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ABSTRACT 31 

The widespread use of conventional chemical antifungal agents has led to worldwide 32 

concern regarding the selection of resistant isolates. In this scenario, antimicrobial 33 

photodynamic treatment (APDT) has emerged as a promising alternative to overcome this 34 

issue. The technique is based on the use of a photosensitizer (PS) and light in the presence 35 

of molecular oxygen. Under these conditions, the PS generates reactive oxygen species 36 

which damage the biomolecules of the target organism leading to cell death. The great 37 

potential of APDT against plant-pathogenic fungi has already been reported both in vitro 38 

and in planta, indicating this control measure has the potential to be widely used in crop 39 

plants. However, there is a lack of studies on environmental risk with ecotoxicological 40 

assessment of PSs used in APDT. Therefore, this study aimed to evaluate the 41 

environmental toxicity of four phenothiazinium PSs: i) methylene blue (MB), ii) new 42 

methylene blue N (NMBN), iii) toluidine blue O (TBO), and iv) dimethylmethylene blue 43 

(DMMB) and also of the commercial antifungal NATIVO®, a mixture of trifloxystrobin 44 

and tebuconazole. The experiments were performed with Daphnia similis neonates and 45 

zebrafish embryos. Our results showed that the PSs tested had different levels of toxicity, 46 

with MB being the less toxic and DMMB being the most. Nonetheless, the environmental 47 

toxicity of these PSs were lower when compared to that of NATIVO®. Furthermore, 48 

estimates of bioconcentration and of biotransformation half-life indicated that the PSs are 49 

environmentally safer than NATIVO®. Taken together, our results show that the toxicity 50 

associated with phenothiazinium PSs would not constitute an impediment to their use in 51 

APDT. Therefore, APDT is a promising approach to control plant-pathogenic fungi with 52 

reduced risk for selecting resistant isolates and lower environmental impacts when 53 

compared to commonly used antifungal agents. 54 

Keywords: ecotoxicity; fungicides; photodynamic treatment; photosensitizers; pollutants 55 
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1. INTRODUCTION 56 

 Pathogen resistance to antimicrobials is a major threat to global health (Perlin et 57 

al., 2017). As a consequence, there is an ongoing and persistent search for new 58 

antimicrobials that could overcome such resistance. In this scenario, antimicrobial 59 

photodynamic treatment (APDT) has been presented as a promising alternative to control 60 

pathogens (Sabino et al., 2020; Wainwright et al., 2017). APDT is a therapy based on the 61 

use of three main components, namely a photosensitizer (PS), light, and molecular 62 

oxygen. The technique consists of applying a PS that preferentially binds to target cells 63 

followed by illumination with light of the appropriate wavelength. This will result in an 64 

excited PS molecule which will then react with molecular oxygen via either electron or 65 

energy transfer, generating reactive oxygen species (ROS) that will inactivate the target 66 

pathogen with little to no damage to the host (Castano et al., 2004; Marasini et al., 2021). 67 

 The efficiency of APDT has been shown for a variety of fungi and bacteria 68 

(Wainwright et al., 2017). Reproductive fungal structures, such as conidia, are easily 69 

inactivated by APDT (de Menezes et al., 2014a, 2014b, 2016; Gonzales et al., 2017; 70 

Tonani et al., 2018), which also overcomes multidrug-resistance in bacteria (Hamblin, 71 

2016; Sabino et al., 2020). Even Deinococcus radiodurans, a bacterium known for its 72 

remarkable tolerance to abiotic stressors and its potent antioxidant system, cannot 73 

withstand the damages caused by APDT (Nitzan and Ashkenazi, 1999). The emergence 74 

of resistance to APDT itself has been a topic of some studies (Kashef and Hamblin, 2017). 75 

The production of ROS that will nonspecifically react with and damage proteins, lipids, 76 

and nucleic acids leaves little room for known resistance mechanisms (Sabino et al., 2020; 77 

Marasini et al., 2021). However, it is important to mention that some recent studies have 78 

reported the emergence of tolerance to APDT in bacteria under specific conditions of sub-79 

lethal treatment (Pieranski et al., 2020; Rapacka-Zdonczyk et al., 2019). 80 
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 Several uses and applications of APDT have been proposed due to its efficiency 81 

against pathogens and its safety to the host, from treatment of mycoses to food 82 

decontamination (do Prado-Silva et al., 2022; Wainwright et al., 2017). One promising 83 

application of APDT is to control phytopathogenic fungi in crop fields (de Menezes et 84 

al., 2014a, 2014b, 2016; Gonzales et al., 2017). An important plant disease affecting 85 

Citrus species and resulting in extensive agricultural and economical losses is post-bloom 86 

fruit drop (PFD), which is caused by the fungus Colletotrichum abscissum (Dowling et 87 

al., 2020; Gonçalves et al., 2021; Peres et al., 2005). PFD may decrease sweet orange 88 

production by as much as 80% (Silva-Junior et al., 2014). Control of PFD is achieved via 89 

preventive spraying of antifungal agents during the blossoming period (Gama et al., 2020; 90 

Silva-Junior et al., 2014). However, only a small number of antifungals are approved for 91 

this use. For instance, in Brazil, only strobilurin and triazole antifungals are allowed on 92 

sweet orange commercial orchards (Silva-Junior et al., 2014). This reduced variety of 93 

antifungal agents associated with their constant use presents the risk of selecting resistant 94 

strains, making PFD control less efficient (Dowling et al., 2020). Therefore, control of 95 

PFD in crop plants in an important example of a field that would benefit from APDT. 96 

 However, this use of APDT will invariably lead to contamination of soil and water 97 

with PSs. Therefore, the assessment of PS toxicity becomes a necessary step in order to 98 

safely use APDT in both crops and for food decontamination. Regulatory agencies require 99 

that compounds be tested with organisms from different trophic levels, such as producers 100 

and consumers, that also occupy distinct ecological niches (Bori et al., 2016; Rila and 101 

Eisentraeger, 2003). In general, initial toxicology studies are performed in cultured cells. 102 

Although cell assays are useful in providing important background information regarding 103 

the molecules tested, they may not replace more in-depth experiments with 104 
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environmentally relevant organisms, such as microcrustaceans and fish (Bori et al., 2016; 105 

Heger et al., 2018; Rocha et al., 2017). 106 

 Therefore, this work presents a toxicological assessment of four phenothiazinium 107 

PSs: i) methylene blue, ii) new methylene blue N, iii) toluidine blue O, and iv) 108 

dimethylmethylene blue and of the commercial product NATIVO®, a commonly used 109 

antifungal agent composed by a mixture of 10% trifloxystrobin and 20% tebuconazole. 110 

Our assessment comprised toxicity to the microcrustacean Daphnia similis and to 111 

embryos of zebrafish (Danio rerio) to better understand how the use of APDT may impact 112 

the environment when compared to conventional antifungal agents.  113 

 114 

2. MATERIALS AND METHODS 115 

2.1 Phenothiazinium photosensitizers 116 

 The four phenothiazinium PSs used in the present work were: methylene blue 117 

(MB, Cat# M9140), new methylene blue N (NMBN, Cat# 202096), toluidine blue O 118 

(TBO, Cat# T3260), and dimethylmethylene blue (DMMB, Cat# 341088) 119 

(Supplementary Figure 1A), all purchased from Sigma. Concentrations used varied for 120 

each experiment type and are specified below. 121 

 122 

2.2 NATIVO® 123 

 The fungicides belonging the groups of quinone outside inhibitors (QoI) and 124 

demethylation inhibitors (DMI) have been the most used for disease control in different 125 

crops (Oliver & Hewitt, 2014). The commercial antifungal agent NATIVO® (Bayer 126 

CropScience) is a 2:1 mixture of a DMI, trifloxystrobin (100 g L-1), and of a QoI, 127 

tebuconazole (200 g L-1) (Supplementary Figure 1B). The original product was diluted to 128 

obtain final concentrations of trifloxystrobin and tebuconazole of 40 and 80 mg L-1, 129 
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respectively. This dilution corresponds to the concentration applied in the field for the 130 

control of phytopathogenic fungi. Then, a series of 1:10 dilutions (10-1 to 10-8) were 131 

performed, always in distilled water. Dilutions used in each experiment varied and are 132 

specified below. 133 

 134 

2.3 Ecotoxicity assessments with Daphnia similis 135 

 The assays with D. similis were performed according to the ABNT NBR 12713 136 

guidelines for aquatic ecotoxicology assessment (“Ecotoxicologia aquática – Toxicidade 137 

aguda – Método de ensaio com Daphnia spp”, 2016). D. similis was kept in 1-L containers 138 

at 20 ± 2 °C with a maximum of 25 organisms per container. Diffuse illumination was 139 

provided in 12:12h photoperiod with an irradiance of 1000 lux. The organisms were fed 140 

with the alga Pseudokirchneriella subcaptata (3 × 106 cells/organism). Culture medium 141 

was replaced every two weeks and the organisms were maintained for up to 28 days. 142 

 Ecotoxicological assessment was performed with D. similis neonates aged 143 

between 6 and 24 h and obtained via parthenogenesis. Each treatment consisted of four 144 

replicate groups with five organisms each. Exposure to the PS was performed at 20 ± 2 145 

°C for 48 h. No feeding was allowed during the experiment. Concentrations of PS used 146 

in these experiments were 0.3125, 0.625, 1.25, 2.5, and 5 µM, which were chosen based 147 

on a preliminary experiment to assess the concentration interval and specific points. The 148 

effect of light on toxicity was assessed by performing the 48-h incubation under a 12:12 149 

h light:dark photoperiod. Then, the numbers of mobile and immobile individuals were 150 

counted. The half-maximum effective concentration (EC50) was calculated by the 151 

trimmed Spearman-Karber method based on data from three independent experiments. 152 

 153 

2.4 Ecotoxicity assessment with Danio rerio embryos 154 
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 The experiments with zebrafish were approved by the institution’s Animal Ethics 155 

Committee (Protocol No. 18.1.496.60.1). Adult organisms were maintained and used 156 

following the guidelines of the test No. 236 of the Organisation for Economic Co-157 

operation and Development (OECD) Guidelines for the Testing of Chemicals (OECD, 158 

2013) in a ZEBTEC system (Tecniplast, Italy) at 26 ± 1 °C with a 14:10h (light:dark) 159 

photoperiod. Fish were fed twice a day with Tetramin® (Tetra GmbH, Germany). Eggs 160 

were obtained by placing adult fish at a 2:1 male:female ratio to allow for breeding. Thirty 161 

minutes after laying, eggs were collected, transferred to a petri dish and washed with 162 

distilled water. Only eggs that had achieved the stage of blastula were used for the 163 

experiments.  164 

 Fertilized eggs were exposed to PS in increasing concentrations (1, 10, 25, 50, and 165 

100 µM) and to five successive 10-fold dilutions of the commercial antifungal NATIVO® 166 

starting at 40 mg L-1 trifloxystrobin and 80 mg L-1 tebuconazole. Exposure was performed 167 

in 24-well plates at 26 ± 1 °C for 144 h. A total of 20 embryos was used for each condition. 168 

Development was assessed 24, 48, 72, 96, 120, and 144 h after exposure had commenced. 169 

A stereo microscope (SMZ-800, Nikon) coupled to a digital camera was used to evaluate 170 

parameters pertaining to lethality (egg coagulation, malformation, non-detachment of the 171 

embryo tail, and absence of heart beat), to sub-lethality (eye development, spontaneous 172 

coiling, pigmentation, and edema formation), and to teratogenicity (heart and tail 173 

malformations, non-inflation of the swim bladder, pericardial edema, yolk sac edema, and 174 

skeletal deformities). To assess the effects of light on toxicity, 24-well plates were placed 175 

under a 14:10 h light:dark photoperiod for the duration of the experiments. For dark 176 

toxicity, plates were covered in aluminum foil and placed inside the same chamber. 177 

Positive controls were run in parallel to each experiment by treatment samples with 4 mg 178 

L-1 3,4-dichloroaniline (Sigma). Half maximum lethal concentrations (LC50) were 179 
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calculated with a four-parameter logistic regression using Prism 8 software (GraphPad 180 

Software). 181 

 182 

2.5 Bioconcentration factor and biotransformation half-life 183 

 Bioconcentration factor (BCF) and biotransformation half-life in fish were 184 

calculated with EPIWEB 4.1 software (EPA – Environmental Protection Agency). BCF 185 

was estimated using the equation:  186 

𝑙𝑜𝑔 𝐵𝐶𝐹 = 0.6598 𝑙𝑜𝑔𝑃 − 0.333    (1) 187 

where P is the octanol/water partition coefficient as calculated by MarvinJS logD 188 

Predictor software (ChemAxon). 189 

 190 

2.6 Statistical analyses 191 

 All statistical analyses were performed with Prism 8 software (GraphPad 192 

Software). Student’s t-test were used for pairwise comparisons at a significance level of 193 

0.05. Analysis of variance (ANOVA) was used for multiple comparisons with Tukey’s 194 

post-test also set to a significance level of 0.05. 195 

 196 

3. RESULTS AND DISCUSSION 197 

 Many studies have previously reported the high efficiency of APDT as a technique 198 

to control plant pathogenic fungi both in vitro and in planta (de Menezes et al., 2014a, 199 

2014b; Fracarolli et al., 2016; Gonzales et al., 2017). For instance, APDT with 200 

phenothiazines (in the range of 10-50 µM) against C. abscissum can achieve nearly 201 

complete inactivation in under one hour of red light exposure (de Menezes et al., 2014b). 202 

Furthermore, efficient in planta inactivation of C. abscissum is possible with MB at 50 203 

µM after only 30 min of solar exposure (Gonzales et al., 2017). Importantly, this in planta 204 
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inactivation does not result in damage to the host plant (Gonzales et al., 2017). 205 

Additionally, and unlike traditional antifungals, APDT can inactivate dormant structures 206 

such as conidia. However, an ecotoxicological assessment of PSs and a comparison with 207 

commonly used antifungal agents is still lacking. 208 

 Initially, we performed ecotoxicological experiments with the microcrustacean D. 209 

similis, representing a low trophic level organism. Toxicity to D. similis was calculated 210 

based on the number of mobile and immobile individuals after exposure to all PSs (in the 211 

dark and under light) and to the antifungal agent NATIVO®. The PS DMMB was the 212 

most toxic among the PSs tested with an EC50 of 1.0 µM in the dark (Table 1). The other 213 

three PSs (MB, NMBN, and TBO) were less toxic than DMMB but presented similar 214 

toxicity between them (2.2, 2.01, and 2.6 µM, respectively) (Table 1). For all PSs tested, 215 

we observed no difference between experiments performed in the dark and under light 216 

(Table 1). This result may be a consequence of the high toxicity levels already observed 217 

in the dark. In this situation, light exposure and subsequent ROS production may not 218 

significantly increase mortality. More importantly, the antifungal agent NATIVO® 219 

caused mortality of all D. similis neonates at every dilution tested, thus preventing the 220 

calculation of an EC50 value and indicating that any of the PSs tested present a lower 221 

environmental risk when compared to the commercial antifungal. 222 

Table 1 – Average half-maximum effective concentration (EC50) for the indicated 223 
photosensitizers obtained in Daphnia similis neonates. Values were obtained in the dark or under 224 
light exposure. The antifungal NATIVO® caused total mortality of all neonates, thus preventing 225 
the calculation of an EC50 226 

*different upper-case letters indicate significant difference between dark or light treatments for 227 
the same photosensitizer; whereas different lower-case letters indicate significant difference 228 
between different photosensitizers under the same exposure conditions (Tukey’s test, P < 0.05) 229 

 230 
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 Furthermore, based on the calculated EC50 values, all the PSs are classified as 231 

category 1 (very toxic to aquatic life, i.e. EC50 ≤ 1 mg/l) following GHS criteria (Table 232 

1). Even though no EC50 value could be obtained for NATIVO®, the observed mortality 233 

of all neonates is a good indication of higher toxicity. 234 

 We then performed an ecotoxicological assessment in embryos of D. rerio, an 235 

organism representing a high trophic level. Acute toxicity to zebrafish embryos was 236 

assessed according to Test No. 236 from the OECD for all PSs (both in the dark and under 237 

light) and for the antifungal agent NATIVO®. 238 

 The PS MB presented no mortality to embryos, indicating low acute toxicity (Fig. 239 

1A). Furthermore, emerging larvae only presented significant issues with swim bladder 240 

inflation at 100 µM (Fig. 1C and Fig. 2A and 2B). There were no significant statistical 241 

differences between dark (Fig. 1A and 1C) and light (Fig. 1B and 1D) treatments for both 242 

mortality and swim bladder inflation issues. However, exposure to MB resulted in larval 243 

scoliosis as well as pericardial and yolk sac edema, but these were only observed at the 244 

highest concentration of 100 µM and occurred exclusively under illumination (Fig. 2C 245 

and 2D). 246 
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 247 

Figure 1 – Toxicity of the photosensitizer methylene blue (MB) on embryos of Danio rerio. 248 
Acute toxicity was evaluated by measuring (A and B) mortality and (C and D) the ability of 249 
surviving larvae to inflate the swim bladder. Assessment was performed both in the dark (A and 250 
C) and under light (B and D). Values are mean and error bars are standard deviation from three 251 
independent experiments. Asterisks indicate that means are statistically different from the control 252 
group 253 
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 254 

Figure 2 – The effects of the photosensitizer methylene blue (MB) on Danio rerio larvae. (A) 255 
Larva from the negative control showing normal development and an inflated swim bladder. (B) 256 
A non-inflated swim bladder caused by MB at 100 µM. (C) Scoliosis caused by MB at 100 µM 257 
in the presence of light. (D) Pericardial and yolk sac edema caused by MB at 100 µM under 258 
illumination 259 

 260 

 For NMBN, unlike reported for MB, it was possible to observe an effect of light 261 

exposure. Significant mortality was observed at 50 µM in the dark, but a similar result 262 

was already observed at 25 µM under illumination (Fig. 3A and 3B). Similarly, non-263 

inflated swim bladders were observed at 25 µM in the dark, but at only 10 µM in the 264 

presence of light (Fig. 3C and 3D). Calculated LC50 values for NMBN were 49.8 µM in 265 

the dark and 15.4 µM under illumination (Table 2). 266 
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 267 

Figure 3 – Toxicity of the photosensitizer new methylene blue N (NMBN) on embryos of Danio 268 
rerio. Acute toxicity was evaluated by measuring (A and B) mortality and (C and D) the ability 269 
of surviving larvae to inflate the swim bladder. Assessment was performed both in the dark (A 270 
and C) and under light (B and D). Values are mean and error bars are standard deviation from 271 
three independent experiments. Asterisks indicate that means are statistically different from the 272 
control group 273 

 274 
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Table 2 – Average half-maximum lethal concentration (LC50) for the indicated photosensitizers 275 
obtained in Danio rerio embryos. Values were obtained in the dark or under light exposure. For 276 
reference, NATIVO® is registered as GHS category 1 277 

 278 

 For the PS TBO, light exposure did not significantly affect mortality to embryos 279 

(Fig. 4A and 4B), although there was a tendency toward some light effect with LC50 280 

values being 40.5 µM in the dark and 31.2 µM after light exposure (Table 2). Indeed, 281 

light was observed to influence swim bladder inflation because non-inflated swim 282 

bladders occurred exclusively under illumination (Fig. 4C and 4D).  283 
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 284 

Figure 4 – Toxicity of the photosensitizer toluidine blue O (TBO) on embryos of Danio rerio. 285 
Acute toxicity was evaluated by measuring (A and B) mortality and (C and D) the ability of 286 
surviving larvae to inflate the swim bladder. Assessment was performed both in the dark (A and 287 
C) and under light (B and D). Values are mean and error bars are standard deviation from three 288 
independent experiments. Asterisks indicate that means are statistically different from the control 289 
group 290 

 291 

 The PS DMMB once again presented the highest toxicity among the PSs tested. 292 

Concentrations as low as 10 µM were sufficient to cause 100% mortality of embryos (Fig. 293 

5A and 5B). The only relatively safe concentration of DMMB was 1 µM, for which no 294 

mortality (Fig. 5A and 5B) and no negative effects on the swim bladder (Fig. 5C and 5D) 295 

were observed. 296 
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 297 

Figure 5 – Toxicity of the photosensitizer dimethylmethylene blue (DMMB) on embryos of 298 
Danio rerio. Acute toxicity was evaluated by measuring (A and B) mortality and (C and D) the 299 
ability of surviving larvae to inflate the swim bladder. Assessment was performed both in the dark 300 
(A and C) and under light (B and D). Values are mean and error bars are standard deviation from 301 
three independent experiments. Asterisks indicate that means are statistically different from the 302 
control group 303 

 304 

 The commercial antifungal agent NATIVO® caused 100% mortality even when 305 

used at a 10-3 dilution (Fig. 6A), which corresponds to trifloxystrobin and tebuconazole 306 

concentrations of 0.04 and 0.08 mg L-1, respectively. Dilutions of 10-4 and 10-5 allowed 307 

embryos to survive and caused no negative effects on swim bladders (Fig. 6A and 6B). 308 
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 309 

Figure 6 – Toxicity of the commercial antifungal agent NATIVO® on embryos of Danio rerio. 310 
Acute toxicity was evaluated by measuring (A) mortality and (B) the ability of surviving larvae 311 
to inflate the swim bladder. Values are mean and error bars are standard deviation from three 312 
independent experiments. Asterisks indicate that means are statistically different from the control 313 
group 314 

 315 

 Based on calculated LC50 values for all PSs (Table 2), both NMBN and TBO are 316 

classified as GHS category 3 in the dark and category 2 under light, showing that 317 

illumination is an important determinant of environmental toxicity for these PSs. For MB, 318 

no classification was possible because mortality levels never reached 50%. The highest 319 

concentration tested for MB was 100 µM, which represents 37.4 mg L-1. Therefore, there 320 

is still room for MB to be classified as GHS category 3 if mortality rates of 50% are 321 

achieved before the 100 mg L-1 threshold. Finally, for DMMB, no precise calculation of 322 

LC50 was possible because mortality increased from 0 to 100% for two adjacent 323 

concentrations (1 and 10 µM). However, this places the LC50 value between 0.416 and 324 

4.16 mg L-1, resulting in classification as either category 1 or 2 (Table 2). The antifungal 325 

NATIVO®, as a commercial product, is already classified as GHS category 1 by the 326 

manufacturer. 327 
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 Considering the results from the two assays, namely those with D. similis neonates 328 

and with D. rerio embryos, we can tentatively classify all tested compounds in the 329 

following order of environmental risk, from lowest to highest: MB < TBO < NMBN < 330 

DMMB < NATIVO®. 331 

 Finally, to compare the potential of both PSs and NATIVO® to bioconcentrate in 332 

fish, we mathematically estimated BCF and biotransformation half-life. Less lipophilic 333 

PSs such as MB, NMBN, and TBO had BCF values ranging from 12.9 to 50.0 L kg-1 334 

(Table 3). The more lipophilic PS DMMB and the fungicide tebuconazole displayed BCF 335 

values of 117 and 126 L kg-1, respectively. Accordingly, trifloxystrobin, as the most 336 

lipophilic molecule, had a BCF value of 682 L kg-1 (Table 3), indicating a higher potential 337 

to bioconcentrate when compared to all the PSs and to tebuconazole. 338 

 339 

Table 3 – Estimates of bioconcentration factor (BCF) and biotransformation half-life as obtained 340 
from the Environmental Protection Agency EPIWEB 4.1 software 341 

aP is the octanol/water partition coefficient as calculated by MarvinJS logD Predictor 342 

bBCF was calculated using Eq. (1) (see Materials and Methods) 343 

cnormalized to 10 g of fish at 15 °C 344 

 345 

 We also estimated biotransformation half-life in fish with EPIWEB 4.1 software. 346 

Tebuconazole and trifloxystrobin presented half-lives of 5.1 and 2.8 days, respectively 347 

(Table 3). Both of these values exceed the estimated half-life of DMMB, which had the 348 

longest half-life (1.3 days) among all PSs (Table 3). The PSs MB and TBO, being the less 349 
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lipophilic and simplest molecules, had half-life values of 0.11 and 0.0036 days, 350 

respectively (Table 3). Although these data are the result of estimates, there is enough 351 

information in the literature to support the idea that both trifloxystrobin and tebuconazole 352 

accumulate in organisms and in the environment. Trifloxystrobin was found to 353 

bioaccumumlate in Gobiocypris rarus embryos (Zhu et al., 2015). Furthermore, 354 

trifloxystrobin can be metabolized in soil to yield trifloxystrobin acid, a molecule with 355 

increased half-life and that was shown to greatly accumulate in the earthworm Eisenia 356 

fetida (Liu et al., 2020). Regarding tebuconazole, it was reported to bioaccumulate in 357 

Cyprinus carpio muscle (Clasen et al., 2018). Also, removal of tebuconazole from water 358 

may be problematic as a conventional drinking-water treatment plant was reported to be 359 

unable to completely remove tebuconazole from river water samples (Elfikrie et al., 360 

2020). In accordance, tebuconazole is the most prevalent fungicide in surface water (de 361 

Souza et al., 2020). 362 

 One aspect that needs to be considered is the stability of PSs in the environment. 363 

In this regard, a previous study from our research group has reported that phenothiazinium 364 

PSs exposed to sunlight steeply lose their effectiveness (de Menezes et al., 2014b). For 365 

instance, new methylene blue N loses 99.9% of its inactivation efficiency against C. 366 

abscissum after 12 h of sunlight exposure. This reduction is accompanied by a flattening 367 

of the absorption spectrum in the visible range (i.e., photobleaching) (de Menezes et al., 368 

2014b). In our study, we used ‘naïve’ (i.e. not previously exposed to light) 369 

photosensitizers because using photobleached ones would likely lead to reduced toxicity 370 

under illumination. Additionally, we can speculate that photosensitizers reaching the 371 

environment from crop plants would have already been exposed to considerable amounts 372 

of solar radiation. If this assumption is correct, ecotoxicity in real world applications 373 

would not be as high as the values obtained under light exposure conditions in this study. 374 



20 
 

 When compared to trifloxystrobin and tebuconazole, the PS MB has lower 375 

toxicity, lower BCF and a much shorter biotransformation half-life (Table 3). Also, our 376 

research group has previously reported that MB can be used at 50 µM to efficiently 377 

inactivate C. abscissum in plants (Gonzales et al., 2017). This concentration is below the 378 

LC50 values obtained for zebrafish embryos both in the dark and under illumination (Table 379 

2). However, a concentration of 50 µM is well above the EC50 values for D. similis 380 

immobilization (Table 1). Nonetheless, it is important to note that using 50 µM (18.7 mg 381 

L-1 in the case of MB) to treat crop plants would likely not result in such a high final 382 

concentration in water bodies. For instance, the highest concentration of antibiotics in 383 

effluent water samples obtained from pharmaceutical manufacturers was found to be 252 384 

µg L-1, and this concentration is higher compared to those obtained for hospital and 385 

aquaculture effluents (Thai et al., 2018). Such reduced toxicity, combined with the fact 386 

that an MB injection is approved by both the Food and Drug Administration 387 

(NDA204630) and the European Medicines Agency (EMA/H/C/002108) for the 388 

treatment of methemoglobinemia, makes MB the most likely candidate to obtain approval 389 

for other applications. Of course, the use of MB is not without its own accumulation 390 

issues (Krishna Moorthy et al., 2021; Park, Baek and Moon, 2019; Rifici et al., 1996), 391 

but diverse and effective methods of removing MB from water are abundant and up-to-392 

date (Gouamid et al., 2013; Hoslett et al., 2020; Mantasha et al., 2020; Reema et al., 393 

2011; Somsesta et al., 2020). 394 

 Even though MB was the least toxic PS as long as environmental risk is concerned, 395 

the other PSs should not be immediately deemed unsuitable for use. This is because 396 

circumstances may dictate which PS ought to be used. For instance, NMBN is a more 397 

potent PS when compared to MB (Rodrigues et al., 2013; Wainwright et al., 1998), which 398 
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would likely translate into smaller dose requirements, leading to lower levels of 399 

environmental contamination. 400 

 401 

CONCLUSION 402 

Our results provide a comprehensive view of the environmental risk associated with the 403 

use of diverse PS. The environmental consequences associated with PS use are 404 

diminished when compared to currently approved and widely used antifungal agents, such 405 

as NATIVO®. Therefore, environmental risk should not be a barrier in the path of using 406 

APDT to control plant-pathogenic fungi in the future. 407 
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