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Abstract： Ships are special machineries with large inertias and relatively weak driving forces. To 

simulate the manual operations of manipulating ships with Artificial intelligence (AI) is quite a 

difficult job, in which how to avoid collisions in crowded waters may be the most challenging task. 

This research proposes a cooperative collision avoidance approach for multiple ships using a multi-

agent deep reinforcement learning (MADRL) algorithm. Each ship is modelled as an individual 

agent, controlled by a Deep Q-Network (DQN) method and described by a dedicated ship motion 

model. Each agent observes the state of itself and other ships as well as the surrounding 

environment. Then, agents analyse the navigation situation and make motion decisions respectively. 

In particular, specific reward function schemas are designed to simulate the degree of cooperation 

among agents. According to the International Regulations for Preventing Collisions at Sea 

(COLREGs), three typical scenarios of simulation are established to validate the proposed approach, 

which are head-on, overtaking and crossing. After sufficient training, the ship agents were capable 

of avoiding collisions under their cooperation in narrow crowded waters.  

Keywords: Multi-agent Deep Reinforcement Learning (MADRL); Deep Q-Network (DQN); 

Maritime Autonomous Surface Ships (MASS); Multi-ship Cooperative Collision Avoidance; 

Reward Function 

Highlights:  

[1] Novel approach for multiple ships collision avoidance using a MADRL algorithm. 

[2] Novel method to model different cooperative relationships among multiple ships. 

1 Introduction 

In 2018, the 99th session of the Maritime Safety Committee (MSC) of the International 

Maritime Organization (IMO) defined the objectives, concept, degrees of autonomy, methodology 
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and work plan of maritime autonomous surface ships (MASS) (Fan et al., 2020). MASS can offer a 

perfect solution to the dilemma of modern shipping industry, while safety is still the primary concern. 

Intelligent collision avoidance is a key ingredient for MASS, involving hazard identification, 

collision avoidance and manoeuvring decision-making. However, in formal systems research, ship 

collision avoidance methods are usually applicable on the condition that only the “own ship” is 

intelligent. This means that only the own ship makes decisions, and other ships are regarded as 

obstacles that always keep their motion status. Nevertheless, achieving collision avoidance is actually 

the result of cooperative behaviours by multiple ships. Therefore, it is necessary to simulate the 

actions of multi-ship cooperative collision avoidance. 

In this research, the Multi-agent Deep Reinforcement Learning (MADRL) is used to address 

the problem of intelligent collision avoidance and cooperation modelling. In general, reinforcement 

learning (RL) can be considered as a method of mapping from environment to appropriate 

behaviours. An agent seeks a promising action by maximizing the corresponding value function, 

which is similar to the profit and loss consideration or balance of manual works. On this basis, 

cooperative collision avoidances among multiple ships can be modelled as the profit and loss 

allocation of decision-making among multiple RL agents. Moreover, navigation conventions and 

personalities of ship operators can be described as different reward functions in terms of collisions, 

cooperation and competition. After sufficient training, the artificial consciousness of ship collision 

avoidance is capable of making safe decisions and control, even if there is no cooperation between 

ship agents at all. 

In order to achieve this goal, a novel multi-ship collision avoidance approach based on MADRL 

is proposed which takes the ship manoeuvrability into consideration in this research. The paper is 

organized as follows. Relevant references are briefly reviewed in Section 2. A novel MADRL-based 

approach is put forward in Section 3. Through a simulation case study, the approach is validated in 

Section 4. Section 5 concludes this study and provides directions for future research. 

2 Literature review 

2.1 Ship collision avoidance methods 

In general, artificial ship collision avoidance mainly depends on ship position and motion 

relationship to determine the collision avoidance opportunity and make collision avoidance decisions 

using methods such as a ship domain-based approach (Szlapczynski and Szlapczynska, 2016), time 
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to the closest point of approach (TCPA) and distance at closest point of approach (DCPA) (Denker 

et al., 2016). Autonomous navigation and collision avoidance of an Unmanned Surface Vessel (USV) 

depends on automatic sensor fusion methods (Blaich et al., 2015; Chen et al., 2013; Eriksen et al., 

2018; van der Sande and Nijmeijer, 2017), which are capable of discovering static and dynamic 

obstacles. 

Autonomous collision avoidance decision-making of USV draws on the methods of robot 

collision avoidance. A* and B-spline (Wang et al., 2017), APF (Lazarowska, 2018), an ant colony 

optimization method (Song, 2014) are suggested for obstacle detection and avoidance. The evidential 

reasoning theory was used to evaluate collision risks (Zhao et al., 2016) to make collision avoidance 

decisions. The anti-collision system of USV was built on a neural-evolutionary fuzzy algorithm 

(Szymak and Praczyk, 2012) and an evolutionary neural network (Praczyk, 2015). 

With the development of RL, Chen et al. (Chen et al., 2019) proposed an approach of operating 

a vessel based on Q-learning for smart ships without any input from human experiences. Zhao and 

Roh (Zhao and Roh, 2019) put up with an obstacle avoidance model based on deep reinforcement 

learning (DRL). Chen et al. (Chen et al., 2020) made use of Deep Q-Network (DQN) to control a 

cargo ship directly, while avoiding collisions, keeping its position in the middle of the route as much 

as possible. 

Traditional multi-agent collaboration problems are generally addressed by distributed constraint 

optimization (DCOP) (Leite et al., 2014). DCOP refers to a distributed constrained optimization 

problem that decision variables and mathematical constraints are distributed in different individuals. 

Li et al. (Li et al., 2019) applied this method to multi-ship collision avoidance, predicting ship 

trajectories based on ship dynamics, giving different candidate rudder angles, evaluating the collision 

risk by each rudder angle, and then using optimization strategies to find the most effective collision 

avoidance plan for ships. However, in this research all ships are controlled by a system decision 

module, and each agent has no independent decision-making intelligence. 

Collective motions are widespread in nature, such as the concerted movements of fish, ants, 

birds, etc. A number of relevant studies applied swarm control to multi-robot, unmanned vehicle 

formation control, crowd evacuation, etc. There are many models about collective motions, while a 

leader-follower model is one of the most widely applied. This method adopts a centralized control 

structure, while one agent is the leader and the other agents are followers. The leader-follower method 
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is widely applied to design formation control for USVs (Zhou et al., 2015; Sun et al., 2018). The 

individual intelligence in swarm dynamics is simple. Zhou et al. (Zhou et al., 2019) made use of the 

DRL for USV formation path planning. However, this kind of formation control is often very 

different from the real multi-ship collision avoidance, since any single agent in this research does not 

realize independent decision-making. 

2.2 Multi-agent deep reinforcement learning (MADRL) 

With the success of DRL, it has been applied to multi-agent systems, and MADRL has been 

developed. MADRL is a stochastic game based Markov decision-making process (Foerster et al., 

2016), which can be described as a tuple (𝑛, 𝑆, 𝐴1, … , 𝐴𝑛, 𝑇, 𝛾, 𝑅1, … , 𝑅𝑛), where 𝑛 is the number of 

agents, 𝑆 is a finite set of environment states, 𝐴 = 𝐴1 ×…× 𝐴𝑛  is the collection of action sets, 

𝐴1, … , 𝐴𝑛 , one for each agent in the environment. 𝑇  is the state transition probability function, 

controlled by the current state 𝑆 and one action from each agent: 𝑇：𝑆 × 𝐴1 × 𝐴2…× 𝐴𝑛 → 𝑆′[0,1]. 

𝑅 is the return function, 𝑅𝑖  is the reward of agent 𝑖 in state 𝑆 after taking joint action in state 𝑆′. 

In the multi-agent case, the state transitions are the result of the joint action of all the agents. 

The policies 𝑀𝑖: 𝑆 × 𝐴 → 𝑀, form the joint policy 𝑀 together. Accordingly, the reward for each 

agent is: 

𝑅𝑖
𝑀 = 𝐸[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 , 𝑖 = 𝑎,𝑀]                                                                                          (1) 

The Bellman equation is  

𝑣𝑖
𝑀(𝑠) = 𝐸𝑖

𝑀[𝑅𝑡+1 + 𝛾𝑉𝑖
𝑀(𝑆𝑡+1)|𝑆𝑡 = 𝑠]                                                                                             (2) 

𝑄𝑖
𝐻(𝑠, 𝑎) = 𝐸𝑖

𝑀[𝑅𝑡+1 + 𝛾𝑄𝑖
𝑀(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                                                     

(3) 

According to different rewarding schemes, different games can be created, such as a fully 

cooperative one, a fully competitive one and transition between cooperation and competition, which 

is also called mixed games. 

Collaborative agents performed better than an independent agent through experiments (Tan, 

1993). Tampuu et al. (Tampuu et al., 2017) extended the DQN algorithm to multi-agent environments 

in the Pong videogame, with the two agents controlled by independent DQN. By manipulating reward 

rules, they demonstrated how competitive and collaborative behaviours emerge. MADRL has 

reached the level of professional players in the first person multi player game and cooperated with 

other real players (Jaderberg et al., 2019). 
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As discussed above, this research uses the MADRL to realize the cooperative collision 

avoidance awareness of multiple ships. Each ship is regarded as an agent which observes the state of 

itself and the others as well as the surrounding environment, judges the navigation situation and 

makes decisions respectively in the multi-ship encounters. In addition, different agent reward 

function schemas are designed to simulate the states of cooperation mode, such as a fully competitive 

one, a fully cooperative one, and transition between cooperation and competition. Finally, repeated 

training is carried out in different encounter scenarios to realize the cooperative collision avoidance 

awareness among multiple ships. 

3 A proposed approach 

3.1 Mathematical modelling of ship motions 

Ship manoeuvring motions are used to forecast the state changing of a ship when it takes specific 

action, making the training environment consistent with the real world. In this area, ship manoeuvring 

motions are generally presented with a standard three degree-of-freedom MMG model (Chen et al., 

2020) that considers surge, sway, and yaw for simplification. Fig. 1 illustrates the static earth-fixed 

𝑜0 − 𝑥0𝑦0𝑧0  and the dynamic body-fixed 𝑜 − 𝑥𝑦𝑧  coordinate systems. The origin of 𝑜 − 𝑥𝑦𝑧 

locates at the middle of the ship 𝑂. 𝑥-, 𝑦 - and 𝑧- axes are positive to the bow of a ship, the starboard 

of the ship, and downwards of the water surface 𝑥𝑦 respectively. Assuming that the ship presented 

in Fig. 1 is maneuvering at surge speed 𝑢 and sway speed 𝑣, the ship speed is 𝑉 = √𝑢2 + 𝑣2. The 

heading angle is 𝜓. The ship is turning with a rudder angle 𝛿 at yaw rate r=𝜓  . 

The MMG model used in this research describes the hydrodynamic force and the moment in 

three aspects: hull, propeller and rudder. The motion equations are expressed as follows: 

 

(𝑚 + 𝑚𝑥)𝑢 − (𝑚 + 𝑚𝑦)𝑣𝑟 − 𝑥𝐺𝑚𝑟2 = 𝑋𝐻 + 𝑋𝑃 + 𝑋𝑅

(𝑚 + 𝑚𝑦)𝑣 + (𝑚 + 𝑚𝑥)𝑢𝑟 + 𝑥𝐺𝑚𝑟 = 𝑌𝐻 + 𝑌𝑅  

(𝐼𝑍 + 𝑥𝐺
2𝑚 + 𝐽𝑍)𝑟 + 𝑥𝐺𝑚(𝑣 + 𝑢𝑟) = 𝑁𝐻 + 𝑁𝑅        

                                                                

(4)  

where subscripts 𝐻, 𝑃, and 𝑅 denote hull, propeller, and rudder, respectively, with force (𝑋 and 𝑌) 

and moment (𝑁). 𝑚 is the ship mass, 𝑚𝑥 and 𝑚𝑦 are added mass due to motions in surge and sway 

directions. 𝑢 , 𝑣  and 𝑟   are surge, sway and yaw acceleration, and 𝐼𝑧, 𝐽𝑧 are the moments of inertia, 

where 𝐼𝑍 ≈ (0.25𝐿𝑝𝑝)
2
m. If not particularly specified, the parameters, such as velocity (𝑢, 𝑣, 𝑟, and 

𝑉), acceleration (𝑢 , 𝑣 , and 𝑟 ), force (𝑋 and 𝑌), and moment (𝑁)  are defined on or around midships. 
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According to the MMG model, the trajectory and status of a ship can be predicted under different 

initial conditions (positions, speeds, rudder angles and different angular velocities). 

3.2 MDP of multi-ship cooperative collision avoidance 

For the multi-ship cooperative collision avoidance, each ship is an agent capable of observing 

environment, collecting data and autonomous learning. Its state space is formulated on the current 

rudder angle, position, speed and heading of each ship, which can be represented by 

𝑆 = [𝑎𝑛𝑔𝑙𝑒1, 𝑥1, 𝑦1, 𝑣1, 𝜓1, 𝑎𝑛𝑔𝑙𝑒2, 𝑥2, 𝑦2, 𝑣2, 𝜓2, ⋯ , 𝑎𝑛𝑔𝑙𝑒𝑛, 𝑥𝑛, 𝑦𝑛, 𝑣𝑛, 𝜓𝑛]                              (5) 

where 𝑛 is the number of the agents, 𝒙 is the X-coordinate, 𝒚 is the Y-coordinate and 𝜓 is the 

heading of the ship. For simplification of the model and computing, the speed of the simulated ship 

is set to be constant 𝑣. 

This research defines the action space as [-5, 0, 5], meaning that the rudder angle turns 5° to the 

left, remains unchanged, or 5° to right respectively. Considering the steering angle of a ship is 

generally between ±35°, the rudder angle after taking an action must also be within this range.  

 

Fig.1. Applied earth-fixed and body-fixed coordinate systems 

For the multi-ship system, it is necessary to define the reward value of a single agent first. In 

fact, each factor that affects the choices of a helmsman should be described as appropriate rewards 

or punishments. Since many factors have a direct or indirect influence on the decisions of the 

helmsman, it might take enormous effort to list up these factors perfectly in a reward function, which 

should be a huge engineering problem. Hence, this research only selects five typical factors from 

different perspectives, aiming to demonstrate the applicability of the proposed approach.  

(1) Approaching a destination. Generally speaking, each ship should reach its destination. If the 

ship cannot approach the destination, the navigation is considered as failure. This reward is set as 
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rdestination={
λdestination,    approaching the destination

-λdestination,  else                                     
                                                        

(6) 

where λdestination is a constant greater than 0. When the ship agent is approaching its destination, the 

reward is set to λdestination . When the ship cannot approach its destination, the reward is set to 

-λdestination. This policy will encourage the ship not to deviate from the navigation destination.  

(2) Lane deviation. Lane deviation is an abnormal behaviour, which is easy to lead to accidents. 

Therefore, lane deviation is not encouraged while navigating. Hence, this reward is denoted as, 

rlane={
λlanein, in lane           

-λlaneout,  lane deviation
                                                                                             (7) 

where λlanein denotes the reward value when the ship is sailing in the route, and -λlaneout denotes the 

punishment when the ship is out of the route.  

(3) Ship domain. Ship domain is a concept invented by traditional marine technologies 

(Szlapczynski and Szlapczynska, 2016). In practice, collision avoidance is difficult for a cargo ship 

due to its large tonnage, huge inertia, and relatively weak driving forces. Therefore, an imaginary 

region, namely a ship domain, should be defined in advance which is generally 7 times longer than 

the ship’s length and 3 times wider than its width. When an obstacle has entered this area, caution 

warnings will be triggered, which is a tense situation for all the crews. An experienced helmsman 

should try to avoid this situation. This reward can be denoted as, 

rdanger={
-λdanger,  in ship domain

0,  else          
                                                                                            

(8) 

where -λdanger denotes the punishment when some other object enters the ship’s domain. 

(4) Collision. To avoid collision is the first priority for ships. When colliding with some objects, 

such as other ships, rocks or a coastline, the ship should be punished. This reward is denoted as, 

rcollision={
-λcollision,  if collision

 0,  else 
                                                                                                

(9) 

where -λcollision denotes the punishment value. Moreover, if the target collides with something, the 

present episode of training can be considered as failed and the training process will restart. In 

particular, λcollision should be assigned with a relatively large value, since avoiding collisions should 

always be the priority. 
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(5) Avoidance rules. The ship collision avoidance rules are very complex. This research selects 

one typical rule for modelling. The ships tend to avoid the coming ship from its right side and to sail 

through the stern of the other ship. The avoidance of violating this process can be regarded as 

unreasonable. Other rules or conventions can also be modelled by this method. 

rregulation={
-λregulation,  breaking the rule 

0,  else                      
                                                                           (10) 

where -λregulation denotes the punishment when the ship breaks the rule. 

Based on these five factors above, the agent reward can be defined as, 

r=rdestination+rlane+rdanger+rcollision+rregulation                                                                   (11) 

As elaborated previously, the factors that affect the ship are more than these five discussed in 

this section. The reason for choosing these five lies in that they are coming from different 

perspectives. More factors based on another perspective can be modelled similarly.  

3.3 Different cooperative relationships between ship agents 

Compared with a single agent, each agent is affected not only by the environment, but also by 

other agents in a multi-agent system. Therefore, each agent in a multi-agent system must observe the 

state and behaviour of other agents, and the state transition and reward value of each agent are 

affected by the joint action of all agents. 

Similarly, each ship agent must observe the state and action of other agents, and their own state 

and behaviour will also affect other agents for the multi-ship system. This research assumes that there 

are two ship agents in the system. When these two ships encounter, the two agents will be in different 

cooperative relationships, making different decisions if their cooperation goals are different. 

(1) Fully cooperative 

Each agent not only considers its own navigational safety, but also avoids putting the other one 

in danger, when ships encounter. Such two ship agents are fully cooperative. To achieve this goal, 

both agents are penalized whenever one agent is in danger. In other words, the goal of the two ship 

agents is to maximize the sum of their cumulative returns.  

(2) Fully competitive 

On the contrary, agents only focus on their own safety, even if their decisions will put the other 

in danger. The goal of the two ships is to maximize each one’s own cumulative returns, regardless of 

the reward value and safety of the other. Such two ship agents are fully competitive. 
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(3) A mixed game 

When two ships encounter, they form the relationship of the transition between cooperation and 

competition if they are neither fully cooperative nor fully competitive. 

Suppose the two ship agents’ rewards are 𝑟1 and 𝑟2 which can be calculated by Equation (11) 

after performing a certain action. 

The return function of Ship 1 can be defined as,  

R1=r1+ρ2r2                                                                                                                                             (12) 

Accordingly, the return function of Ship 2 can be defined as, 

R2=ρ1r1+r2                                                                                                                            (13) 

Then the return function of the system is the sum of the reward functions of the two agents, 

R=R1+R2                                                                                                                               (14) 

As shown in Table 1, when 𝜌1 and 𝜌2 are both equal to 1, the return function can be maximized 

only when both ships obtain positive returns, and the two agents are fully cooperative. While 𝜌1 and 

𝜌2 are both equal to 0, each agent only considers to maximize its own reward and the two agents are 

fully competitive. While 𝜌1 and 𝜌2 are from 0 to 1, the two agents are in a mixed stochastic game. 

Table 1 Cooperative relationships between multi-ships 

𝜌1 𝝆𝟐 Cooperative relationships 

1 1 Fully cooperative 

0 0 Fully competitive 

[0,1] [0,1] Mixed game 

It is appropriate to simulate and learn the decision-making of crew members with different 

personalities in multi-ship encounters in this way. As a result, agents can select optimal actions in 

different modes. 

3.4 The network structure of a multi-ship cooperative system 

As shown in Fig.2, the multi-agent network is modelled by a multi-layer perceptron. The input 

of the system is its state space, represented by [𝑎𝑛𝑔𝑙𝑒1, 𝑥1, 𝑦1, 𝑣1, 𝜓1, 𝑎𝑛𝑔𝑙𝑒2, 𝑥2, 𝑦2, 𝑣2, 𝜓2]. There 

are 128 nodes in its first layer, which is a fully connected. The second layer is also a fully connected 

layer, with 64 nodes. The output layer consists of three nodes, corresponding to the three actions of 

action space. 
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Fig.2. The network model of the multi-ship system 

To ensure the stability of convergence, the DQN algorithm is adopted, which stores the current 

state, action, return and next state in a replay buffer, sampling through the greedy policy. The goal 

of the system is to make the difference between the target Q network and the Q network as little as 

possible. More importantly, each ship agent is controlled by the DQN algorithm with the same 

structure and parameters. The training parameters of its network model are shown in Table 2. 

Table 2 Cooperative Relationships between multi-ship 

Parameter Value 

Learning Rate 0.0002 

Discount Rate 0.99 

Minibatch Size 128 

Replay Memory Size 20000 

Target Network Update 

Frequency 
1000 

Initial exploration 1 

4 A Case Study and Validation 

4.1 Experimental platform 

To verify the effectiveness of the proposed approach, the PyCharm was used to establish a 

simulation environment. As discussed previously, this research only used two agents to reduce 

calculation and to speed up the convergence. Moreover, the two ship agents chose a KVLCC2 tanker 

as the motion model, which is the standard object of modelling in navigation studies (Liu et al., 2016). 

Simulations are performed with the model-scale ship parameters as presented in Table 3. 

Table 3 Basic parameters of the KVLCC2 within the MMG model 

Attributes Value 

Length (m) 7 
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Attributes Value 

Width (m) 1.17 

Draught (m) 0.46 

Block coefficient (-) 0.81 

Propeller revolution per second (1/s) 10.4 

Range of rudder angles (deg) 
-

35~35 

A scenario editor is designed and developed based on Pygame and Tinker. In this scenario 

editor, it is possible to set the scenario size, the ship size, the departure, the destination, the ship 

speed, etc. Moreover, the reward function can be set for each ship agent based on the description in 

Section 3 in this scenario editor. 

According to the International Regulations for Preventing Collisions at Sea (COLREGs), this 

scenario editor modelled three scenarios, head-on, overtaking, and crossing (Zhao and Roh, 2019). 

4.2 Training in different scenarios 

The training was carried out separately with three different scenarios. As discussed previously,

 cooperative and competitive agents emerged by adjusting the cooperation coefficient of the two shi

p agents. The video of the trained ship sailing cooperatively in different scenarios can be found onli

ne (https://www.youtube.com/watch?v=h7ssNImWECg&list=PLia6EPeX0ULyw6FRlo0MZyYGi

C9rlze-C). 

4.2.1 Head-on 

This scenario size was set to 240 pixels × 560 pixels, where the top-left corner was taken as the 

origin (0, 0). The initial position of Ship 1 was (120, 30), and its destination was (120, 560). While 

the initial position of Ship 2 was (120, 560), and its destination was (120, 0). The speed of the two 

ship agents was 1.0 pixels per second with initial heading angle set to 0. It was found that the two 

agents were capable of avoiding collision only in the fully cooperative scheme after training. Due to 

the narrow waterway, two ship agents in the fully competition and mixed games could not spare 

enough space for each other. Hence, it was difficult to avoid collision and impossible to sail safely. 

Based on Fig. 3(a), it can be inferred that both ship agents turned to the left in the head-on encounter. 

When one ship agent left the domain of the other, they both turned starboard and returned to the 

middle of the waterway.  

4.2.2 Overtaking 
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The overtaking encounter scenario size was also set to 240 pixels × 560 pixels, where the top-

left corner was taken as the origin (0, 0). The initial position of the two ship agents was (120, 480), 

and their destination was (120, 0). The speed of the ship agent overtaking was 1.5 pixels per second, 

while the one of the ship being overtaken was 0.4 pixels per second. 

Similarly, it was found that the two agents were capable of avoiding collision only in the fully 

cooperative scheme after sufficient training. Based on Fig. 3(b), it can be inferred that the ship being 

overtaken turned starboard while the overtaking ship turned to left in the overtaking situation. When 

the overtaking process was over, the overtaken ship turned left and returned to the middle of the 

waterway. 

       

(a) Head-on                                  (b) Overtaking 

Fig.3. The trajectories of ship agents in the collision avoidance process  

4.2.3 Crossing 

The size of crossing encounter scenario was set to 480 pixels × 480 pixels, where the top-left 

corner was taken as the origin (0, 0). The initial position of Ship 1 was (240, 0), and its destination 

was (240, 480) while the initial position of Ship 2 was (0, 240), and its destination was (480, 240). 

The speed of the two ship agents was 1.0 pixels per second with initial heading angle set to 0. In this 
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scenario, the multi-agent system had acquired the cooperative collision avoidance intelligence 

through training in three cooperative schemes. 

(1) Fully cooperative 

As discussed above, when both 𝜌1 and 𝜌2 were set to 1, the two agents were fully cooperative, 

and the goal was to achieve optimal the return value of the two agents in all. From Fig. 4(a), it can 

be seen that both ships turned starboard and passed through the port side of each other. Furthermore, 

Ship 1 passed through the stern of Ship 2. It can be concluded that the collision avoidance of the two 

ships followed "right hand collision avoidance", which met the requirement of the COLREGs. 

(2) Fully competitive 

Both 𝜌1 and 𝜌2 were set to 0, the two agents only took their own safety and efficiencies into 

consideration. From the experimental results, both agents turned left and passed through the starboard 

side of the other one, and Ship 1 passed through the bow of Ship 2, as shown in Fig. 4(b). Although 

the collision avoidance was successful, it did not conform with the navigation rules, which was still 

very dangerous in practice.  

(3) Mixed game 

In this experiment, both 𝜌1 and 𝜌2 were set to 0.5. As a result, the two agents played a mixed 

game. From the experimental results, both agents turned left and passed through the starboard side 

of the other one, and Ship 1 passed through the bow of Ship 2, as shown in Fig. 4(c). The collision 

avoidance process of the two ships also went against the collision convention. However, the 

"dangerous situation" had not appeared since the two agents took early actions. 

 

(a) Fully cooperative 
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(b) Fully competitive 

 

 (c) A mixed game 

Fig.4. The trajectories of ship agents in collision avoidance process of crossing  

5 Conclusion 

In order to simulate the cooperative collision avoidance awareness between multi-ships, this 

research analysed the cooperation mechanism between agents using MADRL and established several 

cooperative schemas by determining the coefficient in reward functions. According to the rules of 

ship collision avoidance, this study modelled different scenarios and verified the proposed method. 

Different from the traditional nonlinear optimization-based method, each MADRL agent had an 

independent operation consciousness and was capable of making relatively reasonable decisions even 

without the cooperation of the other agent, which is highly similar to the human consciousness. 

Overall, it provided new solutions for bionic modelling of ship operations, which is of important 

theoretical and practical significance. 
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However, it was found that the incensement of agents led to an exponential growth of action 

space, which made the training time-consuming in a more complex avoidance experiment. Therefore, 

it is necessary to develop new methods to reduce the amount of calculation. On the other hand, it 

might be a wise way to imbed human knowledge into the MADRL-based model to speed out the 

convergence in finding the optimal route.  
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