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A B S T R A C T   

Toxicology in the 21st Century has seen a shift from chemical risk assessment based on traditional animal tests, 
identifying apical endpoints and doses that are “safe”, to the prospect of Next Generation Risk Assessment based 
on non-animal methods. Increasingly, large and high throughput in vitro datasets are being generated and 
exploited to develop computational models. This is accompanied by an increased use of machine learning ap-
proaches in the model building process. A potential problem, however, is that such models, while robust and 
predictive, may still lack credibility from the perspective of the end-user. In this commentary, we argue that the 
science of causal inference and reasoning, as proposed by Judea Pearl, will facilitate the development, use and 
acceptance of quantitative AOP models. Our hope is that by importing established concepts of causality from 
outside the field of toxicology, we can be “constructively disruptive” to the current toxicological paradigm, using 
the “Causal Revolution” to bring about a “Toxicological Revolution” more rapidly.   

“I would rather discover one causal relation than be king of Persia” 
(Democritus, 430–380 BCE) 

The 21st Century has seen a shift from chemical risk assessment 
based on traditional animal tests, identifying apical endpoints and doses 
that are “safe”, to the prospect of Next Generation Risk Assessment 
(NGRA) based on non-animal methods and led by exposure and mode of 
action considerations. There have been a number of drivers for this 
process and an undoubted catalyst is the Adverse Outcome Pathway 
(AOP) concept and its community of practice. A decade on from the 
inception of AOPs, it is easy to see that Ankley et al. [1] hit the sweet 
spot at the right time. Arguably, the World was in the mood for forward- 
looking and unifying frameworks, following the global financial crash of 
2008. The vision of toxicology based on analysis of pathway perturba-
tions, rather than finding adverse outcomes, was presented in the sem-
inal paper “Toxicity Testing in the 21st Century” [2] at a time when new 
technologies were becoming increasingly available to give insights into 
biochemical and physiological pathways. The AOP framework presented 
was elegant in its simplicity, fundamental in its scientific basis and 

irrepressible! A decade later, the original linear, qualitative AOP concept 
has evolved in several ways. With more and more data being generated 
from emerging technologies, e.g., 2-D and 3-D in vitro models, batteries 
of in vitro tests, organ-on-a-chip, high-throughput and high-content 
screening technologies, as well as machine learning (ML) approaches 
being applied, the opportunities for quantifying AOPs cannot be missed. 

First described by Villeneuve [3], quantitative Adverse Outcome 
Pathway (qAOP) models are considered a cornerstone to screen mole-
cules, predict their points of departure from normal physiological 
pathways, and quantify the relationships between upstream events and 
downstream events, including the adverse outcome (AO). The Organi-
sation for Economic Co-operation and Development (OECD) Guidance 
document on the use of AOPs in Integrated Approaches to Testing and 
Assessment (IATA) [4] defines a qAOP as “an assembly of key events (KEs) 
supported by descriptions of how the KEs can be measured and the accuracy 
and precision with which the measurements are made along with key event 
relationships (KERs) supported by a quantitative understanding of what 
magnitude and/or duration of change in the upstream KE is needed to evoke 
some magnitude of change in the downstream KE”. In this commentary, we 
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describe how mathematical modelling, and in particular the use of 
Bayesian networks, can be used to inform the quantitative understand-
ing of KERs. As of mid-2020, there are only a handful of models for 
qAOPs publicly available [5]. The practical difficulties in developing a 
qAOP model are many and diverse, starting with a lack of appropriate 
quantitative data compared to the abundance of qualitative mechanistic 
information. There are also challenges in integrating multiscale omics 
and phenotypic data to identify and map causal effects induced by 
toxicants. The strategy for developing a qAOP is dictated by what goes 
into the model and what is expected as an output from the model. At one 
level, quantification refers to individual KEs, which are inferred from 
quantitative data for the causal cascade of events. At another level, 
quantification of individual KERs and indeed the entire AOP can be 
achieved by mathematical modelling using deterministic models, or a 
probability distribution, or a conditional probability table (CPT) as in a 
Bayesian network. It is therefore reasonable to ask, what efforts are 
needed to advance the concept of qAOP in predictive toxicology? 

Emerging approaches, or so-called New Approach Methodologies 
(NAMs), are increasingly considered to be the basis of NGRA, as exem-
plified by studies such as Baltazar et al. [6]. Recently, Knight et al. [7] 
have expressed a view on the actions needed to support these new ap-
proaches while Cronin et al. [8] have made a “call for action” that they 
be implemented. Although relevant and reliable methodological ap-
proaches are being developed and demonstrated, a key pre-requisite for 
their widespread application is trust. Trust in NAMs is required at 
various levels, from the risk manager in industry, to the regulatory sci-
entist in a government agency, to the consumer. Trustworthiness, or 
credibility, is not an intrinsic property of the NAMs themselves but de-
pends on a shared belief with all stakeholders [9]. As we move towards 
an Artificial Intelligence (AI)-driven society, understanding how we can 
build trust will give stakeholders confidence and reduce the conspiracy 
theory laden “fake news”. Finding effective and efficient ways of 
building trust in NAMs is crucial, irrespective of whether we aim for 
incremental change, or if we consider that an element of “disruptive 
thinking” is required to increase the acceptability of new methods [10]. 
We need to take risks and shake up the status quo to make progress, but 
changes made in the name of progress must be broadly accepted and 
sustainable. The question is how long will it take for innovations to 
diffuse, given the conservative tradition of the science? 

An essential requirement for trustworthy models is to demonstrate 
causality. Reproducible and robust results cannot be achieved with ob-
servations or random patterns alone [11]. It is about formulating hy-
potheses about the underlying mechanistic relationships and testing 
these hypotheses through carefully designed experiments, typically, in 
an iterative manner. Thus, models that are fit-for-purpose instead of 
solely providing predictions are more likely to be credible (acted upon). 
For instance, Musuamba et al. [12] advocated for well described and 
clearly stated scientific questions as part of a risk-informed evaluation 
framework for the credibility assessment of in silico models for drug 
development. In terms of the toxicology supporting chemical risk 
assessment, causality is conventionally represented by the direct asso-
ciation with the mechanism of action producing the AO. This explains 
the popularity of the (q)AOP paradigm, which is firmly based on 
mechanistic thinking. Whilst this understanding of causality is obvious 
to many in the area of toxicological risk assessment, it is worthwhile to 
consider the subject of causality in more detail, especially as it forms an 
integral part of many mathematical approaches to qAOP development. 
Here, we highlight in particular the utility of Bayesian theory, which has 
the potential to become one of the dominant modelling approaches. 

Bayesian statistics is an approach to data analysis and parameter 
estimation based on Bayes’ theorem [13]. It summarises the results as 
probability distributions on the parameters of the model based on 
observed quantities [14]. The core element in the Bayesian framework is 
the prior that reflects the knowledge/belief about the parameters before 
the data collection step. The usefulness of the prior is that it can be 
updated once new information becomes available [13]. For instance, 

quantification of an AOP with little information can be started with 
some prior judgement based on domain expertise, which can be updated 
to reflect new evidence, for example new data generated by NAMs. It is 
not sufficient to collect any data, but rather generate and interpret 
relevant data to unveil cause-effect relationships for evidence-based 
decision making. The combination of causal principles with Bayesian 
inference allows for the estimation of the effect size of model parame-
ters, e.g., as a result of an intervention, including evaluation of all 
possible combinations of perturbations that in practice is rarely 
achievable. 

To better understand causality, we should not restrict our thinking to 
our pre-conceptions of toxicology for risk assessment. The science of 
causality has been brought to light by Judea Pearl who, in his recent 
book “The Book of Why” written with Dana Mackenzie [15], tells the 
“silent history of cause and effect”. Pearl and Mackenzie explain how the 
“Causal Revolution” is the new paradigm that is much needed to prog-
ress computational modelling, especially in the context of artificial in-
telligence (AI). The importance of understanding causal relationships is 
evidenced by the realisation that traditional statistical thinking fails to 
address real-world causal processes. Since causality is the direct rela-
tionship of cause and effect, this can only be established by evidence, but 
often this evidence requires painstaking efforts to obtain. No wonder 
causal reasoning is the neglected child of computational modelling and 
AI, technologies that are possibly promoted more by hope and hype than 
reality. At a time when there are increased opportunities for computa-
tional modelling in toxicology and the sustainable management of 
chemicals [16], it is surely time to step back and consider what causality 
means in the “new age” and why it will be crucial in a society requiring 
evidence, and not just a convincing narrative about what events trigger 
other events. 

In this commentary, we explore the key role of causality in devel-
oping models, as proposed by Judea Pearl, to facilitate the development, 
use and acceptance of qAOP models. Our hope is that by importing 
established concepts of causality from outside the field of toxicology, 
there will ultimately be a wider acceptance of models by all stake-
holders. The intention is to provide a stimulus to be “constructively 
disruptive” to the current toxicological paradigm, i.e., how we can use 
the “Causal Revolution” to bring about a “Toxicological Revolution” 
more rapidly. 

While a qAOP model can in principle be data-driven [5], we propose 
that it should be a fundamental requirement for a qAOP model to express 
the causal relationships between a stressor and the toxicity endpoint/AO 
of interest. The stressor is typically a chemical but could also be a 
pathogen such as a virus [17]. As an example of a chemically induced 
AO, Bal-Price et al. [18] compiled evidence showing that a brain con-
centration of 20–30 nM of rotenone in rats leads to approximately 53% 
of inhibition of complex l of the mitochondrial respiratory chain. This, in 
turn, leads to an approximately 20–53% decrease in respiration rate and, 
possibly more significantly, an approximately 20–60% decrease in 
ubiquitin proteasomal system activity which is involved in neuronal loss 
and motor impairment, the latter being responsible for Parkinsonian 
motor deficits (Fig. 1A). These statements were derived from experi-
mental studies combined with domain knowledge, conceived within a 
qualitative AOP framework. Tools to translate such assumptions into 
mathematical models to simulate the magnitude by which a downstream 
key event is altered, or perturbed, by a change in an upstream key event 
will advance the qAOP framework and make it applicable. In this 
context, the prior in the Bayesian model can serve as a bridge between 
what is known and what else is required to validate the mechanistic 
assumptions. 

To understand the fundamental principle of causality in an AOP, let 
us consider whether the causality is known or assumed, and whether the 
AOP framework itself allows us to think in a sufficiently causal way. 
Although there is no “big” theory of toxicology [19], an AOP can be 
regarded as an established “small” theory. Pearl refers to the “causal 
diagram” as the way to represent our scientific knowledge about a 
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variable of interest, also termed a directed acyclic graph (DAG). Thus, 
causal diagrams consist of variables (nodes) or quantities and arrows 
(edges) that indicate known or suspected causal relationships between 
those variables (Fig. 1B). Pearl advocates the use of such diagrams 
because: a) they are easy to draw and comprehend; b) they can estimate 
all sorts of causal relationships – simple or complicated, deterministic or 
probabilistic, linear or nonlinear; and c) most importantly, they allow 
for the storage of information for future reference and application. 
Additionally, DAGs are models representing how we think the world, or 
process of interest, works. Once written, a DAG helps to identify all 
testable implications and establish whether the model derived is 
compatible with the data. Furthermore, a causal diagram is a Bayesian 
network, a term coined by Judea Pearl in 1985. Each arrow implies a 
direct causal relation, or at least the possibility of one, in the direction of 
that arrow. Pearl confesses that “[he] wanted Bayesian networks to operate 
like the neurons of a human brain; you touch one neuron, and the entire 
network responds by propagating the information to every other neuron in the 
system” [15]. Furthermore, Bayesian networks are efficient in coping 
with contradictory and uncertain data that can be implemented on 
modern computer platforms. Other advantages of Bayesian networks are 
that: a) they are transparent and understandable compared to other 
computational techniques, e.g., deep neural networks; b) they allow 
every step to be followed, pinpointing how and why each piece of evi-
dence changed the network’s beliefs; c) there is no need to intervene to 
tell the network how to evaluate a new piece of data; d) updating can be 
done very quickly; and e) the network is integrative, which means that it 
reacts as a whole to new pieces of information. 

However, Bayesian networks should be developed and interpreted 
with care. Depending on how they are constructed, they are not neces-
sarily causal. There is also a need to avoid any ambiguity in the way the 
node is classified into states such as high, medium, or low. In the case of 
larger networks, where a node has multiple “parent” nodes, there is also 
the practical challenge of specifying the conditional probability tables 

(CPTs). As Pearl points out, “while probabilities encode our beliefs about a 
static world, causality tells us whether and how probabilities change when the 
world changes, be it by the intervention or by act of imagination” [15]. Pearl 
adds that “the main differences between Bayesian networks and causal di-
agrams lie in how they are constructed and the uses to which they are put. A 
Bayesian network is literally nothing more than a compact representation of a 
huge probability table” [15]. In other words, a Bayesian network can tell 
how likely one event is, given an observed one, while causal diagrams 
can answer interventional and counterfactual questions. Interventional 
questions ask what effect an intervention will produce on the observed 
variable. For example, does chemical X alone, or in combination with a 
chemical Y, induce adverse effects? Counterfactual questions ask “what 
if” something else had happened, referring to a process analysed retro-
spectively. In the counterfactual case, Pearl explains that “we imagine a 
different scenario in order to change the circumstances being analysed” [15]. 
For example, what if a person were exposed to chemical X, but not under 
the specified conditions, would the same adverse effect be observed? In 
other words, counterfactual questions allow us to assess situations that 
cannot be observed or measured in real-life, or in the past, due to ethical 
considerations or incapacity to perform such experiments. 

Pearl also comments that “with Bayesian networks, we had taught 
machines to think in shades of grey, and this was an important step toward 
humanlike thinking. But we still couldn’t teach machines to understand 
causes and effects” [15]. Hence, the science focused on identifying pat-
terns in data rather than understanding the reason for those patterns. 
Given this limitation, it becomes obvious why an understanding of 
Pearl’s concepts is relevant to the AOP framework. They provide the 
conceptual basis for developing and quantifying an AOP, especially 
through Bayesian networks or similar approaches. Additionally, the 
causality methodology proposed by Pearl helps to answer both types of 
“why” questions: the straightforward one, when we seek to know the 
cause of toxicity (i.e., the stressor and the potential adverse effect), and 
the more challenging one when we want to understand the mechanism 

Fig. 1. A. The AOP for Parkinsonian motor deficits is taken as an example to underline one of the characteristics of a qAOP model, mainly understanding the cause 
and effect in the context of predictive toxicology (https://aopwiki.org/aops/3). Numbers represent the indices of the events in the OECD AOP-Wiki Knowledge Base 
available at https://aopwiki.org/events/XXX, where xxx is the index in the node. B. A causal diagram representing the linkage between cigarette smoking and lung 
cancer. C. Scheme for the general process of qAOP model development and application. Depending on the available level of resources, an AOP can be used to generate 
data or model quantitatively to make predictions and test a hypothesis. D. The causal inference engine was proposed by Judea Pearl as described in the text and is 
taken from [15]. 
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itself. 
The development of a qAOP model is hypothesis driven. AOPs give us 

the opportunity to test a hypothesis to examine the causal evidence for 
an adverse effect with human or ecological relevance. We consider that 
mechanistic modelling, which implies the use of empirical dose- 
responses, Bayesian networks and systems biology, to be most appro-
priate for such purposes. For example, a simplified AOP mechanistic 
model linking thiol oxidation to chronic kidney disease through oxida-
tive stress and mitochondrial disruption was quantified by Zgheib et al. 
[20], allowing three quantitative approaches to be compared [20]. 
Additionally, this qAOP model allowed for the evaluation of different 
levels of exposure of a chemical tested over time and the derivation of 
chemical-independent key event relationships by inversion of the 
empirical model applied. Another example of accounting for causality 
represents the quantification of a simplified AOP network for develop-
mental neurotoxicity [21]. The AOP network was constructed from a set 
of linear AOPs, which were available in the OECD AOP Wiki Knowledge 
Base and developed following the principles of the weight of evidence 
analysis. The hypothesis included key events identified as most con-
nected based on a topology analysis of the network. The model was 
constructed using NAM-generated data, and a Bayesian parametric 
approach was employed to evaluate compounds for their probability of 
following the causal relationships and inducing the biological events. In 
other words, a qAOP model serves as a tool to translate descriptive 
qualitative assumptions into the quantitative predictions of an AO in 
hazard and risk assessment, as shown in Fig. 1C. 

Considering in more detail how to develop a qAOP model, we need to 
think about the (key event) data underlying the relationships. Pearl 
asserts that “data are profoundly dumb” because they cannot tell us the 
“why” [15]. Therefore, as Pearl indicates, “causal questions cannot be 
answered from data alone, it needs to formulate models that generate the data 
to understand their patterns” [15]. Also, Pearl emphasises that “data 
interpretation means hypothesising on how things operate in the real world” 
[15], and even though conclusions can be drawn with only partial in-
formation, and not necessarily knowing every causal relation between 
the variables of interest, a minimum causal hypothesis is always 
required. Importantly, Pearl makes a distinction between two types of 
data interpretation: deduction – reasoning from hypothesis to conclu-
sion, and induction – reasoning from evidence to a hypothesis. This is 
akin to what is sometimes referred to as the forward problem versus the 
inverse problem [22]. Furthermore, Pearl’s methodology is based on 
Bayes’ rule and consists of several steps: (1) formulate a hypothesis, (2) 
deduce a testable consequence of the hypothesis, (3) perform an 
experiment and collect evidence, and (4) update your belief in the hy-
pothesis. Consistent with this methodology, the development of a qAOP 
does not require pattern recognition but rather relies on the measure-
ment of relevant data by using assays associated with key events. 

If we accept the need to consider causality in predictive toxicology 
models, and in particular qAOPs, then we need means to evaluate that 
causality. As we move to the holy grail of regulatory acceptance of 
models and their predictions, the demonstration of causality within the 
model becomes paramount. Traditional approaches for evaluating cau-
sality in toxicology follow the criteria formulated by Austin Bradford 
Hill in 1965 who attempted to summarise the arguments for the causal 
linkage of cigarette smoking to lung cancer (Fig. 1B) [23]. This cause- 
effect relationship led to several achievements including: (i) the estab-
lishment of randomised control trials methodology conducted by Doll 
and Hill to compare a treatment group (patients with diagnosed cancer) 
to a control group (healthy volunteers) [24]; (ii) Cornfield’s inequality 
that described the hypothesis of the presence of a smoking gene that 
makes the difference of developing lung cancer and which has driven the 
methodology of sensitivity analysis, and most importantly; (iii) Hill 
criteria that helped to summarise the evidence and which are now 
widely utilised. More recently, the so-called “modified Bradford Hill” 
criteria have been used as the basis of a framework for evaluating KERs 
for the development of qualitative, semi-quantitative and quantitative 

weight-of-evidence qAOP models [25–27]. This is because regulatory 
toxicologists cannot rely solely on the NAM-generated data without a 
mechanistic understanding of causal linkages established between 
exposure to chemicals, or other types of stressors, and the health effect of 
regulatory concern. However, an important question is whether the Hill 
criteria, in their original or modified form, are adequate to demonstrate 
causality. Pearl describes the Hill criteria as being “qualitative patterns of 
statistical trends” and asserts that Hill himself called them “viewpoints” 
and not requirements. Pearl emphasises that the “Hill’s “viewpoints” are 
still useful as a description of how a discipline comes to accept a causal hy-
pothesis, using a variety of evidence, but they came with no methodology to 
implement them. Each scientist just has to decide for him- or herself. But gut 
decisions can be wrong, especially if there are political pressures or monetary 
considerations” [15]. For example, the consistency or strength of the 
association that comes with the Hill criteria by itself may prove nothing 
“if thirty studies each ignore the same confounder, all can easily be biased” 
[15]. Put simply, a confounder represents a common cause of two 
potentially independent variables. In the context of an AOP, we can 
think of confounders as being the modulating factors such as a person’s 
age, diet, genetic predispositions etc. The concept of confounder can 
help understand the difference between causal reasoning and causal 
inference, the former being what we want to assess, and the latter what 
we actually assess using statistical methods. While causal inference 
cannot be carried out in the absence of confounders, causal reasoning 
can adjust for the effects of confounding variables. 

The OECD programme on the development of AOPs ensures that the 
modified Bradford Hill criteria (i.e., essentiality, biological plausibility, 
empirical evidence assessment) are followed. However, few qualitative 
AOPs have been endorsed so far, due to the amount of time and work 
required to gather the support to substantiate the building blocks, i.e., 
KEs and KERs. Pragmatic approaches are needed for the development of 
robust AOPs, as discussed by Svingen et al. [28]. Methods for causal 
discovery and reasoning have the potential to facilitate the knowledge 
assembly, thereby supplementing the weight of evidence analysis 
broadly accepted and practised by the scientific community and regu-
latory toxicologists. For example, Lazic et al. [29] applied Bayesian 
mediation analysis to a problem in toxicology related to animal testing 
of novel molecules, namely the organ weight changes due to chemical 
damage that might be influenced by the changes in the overall body 
weight. A challenge greater than the practical details of data collection 
or statistical analysis remains for the stakeholders to agree on the un-
derlying (q)AOP relationships. 

Importantly, Pearl posits three levels of causation, which he calls the 
“Ladder of Causation”, referring to the human cognitive ability: seeing, 
doing, and imagining. It includes: (1) associations or purely statistical 
relationships, (2) interventions, (3) counterfactual or explanatory 
questions. Climbing to the top of these three rungs, Pearl speculates that 
we could make machines think: “a causal reasoning module will give the 
machines the ability to reflect on their mistakes, to pinpoint weaknesses in 
their software, to function as moral entities, and to converse naturally with 
humans about their own choices and intentions” [15]. This describes a 
future world in which AI is genuinely “intelligent” rather than being a 
buzz word for today’s machine learning techniques. As computational 
toxicology ascends Pearl’s Ladder, we can imagine AI supporting 
chemical risk assessment in a multiplicity of ways, thereby addressing 
the complexity of the exposure to chemicals and the associated risks to 
human health [30]. 

Thus, we evaluate causality not only in qAOPs but also throughout 
the full toxicological paradigm (toxicokinetics and toxicodynamics), 
accepting the Hill criteria as a starting point, or framework, on which to 
hang our evidence. Understanding the limitations of the Hill criteria 
takes us a step closer to a more ideal approach; embracing a deeper 
treatment of causality offers insights into where to go next. Moreover, a 
range of algorithms already exists to facilitate the integration of causal 
reasoning into toxicology, as summarised in Table 1. 

Hence, the “causal inference engine” proposed by Pearl to handle 
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causal reasoning aligns perfectly with the stages in the development of a 
qAOP model. Pearl presents his blueprint as a diagram similar to a de-
cision tree in which inputs enter the inference engine and produce the 
outputs (Fig. 1D). It has three different kinds of inputs: assumptions 
given by the knowledge, queries and data. The first output is a yes/no 
decision to a query; if the answer is yes, an “estimand” is produced. The 
second output is a mathematical formula for generating the answer from 
hypothetical data. The third output is produced after the data are 
entered, which is the answer or “estimate”, including statistical esti-
mates of the uncertainty. Pearl adds “this uncertainty reflects the limited 
size of the data set as well as possible measurement errors or missing data” 
[15]. Rather than relying simply on the subjective application of the Hill 
criteria, is it time to embrace causality theory more extensively to 
quantify the uncertainties in qAOPs? 

So how far have we come and what lies in store? Modelling, in all its 
glory and infamy, is fundamental to the paradigm change dictated by 
21st Century Toxicology. At present, qAOPs are in their infancy, 
although like any infant, much is expected as they flourish and mature. 
We believe, in its essence, a qAOP model is based on two main consid-
erations: namely an understanding of causal relationships, and the 
testing of hypotheses. Hence, a qAOP model can be considered a causal 
model to predict the results of an action (e.g., for an environmental 
chemical) or intervention (e.g., for a drug). However, big data tempt us 
look for correlations and associations instead of causality. Additionally, 
most of the ML techniques applied, even though exploiting independent 
and dependent variables, test/training and validation sets, are trained to 
learn from experience. But they do not infer causality of the included 
variables. In the context of a qAOP model, causality is currently 
informed by the qualitative linear or network of AOPs that promote a 
structured account of a stressor-induced mechanism of action assessed 
using the modified Hill criteria. Importantly, a qAOP model requires a 
considerable amount of empirical data to predict the adverse effects 
quantitatively. Unfortunately, the available data are typically inade-
quate for modelling purposes. However, causal diagrams can guide the 
design of appropriate experiments to generate new data and verify the 
assumptions of the model. Causal models can, and must, serve as a basis 
for the development of a robust, transparent, comprehensible and 
reproducible AI. More efforts are needed to shift towards understanding 
the causality rather than deriving data-driven models – for toxicology 
this means building models on mechanisms of action. Hence, we need 
models based on causal assumptions to draw sound and actionable 
conclusions. Going beyond predictive toxicology, causal models can 

help formulate and prioritise assessment questions in a transparent 
manner. This could be in the context of a retrospective analysis of the 
costs and benefits of a historical policy intervention (e.g., banning a 
certain chemical) or anticipating the potential consequences of a new 
policy intervention (e.g., introducing a new chemical onto the market). 
In both scenarios, the ability to answer counterfactual questions is a key 
part of causality reasoning. 

One thing is certain, the causal revolution initiated by Judea Pearl is 
spreading. It is not only emerging in epidemiology, sociology, and 
economics but will also find its way into predictive toxicology, where it 
can contribute to the development of qAOP models. A qAOP model has 
the power to computationally model the causal linkages, i.e., KERs, in a 
transparent manner, making use of available data and applying a range 
of methodologies. Moreover, the model makes the data accessible, 
interpretable and (re)usable, hence, it has the capability to transform 
decision-making on chemicals. Hopefully, qAOPs will one day be 
accepted as more than a screening tool. The combined use of physio-
logically based kinetic (PBK), quantitative structure–activity relation-
ship (QSAR) and qAOP models could, in principle, be used for a 
definitive chemical risk assessment. 
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