properties of this simulation. The simulation is run with the adaptive

mesh refinement (AMR) code RAMSES code (Teyssier, 2002). The AMR grid is

refined using a quasi-Lagrangian strategy, where the maximum resolution reached in

the simulation is 48 pc.

The initial conditions are created with the MCMC code DICE (Perret et al., 2014; Per-

ret, 2016). The total mass of the halo and galaxy isMtot = 2×1012M�. The mass frac-

tion in the dark matter, stellar and gaseous components corresponds to 98.5%, 1.425%

and 0.075% of the total mass, respectively. The dark matter and stellar component is

modelled using 2 × 106 and 1 × 106 particles respectively. The dark matter halo is

modelled as a Navarro-Frenk-White (Navarro et al., 1997) profile with a scale-radius

of 3 kpc. The stars and gas are modelled as exponential discs, with a scale lengths of

3 kpc and 4 kpc respectively.

Gas in the simulation cools via atomic and metal-dependant cooling processes. Primor-

dial gas cooling is implemented according to Katz et al. (1996), including collisional

excitation, collisional ionisation, recombination and free-free emission, with an addi-

tional contribution based on abundances from Sutherland and Dopita (1993). For gas
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below 104 K, we use the standard prescription implemented in RAMSES which uses

the rates from Rosen and Bregman (1995). Once gas becomes dense enough star for-

mation is allowed to take place. The star formation is modelled as a Schmidt law;

star formation is triggered when the gaseous density ρgas is larger than 1 cm−3 with an

efficiency of ε? = 1%,

ρ̇? = ε?ρgas/tff (2.1)

where ρ̇? is the local star formation rate and tff =
√

3π/(32Gρgas) is the free-fall time

computed at the gas density ρgas. AMR cells with temperature greater than 2 × 105 K

are not allowed to form stars.

Supernova feedback is implemented by assuming that a fraction of the stellar pop-

ulation will explode as supernovae (here, ηSN = 0.2). The thermal energy of the

supernovae is injected into the 27 parent cells surrounding the stellar particle. Each

supernova is assumed to produce 1051 ergs of energy. AGN feedback is not included.

More details on the feedback implementation can be found in Dubois and Teyssier

(2008).

2.3 Bar detection

The focus of this thesis resides in identifying the effects of bars on the star formation

and dynamics of an evolving galaxy, and as such the identification of the bars and their

properties is pivotal to this thesis. While bars can be identified visually, I identified

bars through the automatic detection method presented in Kraljic et al. (2012a). This

method allows for the simultaneous identification of the presence of the bar in addition

to its length and strength via the azimuthal spectral analysis of surface density profiles

of face-on galaxies. This is done by considering the stellar surface density of each

galaxy in polar coordinates which is decomposed into its Fourier components:

Σ(r, θ) = Σ0(r) +
∑
m

Am(r) cos(mθ − φm(r)) (2.2)
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Figure 2.1: Left: A plot showing φ2(r) against galaxy radius for a single snapshot. The point
where the phase deviates from being constant marks the length of the bar (black dashed line).
Right: The face-on surface stellar density for the same galaxy and snapshot as left, showing
the bar aligned along the y-axis.

where the stellar surface density is Σ(r, θ), θ is the azimuthal angle in the frame where

the bar is fixed and r is the radial distance. The Fourier amplitude is given by Am, with

the phase given by φm. The azimuthally-average profile of the stellar surface density is

given by Σ0(r). To center the galaxy for the analysis the center of stellar mass within

the central 10 kpc is determined.

The presence of a bar is typically associated with even-mode phase signatures, with

the m=2 mode being the most prominent in the bar detection region. Even-modes

are associated with those features which are symmetric such as bars and spiral arms,

while odd-modes tend to highlight any asymmetric features. The bar and spiral arms,

when an even number of arms are present, are both symmetrical features and thus both

show up when looking at the m=2 mode, however the bar has a phase φ2(r) which

is constant with radius while with spiral arms the phase varies. So by looking for a

region of constant phase in the center of the galaxy, a bar can be identified and its

length measured (see Figure 2.1).

The minimum criterion for identifying the presence of a bar is defined as a constant

phase φ2(r)±5◦ within a bar region starting between 900 and 1500 pc. The phase must

be constant for a minimum of 1500 pc. The exclusion of the very central regions≤ 900

pc accounts for small variation in Φ2 which are produced by off-centering (a result of
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the resolution limit) and central asymmetries which can cause the mis-identification of

bars. No bars are visually identified as starting their constant φ2 phase at a radii≥1500

pc so by limiting between 900 and 1500 pc all systems which can visually be identified

as bars are always identified. The requirement of the minimum constant phase extent

of 1500 pc excludes nuclear bars or very weak bars since typically most bars have a

length ≥ 2 kpc (Barazza et al., 2008).

After a bar has been found its length (determined by the extent of the constant phase

Φ2) and strength are measured. To calculate strength the definition proposed by Aguerri

et al. (1998) is used:

S ≡ r−1
bar

∫ rbar
0

A2

A0
dr (2.3)

where the radial limit of the bar is defined by rbar and A2 and A0 represent the Fourier

amplitudes for the 0th and 2nd modes.

At high redshifts bars may still be mis-identified, especially if they are weak. Bars

tend to grow in both strength and length with time, they are also considered as a transi-

tion point for the onset of secular evolution which indicates when discs begin to settle.

Galaxies forming at high redshift exist in chaotic environments and usually undergo

merging events which can result in spheroid-dominated galaxies. These galaxies have

flattened central isophotes which can be mistakenly identified as bars with the afore-

mentioned method, however this actually corresponds to a triaxial part of the spheroid.

To reduce this effect true bars are identified by requiring that the strengths of the m=2

mode must be greater than, or equivalent to, 0.3 in two orthogonal edge-on projections.

The advantage of this method comes from the ability to simultaneously detect bars,

and measure their lengths and strengths making it ideal for statistical analysis. In this

thesis I record the lengths and strengths for each snapshot of the simulated galaxies.

However, Hilmi et al. (2020) found that bar lengths and strengths measured in this

way can be over estimated up to ≈100% and ≈15% respectively. This discrepancy

is caused by bar-spiral arm coupling and interference from overlapping bar and spiral
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Figure 2.2: Time evolution of bar length showing the raw data featuring the oscillation due to
the interaction between the bar and the spiral arms (blue points) and the averaged bar length
(black).

modes. The length increases caused by these interactions oscillate over a time period

of 60-200 Myr. In Figure 2.2 I show bar length over time. The oscillations in bar

length are clear in the raw data after 3 Gyr. To combat this effect I choose to smooth

the bar length measurements using a rolling mean over a window of 9 snapshots giving

a rolling window of 333 Myr allowing for the full coverage of any oscillation events.



Chapter 3

Redistribution of Stars and Gas in the

Star Formation Deserts of Barred

Galaxies

3.1 Introduction

The formation of a bar has been linked with the time of disc settling and the onset of

secular processes (Gadotti and Dos Anjos, 2001). This makes the recovery of bar ages

an important step towards a complete understanding of galaxy evolution. However,

the majority of bar dating methods, as described in Section 1.5, rely on dating the

underlying stellar population. This must be done with some caution since the age

of the stellar population within the bar may not necessarily be related with the bar

formation epoch. An alternative way to approach the recover of a bar formation time

could come from investigating the influence of the bar on its surroundings.

James and Percival (2016, 2018) used a feature first noticed by James et al. (2009),

which they named the ‘star formation desert’ (SFD), to determine the ages of the bars.

They define the SFD as a region lying within the inner ring, either side of the bar

in the area the bar sweeps out that shows little to no Hα emission (see Figure 3.1).
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Figure 3.1: Top: R-band image of NGC 2543 showing the bar orientated parallel to the x-axis.
Bottom: Continuum-subtracted Hα image of the same galaxy showing the lack of Hα emission
in the SFD region (marked by the vertical black lines) (James and Percival, 2016).
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These regions also display a deficit in surface stellar density (Gadotti and de Souza,

2003; Gadotti, 2008; Kim et al., 2016) and suppressed star formation (Hakobyan et al.,

2015). To model the star formation histories in those regions James and Percival (2016,

2018) assumed a truncated star formation model and found that SFD regions can be

very old. If the truncation of star formation is caused by the bar, this feature can be

used to determine the epoch of bar formation. This leads to some interesting questions:

• Is the SFD region observable in simulations? Can the mechanism behind this

cessation of star formation be determined?

• Is it a result of gas being dynamically heated against star formation, or is the gas

being removed by the formation of the bar? If the gas is removed then where

does it go?

• Can the properties of the SFD be used as a method for determining the formation

epoch of the bar?

• Are the SFD stars only born before the formation of the bar and, if they are not,

where do the later-forming stars come from?

• Is the cessation of star formation in the SFDs related to a global downturn in star

formation?

In this chapter I attempt to answer these questions by presenting a numerical analysis of

a sample of simulated galaxies selected from Martig et al. (2012). The structure of this

chapter is as follows: Section 2.1 contains a description of the simulation techniques

used to produce our sample, a description of the sample itself and the method used

to obtain the properties of the bars. Section 3.3 contains my results and analysis of

stars within the SFD region in comparison with the bar and global galaxy properties.

Section 3.4 contains my discussion of the main results in terms of determining the

epoch of bar formation and the analysis of the stars within the SFD region. My main

conclusions are presented in Section 3.5.

The work presented in this chapter has been published in Donohoe-Keyes et al. (2019).
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Halo M∗ [1010M�] Lbar [kpc] Sbar Tbar [Gyr]
37 12.0 6.0 0.70 8.5
45 10.2 6.6 0.76 6.8
82 3.81 4.4 0.38 2.0
92 4.38 5.6 0.71 6.8

106 4.29 3.1 0.45 6.6
128 2.69 3.3 0.74 4.7

Table 3.1: Properties of the model galaxies taken from z=0. For each halo we provide the halo
index number, the stellar mass (M∗) calculated by summing star particles to the R25 limit, the
bar length (Lbar), and the bar strength (Sbar). The final column gives the bar formation epoch
of the galaxy in lookback time.

3.2 Sample Selection

From the sample of 33 simulated galaxies described in Martig et al. (2012) I select 6

that display a wide range of star formation histories, masses, and bar lengths, strengths,

and formation epochs. By selecting this limited sample I can do a more detailed anal-

ysis while still being able to explore the diversity of the larger sample.

Column 1 of Figure 3.2 shows the surface stellar density maps of the galaxies face-

on at z=0, ranked in order of largest halo mass (top) to lowest (bottom). The main

properties are highlighted in Table 3.1.

All of the galaxies begin with a merger-intense phase which contributes to the build up

of a hot stellar component for ages greater than 9 Gyr. After this the disk builds with

features such as spiral arms, and, more pivotal to the focus of this chapter, the bars

and star formation desert regions. Halo 106 differs from this scenario by having three

epochs of bar formation with the first two being destroyed by mergers. For this case

I list properties relevant to the final bar, for which the bar formation epoch is given in

the final column of Table 3.1.
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Figure 3.2: Each plot represents a 40×40×40 kpc box with the galaxy centred within the box.
Left: Face-on surface stellar density maps with the total halo mass decreasing down the column.
Middle: Average age maps displaying strong signals for the SFD desert feature. Right: Surface
stellar density maps for the young stars, <10 Myrs, also displaying the SFD feature with SF
mainly located within the bar region and along the spiral arms of the galaxies.
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3.2.1 Defining the SFD

Figure 3.2, column 2 shows the mean age maps for the sample of simulated galaxies.

The blue colour highlights younger stellar populations while the red shows older pop-

ulations. In all of the galaxies in the sample there is a region either side of the bar,

within the region the bar sweeps out, displaying consistently older populations. This

coincides with the SFD region seen observationally in James and Percival (2015). The

size of the SFD is closely associated with bar length and it never extends further than

the radius of the bar. The SFD region is bordered by the inner ring which contains a

younger population. In all the cases the bar appears to be a younger feature than the

SFD but, in these simulated galaxies, older than the ring and disk.

I define the SFD as the region encompassed in a ring excluding the bar and the bulge.

I fit the shape of the ring as an ellipse using the bar length as the major axis and take

the width of the bar as 1 kpc. Additionally, I remove stars which are associated with

the bulge from the SFD by removing an inner ellipse shaped region and then removing

the bar itself. This results in two ‘C’-shaped regions shown in Figure 3.3.

Finally I remove ‘interloper’ stars. These are stars which are only passing through the

SFD region at the point of selection. To remove them from the SFD sample I define

a z-axis (perpendicular to the plane of the galaxy) limit of 2 kpc either side of the

central plane on a snapshot 0.075 Gyr from the selection snapshot and compare the

stellar IDs to those in the selection snapshot, only keeping the stars which appear in

both snapshots.

3.3 Results

3.3.1 Age Maps

To determine whether the SFD region in the simulated galaxy sample is a result of

a lack of star formation I refer to the young star maps shown in Figure 3.2, column
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Figure 3.3: The two ‘C’-shaped regions we define as the SFD.
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3. Here I present the surface stellar density of stars less than 10 Myr old, at z=0.

High concentrations of young stars are seen within the bar, the spiral arms, and along

the inner ring. Some of the rings are populated fully with young stars, while others

exhibit broken profiles. For those that do show broken inner rings, the stars are more

concentrated at the regions connecting to the ends of the bar. Very few, if any, young

stars are seen in the SFD regions. When making side-by-side comparisons between

the age and young star maps it is clear that they both highlight the SFD region, the age

maps through the older mean age populations and the young star maps through a lack

of young stars.

However, the figures presented in this section only show the mean age population and

do not tell us about the distribution in ages within the SFD region in comparison to the

bar and global populations. To understand how the age distributions differ between re-

gions we need to investigate how the age distributions change with respect to lookback

time.

3.3.2 Star Formation Histories

From the mean stellar age maps in Figure 3.2 centre column there is a clear difference

between the mean ages of stellar populations within the SFDs, bars, and inner rings of

the galaxies.

In Figure 3.4 I plot the age distribution of the SFR pc−2 for stars found in the bar and

SFD regions, together with the age distribution of the SFR pc−2 for all stars found

within a 20×20 kpc 2 box with a height of 4 kpc. The top section of each plot shows

the bar, SFD, and global age distributions normalised by area. The onset of the bar is

marked with a black dashed line. The bar always shows a ∼10 times higher surface

density in the age distribution when compared to the SFD and global galaxy, reflecting

the higher mass surface density in the bar. The shape of the age distributions for the

bar and global galaxy are actually very similar, and the formation of the bar does not

seem to have any impact on star formation globally in the galaxy. By contrast, the age

distribution of the SFD shows a relative lack of young stars after the formation of the
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Figure 3.4: For each of the simulated galaxies in the sample I present the age distribution
of the SFRpc−2 taken from the SFD region, the bar, and the total galaxy at z=0. In each
plot I display this age distribution normalised to the surface area of the corresponding regions,
the age distribution normalised to an area of 1, and the residual (the bar minus the SFD age
distribution). Marked on each plot by the vertical dashed line is the time of bar formation. This
line coincides with the downturn in the age distribution of the SFD and, in most cases (see
Section 3.3.2), the change of the residual from negative to positive.
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bar.

For galaxies 37, 45, 92, 106, and 128 the drop in the age distribution of the SFD

coincides with the onset of the bar. However, in galaxy 82, the drop happens long

before the formation of the bar (see Section 3.4.2 for more details).

To better compare the shapes of the different age distributions, I normalize them to 1

and plot them in the middle panels of each plot. In all cases the global and bar age

distributions follow similar shapes, while the SFD gradually drops relative to that of

the bar after bar formation. I highlight this effect by showing the difference between

the age distributions of the bar and SFD in the bottom panels. For the majority of cases

this difference moves from negative to positive after bar formation (corresponding to

a change to a lower value for the SFD after bar formation). As the galaxy continues

to evolve the residual difference between the bar and SFD tends to increase which we

associate with a suppression in the star formation of the SFD region.

Again, galaxy 82 remains an outlier. The transfer of the residual from negative to

positive occurs ∼5 Gyr before the onset of the bar. While this is not associated with

the formation of the bar, there is a ring-like feature which does form during this period.

In all galaxies the age distribution of the stars in the SFD does not show a sudden drop

at the time of bar formation, contrary to what could have been expected from the mean

age maps which show a striking contrast between the mean ages of the SFD and the

bar regions. For almost all of the galaxies there is a more gradual decrease in the age

distribution of the SFD. If this is a true representation of the star formation histories

in observed galaxies, this will make using the SFDs to time the formation of the bar

harder than expected. However, there is information in the shape of the difference

between the SFD and bar age distributions. Once the bar has formed, for almost all the

galaxies, there is a change from negative to positive in the difference between the SFD

and the bar. This difference is subtle, but it does imply that there is a suppression of

star formation within the SFD after the formation of the bar.
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Figure 3.5: Here I show the evacuation of gas from the SFD regions. Initially, the gas is diffuse
before spiral arms begin to appear. When the bar forms, the central gas concentration elongates
along the major axis of the bar, and the spiral arms strengthen. Once the bar is established the
gas is removed from the SFD region progressively over 1-2 Gyr. Over time the size of the SFD
changes corresponding to variations in the length of the bar.
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3.3.3 Gas Removal

To understand the drop in star formation in the SFD after the bar forms, I now explore

how the gas disk responds to bar formation. As an example, in Figure 3.5 I present the

time evolution of the gas in galaxy 37.

Before the bar forms (top left panel, lookback time of 9.8 Gyr), the gas density peaks

in the center and does not show any other overdensities. The slight lopsidedness is due

to tidal effects following a fly-by. As the gas disk grows and cools, it first develops

spiral arms. A bar then starts to form at a lookback time of 8.6 Gyr (top right panel).

At first, the gas density contrast between the bar and its surroundings is small, but after

∼1 Gyr the gas within the bar region starts to be collected by the bar. After 500 Myr

(bottom left panel) the bar has strengthened and it becomes clear that there is a deficit

of gas within the SFD region, with the bar surrounded by a ring connected to clear

spiral arms. By z=0, there is very little gas remaining inside the SFD region (bottom

right panel).

In all six galaxies, the gas in the central regions follows a similar evolution, although

the bars form at different times. The removal of gas from the SFD region is a relatively

fast process, taking between 1-2 Gyr. This also means that star formation within the

SFD is quickly suppressed after the bar forms. However, the star formation histories

in Figure 3.4 (discussed in Section 3.3.2) do not show a sharp decline around the time

of bar formation and instead imply a more gradual decline in the age distribution of

the SFD region. With no gas to continue forming young stars in the SFD after the bar

formed, the younger population found in that region must be coming from elsewhere

in the galaxy.

3.3.4 Birth positions of SFD stars before & after bar formation

From Figure 3.4 it is clear that there is no truncation in the age distribution associated

with the onset of the bar: instead it is a gradual process with the number of young stars

in the SFD decreasing after the formation of the bar. However, when looking at the
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Figure 3.6: The birth positions of SFD stars before and after the formation of the bar overlaid
on the surface stellar density maps for galaxy 37. Upper: Birth positions of SFD stars before
bar formation. Lower: Birth positions of SFD stars after the formation of the bar.
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Figure 3.7: Top: the radial distribution of birth positions for stars born before the formation
of the bar. The blue line shows the radial distribution for the SFD stars and orange the radial
distribution for bar stars. Before the formation of the bar the stars are mainly born in the same
region, within 6 kpc. Some stars are born in merging satellite galaxies, beyond 20 kpc. Bottom:
the radial distribution of stars born after the formation of the bar, with blue representing the
SFD and orange the bar. Bar stars are mainly born in the central regions while SFD stars are
mainly born outside the radius of the bar.
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Figure 3.8: Top: the fraction of stars born after the formation of the bar in the SFD, bar and
disk selected to be SFD stars at z=0 for galaxy 37. Red represents the total SFD stars born at
that time, green the number of SFD stars born in the disk, blue the number of SFD stars born
in the bar, and orange the number of SFD stars born inside the SFD region. The majority of
the stars ending up in the SFD after the bar is formed come from the disk. Very few stars come
from the SFD region. Bottom: the fraction of stars selected to be bar stars at z=0 born in the
SFD, bar and disk.
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evolution of the gas density within the SFD after bar formation there is a distinct lack

of gas in the SFD within about 1 Gyr. This is a relatively fast process and does not

match up with what I inferred from the age distribution plots, which show a gradual

downturn in the age distribution. This implies that the SFD region, after the formation

of the bar, is being supplemented with young stars from elsewhere in the galaxy.

Figure 3.6 shows the birth positions of stars found in the SFD at z=0 and born before

and after the formation of the bar, for galaxy 37. Before the formation of the bar, the

stars are born throughout the galaxy. After the formation of the bar there is a distinct

difference: the SFD stars are born mainly in the inner ring surrounding the bar with

some along the spiral arms.

No stars are born within the defined SFD regions. This explains the disparity between

Figures 3.4 and 3.5. There are no stars forming within the SFD region but younger

stars are coming into the SFD from the inner ring and spiral arms, which explains the

gradual drop of the SFD age distribution.

Figure 3.7 shows the distribution of birth radii of SFD and bar stars born before (upper)

and after (lower) the formation of the bar for galaxy 37 at the same ages as Figure 3.6.

This further supports the conclusion that the SFD is being supplemented with young

stars from outside the inner ring and that in the SFD star formation is suppressed. This

is a trend that can be seen in all of the galaxies in the sample. For all cases, before

bar formation the SFD and bar stars are coming from the same regions. However,

stars ending up in the bar and SFD that form after the onset of the bar come from two

different regions. SFD stars come mainly from outside the bar radius (mainly from the

inner ring and the spiral arms), while bar stars are mainly born inside the bar radius

with a portion coming from the spiral arms.

Figure 3.8 shows the number of stars being born in the disk, SFD and bar for galaxy

37. The top plot in Figure 3.8 shows that almost all (75.2%) of the SFD stars born

after the formation of the bar are coming from the region we define as the disk, with

only a small fraction (8.1%) coming from the SFD. The bar also contributes a minor

fraction (16.6%) of SFD stars which may represent some of the bar stars we were not
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able to remove from the SFD sample selection. At ∼1.5 Gyr there is a drop in the age

distribution which coincides with a drop in the contribution of SFD stars from the disk.

This could be accounted for by the time it takes stars from the disk to migrate to the

SFD region. In that case, when I take the SFD sample from the final snapshot (z=0) I

am missing out on disk stars which would become SFD stars after this time.

The lower half of Figure 3.8 shows the number of bar stars being born in the same

region defined for the top plot of the same figure. The majority (73.8%) of bar stars

are born within the bar, with a small contribution (17.7%) from the disk and a negli-

gible amount (8.6%) coming from the SFD. At late times, less than 1 Gyr, there is no

contribution from the disk.

By looking at the three plots discussed in this section in conjunction with Figure 3.4

I find that before the formation of the bar the population in the SFD and bar regions

come from the same regions, which is supported by the similarities of the SFD and

bar age distributions. However, after the formation of the bar there is a disparity in the

regions in which bar and SFD stars are born. The star formation in the SFD region is

truncated quickly as gas is removed from the SFD, but young stars are being born in

the disk which migrate into the SFD. To determine how the stars from the disk and ring

migrate into the SFD I need to track their progression from their birth positions to the

SFD region.

3.3.5 Collective dynamics

After the formation of the bar the SFD region is supplemented with young stars which

are born along the inner ring and spiral arms. To determine how these stars end up in

the SFD we track the progression of stars born at a lookback time of 3 Gyr to z=0 in

Figure 3.9. The plot at 3 Gyr shows the birth positions of the SFD stars. Correlating

with the results from Section 3.3.4, the stars are born mainly along the inner ring

and spiral arms with very few being born in the bar and SFD. Within 300 Myr the

stars begin to move along the spiral arms and inner ring. By 1.2 Gyr almost all of

the stars are moving along the inner ring and are beginning to fall towards the SFD
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Figure 3.9: Tracking of SFD stars from their birth positions to z=0. Initially stars are born in
the inner ring near the ends of the bar and along the spiral arms. They then move along the
spiral arms and around the inner ring. Slowly stars begin to spiral from the inner ring into the
SFD region. Finally the stars collect near the ends of the bar before circling back into the SFD
selection region at z=0.
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region by 600 Myr. At 100 Myr the stars are collected near the ends of the bar before

they reach their selection point in the SFD regions at 0 Gyr. This implies that it takes

approximately 2.4 Gyr before ring stars begin to reach the SFD region, which supports

my conclusion that the reduction in SFD stars being born in the disk for the final 1.5

Gyr seen in Figure 3.8 could be a result of the time taken for disk stars to migrate to

the SFD.

3.4 Discussion

3.4.1 Limitations of the simulations

A number of previous papers have explored the properties of simulated disks in the

Martig et al. (2012) sample, and have found those disks to be realistic overall, when

compared to a range of observational data. Most importantly for this work, Kraljic et al.

(2012b) showed that the fraction of barred galaxies in the simulated sample (∼70%)

is consistent with observations in the local universe, and that the time evolution of the

fraction of barred galaxies matches observations by Sheth et al. (2008) and Simmons

et al. (2014). Additionally, in the simulations, bars, on average, form later in low mass

galaxies, which agrees with Sheth et al. (2008). Martig et al. (2014a,b) have further

shown that the vertical structure of the disks is well resolved, and that some galaxies

are a good match to observations of the Milky Way.

Overall, this is a strong indication that global stellar dynamics is adequately modelled

in the simulations, in spite of a spatial resolution of only 150 pc. The global distri-

bution of gas in the central regions also appears to be consistent with observations.

In particular the absence of gas within SFDs is clear in the observations of molecu-

lar gas shown by George et al. (2019). I note that a recent paper by Rosas-Guevara

et al. (2019) using the IllustrisTNG100 simulation also finds rapid consumption of gas

within the central regions of barred galaxies.

However, a resolution of 150 pc does not allow us to properly track the movement
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of gas particles within the central regions, or to follow the formation of features like

nuclear disks. The motion of gas particles along the bar is also not properly modelled,

and for instance I do not see dense gas lanes along the leading edges of the bars.

Additionally, the Kennicutt-Schmidt relation used to model star formation is based

solely on the local gas density, and does not account for dynamical heating from shocks

halting the collapse of dense gas regions. Indeed, observations suggest that the star

formation efficiency might be reduced in bars (Momose et al., 2010).

An imperfect modelling of star formation might be the reason why a majority of the

simulated bars are star forming, which is not the case of bars generally in the Local

Universe. Star forming bars do exist (Martin and Friedli, 1997; Verley et al., 2007),

but a detailed comparison of the fraction of star-forming bars in simulations and ob-

servations (controlling for environment and mass) is beyond the scope of this work.

With all of this in consideration, the simulations might overestimate star formation in

bars, but probably model SFDs adequately in terms of the global dynamics of gas and

stars.

3.4.2 Potential bar dating method

For all of the galaxies in the sample, the number of young stars (born after the bar

formed) drops with time for the SFD compared to the bar. In five out of the six galaxies,

the time of bar formation closely coincides with a change in the sign of the “bar-SFD”

residual age distribution (galaxy 82 is the exception, and with this case the residual

changes sign long before the bar forms). This suggests the possibility to use the sign

of the residual as an indicator of the epoch of bar formation. However, this signal

appears to be very subtle, and consists in a gradual downturn in the age distribution

instead of the sharp truncation assumed by James and Percival (2016, 2018) to model

star formation histories in their sample of observed SFDs. This is because young stars

coming from the disk are migrating to the SFD, and are “polluting” it with a young

population that should not be present if only in-situ star formation happened. In the
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following two subsections, I first explore the possible reasons for the strange behaviour

of galaxy 82 and then discuss the usefulness of the method to date bar formation with

observational data.

The unusual behaviour of galaxy 82

Galaxy 82 is the only galaxy in which the change of sign of the Bar-SFD residual does

not coincide with the epoch of bar formation. Within the full sample of 33 galaxies,

galaxy 82 is unique in forming a bar as recently as 2 Gyr ago - all others formed their

bars no later than 4 Gyr ago. To understand whether galaxy 82’s strangeness could

come from having a very young bar, the simulation was run for a further 3 Gyr. I can

confirm that even after 3 more Gyr, the age distributions still look different from the

ones for the other simulated galaxies. Those differences are probably due to galaxy

82’s very unique formation history that in turn could explain why it formed its bar so

late.

At early times (10 Gyr) it consists of a central low density disk that persists throughout

its evolution up until the time of bar formation. Additionally, at this time (from 10 to 9

Gyr) it undergoes the accretion of a satellite which leaves a gaseous ring surrounding

the central disk.

The ring quickly undergoes fragmentation which is then followed by the formation of

spiral arms. After the spiral arms have strengthened, the central regions become bar

unstable leading to the formation of the bar. This varies drastically from the other

evolutionary histories for the galaxies in the sample. Furthermore, there is a spatial

segregation of the bar and SFD stars’ birth positions well before the epoch of bar

formation (with SFD stars being born at the edge of the low density disk, in the ring,

and along the spiral arms while the bar stars are primarily born in the central disk),

which is a feature I see only after the formation of the bar in the rest of our sample.

This spatial segregation is most likely the cause of the early bar-SFD residual sign

change, although what precisely leads to the segregation of the birth positions is not

entirely clear.
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Application to observational data

The method I propose to date bar formation in a galaxy relies on a very weak signal,

which makes applying the SFD bar dating method more complex than previously sug-

gested in James and Percival (2016, 2018). Indeed, this method relies on the accurate

recovery of SFH shapes for the bar and SFD. Spectra at old ages look very similar to

one another and the effect of age and metallicity can be degenerate, which will make

finding a bar formation signal for early bars more challenging. Bar and SFD average

ages differ by approximately 2 Gyr, which makes comparisons between the SFHs of

the components for early bars difficult given the constraints stated above. Additionally,

if I have overestimated the star formation efficiency of the bar in the simulations then

the signal could be even weaker than anticipated.

Should a signal be found in observational data, then there is the additional problem that

the bar formation time cannot be reliably determined for all simulated galaxies in the

sample. Even considering that galaxy 82 may be an unusual case it can not be assumed

that any signal found is directly related to bar formation. However, the SFD bar dating

method could be used in conjunction with several other methods. By measuring the

vertical velocity dispersion (Gadotti and de Souza, 2005) or shape of the light profiles

(Kim et al., 2014) we can determine if the bars are old or young and so better constrain

the region of the SFH where we would expect to see a signal. In cases where these age

indicators disagree the studied galaxy could be flagged as having an unusual history.

A lower limit on the epoch of bar formation could also be defined by looking at the

ages of nuclear disks (Gadotti et al., 2015), which form after the formation of the bar.

Additionally, we might also be able to date bar formation by comparing the metallic-

ities of bar and SFD stars as a function of age, due to the spatial segregation in birth

positions of bar and SFD stars younger than the bar.
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3.5 Summary

James and Percival (2015) first described the properties of star formation deserts, re-

gions swept up by bars with very low levels of line emission and little recent star

formation. James and Percival (2016, 2018) then proposed that the cessation of star

formation in those regions was due to the formation of the bar. This would mean

that finding a sharp truncation in star formation histories in SFDs could be a way to

determine the epoch of bar formation.

In this chapter, I investigated the validity of these conclusions by studying the proper-

ties of SFDs using zoom-in cosmological re-simulations. From the sample of Martig

et al. (2012), I chose 6 simulated disk galaxies with bar formation times ranging from 2

to 8 Gyr ago. I found that the formation of the bar does not appear to have an effect on

the global star formation rate of the galaxies but affects the distribution of gas and star

formation within the central regions. At z = 0, I found both sides of the bar regions

are dominated by old stars, and that resemble the observed SFDs. However, the SFDs

in the simulated galaxies actually contain stars of all ages:

• SFD stars older than the bar are born in similar regions to similarly old stars that

end up in the bar.

• When the bar forms, it efficiently removes gas from the SFD on 1 Gyr timescales,

which quickly truncates the local star formation.

• SFD stars younger than the bar are not formed in-situ but are born in the disk

and migrate to the SFD (unlike bar stars of similar ages, which are mostly born

in-situ).

If there were no radial migration of young stars from the disk to the SFD, then the

age distribution of SFD stars would show a truncation within ∼ 1 Gyr after the time

of bar formation. However, this is not the case, and the SFD age distributions show

a gradual downturn instead of a truncation, which makes recovering the epoch of bar

formation more complicated than James and Percival (2016, 2018) anticipated. The
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different shapes of age distributions for SFD and bar stars can provide an indication of

when the bar formed, but the signal is weak and potentially hard to detect. This might

still be used to date bars, especially in conjunction with other methods.

SFDs could also be used to investigate radial migration. Indeed, they are unique re-

gions with no in-situ star formation: stars younger than the bar all come from the disk

(outside of the bar radius). This can provide an uncontaminated sample of stars only

affected by radial migration.

While I focused on only 6 galaxies here I found the distinct signatures of the SFD

present in all the barred galaxies from the simulations presented in Martig et al. (2012).

Given the analysis I have presented here and the care take to represent the range of

galaxies within the original sample of 6, I would also expect that these galaxies would

show similar trends.



Chapter 4

Using bar kinematics to determine the

age of the bar

4.1 Introduction

In Chapter 1 Section 1.3 I described how bars can heavily influence a galaxy’s evo-

lutionary path. One way in which they do this is through their impact on stellar dy-

namics. While a recently formed bar has a vertical extent similar to that of the disc,

as they evolve they grow thicker in the vertical direction resulting in the boxy/peanut

shape associated with barred galaxies. This process can be fast ( ∼1 Gyr) in the case

of violent buckling, or can correspond to a gradual continual growth (Gadotti and de

Souza, 2005). As such, it follows that by studying the vertical growth of the bar in

comparison with the disc it may be possible to determine the formation time of the bar.

Gadotti and de Souza (2005) used precisely this concept to distinguish between re-

cently formed and evolved bars using the face-on vertical velocity dispersion of 14

observed galaxies. They found that in recently formed bars the vertical velocity disper-

sion is similar to that of the galaxy disc, whereas evolved bars have a vertical velocity

dispersion significantly higher than the disc (see Figure 4.1). However, in cases where

the bulge is dynamically hotter than the bar the distinction between recently formed

84
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Figure 4.1: The typical radial vertical velocity profiles for recently formed and evolved bars.
Recently formed bars tend to have profiles similar to the disc, while in evolved bars the vertical
velocity dispersion is much higher. (a) and (c) show the effect of a dynamically hot bulge,
while (b) and (d) show the profile where the bulge and bar have similar kinematics (Gadotti
and de Souza, 2005).

and evolved bars is less clear. While this does not result in a quantitative measurement

of bar age, it does confirm that the vertical velocity dispersion of a bar increases with

its age.

It is clear that bars can have significant effects on the kinematics of the central re-

gions of galaxies. While Gadotti and de Souza (2005) showed that kinematics could

be used to distinguish between recently formed and evolved bars the question remains

of whether this can be taken further to refine bar age estimates. In this chapter I build

on the work in Gadotti and de Souza (2005) by first exploring how the profile of the

vertical velocity dispersion of the bar changes over time using zoom-in cosmological

resimulations. I then present a new method I have developed for recovering the forma-

tion time of the bar and investigating the mechanisms behind it. I explore the feasibility

of this method on observational data before finally summarising this chapter.

The work presented in this chapter is from a paper in preparation (Donohoe-Keyes et

al. in-prep).
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4.2 Sample selection

From the sample of 33 zoom-in cosmological re-simulations presented in Martig et al.

(2012), I selected 15 galaxies which showed clear bars, this includes the 6 galaxies

selected for the analysis presented in Chapter 3. This barred galaxy sample has a wide

range of masses, star formation histories, and bar lengths, strengths and formation

times. This allows for the exploration of the kinematics of a diverse range of bars. A

brief description of the simulation technique is given in Chapter 2.

4.2.1 Simulations of isolated galaxies

To test the robustness of my results, I also use three simulations of isolated galaxies.

Two of them are collisionless simulations, first presented in Fragkoudi et al. (2017),

which I will refer to in the text as isolated:N-body A and isolated:N-body B, the third

simulation is a hydrodynamical simulation run with RAMSES which I will refer to

as isolated:N-body+gas. The relevant details of these simulations are highlighted in

Section 2.2.

4.3 A new method to determine the ages of bars

Gadotti and de Souza (2005) proposed that the difference between the σlos of the bar

and disk could be used to distinguish between recently formed and evolved bars. They

demonstrated that bars with σlos profiles similar to their disks are recently formed

while those that have a σlos much removed from the disk are likely more evolved bars.

However, bars with significant central bulge masses also displayed large differences

between their σlos values in the bar and disk even when recently formed. In this section

I use numerical simulations to explore how the shape of the velocity dispersion of the

bar evolves over time and how a key feature within the bar’s velocity dispersion can

provide a quantitative age for the bar.
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Figure 4.2: Here I show the diversity in kinematic profiles for the main sample. Each column
shows the σz , the first derivative of σz and |z| for a different galaxy. The vertical black lines
show the radial position for the bar ends.

4.3.1 Velocity dispersion profiles in barred galaxies

To understand how the velocity dispersion changes over time I will first describe how

I extract the vertical velocity dispersion along the bar for multiple snapshots. I then

explain what features can be seen in the velocity dispersion and how they compare

with other properties of the bar using three different simulated galaxies as examples.

In observations we can recover all of the kinematical information on a object by fitting

a model to its line-of-sight velocity distribution (LOSVD). The now universally ac-

cepted model developed by van der Marel and Franx (1993) describes the LOSVD as

a summation of orthogonal functions - the Gauss-Hermite series - where each moment

describes a different parameter. The 0th, 1st, 2nd, 3rd and 4th moments correspond to

the surface brightness (µ), mean velocity (V), velocity dispersion (σ), skewness (h3)

and kurtosis (h4) respectively. To replicate this method in simulations we must first bin

the particles so that we can construct a LOSVD. I group particles into bins (see Figure

4.4) of 1×0.25× 5 kpc (w × l × h) along the bar major axis creating a single local

velocity distribution associated with each bin. By then using the Gauss-Hermite series
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Figure 4.3: Here I show the σz profiles for the rest of the sample, following on from Figure
4.2. Each subplot shows the σz profile along the bar for a different galaxy. The vertical black
lines show the radial position for the bar ends.
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Figure 4.4: Here I show a cartoon representation of the bin dimensions. The values for width,
length and height are given as W= 1 kpc, L= 0.25 kpc and H= 5 kpc. These bins are repeated
along the bar major axis extending out to the full simulation size of the box ±20 kpc.

I can recover each of the parameters described above. In this case while I do recover

all of the moments described I focus on only the 2nd moment, σ, which describes the

velocity dispersion of each bin. I note that for the simulated galaxies I refer to σz not

σlos, this is because in simulations we can orientate the galaxy precisely face-on and so

can be confident in our extraction of σ in the z-plane. However, in observations deter-

mining the orientation of a galaxy is not straight forward and in many cases a galaxy is

inclined to some degree. Attempts can be made to correct for this inclination using de-

projection but this requires assumptions about the galaxies shape and can induce large

errors. Thus when observing galaxies σlos is used to account for the fact that we are,

more often than not, observing a galaxy at some degree of inclination.

In Figure 4.2 I present σz (top row), the first derivative of σz with respect to radius

(middle row) and |z| which gives the median height of particles in the z plane (bottom

row) for a single time step. Each column represents a different galaxy selected from the

sample defined in Section 4.2 with the bar length marked by the black lines. Galaxies

were chosen to show the variety of σz profiles seen in the sample. In Figure 4.3 I show

only the σz profiles for the rest of the sample.
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Looking at the σz (top row) for each of the galaxies there is a range of profile shapes.

In the left-hand case the profile shows a central peak with a steep gradient that then

plateaus into a distinct shoulder-like feature as the bar’s radius increases before once

again decreasing with a slightly shallower gradient out to the bar ends. The central case

shows a similar behaviour, however the shoulder-like feature is less distinct than in the

left-hand case. Overall this profile is also much broader than the previous case. In

the right-hand case the profile is more peaked with no noticeable shoulder-like feature

present. This varied range in profiles is also apparent in other simulations (Debattista

et al., 2005; Iannuzzi and Athanassoula, 2015) as well as observational studies of face-

on bar kinematics (Seidel et al., 2015). In all of the vertical velocity dispersion profiles

shown, there is a central σ-drop indicating that the central regions of these galaxies

contain a dynamically cool component such as a nuclear disc (Wozniak and Cham-

pavert, 2006; Emsellem et al., 2001; Márquez et al., 2003; Emsellem, 2006; Peletier

et al., 2007). Additionally, in all of the profiles there is a transition to a shallower

gradient associated with transition between the bar and the dynamically cooler disc.

By taking the first derivative of σz with respect to radius (middle row) I explore further

the different gradient transitions seen in the σz profiles. In all cases I find a central

minimum bordered by two clear peaks. These peaks are symmetrical with respect to

the bar radius and, in the cases where the shoulder-like feature is visible in the σz

profile, lie close to where the shoulder-like feature begins. In the left-hand and central

plots where the shoulder-like feature is clearly visible there is an additional peak that

lies just outside the shoulder-like feature’s radius. In the right-hand plot there is a small

plateau between the symmetrical peaks and the bar ends, which may correspond to the

edge of a gradient change similar to the shoulder-like feature seen in the other two

cases, but if there is a shoulder-like feature present in the σz profile it is very weak and

not easily visible.

In previous work, Debattista et al. (2005) found no clear link between features in the

σz profile and the peanut suggesting that if there is some signature in the σz profile it

is buried within the noise. To determine if the peaks I find in the first derivative are

associated with the peanut (the buckled region of the bar), I present |z| in the bottom
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panel of Figure 4.2 for each of these examples. The peanut structure becomes clearly

visible as an M-shaped structure in the |z| profiles. In all cases the σz derivative peaks

lie well within the radial bounds of the peanut structure described in |z|. While this

does indicate that the peaks could be the result of the more dynamically hot component

which makes up the peanut structure, they do not seem to correspond directly to the

features seen in the |z| profiles. However, for the two galaxies which show prominent

shoulder-like features there is a correlation with the position of the second peak and

the extent of the peanut structure as seen in the |z| profiles but a more detailed analysis

of this correlation is beyond the scope of this paper.

Overall, while I do find a variety of σz profiles I find a common symmetrical peak fea-

ture in the first derivative of σz. The radius of this peak feature lies within the buckled

region of the bar which contains an older dynamically hotter stellar component. In the

next section I explore the evolution of this peak feature over time to determine if it can

be used to trace the evolution of the bar.

4.3.2 Tracing σz through time

In the previous section I showed the variety of different profiles seen in σz and found

that they all displayed a common symmetrical peak feature in the first derivative. In

this section I will explore how the σz profile and the symmetrical peak features change

with time.

In Figure 4.5 I present the evolution of σz and the first derivative over 3 snapshots.

Each snapshot represents a different time in the evolution of this galaxy with the early

times soon after bar formation shown in the top two panels and the final snapshot

representing the current epoch in the bottom two panels. I mark out the radius of

the bar with black vertical lines and the position of the derivative peaks with the red

vertical lines. The growth in height of σz can be seen progressing from early to late

times with the σz in central regions of the bar growing from 100 - 140 kms−1 from

formation to the current epoch. Also clearly evident is the effect of bar growth. At

early times the bar ends lie along the slope of the central σz peak; as the bar lengthens
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Figure 4.5: The σz evolution for bar major axis of one galaxy over time. Each plot shows both
the σz and the first derivative of σz at a different time step. The peak position in the derivative
(red) and bar length (black) is marked for each plot.
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the ends of the bar become dynamically colder similar to what is seen in the disc. This

gives us an overall change in bar end σz from 80 - 30 kms−1 over the bar’s evolution.

There is not only a change in the values of σz within the bar but also a change in the

shape of the σz profile. I noted in the previous section that there are a variety of profiles

and one of the distinct profile shapes showed a shoulder-like feature. This feature was

also evident in the first derivative through symmetrical peaks and in the cases where

the shoulder-like features were strong there are multiple peaks.

In Figure 4.5 I show the evolution of a simulated galaxy with strong shoulder-like

features. At early times, where the bar has just formed, there is no shoulder-like feature

visible in σz and this is reflected in the first derivative with no clear peak features being

present within the bar’s radius. Although I do note that when looking at the full extent

of the σz profile into the disc there is a broader peak feature that extends beyond the

bar’s radius. As the bar continues to evolve and the difference between central and bar

end σz values diverge and the shoulder-like feature begins to develop. In the central

panels there is a weak shoulder-like feature in the σz profile and clear symmetrical

peaks in the first derivative. In the bottom plots I show the σz profile along with the

first derivative for the final epoch. In the σz profile there is a strong shoulder-like

feature and this is reflected in the first derivative by strong central symmetrical peaks

and a secondary set of peaks that lie closer to the bar ends. Overall I find that as

the bar evolves these shoulder-like features develop and strengthen, and that this is

reflected in the derivative where the characteristic peak features appear and become

more prominent as the bar evolves.

To determine the relationship between the age of the bar and this shoulder-like feature,

I calculate a variable I shall refer to as ∆σz. To calculate ∆σz I determine the value of

σz at the location of the central symmetrical peaks I find in the derivative. I then take

the averaged value of σz from both of these peaks. I then subtract from this the value

of σz averaged over a 1 kpc range at the bar ends. By averaging the σz at the bar ends

over the additional 1 kpc I account for the variability in bar length found due to the

connection and dis-connection of the spiral arms between snapshots. I calculated this

∆σz value in all snapshots from the time of bar formation to the present epoch.
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In Figure 4.6 I show the time evolution of ∆σz from bar formation to present epoch

for one galaxy. The time of bar formation starts at t=0 Gyr. There is a clear monotonic

increase in the ∆σz value with age. At early times when the strength of the shoulder-

like feature is small I recover small values for ∆σz and as the age of the bar increases so

does the ∆σz value. However, there are small variations in the slope of this monotonic

increase which closely follows the shape of the unsmoothed evolution of bar length

with time shown in Figure 2.2. This indicates that this ∆σz might be closely linked

with bar growth as well as bar age (see Section 4.4). It is clear that the deviations that

seen in the bar growth can strongly affect the ∆σz value recovered and while taking a

σz for the bar ends averaged over 1 kpc lessens the effect of the oscillating bar length

it still impacts the ∆σz value. I choose to calculate ∆σz using the smoothed bar length

to mitigate this oscillation effect in further plots. However, the relation between age

and ∆σz presents us with a promising avenue for the recovery of bar ages. In the next

section I will explore the time evolution of ∆σz for all of the galaxies in the sample.

4.3.3 ∆σz as an age indicator

In the previous section I explored how the σz profile of one simulated galaxy evolves

over time. Using features recovered in the first derivative of this profile I calculated

a parameter I call ∆σz that shows a monotonic increase with bar age. In this section

I will calculate the ∆σz values over the evolution of all the galaxies in the sample to

determine if the monotonic increase found between ∆σz and bar age is robust.

In Figure 4.7 I present the ∆σz values for the full sample defined in Section 4.2. The

blue band represents the inter-quartile range and the dark blue line shows the median

for this sample. In all cases t=0 represents the time of bar formation and I follow the

evolution of the bar up to the current epoch. The relationship between ∆σz and age

described in the previous section roughly holds for all of the galaxies in this sample.

I find a clear monotonic increase in ∆σz with bar age. Although it should be noted

that the confidence interval is broad, there is clearly a robust difference between young

and old bars. However, there are also fewer bars at older ages and as such there is a
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Figure 4.6: ∆σz against time for one galaxy. The points show ∆σz calculated using the
unsmoothed bar lengths, with the line showing the ∆σz calculated using the smoothed bar
lengths.

saturation in the case of the older bars. Despite this, it appears clear that the ∆σz value

recovered from the σz profile can be used as an indicator for bar age.

As a secondary comparison, I perform the former analysis on the three isolated galax-

ies described in Section 4.2.1. I show the ∆σz values over the evolution of the bar from

the time of bar formation in Figure 4.7 as three coloured lines. The red line shows the

isolated:N-body+gas simulation while the yellow and purple show the isolated:N-body

A and isolated:N-body B simulations respectively. In all cases I find the same mono-

tonic increase in ∆σz with bar age. This further proves the robustness of using ∆σz

as a bar age indicator. Additionally, with the trend being apparent even in collisionless

systems it indicates that the relation between ∆σz and age is likely to be governed by

the stellar dynamics of the bar and not a result of gas dynamics or star formation.

While global trends in all the galaxies in the samples show the monotonic increase in
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Figure 4.7: Top: ∆σz plotted against time since bar formation for all the galaxies in the main
sample. The lines (light blue) show ∆σz for each individual galaxy. The filled region (blue)
shows the inter-quartile range with the black line showing the median. Bottom: ∆σz of the
isolated:N-body A (orange), isolated:N-body B (purple) and isolated:N-body+gas (red) plotted
in comparison to the inter-quartile range of the main sample (blue filled region).
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∆σz with age, I do find deviations from the trend shown in Figure 4.7. I found three

galaxies in the original sample that showed higher than expected ∆σz values when

compared to the global trend. These galaxies all had higher central masses than the

general sample although they did not show indications of classical-like bulges. How-

ever, all had experienced mergers close to the time of bar formation making up 2-10%

of the host galaxy’s mass. These mergers serve to elevate the ∆σz values recovered,

however they still show a monotonic increase with age if elevated above the norm for

the sample.

Overall I confirm that the trend seen in the previous section applies to all of the galax-

ies in the sample. I also confirm this trend in three other simulations, two of which are

collisionless which indicates that the underlying cause contributing to the monotonic

trend found is governed by stellar dynamics. This is even more evident when consid-

ering how large mergers cause an elevation in this trend as they can substantially alter

the underlying dynamics of a galaxy. In the next section I will explore the underlying

mechanisms that are causing the ∆σz increase with age.

4.4 An explanation for the growth of ∆σz with time

In the previous section I demonstrated a relation between ∆σz and bar age. In this

section I will explore the two possible mechanisms that underlie this relation. One

mechanism is kinematic thickening caused by internal instabilities or vertical heating.

The other mechanism is bar lengthening which comes from defining ∆σz as the differ-

ence in velocity dispersion at the characteristic radius and the ends of the bar. When

the bar lengthens the ends of the bar move further into the disk where σz is lower. I will

describe how each of these mechanisms influence ∆σz and the test I have developed

to determine which mechanism is dominant for the galaxies in this sample.

To differentiate between the two mechanisms I must first describe how they influence

∆σz. Kinematic thickening can occur in two ways: the bar can buckle through internal

instabilities causing a significant and sudden distortion out of the plane, or the process
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Figure 4.8: cartoon showing the two main factors affecting change in σz . The left hand side of
each cartoon shows recently after bar formation, while the right hand side shows times mush
later than bar formation. Top: An idealised cartoon of the increase in ∆σz from the growth
in length of the bar. Bottom: An idealised cartoon of the increase in ∆σz from the vertical
thickening of the bar.

can be gradual, vertically heating the bar over time. In the bottom panels of Figure 4.8

I present an idealised scenario affected only by kinematic thickening. The thickening

causes a change in height of the σz profile, this change causes an increase in ∆σz.

However, ∆σz can also be increased via bar lengthening. In the top panels of Figure

4.8 I show the idealised scenario for this case. With no intrinsic change in the σz profile

bar lengthening pushes apart the reference points for calculating ∆σz.

In any galaxy either or indeed both mechanisms can be happening. To determine which

mechanism influences the ∆σz relation I developed the following test: I fix the bar

length and peak position at their final distances in kpc from the galaxy center and

re-calculate ∆σz through time. By choosing to fix these reference points I eliminate

any influence of bar lengthening on ∆σz. In Figure 4.9 I show what we would see

for each idealised case. If the dominant mechanism is kinematic thickening the test
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Figure 4.9: A cartoon showing what we would see if lengthening (left) or vertical thickening
(right) is the dominant cause of ∆σz .

should reproduce the ∆σz-age relation, increasing with time. If, instead, the dominant

mechanism is bar lengthening the test should show no increase with time. No real

galaxy will conform to these idealised cases but by applying this test I can determine

how the two mechanisms influence ∆σz.

The results of this test fell into three categories represented in Figure 4.10. In the

first category bar lengthening dominates. In this category I found 2 galaxies. In the

second category kinematic thickening is the dominant influence. I found 4 of the 15

galaxies in the sample fell into this category. In the final category both mechanisms

occur but they dominate at different times. In this category I found 7 galaxies. In all

7 of these galaxies, bar lengthening initially dominates but then kinematic thickening

takes over. The transition between which mechanism is influencing ∆σz always occurs

close to the buckling time. Buckling marks a dramatic change in the structure of the

bar by causing a significant vertical distortion of its stellar distribution and an increase

in the vertical velocity dispersion. The correlation between the test and ∆σz seen in

the kinematic thickening regime post bar buckling implies that the peak position lies

within the buckled region which continues to thicken throughout the bar’s subsequent

evolution.

The two mechanisms that dominate the evolution of ∆σz are intrinsically linked to both

the structural and dynamical evolution of the bar. The first mechanism, bar lengthen-

ing, dominates initially with bar buckling marking the time of transition into the second

mechanism where kinematic thickening dominates. This makes ∆σz a powerful tracer

of bar growth, being both a property solely of the bar and constrained entirely by the
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Figure 4.10: Example of galaxies where ∆σz is dominated by bar lengthening (top), kinematic
thickening (middle) and a combination of both with bar lengthening dominated first (bottom).
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Figure 4.11: The average peak position (orange) and bar length (blue) for one galaxy through
time. The peak position remains remarkably stable and lies close to the initial bar length.

bar’s evolution.

4.5 Peak positions as an indicator for initial bar length

In the previous section I established the two mechanisms underlying the growth of ∆σz

with time as kinematic thickening and bar lengthening. I now look in more detail at

the characteristic position, which I introduced in Section 4.3 as the peak in the radial

slope of the velocity dispersion, used to define ∆σz. I will see how this radius, which

I refer to as the peak radius, changes as a function of time and relates to properties of

the bar.

To start this discussion I will look at the evolution of the peak radius with time for one

galaxy. In Figure 4.11 I show the time evolution of bar length (orange) and peak radius

(blue). While the bar length increases over the full 4 Gyr lifetime of this bar, the peak



4.5. Peak positions as an indicator for initial bar length 102

−4 −3 −2 −1 0 1 2 3 4

Initial bar length-peak position [kpc]

0

20

40

60

80

100

120

140

160

Figure 4.12: A histogram of the difference between the initial bar length and peak position for
each snapshot of all the galaxies in the main sample.

radius remains remarkably stable. Of particular note is the similarity of the peak radius

with the initial length of the bar. When I applied this analysis across the full sample I

found a similar scenario: while the bar length increases the peak radius remains stable.

In some of the galaxies there are deviations in the peak radius which occur at similar

times to bar buckling. Additionally, while I find that the peak positions across the full

sample are similar to the initial bar length there are some deviations from this trend.

In Figure 4.12 I present a histogram of the difference between the initial bar length and

the peak radius for each snapshot across the full sample. On average the peak radius is

1.5 kpc shorter than the initial bar length however, I do see differences as great as ±4

kpc for a handful of snapshots. Despite this, the majority of the sample lie within the

0-2 kpc difference range. This suggest that the peak radius could be used as an estimate

for the initial length of the bar which, combined with a bar age, can allow for estimates

on bar growth. The position of the peak radius and its association with the initial bar
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length indicates that the peak in the radial slope of the velocity dispersion could be

related to a change in orbital structure between initial and evolved bar. Although this

presents a promising avenue for determining the rate of bar growth, exploring it further

is beyond the scope of this thesis.

4.6 Application to observations

Thus far I have discussed this work in a theoretical context with the application to ob-

servations in mind. In this section I will explore the effects of changing bin widths and

inclination on the ∆σz-age relation. I will then apply the method to an observational

example, recovering a bar age.

4.6.1 Effect of spatial resolution

In observations one of the key limitations impacting data is the spatial resolution which

we can recover using an instrument. Current large IFU (integral field unit) surveys such

as MaNGA (Bundy et al., 2015), CALIFA (Sánchez et al., 2012) and SAMI (Bryant

et al., 2015) can reach spatial resolutions down to 1 kpc which is much larger than

the 250pc resolution I have been using in our theoretical study of ∆σz. In this section

I aim to understand how the ∆σz-age relation could be affected by lower resolutions

more inline with current IFU surveys.

In the top panel of Figure 4.13 I show the σz profile of one simulated galaxy from the

sample for 4 different bin widths 250, 500, 750 and 1000 pc. In all cases I do not

see much deviation between the σz profiles over the range of bin widths. All show a

central peak with a σ-drop and the shoulder-like features as described in Section 4.3.1.

Unsurprisingly, there is a smoothing effect when moving to a larger bin width with the

250pc profile showing more noise than the 1000pc profile which is the smoothest.

In the bottom panel I present the first derivative of these σz profiles. In the first deriva-

tive I see a clearer deviation between the different bin widths. While the general trend
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of two central symmetrical peaks remains similar, there is a distinct difference between

the first derivative from the finest binning (250pc) to the broadest (1000 pc). At the

finest binning there is significant noise. Additionally, at this resolution I also find two

very clear and thin central peaks associated with the σ-drop feature like those seen

in Figure 4.2. At lower resolutions these thin central peaks are completely smoothed

away. This smoothing at lower resolutions is a also apparent in the peak profiles them-

selves, as they become smoother and less prominent at larger bin widths. This also

results in the position of the derivative peaks being offset at larger bins. As the bin

width increases the position of the peak also increases, moving to larger radii.

The relation between ∆σz and age, and the recovery of the initial bar lengths rely on

the accurate recovery of the peak positions. In Figure 4.13 I show that the peak position

changes over the range of bin widths. As bin width increases the peak position (and

hence initial bar length estimate) also increases. This increase averages to a +1 kpc

difference between the smallest and largest bin width across the sample. Since ∆σz

also relies on the peak position this translates to a -25 kms−1 average difference in

∆σz between the smallest and largest bin widths. When comparing with the ∆σz-age

relation I recovered for the 250 pc bin width this would result in an underestimate of

the bars age with an over estimate for the bars initial length. However, at all resolutions

the peak feature can still be recovered as it relies more on the general shape of the σz

profile and the shoulder-like features which remain present even with increasing bin

width.

It is clear that changing the spatial resolution will affect the recovery of both bar ages

and initial bar lengths using this method, with lower resolutions (larger bin widths)

resulting in an underestimate in bar ages and an over estimate in initial bar lengths.

However, I do find that the ages and initial bar lengths change consistently across

bin widths. ∆σz decreases by an average 25 kms−1 when comparing between 250pc

and 1000pc bin widths, as such while changing the spatial resolution would affect the

recovered age for the bar it can be accounted for by adding 25 kms−1 to the recovered

∆σz when determining bar ages using lower resolution data. Additionally, the relation

could be re-calibrated for different bin widths which would allow for a more accurate
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recovery of bar ages specific to the resolution of the observational data the method is

being applied to.

4.6.2 Effect of inclination

In the previous section I found that while the spatial resolution affects the recovery of

∆σz this change is small and consistent allowing us to use a correction value of +25

kms−1 when applying the method to resolutions of 1000pc. Another key limitation in

observational data is the inclination of the observed galaxy. In my analysis so far I have

only looked at recovering ∆σz with the galaxy orientated face on. In reality, however,

galaxies are observed in many different inclinations hence only allowing us to recover

a σlos. In this section I will explore how changing the inclination of the galaxy effects

the recovery of a ∆σ value.

In Figure 4.14 I overlay the ∆σlos values for one galaxy at multiple inclinations with

the galaxy rotated about the y-axis such that at 90◦ the bar is viewed edge-on. I find

that there is little difference in the ∆σlos values recovered for inclinations up to 20◦.

At 45◦ the ∆σlos I recover is lower than expected but still within the range of expected

values. At the highest inclinations (75◦-90◦) there is a more significant change in the

recovered ∆σlos with values falling at the lower limits of the ∆σz-age relation found

from the simulations.

In Figure 4.15 I repeat the same process as described for Figure 4.14 but rotate about

the x-axis such that the bar is face-on at 0◦ and would be end-on at 90◦. Much like with

the rotation about the y-axis at inclinations up to 20◦ I find that there is little difference

in the recovered ∆σlos. However at higher inclinations the difference in the recovered

∆σlos values is more significant. As I increase the degree of inclination the recovered

∆σlos values become smaller which would result in an underestimate of the age of the

bar. Additionally, at higher inclinations the recovered ∆σlos values plateau at the early

ages soon after bar formation. The duration of this plateau increases as the inclination

angle increases.
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Figure 4.13: Top: σz profiles for one simulated galaxy at spatial resolutions of 250 pc (blue),
500 pc (orange), 750 pc (green) and 1000 pc (red). There is very little variation between the
general shape of the profile, although at lower spatial resolutions the profile is smoother with
less noise. Bottom: The first derivative of σz at spatial resolutions of 250 pc, 500 pc, 750 pc
and 1000 pc. The peak position moves further out in radius with decreasing spatial resolution
resulting in a lower ∆σz and an underestimation of the bar formation time.
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Figure 4.14: Testing inclination with rotation about the y-axis (bar edge-on). The inter-quartile
range for the main sample is plotted as the filled region with the median of the sample in black.
The ∆σlos values for one galaxy are plotted for inclinations of 0◦ (blue), 20◦ (orange), 45◦

(green) and 75◦ (blue) plotted for comparison.
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Figure 4.15: Testing inclination with rotation about the x-axis (bar end-on). The inter-quartile
range for the main sample is plotted as the filled region with the median of the sample in black.
The ∆σlos values for one galaxy are plotted for inclinations of 0◦ (blue), 20◦ (orange), 45◦

(green) and 75◦ (blue) plotted for comparison.
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Overall I find that increasing inclination causes a decrease in the value of ∆σlos recov-

ered. It is clear the rotations about the x-axis cause much more significant change in

the ability to recover ∆σlos values for the bar while for rotations about the y-axis we

are still able to recover a ∆σlos within the inter-quartile range even up to edge-on incli-

nations. The ability to recover ∆σlos values even at edge-on inclinations for rotations

about the y-axis supports my hypothesis that it is likely that the peaks seen in the first

derivative of σz are the result of orbital structures within the bar.

4.6.3 Application to galaxy IC 1438

To further test if my method can be applied to data, I apply it to one galaxy from the

sample of 24 strongly barred galaxies in the Time Inference with MUSE in Extragalac-

tic Rings (TIMER) survey (Gadotti et al., 2019). The galaxies in the TIMER sample

are all selected from the Spitzer Survey of Stellar Structure in Galaxies (S4G Sheth

et al. (2010)) and were observed using the Multi-Unit spectroscopic Explorer (MUSE

Bacon et al. (2010) which is an integral field spectrograph mounted on the Very Large

Telescope (VLT) located at the Paranal Observatory in Chile. This spectrograph has

a spectral range from 4750 Å to 9300 Å with a spectral sampling of 1.25 Å. The in-

strument offers a 1′ x 1′ field of view with a spatial resolution of 0.2′′ per pixel when

operated in the wide field mode, and the galaxies were observed with a typical seeing

of 0.8′′ to 0.9′′ (Gadotti et al., 2018). IC 1438 was observed with a spatial resolution of

164 pc/arcsecond (Bittner et al., 2020). This allows for the recovery of detailed maps

in both spatial and velocity resolution which is key for the application of bar dating

method I have developed.

The data are reduced using version 1.6 of the MUSE data reduction pipeline (Weil-

bacher et al., 2012, 2020). In particular, the TIMER data is flux and wavelength cal-

ibrated with bias, flat-fielding and illumination corrections applied. Telluric features

and the sky background are removed by exploiting a principal component analysis.

The observations are then accurately registered astrometrically. Full details of the ob-

servations and data reduction pipeline are presented in Gadotti et al. (2019).
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Figure 4.16: LHS: A colour map of galaxy IC1438 built using the TIMER MUSE data cube
(Gadotti et al., 2018). RHS:A colour map of the stellar velocity dispersion of galaxy IC1438;
where the bar is orientated in the same direction as in Figure 4.16. The colour bar shows
indicates the plotted range in kms−1.

Recovery of stellar kinematics is performed using the Galaxy IFU Spectroscopy Tool

(GIST) pipeline (Bittner et al., 2019, 2020). GIST uses the adaptive Voronoi tessela-

tion routine of Cappellari and Copin (2003) to spatially bin the data with a minimum

signal-to-noise ratio of 40. The stellar kinematics (V,σ,h3,h4) were extracted using the

PPXF-module which utilises the penalised pixel-fitting (pPXF) method (Cappellari and

Emsellem, 2004; Cappellari, 2017) using the full wavelength range.

From the available TIMER galaxies I select galaxy IC1438 because the TIMER data

covers the full bar, and because of its low inclination angle of 24◦, since in Section

4.6.2 I have shown that high inclination angles can result in a lower ∆σlos value and

thus age than expected. This galaxy has a bar of length of 23′′ at a position angle of

121◦ (see Figure 4.16), full properties are given in Gadotti et al. (2019). In Figure 4.16

I also present a colour map of the velocity dispersion. I apply a mask along the bar

with a width of 1kpc to extract the σlos along the bar’s major axis. At the same time

σlos data is binned such that each bin corresponds to a width of 250pc smoothing the

data slightly and adjusting the spatial resolution so that it is the same as used for the

analysis performed on the simulations.

In Figure 4.17 I present both the extracted σlos profile for the major axis of the bar and

the first derivative of the σlos profile with the position of the bar ends and derivative
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Figure 4.17: LHS: The extracted and binned velocity dispersion along the major axis of the
bar. The bar length (black) and position of the peak radius (red) are marked with vertical lines.
RHS: The first derivative of the velocity dispersion with the bar length and peak radius marked
with vertical lines.

peaks marked. It has general similarities with the σz profiles of the simulations, such

as the central peak with the σz decreasing towards the bar ends. However, unlike

the simulations the profile presents a clear central peak bordered by two secondary

peaks. These secondary peaks appear to lie just outside of the radius of the inner ring

and correspond to the high velocity dispersion ring seen in Figure 4.17. While the

derivative peaks are not as clear as in the simulations it is still possible to identify

them. I calculate a ∆σz in the same way as described in Section 4.1.2 recovering a

∆σz of 40 kms−1. In Figure 4.18 I present the ∆σz vs. age plot for the full simulation

sample with the ∆σlos value for IC1438 plotted in the dashed line. This gives a bar age

estimate of 1.4 Gyr to 4.4 Gyr.

There are no direct bar age estimates for IC1438 in the literature, however Gadotti et al.

(2015) postulated that the age of the stellar population in the inner ring could be used

as a lower limit for the bar age. Bittner et al. (2020) found that spaxels in the nuclear

disc and ring of IC1438 have an average age between 2.5 and 5 Gyr. This is in good

agreement with the estimate we find using our new method. This demonstrates that

not only does the ∆σz method produce reasonable age estimates, but most importantly

that this method can be used with current observational data.
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Figure 4.18: The ∆σz vs. time plot derived from the simulated galaxies with the ∆σz value
for IC1438 marked (black dashed line).

4.7 Summary

Gadotti and de Souza (2005) first explored the link between the vertical velocity disper-

sion of the bar and its formation time. They proposed that it was possible to distinguish

between recently formed and evolved bars by how different the vertical velocity dis-

persion of the bar is from the disc. While this method does not provide a quantitative

estimate of bar age they did find that recently formed bars have a velocity dispersion

similar to the disc with the difference being much greater in more evolved bars.

In this chapter I built on this work by studying how the shape of the bar’s vertical

velocity dispersion changes over time using 15 isolated zoom-in cosmological re-

simulations (Martig et al., 2012). I found that not only does the vertical velocity dis-

persion increase with time but the shape of the radial profile of σz changes. As the bar

evolves symmetrical shoulder-like features develop in the majority of the sample.

I derive a value, ∆σz, which is the difference between the vertical velocity dispersion

of the shoulder-like feature and the bar ends. The ∆σz value increases monotonically
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with time; it is small for recently formed bars and higher for more evolved bars. This

relationship is found both in cosmological and in isolated simulations, proving that it

is robust. Therefore, by determining ∆σz for the bar one can recover the time of bar

formation.

The position of the shoulder-like feature is remarkably stable as a function of time

for any one galaxy. On average, the position of this feature is 1.5 kpc shorter than

the initial bar length. This indicates that shoulder-like feature could be related to a

change in orbital structure between the initial and evolved bar. If this is the case then

by determining the location of this feature in observational data, the initial length of

the bar could be recovered in addition to the age of the bar. This presents a promising

avenue for constraining the rate of bar lengthening in galaxies.

The increase of ∆σz over time is influenced by two different factors. The first is

bar lengthening; as the bar increases in length the reference point for the ∆σz value

moves further out into the disc. Since σz on average decreases as a function of radius

for the galaxy this results in an increase in ∆σz. The second is kinematic thickening

which increases the vertical velocity dispersion of the bar through internal instabilities

or vertical heating. The increase of ∆σz is initially dominated by bar lengthening

with kinematic thickening becoming dominant after the bar buckles, making ∆σz a

powerful tracer of bar growth.

Finally, I tested how spatial resolution and galaxy inclination affect the measurements

of ∆σz. Lower resolutions smooth the vertical velocity profile causing the shoulder-

like feature to be identified at a larger radius. This results in a younger bar age than

would be expected. However this change appears to be systematic with ∆σz values de-

creasing by 25 kms−1 between resolutions of 250 pc and 1000 pc, so we might be able

to correct for this effect. Increasing the inclination also results in an underestimate of

the bar age with the most significant underestimates seen when the bar is inclined end-

on. I therefore propose that this method is best applied to data of a similar resolution

to the simulations presented here with a face-on inclination.

Having established the potential of this method I have applied it to MUSE data of
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IC1438 and found good agreement with age estimates of the nuclear ring and disc. I

have confirmed that not only is it possible to use this method with observational data

but also that the bar age recovered is reasonable. This new method presents an exciting

opportunity for the recovery of bar ages which are key in understanding the timescales

of galaxy evolution.



Chapter 5

Summary and Future Work

5.1 Summary of main results

In this thesis I have explored the effects of bars on the star formation and stellar dy-

namics of galaxies. By analysing the concurrent evolution of bars and galaxies using a

sample of isolated and cosmological zoom-in re-simulations I developed two methods

for recovering the formation time of the bar. In addition, I identified the star forma-

tion desert region of the bar as an uncontaminated region of radially migrated stars. I

summarise the findings of my thesis below.

5.1.1 Dating bar formation using star formation histories

The SFD is a region within the inner ring, lying either side of the bar in the areas that

the bar sweeps out. James and Percival (2016) found these regions had very little to no

star formation and theorised that if star formation is suppressed by the bar the youngest

stars in these regions should correspond to the age of the bar. In Chapter 3 I ex-

plored this hypothesis further with a sample of 6 zoom-in cosmological re-simulations

(Donohoe-Keyes et al., 2019).

Looking at the average age maps revealed old regions located either side of the bar with

115
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a deficit of star younger than 10 Myr, confirming the presence of the SFD phenomenon.

The removal of gas within the SFD occurs within 1-2 Gyr after the formation of the

bar indicating there is little to no in-situ star formation after that time. We would,

therefore, expect to see a sharp truncation in the star formation rate. However, I found

a gradual downturn in the star formation rate of the SFD region in comparison to that of

the bar. While the SFD regions do appear on average older than the bar, they actually

contain stars of all ages. While looking at the star formation rate of the SFD could still

provide information of the formation time of bars, the interpretation is more difficult

than anticipated.

Since gas is removed quickly after bar formation, all stars 1-2 Gyr younger than the bar

must radially migrate into the SFD region. The discovery of this radially migrated sam-

ple provides us with unparalleled insight into a region where any young stars must be

radial migrators. Combining this with bar age would allow us to probe the timescales

and efficiency of radial migration. By separating out the stellar populations formed

before and after the bar we can gain unparalleled insight into the chemo-dynamical

evolution of the SFD region.

5.1.2 Dating bar formation using kinematics

As bars evolve they vertically thicken. Younger bars have a velocity dispersion similar

to that of the disc while in older bars the difference is greater (Gadotti and de Souza,

2005). However, bars with significant central bulge masses also show large differences

between the bar and disc even when recently formed. In Chapter 4 I used the relation-

ship between the bars age and the increase in the bars velocity dispersion by looking

at features in the vertical velocity dispersion of the bar with a sample of 15 zoom-in

cosmological re-simulations and 3 simulations of isolated galaxies.

I uncovered a special feature located within the bar radius. This feature appears in

the first derivation of the velocity dispersion as two symmetrical peaks within the bars

radius and I refer to it as the peak position. By taking the difference between the σz of

the peak position and the bar ends I produced a value I call ∆σz. The ∆σz increases
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monotonically with time allowing the age of the bar to be found. I was able to recover

∆σz in both in cosmological and isolated simulations, demonstrating that this feature

is robust. By using ∆σz we can infer a time of bar formation free from the uncertainties

introduced by other methods. The location of the peak position is remarkably stable

and on average it is 1.5 kpc shorter than the initial length of the bar. This provides a

promising avenue for recovering initial bar length and, combined with a bar age, could

be used to constrain the growth rate of bars.

The ∆σz value is influenced by two factors: the lengthening of the bar, and the vertical

thickening of the bar. At early stages the lengthening of the bar is the main contributor,

however, after the time of buckling the vertical thickening dominates. Therefore ∆σz

is a powerful tracer of bar growth being constrained entirely by the bar’s evolution.

To determine how the method was affected by inclination I recovered ∆σlos values for

one galaxy orientated at multiple inclinations with the bar edge-on and end-on. I found

that at edge-on inclinations ∆σlos remained in good agreement with the ∆σz trend

found from the face on orientation of the simulations with only a small decrease in the

∆σlos recovered with increasing inclination angle. However, in end on orientations the

recovered ∆σlos decreases significantly with increasing inclination.

Having established the potential of this method within simulations I have tested it on

MUSE data of IC1438. I find good agreement with literature data, confirming that

it is possible to apply this method to current observational data and that the bar ages

recovered are reasonable. This new method presents an exciting avenue for the reliable

recovery of quantitative bar ages furnishing us with new insights in our understanding

of the timescales of disc galaxy evolution.
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5.2 Future work

5.2.1 Further investigations using simulations

The work presented in this thesis provides two methods through which a bar formation

time can be recovered. However, both of these methods have been developed using

the same suite of simulations. By repeating the analysis presented in this work across

a larger cosmological sample we could investigate how the properties of the galaxies

influence the results.

In Chapter 3 I confirmed the presence of the SFD region in simulations. Observa-

tionally, not all bars are observed with an SFD region so it would be of interested to

see how the presence of the SFD correlates with galaxy properties. Additionally, one

of the key results from that work is that the SFD is the result of gas being removed

from the bar region on timescales of 1-2 Gyrs. By repeating my analysis on a large

cosmological suit it would be possible to determine how this gas removal timescale is

correlated with the properties of the galaxy and the galaxy bar. Furthermore, in this

work I found that, after the time of bar formation, stars which are younger than the bar

in the SFD have all radially migrated there. Further work could be done to determine

on what timescale these stars migrate into the SFD and if this process changes over the

evolution of the galaxy.

In Chapter 4 I presented a new method for the recovery of bar ages using ∆σz. To fur-

ther develop this method I propose re-calibrating it with a larger cosmological sample.

By testing this method against a statistically large sample with galaxy properties more

representative of the large range of properties seen observationally, we would be able

to test how galaxy properties influence ∆σz against the norm. This will also test the

method against a large variety of galaxies thus allowing us to determine its limitations

for application to observations.
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5.2.2 Using Gaia and spectroscopic surveys to date the Galactic

Bar

The Milky Way provides us with a wealth of data that makes it an ideal laboratory

for exploring the 3-dimensional properties of the bar not available in any other sys-

tem. Even so, with the plethora of data available dating the age of the bar remains a

persistent problem. The most common methods for to determine a Galactic bar age

rely on the age of the underlying stellar populations (Ng et al., 1996; Sevenster, 1999;

Cole and Weinberg, 2002; Bovy et al., 2019; Baba and Kawata, 2020), but as discussed

many times in this thesis, this does not necessarily correspond to the age of the bar. An

alternative method uses the response of the disc to the formation of the bar to provide

an age estimate but can give vastly different ages dependent on if the bar is evolving

or not (Minchev and Famaey, 2010). As a consequence of these methods the true age

of the Galactic bar remains an open issue with estimates varying widely from 2 to 8

Gyrs. Using the data available from the recent and upcoming Milky Way surveys I

would like to propose three potential projects aimed at developing and adapting my

techniques for application to the Milky Way.

Dating the Milky Way bar using kinematics

During my PhD one of the novel methods I developed for determining bar ages relies

solely on the kinematical response of stars within the bar. By applying my method I

removed the need for assumptions on the nature and origin of the underlying stellar

population and their association with the bar. Additionally, I negated the uncertainty

introduced into the bar age from having to assume a stable or evolving bar.

The first stage of this analysis will involve using simulations to modify the criteria I

found to estimate the epoch of bar formation for the Milky Way. This would involve

translating these criteria into Gaia observables (parallaxes, proper motions and line-

of-sight velocities) to recover the ∆σz signature as an observer positioned within the

Galactic plane. This would require the proper motions of stars to extract the vertical
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velocity dispersion for the bar. This analysis would also allow us to determine what

constraints should be considered when applying this method to observational data.

Specific focus should be given to limitations such as the maximum height above the

plane at which the signal can be found as well as the extent of the bar required in order

to recover the signal.

This can then be used to directly compare the results from the simulated data with

the data available from Milky Way surveys by making use of the existing Gaia data

2 release as well the Gaia early data release 3 which can bolstered by the full release

of DR3 expected in early 2022. Although, this may be difficult on account of dust

obscuring observations towards the galactic center. However, by combining both Gaia

and APOGEE (Majewski et al., 2017), which observed in the near-IR and can see

through the galactic dust, we would have access to a rich resource that will allow us

to recover the signal with which we will be able to date the age of the Milky Way bar.

Given that the method I developed is based solely on the kinematical properties of the

bar and does not require assumptions of the bars evolutionary phase, or on the stellar

ages of bar stars I would expect to recover a more reliable age estimate than previous

techniques have produced.

Investigating in-plane tracers of bar age

The optimal way to confirm an estimate of the Galactic bar age is to have another

independent age estimate with which to compare. Due to the nature of previous age

estimates and the uncertainties introduced by their assumptions, comparisons between

bar ages must be approached with caution. In the most ideal scenario we would have

two or more age dating methods independent of the underlying stellar population prop-

erties.

By comparing extracted in-plane velocity dispersions across multiple simulated galax-

ies with different bar ages (Martig et al., 2012) we can determine if tracers of the bar

formation can be recovered in an edge-on plane. The in-plane motions and line-of-

sight velocities can be explored using the GDR3 and WEAVE which is expected to
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be in its final science stage in the same time-frame as Gaia DR3, to which it is com-

plementary. As the first and only high-resolution optical multi-object spectrograph in

the northern hemisphere it will provide the necessary resolution to recover radial ve-

locities too faint for Gaia and allow for detailed analysis of chemical abundances. If

the signatures of bar formation can be recovered then we would be able to develop a

method which can be applied to the observational data and then compare results with

previous work to produce a robust age for the Galactic bar.

Investigating radial migration within the Milky Way

In my previous research I explored a region within barred galaxies termed the SFD,

which contained an uncontaminated sample of radially migrated stars and presenting

an exciting opportunity for galactic archaeology by offering a route to explore radial

migration within a galaxy in more detail. The recent and upcoming surveys of the

Milky Way will provide a unique laboratory to investigate not only the effect of radial

migration on the galactic center but also the rate of this process over the Milky Way’s

evolution.

By expanding on my previous work exploring the properties of the SFD in simulations

to a more detailed study of Milky Way-like simulated galaxies (Martig et al., 2012)

we would be able to make predictions on characteristic radial migration timescales.

With WEAVE and Gaia we have access to the kinematical information necessary to

resolve the star formation desert population within the Milky Way allowing for direct

comparisons with the predictions from the simulations. By filtering the extracted SFD

population for those stars with ages younger than the Galactic bar we could explore

the rate of radial migration during the evolution of the bar and from the abundances we

would be able to explore the origins of these stars.

These projects will provide a route for the detailed exploration of the formation history

of the Milky Way and its bar. By pinpointing the time for the formation of the Milky

Way bar we will have an estimate of when the Milky Way disc settled and secular

evolution began to take place. In addition we will be able to explore how the Milky
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Way bar influenced the subsequent chemical evolution of the Milky Way by exploring

the rate of radial migration from within the star formation desert region.

5.2.3 Using MaNGA for a statistical study of bar ages and radial

migration

Determining bar ages

A major question remaining in the study of barred galaxy evolution is whether the

formation of the bar is correlated to galaxy disc quenching. Evidence suggests that bars

in high-mass galaxies are already in place at high redshift and contain more evolved

stellar populations with less current star formation than their unbarred counterparts

(Fraser-McKelvie et al., 2020a). However, without an estimate of bar age we are unable

to confirm if the bar helps to cause this cessation in star formation. By applying the

method I have developed for dating bars using kinematics in conjunction with star

formation histories we could explore how the formation time of the bar relates to the

rate of star formation at different times. By doing this for a statistically large and

diverse sample of barred galaxies, such as that sampled by MaNGA, we would begin

to understand whether bars correlated to disc quenching.

While bars are commonly associated with quenching, we also find star forming bars,

mostly in low-mass galaxies. There are currently two proposed scenarios to explain

these low-mass star forming bars. We could be seeing recently formed bars or alter-

natively a different type of bar than those seen in high-mass galaxies that can form

stars due to lower gas shear within the bar (Fraser-McKelvie et al., 2020b). Previous

studies of barred galaxies in MaNGA revealed 5 different categories when looking at

Hα (Fraser-McKelvie et al., 2020a): star formation along the bar, star formation pre-

dominantly in the center of the galaxy, star formation in a ring around the bar region,

star formation at the ends of the bar and those with no star formation. By using the

kinematic method I have developed we could recover the ages of the bar for galaxies in

each of these categories to determine if they represent different stages of bar evolution



5.2. Future work 123

or if they are associated with different types of bars. Bar growth is not entirely under-

stood either. Studies from simulations suggest that bars continually grow throughout

their evolution but their rate of growth is poorly constrained. One advantage of the

method I have developed is the recovery of an initial bar length. By recovering initial

bar lengths and ages we could explore the rate of bar growth within different barred

galaxies. By making comparisons with simulations we could further our understand-

ing of how bars evolve within galaxies of all types and masses and the consequences

of their evolution on other galactic components.

In the Figure 5.1 I present my initial results with MaNGA. Galaxy 8331-12705 is a

high-mass galaxy with a long bar of 14.3 kpc showing no current star formation along

the bar, while galaxy 8935-6104 is a low mass galaxy with a star forming bar of length

2.3 kpc. I can confirm that for these galaxies the higher mass, longer bar formed first,

while the bar in the lower mass galaxy formed much more recently. This new method

presents an exciting avenue for the reliable recovery of bar ages furnishing us with new

insights in our understanding of the timescales of disc galaxy evolution.

Radial migration

Bars exert strong torques in their host galaxy redistributing both stars and gas through

radial migration impacting not only star formation but the stellar properties of other

galactic components. During my PhD I discovered that star formation within the SFD

region is suppressed after bar formation. Any stars younger than the age of the bar

can only have got there through radial migration with stars taking approximately 1-2

Gyrs to migrate to the SFD from the inner ring or disk. By recovering the age of the

bar we are able to extract the uncontaminated radially migrated stars from the SFD

region. It would be interesting to investigate this further by determining the rate of

the radial migration within this region by making comparisons between simulations

and observations over a range of different barred galaxies. With this we would be

able to further our understanding of the influence of bars. This can then be applied in

the analysis of the stellar populations of other galactic components by comparing with
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unbarred galactic counterparts to uncover how bars influence the properties of other

spatially distinct components through radial migration.

5.3 Concluding remarks

The formation of a bar is a keystone event in galaxy evolution. It marks a time of

transition from fast evolutionary processes, such as mergers, to secular evolutionary

processes, of which bars are heavy drivers. In this thesis I have presented two methods

through which bar formation times can be recovered. Further than this I have investi-

gated the processes which underlie these methods. By recovering bar ages we will be

able to define the time of onset for secular evolution. By taking this work further we

may also be able to quantify what influences bars have on the evolution of a galaxy and

over what timescales they act. This would allow us to predict the evolutionary paths of

barred galaxies, including our own galaxy, the Milky Way.
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Athanassoula, E., Romero-Gómez, M., Bosma, A., and Masdemont, J. J. (2010). Rings

and spirals in barred galaxies - III. Further comparisons and links to observations.

MNRAS, 407(3):1433–1448.
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A., and Bauer, A. E. (2012). The Structures and Total (Minor + Major) Merger

Histories of Massive Galaxies up to z ˜3 in the HST GOODS NICMOS Survey: A

Possible Solution to the Size Evolution Problem. ApJ, 747(1):34.

Blumenthal, G. R., Faber, S. M., Primack, J. R., and Rees, M. J. (1984). Formation of

galaxies and large-scale structure with cold dark matter. Nature, 311:517–525.

Bournaud, F. and Combes, F. (2002). Gas accretion on spiral galaxies: Bar formation

and renewal. A&A, 392:83–102.

Bournaud, F., Combes, F., and Semelin, B. (2005). The lifetime of galactic bars:

central mass concentrations and gravity torques. MNRAS, 364(1):L18–L22.

Bournaud, F., Daddi, E., Elmegreen, B. G., Elmegreen, D. M., Nesvadba, N., Vanzella,

E., Di Matteo, P., Le Tiran, L., Lehnert, M., and Elbaz, D. (2008). Observations

and modeling of a clumpy galaxy at z = 1.6. Spectroscopic clues to the origin and

evolution of chain galaxies. A&A, 486(3):741–753.

Bournaud, F., Duc, P. A., and Masset, F. (2003). The large extent of dark matter haloes

probed by the formation of tidal dwarf galaxies. A&A, 411:L469–L472.

Bournaud, F., Elmegreen, B. G., and Martig, M. (2009). The Thick Disks of Spiral

Galaxies as Relics from Gas-rich, Turbulent, Clumpy Disks at High Redshift. ApJl,

707(1):L1–L5.

Bournaud, F., Jog, C. J., and Combes, F. (2007). Multiple minor mergers: formation of

elliptical galaxies and constraints for the growth of spiral disks. A&A, 476(3):1179–

1190.

Bovy, J., Leung, H. W., Hunt, J. A. S., Mackereth, J. T., Garcı́a-Hernández, D. A.,

and Roman-Lopes, A. (2019). Life in the fast lane: a direct view of the dynamics,

formation, and evolution of the Milky Way’s bar. MNRAS, 490(4):4740–4747.



Bibliography 134

Bower, R. G., Benson, A. J., Malbon, R., Helly, J. C., Frenk, C. S., Baugh, C. M., Cole,

S., and Lacey, C. G. (2006). Breaking the hierarchy of galaxy formation. MNRAS,

370(2):645–655.

Boylan-Kolchin, M., Springel, V., White, S. D. M., and Jenkins, A. (2010). There’s

no place like home? Statistics of Milky Way-mass dark matter haloes. MNRAS,

406(2):896–912.

Bremer, M. N., Phillipps, S., Kelvin, L. S., De Propris, R., Kennedy, R., Moffett, A. J.,

Bamford, S., Davies, L. J. M., Driver, S. P., Häußler, B., Holwerda, B., Hopkins, A.,
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Semelin, B. (2017). Bars and boxy/peanut bulges in thin and thick discs. I. Mor-

phology and line-of-sight velocities of a fiducial model. A&A, 606:A47.

Fraser-McKelvie, A., Aragón-Salamanca, A., Merrifield, M., Masters, K., Nair, P.,

Emsellem, E., Kraljic, K., Krishnarao, D., Andrews, B. H., Drory, N., and Neumann,

J. (2020a). SDSS-IV MaNGA: spatially resolved star formation in barred galaxies.

MNRAS, 495(4):4158–4169.

Fraser-McKelvie, A., Brown, M. J. I., Pimbblet, K. A., Dolley, T., Crossett, J. P., and

Bonne, N. J. (2016). A photometrically and spectroscopically confirmed population

of passive spiral galaxies. MNRAS, 462(1):L11–L15.

Fraser-McKelvie, A., Merrifield, M., Aragón-Salamanca, A., Peterken, T., Kraljic, K.,

Masters, K., Stark, D., Fragkoudi, F., Smethurst, R., Boardman, N. F., Drory, N.,

and Lane, R. R. (2020b). SDSS-IV MaNGA: The link between bars and the early

cessation of star formation in spiral galaxies. MNRAS, 499(1):1116–1125.



Bibliography 148

Frenk, C. S. and White, S. D. M. (2012). Dark matter and cosmic structure. Annalen

der Physik, 524(9-10):507–534.

Friedli, D. and Benz, W. (1993). Secular evolution of isolated barred galaxies. I. Grav-

itational coupling between stellar bars and interstellar medium. A&A, 268:65–85.

Friedli, D., Benz, W., and Kennicutt, R. (1994). On the Influence of Bars and Star

Formation on Galactic Abundance Gradients. ApJl, 430:L105.

Gadotti, D. A. (2008). Image decomposition of barred galaxies and AGN hosts. MN-

RAS, 384:420–439.

Gadotti, D. A. (2011). Secular evolution and structural properties of stellar bars in

galaxies. MNRAS, 415(4):3308–3318.

Gadotti, D. A. and de Souza, R. E. (2003). NGC 4608 and NGC 5701: Barred Galaxies

without Disks? ApJl, 583:L75–L78.

Gadotti, D. A. and de Souza, R. E. (2005). The Vertical Stellar Kinematics in Face-On

Barred Galaxies: Estimating the Ages of Bars. ApJ, 629(2):797–815.

Gadotti, D. A. and de Souza, R. E. (2006). On the Lengths, Colors, and Ages of 18

Face-on Bars. ApJS, 163(2):270–281.

Gadotti, D. A. and Dos Anjos, S. (2001). Stellar Populations, Bars and Secular Evolu-

tion in Late-Type Galaxies. In Funes, J. G. and Corsini, E. M., editors, Galaxy Disks

and Disk Galaxies, volume 230 of Astronomical Society of the Pacific Conference

Series, pages 237–238.

Gadotti, D. A., Sánchez-Blázquez, P., Falcón-Barroso, J., Husemann, B., Seidel, M.,

Leaman, R., Leung, G., van de Ven, G., Querejeta, M., Fragkoudi, F., de Lorenzo-
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C. J., Dahlen, T., Häussler, B., Heymans, C., Jahnke, K., Knapen, J. H., Laine,

S., Lubell, G. M., Mobasher, B., McIntosh, D. H., Meisenheimer, K., Peng, C. Y.,

Ravindranath, S., Sanchez, S. F., Somerville, R. S., and Wisotzki, L. (2004). Bar

Evolution over the Last 8 Billion Years: A Constant Fraction of Strong Bars in the

GEMS Survey. ApJl, 615(2):L105–L108.

Jogee, S., Miller, S. H., Penner, K., Skelton, R. E., Conselice, C. J., Somerville, R. S.,

Bell, E. F., Zheng, X. Z., Rix, H.-W., Robaina, A. R., Barazza, F. D., Barden, M.,

Borch, A., Beckwith, S. V. W., Caldwell, J. A. R., Peng, C. Y., Heymans, C., McIn-
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López-Sanjuan, C., Le Fèvre, O., de Ravel, L., Cucciati, O., Ilbert, O., Tresse, L.,

Bardelli, S., Bolzonella, M., Contini, T., Garilli, B., Guzzo, L., Maccagni, D., Mc-

Cracken, H. J., Mellier, Y., Pollo, A., Vergani, D., and Zucca, E. (2011). The VVDS-

Deep Survey: the growth of bright galaxies by minor mergers since z = 1. In Zapa-

tero Osorio, M. R., Gorgas, J., Maı́z Apellániz, J., Pardo, J. R., and Gil de Paz, A.,

editors, Highlights of Spanish Astrophysics VI, pages 232–237.
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R., and Böhm, P. (2012). Design and capabilities of the MUSE data reduction soft-

ware and pipeline. In Radziwill, N. M. and Chiozzi, G., editors, Software and Cy-

berinfrastructure for Astronomy II, volume 8451 of Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series, page 84510B.

Weiner, B. J., Coil, A. L., Prochaska, J. X., Newman, J. A., Cooper, M. C., Bundy, K.,

Conselice, C. J., Dutton, A. A., Faber, S. M., Koo, D. C., Lotz, J. M., Rieke, G. H.,

and Rubin, K. H. R. (2009). Ubiquitous Outflows in DEEP2 Spectra of Star-Forming

Galaxies at z = 1.4. ApJ, 692(1):187–211.

Weinmann, S. M., van den Bosch, F. C., Yang, X., and Mo, H. J. (2006). The Depen-

dence of Galaxy Type on Host Halo Mass. arXiv e-prints, pages astro–ph/0607585.



Bibliography 181

Weinzirl, T., Jogee, S., Khochfar, S., Burkert, A., and Kormendy, J. (2009). Bulge n

and B/T in High-Mass Galaxies: Constraints on the Origin of Bulges in Hierarchical

Models. ApJ, 696(1):411–447.

White, S. D. M. (1984). Angular momentum growth in protogalaxies. ApJ, 286:38–41.

White, S. D. M. and Frenk, C. S. (1991). Galaxy Formation through Hierarchical

Clustering. ApJ, 379:52.

White, S. D. M. and Rees, M. J. (1978). Core condensation in heavy halos: a two-stage

theory for galaxy formation and clustering. MNRAS, 183:341–358.

Whyte, L. F., Abraham, R. G., Merrifield, M. R., Eskridge, P. B., Frogel, J. A., and

Pogge, R. W. (2002). Morphological classification of the OSU Bright Spiral Galaxy

Survey. MNRAS, 336(4):1281–1286.

Wozniak, H. (2007). The distribution of stellar population age in galactic bars. A&A,

465(1):L1–L4.

Wozniak, H. and Champavert, N. (2006). Lifetime of nuclear velocity dispersion drops

in barred galaxies. MNRAS, 369(2):853–859.

Wozniak, H. and Michel-Dansac, L. (2009). Formation of young boxy/peanut bulges

in ringed barred galaxies. A&A, 494(1):11–20.

Wuyts, E., Rigby, J. R., Gladders, M. D., and Sharon, K. (2014). A Magnified View

of the Kinematics and Morphology of RCSGA 032727-132609: Zooming in on a

Merger at z = 1.7. ApJ, 781(2):61.

Yoshida, N. (2008). Protostar formation in the early universe. In Hunt, L. K., Madden,

S. C., and Schneider, R., editors, Low-Metallicity Star Formation: From the First

Stars to Dwarf Galaxies, volume 255, pages 18–23.

Yoshino, A. and Yamauchi, C. (2015). Box/peanut and bar structures in edge-on and

face-on nearby galaxies in the Sloan Digital Sky Survey - I. Catalogue. MNRAS,

446(4):3749–3767.



Bibliography 182

Zanella, A., Le Floc’h, E., Harrison, C. M., Daddi, E., Bernhard, E., Gobat, R., Straz-

zullo, V., Valentino, F., Cibinel, A., Sánchez Almeida, J., Kohandel, M., Fensch, J.,

Behrendt, M., Burkert, A., Onodera, M., Bournaud, F., and Scholtz, J. (2019). A

contribution of star-forming clumps and accreting satellites to the mass assembly of

z ˜ 2 galaxies. MNRAS, 489(2):2792–2818.


	Declaration
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Tables
	List of Figures

	Introduction
	 A general description of galaxy formation and evolution
	Formation of primordial galaxies
	Hierarchical growth
	Physical processes in galaxy formation
	The formation, growth and evolution of disc galaxies

	Structure and dynamics of barred galaxies
	Major properties of bars
	The orbital structure of the bar

	Effects of bars on galaxy evolution
	Exchange of angular momentum
	Formation of pseudo-bulges
	Enhancing central star formation
	Fueling AGN
	Formation of rings
	Suppression of star formation

	Bar formation and destruction
	Bar formation through disc instabilities
	Bar slow down and growth
	Are bars long-lived features?

	Determining the time of bar formation
	Layout for thesis


	Methods
	Simulation technique
	Additional simulations
	Bar detection

	Redistribution of Stars and Gas in the Star Formation Deserts of Barred Galaxies
	Introduction
	Sample Selection
	Defining the SFD

	Results
	Age Maps
	Star Formation Histories
	Gas Removal
	Birth positions of SFD stars before & after bar formation
	Collective dynamics

	Discussion
	Limitations of the simulations
	Potential bar dating method

	Summary

	Using bar kinematics to determine the age of the bar
	Introduction
	Sample selection
	Simulations of isolated galaxies

	A new method to determine the ages of bars
	Velocity dispersion profiles in barred galaxies
	Tracing z through time
	z as an age indicator

	An explanation for the growth of z with time
	Peak positions as an indicator for initial bar length
	Application to observations
	Effect of spatial resolution 
	Effect of inclination
	Application to galaxy IC 1438

	Summary

	Summary and Future Work
	Summary of main results
	Dating bar formation using star formation histories
	Dating bar formation using kinematics

	Future work
	Further investigations using simulations
	Using Gaia and spectroscopic surveys to date the Galactic Bar
	Using MaNGA for a statistical study of bar ages and radial migration

	Concluding remarks

	Bibliography

