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Abstract

The autonomous multi-robot  system is  an emerging technology that  has  a  wide range of potential

applications, such as environmental monitoring, exploration of unknown area, battlefield surveillance,

and search and rescue. One major challenge in such applications is how to deploy each robotic agent

autonomously  in  a  distributed  manner.  In  this  paper,  we  proposed  a  distributed  coverage  control

strategy named multi-stage virtual  force interaction  scheme (VFIS),  where  the agents’  deployment

process is split into stages and each agent iteratively seeks its next position according to the interaction

among agents and the interaction between agents and the perceived environment. The interactions are

realized via virtual repulsive forces and virtual vortex forces, where the latter are newly proposed to

enhance the exploration capability of agents. We also designed a group of benchmark testing problems

for the mission of monitoring coverage of complex environments with unknown obstacles.  Extensive

simulation experiments were conducted based on the defined benchmark configurations and the results

showed a favourable performance of the invented strategy. In addition, practical experiments  were

carried out using a group of mobile robots, which validated the effectiveness of the proposed method.

Keywords: Monitoring coverage; multi-robot system; virtual force; benchmark

1. Introduction

Research of autonomous multi-robot systems has gained growing attention  [1-7], as such systems

have great potential to be used in a wide range of applications, such as exploration of unknown area or

space [1, 2], battlefield surveillance [3], environmental monitoring [4], and search and rescue [7]. The

path planning problem and coverage problem are of particular interests in the above applications. The

robot  path  planning is  a  process  to  reach  the  destination  from a  predefined  initial  position  safely

through a sequence of rotation and translation. The coverage problem  generally can be divide into

the static coverage, dynamic coverage, persistent coverage [8]. The static coverage seeks the optimal

deployment of a group of agents to cover the environment statically  [9]. The dynamic coverage aims

that agents visit all the points of the environment at least once or reach the desired coverage level [10].

The persistent coverage requires agents to continually move and visit every place in the environment
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periodically [11]. This paper tackles a multi-robot monitoring coverage problem, which aims to deploy

a  swarm of  robotic  agents  in  a  complex  environment  with  obstacles,  to  achieve  the  ‘maximum’

monitoring coverage of the area of interest (AOI) and is classified as a static coverage problem. The

purpose of monitoring may vary from observation of movements or behaviors of interested objects to

detection of  hazardous substances or  fire  hazards.  Each agent  possesses  capabilities  of  perception,

monitoring, communication, localization and movement. Besides the area coverage, the travel length

and the distribution evenness of agents are  also  considered as important  evaluation metrics  of  the

problem. 

The  monitoring  coverage  task  can  be  fulfilled  by  either  centralized  approaches  or  distributed

approaches.  The centralized approaches require a central unit to gather and integrate environmental

information, plan trajectories and distribution of agents using all available information and deliver the

computed  results  to  agents.  In  distributed  methods,  each  agent  utilizes  its  own  perception,  active

communication and control laws to achieve the collective goals. When the number of agents is large,

the distributed strategy with the local and scalable features is proven to be more efficient and robust. 

The virtual force algorithm [12] provides an effective solution for the deployment of the wireless

sensor network in  the convex  environment  and simple  non-convex environment.  In  the  real-world

scenario, obstacles often exist in the target environment, which are not of interest to agents and. can

block agents’ movement. The current virtual force related methods cannot tackle the complex non-

convex environment well due to agents would be stuck in the dense obstacle area. In this paper, we

propose a coverage control strategy named multi-stage virtual force interaction scheme (VFIS), which

is a distributed approach that  can work properly in complex environments  with a large number of

obstacles. In VFIS, we introduce the vortex force, a novel genre of virtual force to cooperate with the

repulsive force. The new force provides strong exploration capability to agents for overcoming the

influence  of  obstacles  and  ensuring  a  balance  between exploration  and exploitation. In  VFIS,  the

deployment process is  split  into  a  number of  stages.  Each agent iteratively seeks its  new position

according  to  the  interaction  among  agents  and  the  interaction  between  agents  and  the  perceived

environment via virtual forces in one stage, and finds the optimal distribution after a number of stages. 

In this paper, we also design a group of benchmark testing problems for the monitoring coverage

task. They comprehensively consider different characteristics of the environment and agents, including

the border shape of the AOI, the number, shape and distribution of obstacles, and the number, starting

positions,  perception  range  and  monitoring  range  of  agents.  Besides  the  above,  the  interaction

mechanism and the parameter settings are also carefully studied. Moreover, we validate the proposed

method  through  practical  experiments  using  nine  mobile  robots  AlphaBots.  This  paper  is  the

substantial extension of  the work in  [13], where the monitoring coverage problem is redefined, the

virtual  force interaction method is  greatly  modified and  all  the  works  about  benchmark problems

design, parameters study, comparisons with other literature and robots verification are new.

The remaining part of this paper is organized as follows. In Section 2, we present and discuss the

related  literature.  Section  3  explains  various  virtual  forces  proposed  and  illustrates  the  execution



process  of  VFIS.  Section  IV  shows the  benchmark  problem settings.  Section  5  demonstrates  the

experimental performance of VFIS in solving benchmark problems in the MATLAB simulation and

Section  6  discusses  some  essential  parameter  settings.  Section  7  presents  the  results  of  practical

experiments using mobile robots. Finally, the conclusion is given in Section 8.

2. Related work

Some research has addressed the tasks similar to the monitoring coverage problem, which relate to

wireless sensor networks and the deployment of unmanned aerial vehicles (UAVs) for surveillance.

However, these research either considered the problems with none or very few obstacles, or employed

centralized methods that cannot efficiently solve the problems when using ‘many’ agents. The relevant

research about the movement-assisted sensors deployment and the coverage problem in UAV networks

were surveyed in [14, 15]. The representative approaches to solving multi-agent coverage problems can

be divided into the virtual force based approaches, the computational geometry based approaches, the

bio-inspired optimization approaches and other approaches.

Zou et al. [12] proposed the idea of virtual force for enhancing the coverage of the wireless sensor

nodes, after their initial random deployment. In the designed virtual force algorithm (VFA), the virtual

attractive  force  and  repulsive  force  are  exerted  on  each  node  by  its  neighbours,  and  the  virtual

movement  is  computed  by  a  cluster  head.  Wang  et al.  [16] combined  VFA  with  particle  swarm

optimization (PSO) in the deployment of wireless sensor networks. The virtual force of sensor nodes

was used for the velocity update of each particle in the iterative optimization process and helped to

achieve  better  regional  convergence  and  global  search  capability.  Delaunay  triangulation  was

introduced to define the adjacent relationship of each agent in  [17]. Virtual forces were only exerted

from the adjacent agents in the communication range and the convergence time of the deployment was

improved to be shorter. Different ratios of communication range to sensing range were also considered

and the virtual force function was modified to be suitable in both the high communication range and

low  communication  range  conditions.  In  [18],  the  factors  about  the  virtual  force  setting  were

investigated and a virtual force strategy with energy awareness was proposed for balancing agents’

energy consumption.  Boufares et al.  [19] utilized VFA to solve a three-dimensional area coverage

problem, but agents’ travel distance requires further improvement due to the large oscillation of agents.

In  [20],  the authors defined the repulsive  force exerted upon agents  by obstacles for  avoiding the

collision with obstacles in the environment, however, only one obstacle with different shapes was used

to test the algorithm in the simulation. Xie et al.  [21] improved VFA by utilizing the area intensity

information to select the distance threshold parameters related to the virtual force. A strategy based on

the virtual spring force with suitable damping was proposed for decreasing the convergence time in the

wireless  sensor  nodes deployment  in  [22].  They  tested  the damping  effects  and  found  the  proper

damping conditions for  good distribution performance. In  the aforementioned research,  researchers

developed  their  methods  in  the  configured  environment  with  no  obstacles  or  merely  few  simple

obstacles, and supposed the agents were able to be randomly placed in the target area at the beginning.



However,  such  random  location  initialization  and  simple  environmental  configuration  could  be

unavailable in many real-life application scenarios.

The computational  geometry-based approaches were mainly  developed from the Voronoi partition.

Cortes et al. [23] proposed a Voronoi-based coverage control approach for the deployment of wireless

sensor nodes. In this method, each agent is directed to the centroids of Voronoi tessellations through

the  Lloyd  descent  of  the  utility  function  and  the  agents  finally  achieve  a  steady-state  coverage

distribution in convex environments.  Wang et al.  [24] proposed three approaches,  VEC, VOR, and

Minimax,  to  calculate  the  target  positions  for  eliminating  the  coverage  holes  using  the  Voronoi

diagram. For improving the unsatisfactory performance of VEC considering a large number of agents

and the sensitive performance of VOR and Minimax with different initial locations of gents, new edge-

based and vertex-based movement methods were introduced in  [25]. The multiplicatively weighted

Voronoi diagram was then introduced by Sharifi et al. [26] to partition the environment considering the

heterogeneity of agents such as their sensing capabilities and dynamics. In [27], a team-based coverage

scheme was designed to conduct the optimization process at the team level for allocating each team a

sub-region and dividing the assigned region to a team member based on the given environment density

function.   In  [28],  the  Voronoi-based  control  strategy  was  extended  to  be  applied  in  non-convex

environments  through a  combination  of  the  Voronoi  coverage  method  with  a  local  path  planning

algorithm TangentBug. The path planning algorithm is used for planning the motions when an agent is

close to obstacles and corners. The authors of [29] also compared the influence of the agent’s geodesic

or  Euclidean sensing patterns  using the geodesic  or  Euclidean Voronoi partitioning in  non-convex

environments.  Stergiopoulos  et al.  [30] addressed  the  coverage  of  a  moving  deformable  convex

region and introduced a feedforward action to speed up the Centroidal Voronoi Tessellations process.

Teruel et al.  [31] proposed a distributed control law for the collaborative visual area coverage of the

mobile  aerial  agents  with downwards facing  camera.  For maximizing the defined coverage-quality

criterion, a pattern based partitioning scheme and the gradient based  control law arei employed to

adjust  agents’  spatial  coordinates.  All  the  research  above  only  concerned  the  obstacle-free

environments or environments with a limited number of obstacles. A high computational cost is also

required in complex large-scale environments in the implementation.

For a  cooperative  surveillance mission,  finding  a proper  spatial  distribution of  agents  in  a  pre-

selected AOI can be formulated into a single high-dimensional optimization problem. The problem was

solved by  a  PSO algorithm in  [32].  The  motion  from initial  locations  to  the  optimal  surveillance

locations is controlled by a local controller based on the onboard sensor information. An improved

PSO algorithm nPSO was applied in the self-deployment of a large number of agents in a much more

complex environment [33]. An approach named stigmergic coverage (StiCo) for multi-robot coverage

was proposed in [34], which was designed using an indirect pheromone-based communication strategy.

In a basic StiCo, each agent is assumed it can deposit and detect pheromone information and has an

initial circling motion. The circling direction and angular velocity would be changed with the detected

pheromone density. In [35], an artificial bee colony algorithm was utilized in the wireless sensor nodes

deployment.  Considering  multiple  objectives  such  as  coverage,  redundancy,  and  fault-tolerance  in



UAVs optimal deployment, a multi-layout multi-subpopulation genetic algorithm (GA) method was

developed [36]. The above approaches employing nature-inspired optimization and strategies usually

require the environmental information and centralized computation. When the number of agents or

obstacles increases, the dimension of the optimization problem will greatly increase and the efficiency

of the optimization process may significantly decrease.

A fuzzy-logic-based method was also proposed for determining the movement of mobile robots in

the field of random deployment of static sensor nodes in  [37]. Raili et al.  [38] introduced the game

theory for relocating the mobile agents’ initial random positions to the optimal coverage configuration.

They defined the utility  function based on the coverage and energy consumption,  and employed a

maximum likelihood scheme to estimate the Gaussian mixture model of the sensing area. Renzaglia et

al.  [39] presented a cognitive-based adaptive optimization (CAO) method to address the multi-robot

surveillance problem in a 3D non-convex target area with unknown obstacles. Through the introduction

of a learning strategy, the method conducted a coordinated and scalable control for maximizing the

monitored area. However, this method has the probability to fail to cover the whole environment due to

its local convergence tendency. This method also relies on a centralized computational unit to carry out

information fusion and optimization, which limits its applications in some complex and/or  extreme

situations.

Our first contribution is to consider sufficient conditions in the monitoring coverage problem and

design  a  group  of  benchmark  testing  problems  and  our  second  contribution  is  that  the

distributed/decentralized property of our proposed VFIS would be more flexible and robust compared

with the centralized method in the literature. Finally, since the previous solution may cause agents

stuck  in  the  dense  obstacle  area  of  the  complex non-convex environment  which  lead  to  the  poor

coverage performance, the novel vortex force in VFIS could cooperate with the repulsive force and

provides strong exploration capability to agents for overcoming the influence of obstacles and ensuring

a balance between exploration and exploitation.

3. Methodology

3.1 Problem description

The  problem  investigated  in  this  paper  is  monitoring  coverage  of  an  unknown  area  including

obstacles using a group of robotic agents. The target area (or called target environment) is initially

unknown to the agents,  which means that  the agents have no prior  knowledge about the size  and

position of  obstacles.  The area of  interest  (AOI) of this problem is the obstacle-free region  in the

environment. The agents travel from their start positions and aim to find appropriate end positions, at

which the agents  can conduct the best  monitoring with respect  to  the coverage of  AOI.  The  start

positions can be located at the environment border or anywhere within the target environment. Each

agent is assumed to have a perception range  R p for environment observation, and a communication



rangeRc,  within which the agent can exchange its  position information with adjacent agents.  Each

agent also has a monitoring range Rm, which relates to the assigned monitoring task and depends on

the  specification  of  monitoring  sensors,  such  as  optical  cameras,  thermographic  sensors,  chemical

sensors and radars. If a sensor is used for both accomplishing the monitoring task and detecting the

environment, Rm and R p may be the same.

Fig.  1  shows an example  of  a  square  target  area,  where black geometrical  objects representing

obstacles  and red star  points  indicating agents.  The green,  blue and red dashed lines represent  an

agent’s monitoring range, perception range and communication range, respectively. The blue and red

circles indicate the perception zone border and the communicative zone border individually, and the

communicative zone does not have to be greater than the perception zone. It can be seen that the 6th

agent can observe the partial border of a rectangular obstacle and communicate with the 5th agent. The

light cyan disk zone represents the monitoring area of each agent and the yellow zone represents the

unmonitored target area blocked by obstacles.

Fig. 1.  An example of problem configuration and virtual forces.

Generally, the coverage performance may deteriorate when the agents cannot spread themselves to

explore the whole environment. The performance may also deteriorate due to the lack of the position

optimization  mechanisms  for  1)  decreasing  the  overlapped  monitoring  zone  between  agents,  2)

decreasing the unused monitoring zone outside the target area and 3) decreasing the occlusion area

blocked by obstacles. We therefore propose a virtual force iteration scheme to avoid these deterioration

situations and achieve the desired coverage performance.

The objectives of the monitoring coverage task include maximizing the monitored region of the AOI

and  minimizing  the  total  travel  length  of  agents.  We  introduce  three  indices  for  evaluating  the

Rm: monitoring range, 

R p: perception range,

Rc: communication range,

F ra 4
3 ，F ra 3

4 ：repulsive force between agents,

F rb 1: repulsive force from the border,

F ro2, F ro3: repulsive force from obstacles,

F vb1: vortex force from the border,



performance of fulfilling the task: 1) the coverage rate based on agents’ final positions, 2) the total path

length of agents from their initial positions to the final positions and 3) the evenness degree of agents’

final  distribution. The most  important  evaluation index is  the coverage  rate  that  is  calculated as a

percentage rate of the effective coverage area over the AOI. The evenness degree is defined as the

mean of the sums of the Euclidean distances between each agent and its three nearest agents, and a

higher evenness degree value means a more even distribution. The evaluation process is not of the

VFIS and it is conducted in the testing experiments only for observing and analyzing the experimental

results.

3.2 Virtual force interaction scheme for monitoring coverage

The completion of the monitoring coverage task is divided into a series of stages which combine

agents sensing their surroundings and updating temporary positions for covering the currently observed

environment. The whole task is fulfilled by agents iteratively achieving the maximum coverage of the

currently observed environment with the stage. The final state of each agent in one stage is the initial

state of the agent in the next stage and the trajectories for agents’ deployment can be directly obtained.

The setup of the stages number relates to the size of the target environment and the agents’ perception

ranges. 

We propose the VFIS to  give agents  proper global exploration capability  and local  exploitation

capability in the form of virtual forces and update agents’ positions until achieving a distribution with

favorable coverage performance. In our method, each agent can respond to its current environmental

observation via the virtual  forces,  which include  the repulsive force from other nearby agents,  the

repulsive and/or  vortex forces from the border of the given environment,  and the repulsive  and/or

vortex forces from the observed obstacles when the agent is close to obstacles. These virtual forces are

illustrated as the arrow lines in Fig. 1. The repulsive forces and the vortex forces are distinguished as

solid lines and dashed lines. The direction of one vortex force is randomly selected from two converse

directions, shown as dashed arrow lines. It can be seen that the 3rd agent and the 4th agent have the

mutual  repulsive  force;  the 2nd agent  and  the  3rd agent  receive  their  repulsive  and vortex forces

individually from the nearby obstacles; and the 1st agent receives the repulsive and vortex forces from

the environment border.

A repulsive force will push an agent directly away from an object,  such as an adjacent agent, a

nearby obstacle or the environment boundary, to improve its coverage performance locally; while a

vortex force can motivate the agent to spread away using the environmental traits. In each stage, the

distribution of  agents  can be determined by calculating all  virtual  forces  and updating the agents’

positions with the effect of these virtual forces, iteratively.

The execution  of  VFIS  is  divided into a  series  of  stages.  In  one  stage,  each agent records the

perceived environment information firstly, exchanges its position information with other agents in its

communication zone and calculates its internal position information which is saved as a virtual position

and is used as the current position in the calculation of the next iteration using the defined equations



iteratively.  This  means  that  the  repulsive  force  between  two agents  is  calculated  using  their  real

positions in the first iteration and using the mutual virtual positions exchanged via their communication

afterward.  However, the physical position of one agent is only updated once at the end of the single

stage. Before the stage end, the agent will refuse to move to the final calculated position if the distance

from the current physical position to the calculated position is less than a threshold. The Pseudo code

of the proposed distributed approach is presented in Table 1, where Part A presents the agents’ initial

configuration and  Part  B  shows how a single  agent calculates  its  position only based on its  local

observation and the communication with the adjacent agents in one stage. The agent would update its

physical  position  with  its  stage  index  until  the  index  reaches  to  the  predefined  value  N S.  The

explanation of all types of virtual forces is presented after the algorithm pseudocode.

Table 1

Pseudo code of VFIS algorithm

Algorithm: Multi-stage Virtual Force Interaction Scheme

Part A: Initial configuration of the whole group of agents

Configure agents’ perception range R p, communication range Rc, monitoring range Rm, the number of

agentsN a , their initial physical positions (x pi,  y pi), movement step sizeL, the number of stagesN S,

and the iteration times in one stage N I . Set values for the virtual force coefficients wra, wrb and wro,

the distance thresholds d ath andd bth, and other parameters including Rl  and Rh. 

Part B: Distributed algorithm for the single agent a j in one stage

1: Initialize the stage index n and the virtual positionxvi=x pi, yvi= y pi

2: Observe the environment and save the perceived information.
3: for iteration index t=1 to N I  do

4:        for j=1 to N a do

5:              if the agent a j is connected

6:                   Send the virtual position xvi  and yvi 

7:                   Receive the virtual position xvj and yvj 

8:                   Compute F ra i
j  using Eq. (1)

9:              end if 
10:        end for
11:        Compute F ra i using Eq. (2) and compute F rb i using Eq. (3)

12:        Update r i using (6)

13:        for k=1 to N o do

14:              Compute F roi
k  using Eq. (4) and compute F voi

k  using Eq. (8)

15:        end for
16:        Compute F roi  F vbi  and  F voi using Eq. (5), Eq. (7) and Eq. (9)

17:        Generate random values in [0, 1] r 1 and r 2
18:        if r 1<P 1
19:               F roi=0
20:        else 
21:               F vo i=0
22:        end if 

23:        Compute M xvo
 and M yvo

using Eq. (11) and Eq. (12)   



24:        if r 2<P 2
25:               F rb i=0
26:        else 
27:               F vb i=0
28:         end if 

29:         Compute M x vb
 and M yvb

 using Eq. (11) and Eq. (12)   

30:         Compute F r i using Eq. (10)

31:         Compute M xr
 and M y r

 using Eq. (11) and Eq. (12)

32:         Updatexvi, yvi using Eq. (13) and Eq. (14)
33: end for
34: Updatex pi=xvi,y pi= yvi and move its position

35: Update the stage indexn=n+1

The  repulsive  force  between  two  agents  is  designed  for  adjusting  their  relative  positions.  The

repulsive force exerted upon an agent a i from a j, F ra i
j , is defined to be inversely proportional to the

distance  between agents  as  Eq.  (1).  The  magnitude  of  F ra i
j  will  be  exceptionally  large  when the

distance is small. The combined repulsive force from all other agents F ra i is defined as Eq. (2).

F ra i
j
={ (w ra×

1
d i

j ,αra i
j

),   ifd i
j
<d ath

0,                                 if d i
j ≥ d ath

           (1)

F ra i= ∑
j=1 , j ≠i

N ai

Fra i
j                                                  (2)

where d i
j denotes the Euclidean distance between ai anda j, d ath represents a distance threshold, αra i

j

is the direction angle of the vector froma j toai,  wra represents the coefficient for the agent-to-agent

repulsive force, and N ai is the number of agents in the perception zone of the agent ai.

We define the virtual repulsive force exerted on a i from the environment boundary as F rb i, which

is used for avoiding the agent being too close to the boundary. The magnitude of  F rb i varies with a

distance variable to ensure a small distance leads to an extremely big force. F rb i is defined as Eq. (3).

F rb i={ (wrb×
1

d bi  

, αrb i),           if d bi< d bth  

0,                                          if d bi ≥  d bth  

      (3)



where  d bi denotes  the shortest  distance  from  ai to  its  surrounding map border,  d bth represents  a

distance threshold,  αrb i denotes the direction from the nearest border point to ai, and wrb represents

the coefficient for the border-to-agent repulsive force.

For each agent, its occlusive area refers to the area blocked by the obstacles in the monitoring range

owing to  the light-of-sight  matter. The repulsive  force contributed by  obstacles relates to both  the

agent’s relative position and the shape of the obstacles, as shown in Fig. 1. Therefore, the repulsive

force exerted on ai by an obstacle  o i is defined to vary with an area variable rather than a distance

variable, as shown in Eq. (4).  When the quantity  of the observed obstacles is  N obi,  the combined

repulsive force from all observed obstacles F roiis defined as Eq. (5).

F roi
k
=(wro × Ai

k
, α roi

k )                          (4)

F roi=∑
k=1

N obi

F roi
k                                      (5)

where Ai
k is the occlusive area blocked by one obstacle O k within the agent’s provisional monitoring

range,  αro i
k  is the direction of the vector  from the closest location of the occlusive area to  a i,  wro

denotes the coefficient of the obstacle-to-agent repulsive force, and N obi is the number of obstacles in

the perception zone of the agent a i.

In this work, the occlusive area Ai
k is calculated based on a changeable monitoring range r i, which

is  designed  for  adaptation  in  the  environment  with  dense  obstacles.  We  define  this  provisional

monitoring range r i varying between a higher limit and a lower limit in one stage as Eq. (6).

r i=

Rh−
Rh−Rl

N I

2

× ti , if 0< ti ≤
N I

2

Rl+
Rh−Rl

N I

2

×(t i−
N I

2 ), if
N I

2
<t i≤ N I

     (6)

where N I  is the total iteration times in one stage, t i is the current iteration index, Rl  and Rh are the

lower limit and the higher limit of the provisional monitoring range respectively.

Despite the intention of introducing the vortex force as different from the repulsive force, they are

closely linked with each other. The orientation of a border-to-agent vortex force is perpendicular to the

orientation of the relevant border-to-agent repulsive force, and the magnitude is proportional to the

corresponding repulsive force’s magnitude, as Eq. (7).



F vb i=(w vb×|F rb i|, αvb i)                       (7)

where αvb i is the direction angle of F vbi with a value either αrb i− pi /2 or αrb i+ pi /2 whenF rb i is

not zero, the coefficient wvb is a random value uniformly distributed in (0.4, 0.8).

Similarly, the direction of an obstacle-to-agent vortex force is perpendicular to the orientation of the

homologous  obstacle-to-agent  repulsive  force.  The  magnitude  is  proportional  to  that  of  the

corresponding repulsive force,  as shown in Eq.  (8).  The combined vortex force from all  observed

obstacles F vo i is defined as Eq. (9).

F vo i
k
=(wvo×|F voi

k |, α vo i
k )                     (8)

F voi=∑
k=1

N obi

F voi
k                                    (9)

where αvo i
k is the direction angle of F voi

k  with a value either αro i
k
− pi /2 or αro i

k
+ pi /2 when F roi

k  is

not zero, wvo is a random value uniformly distributed in (0.4, 0.8). 

A vortex force is assumed to motivate an agent to adjust its position at a certain probability. The

border-to-agent vortex force F vbi and the obstacle-to-agent vortex force F voi take effect at probability

P 1 and P 2 respectively. When the agent adopts the movement caused by a vortex force F vbi or F voi

, the corresponding repulsive force F rb i or F roi is modified to be 0. The combined repulsive force Fr i

upon the agent a i is calculated as (10) and we always allow the repulsive force to push the agent to

move.

F r i=F rai+F ro i+F rbi                      (10)

The movement generated by either F r i, F vo i or F vbi follows the rules defined in Eq. (11) and Eq.

(12). We introduce an exponential format in the equations for limiting the agents’ movement to a small

range.

M x s
=W m× L ×

|F x s|
|F s|

× e
−1
|F s|               (11)

M y s
=W m ×L×

|Fy s|
|F s|

× e
−1
|F s|               (12)

where  M x s
 and  M y s

 are motion displacements along the horizontal and vertical coordinates in the

Cartesian coordinate system respectively; L is the maximum movement related to the number of agents

and the area of the map; Wmis a random coefficient uniformly distributed in (0.5, 1); F s, F x s
 and F y s



represent  one  virtual  force and its  component forces along the  horizontal  and vertical  coordinates,

respectively.

The positions of agents are updated using the following equations:

x (t+1)=x (t )+M x r
(t )+M xvo

(t )+M x vb
( t)    (13)

y (t+1)= y( t)+M y
r
( t )+M y

vo
(t )+M y

vb
(t )    (14)

where (x (t ), y (t )) and (x (t+1), y (t+1)) are the current location and the newly computed location

of the agent;  M x r
,  M xvo

 and  M x vb
are the motion displacements  along the  x-coordinate under the

received  virtual  forces  F r i,  F voi and  F vbi,  respectively;  M y r
,  M yvo

 and  M y vb
 are  the  motion

displacements along the y-coordinate under F r i, F voiand F vbi, respectively. 

4. Benchmark problem design

We defined 22 benchmark configurations for the monitoring coverage problem, considering various

characteristics  of  the  target  environment  and  various  features  of  the  robotic  agents,  which  are

summarized in Table 2. Eight maps are utilized in the benchmark problems, as shown in Fig. 2(a-h).

The area of each map is less than 10,000 square units and the area occupied by obstacles remains at

about 12% of the total area in all eight maps. The static obstacles in the map are represented by the

black zone. Agents are denoted as red star points, and their perception scope and the ideal monitoring

area are represented by blue circles  and light  blue disks respectively.  The properties of  the target

environments include the shape of the environment border, such as square, circle and triangle, and the

obstacles’ quantity, shapes and distribution. In the first three maps Fig. 2(a-c), the environment is a

100-unit  by 100-unit  square containing 6,  12,  and 20 obstacles,  which are with regular  geometric

shapes and in even distributions. Their complexity for a monitoring coverage problem increases with

the increase of the obstacles number. The fourth map (Fig. 2(d)) contains 12 obstacles in an uneven

distribution. To investigate the influence of the map border, we set 16 evenly distributed obstacles in a

circular border with a 50-unit radius as the fifth map (Fig. 2(e)) and 10 evenly distributed obstacles in a

triangular border with the area of 5000 square units as the sixth map (Fig. 2(f)). We also set an extra

square map and an extra circular map that contain the obstacles with irregular geometric shapes as Map

7 and Map 8 (Fig. 2(g-h)), respectively.

The number of agents is an important element considered in the design of benchmark problems. The

ratio of the target environment area to the monitoring area of one agent provides a clue for estimating

the number of agents needed to cover the entire AOI. This ratio is assumed to be the sufficient number

for agents, which is denoted as N su. We set the first eight benchmark configurations as initializing an

adequate number (0. 67 N su) of agents at the border line of Maps 1-8. For observing the influence of

the  number  of  agents,  we  used  0.5 N suand  N suagents  in  Maps  3,  6  and  8  in  the  following  six



configurations (Problems 9-14). The next four benchmark problems concern agents’ initial positions.

We chose  0. 67 N su and  N su agents and set agents’ start positions at the central area of Map 3 in

Problems 15 and 16. 0.67 N su and N su agents are initialized at a border corner of Map 4 in Problems

17 and 18. We then considered the case with larger monitoring ranges in Problems 19 and 20, and the

case that the perception range is equal to the monitoring range in Problems 21 and 22.

Table 2

Benchmark problem configurations.

Benchmark
problem

Map
Map

Border
N ob

Distribution of
obstacles

N a Rm R p
Initial

positions

No. 1 Map 1 Square 6 Even 22 10 25 Border line

No. 2 Map 2 Square 12 Even 22 10 25 Border line

No. 3 Map 3 Square 20 Even 22 10 25 Border line

No. 4 Map 4 Square 12 Uneven 22 10 25 Border line

No. 5 Map 5 Circle 16 Even 17 10 25 Border line

No. 6 Map 6 Triangle 10 Even 11 10 25 Border line

No. 7 Map 7 Square 6 Overlapped 22 10 25 Border line

No. 8 Map 8 Circle 6 Overlapped 17 10 25 Border line

No. 9 Map 3 Square 20 Even 16 10 25 Border line

No. 10 Map 3 Square 20 Even 32 10 25 Border line

No. 11 Map 6 Triangle 10 Even 8 10 25 Border line

No. 12 Map 6 Triangle 10 Even 16 10 25 Border line

No. 13 Map 8 Circle 6 Overlapped 13 10 25 Border line

No. 14 Map 8 Circle 6 Overlapped 26 10 25 Border line

No. 15 Map 3 Square 20 Even 22 10 25 Centre

No. 16 Map 3 Square 20 Even 32 10 25 Centre

No. 17 Map 4 Square 12 Uneven 22 10 25 Border point

No. 18 Map 4 Square 12 Uneven 32 10 25 Border point

No. 19 Map 2 Square 12 Even 10 15 25 Border line

No. 20 Map 2 Square 12 Even 15 15 25 Border line

No. 21 Map 5 Circle 16 Even 17 10 10 Border line

No. 22 Map 6 Triangle 10 Even 11 10 10 Border line



(a) Problem 1 in Map 1 (b) Problem 19 in Map 2

   

(c) Problem 15 in Map 3 (d) Problem 17 in Map 4

(e) Problem 21 in Map 5 (f) Problem 11 in Map 6



(g) Problem 7 in Map 7 (h) Problem 14 in Map 8
Fig. 2.  Examples of benchmark problem settings.

5. Experiments and discussion

5.1 Parameter Setting

The parameters of VFIS used in testing all benchmark problems were fixed as shown in Table 3. We

chose 100 iteration times in one stage to ensure adequate iterative computation and set 15 stages for

exploring the whole target area in one experiment. Three distance thresholds of the virtual force were

related to  the monitoring rangeRm;  d bthwas fixed toRm;  the provisional coverage range  r i varied

between  0.2 Rm and  Rm following (6); and  d ath varied from either  2 Rm or  √N su /N a×2 Rm (

Rc if √N su /N a×2Rm>Rc) at the same probability. The movement step size L was set to d ath/12

and  the  vortex  force  probability  was  fixed  as  0.6.  Twenty-two  groups  of  experiments  have  been

executed  against  the  benchmark  problems  and  experiment  has  been  repeated  20  times  for  each

benchmark problem. 

Table 3

Parameters setting of VFIS.

Paramete

r
N S N I wra wrb wro d bth Rh Rl P

Value 15
10

0
20 30 1 Rm Rm 0.2Rm 0.6

5.2 Experimental results

Table 4 shows the performance of VFIS in terms of several performance indices, the coverages rate,

the distribution uniform degree and the average path length. The uniform degree U d  is mainly used for

evaluating the distribution performance, and is a two-variable vector in this paper. We take the average

of the sum of each agent’s distances to three closest agents as the first term, and choose the standard



deviation of each distance sum as the second term, and normalize these two variables in  Rm unit as

(15).

U d=[

∑
i=1

N a

Di

N a× Rm

,
∑
i=1

N a

(Di−

∑
i=1

N a

Di

N a

)

2

(N a−1)× Rm
2 ]

                    (15)

where Di is the sum of distances between ai and its three closest agents. 

Table 4

Experimental results.

Exp.

No.

Average

Coverage

Coverage 

Rate (%)

Uniform

Degree

Average

Path Length
1 6499.3±31.4 73.9±0.4 [6.47, 0.80] 66.0±2.8
2 6155.2±92.0 69.9±1.0 [6.54, 0.87] 72.0±2.9
3 5912.8±103.7 67.2±1.2 [6.30, 0.91] 76.8±4.2
4 6111.2±110.8 69.4±1.3 [6.45, 0.79] 76.1±2.9
5 4640.1±73.8 67.1±1.1 [6.69, 0.60] 77.8±4.8
6 2682.7±85.1 61.0±1.9 [6.69, 1.19] 78.9 ±6.2
7 6274.2±118.1 71.3±1.3 [6.47, 0.86] 73.3±2.9
8 4871.2±66.2 70.5±1.0 [6.52, 0.74] 78.0±4.7
9 4598.1±67.2 52.3±0.8 [7.64, 1.21] 80.5±3.8

10 7260.7±136.1 82.5±1.5 [5.06, 0.76] 77.4±1.5
11 2098.7±60.0 47.7±1.4 [7.60, 1.44] 87.6±10.0
12 3483.1±117.0 79.2±2.7 [5.68, 1.12] 69.8±4.4
13 3892.0±45.0 56.3±0.7 [7.80, 0.76] 74.5±3.1
14 6010.8±69.7 87.0±1.0 [4.92, 0.64] 75.0±2.6
15 5935.8±57.5 67.5±0.7 [6.45, 0.94] 69.7±3.5
16 7461.5±186.0 83.8±2.1 [5.10, 0.74] 68.8±2.0
17 6149.1±66.8 69.9±0.8 [6.42, 0.87] 92.2±2.2
18 7461.5±82.3 84.8±0.9 [5.04, 0.84] 95.1±2.7
19 5787.8±161.5 65.8±1.8 [6.77, 1.20] 86.5±5.4
20 7114±227.9 80.8±2.6 [5.21, 1.11] 90.8±6.0
21 4584.6±72.4 66.3±1.0 [6.52, 0.66] 83.8±3.0
22 2617.2±120.9 59.5±2.7 [6.30, 1.29] 88.1±4.4

  (a) Exp. 1 (b) Exp. 2



(c) Exp. 3 (d) Exp. 4

(e) Exp. 5 (f) Exp. 6

(g) Exp. 7 (h) Exp. 8
Fig. 3.  Coverage performance of benchmark problems No. 1-8.

Fig. 3 illustrates the final deployment of the first eight benchmark problems and shows that the

overall monitoring coverage states are favourable in all eight maps. From Exps. 1-3 in Table 4 and Fig.

3, we can observe that the coverage rate decreases slightly with the number of obstacles increasing. If

Exp. 4 is compared with others, such as Exp. 2, we can see that the distribution of obstacles has no

obvious effect on the coverage performance of the designed method. The average coverage rate in

Exps. 1-8 is close to 70%, except for Exp. 6. The smaller coverage rate in Exp. 6 is mainly due to the

triangular map border and a smaller AOI, which leads to more overlap between the agents and the

environment border. The coverage uniform degree in Exps. 1-8 keeps similar.  



   

(a) Exp. 9 (b) Exp. 10

   

(c) Exp. 11 (d) Exp. 12

(e) Exp. 13 (f) Exp. 14
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(g) Area Coverage trend in Exp. 9 (h) Area Coverage trend in Exp. 12.
Fig. 4.  Coverage performance of benchmark problems No. 9-14.

Fig. 4 presents the coverage performance of the benchmark problems No. 9-13. The coverage rate

increases with the number of agents, and the coverage rate is great than 79% when the number of

agents is  sufficient.  The coverage rate  in  the triangular environment is  still  lowest  under  different

settings of the number of agents. Fig. 4(g-h) presents the changing trends of the area coverage with the

stage. We can see the area coverage initially increases with stage and may then oscillate around the

‘best’ value due to the stimulative effect of vortex forces.

Fig. 5 presents the final coverage performance in the benchmark problems No. 15-18. Comparing

the results of Exps. 15-17 with the results of Exps. 3, 10 and 4 in Table 4, we can find that the final

coverage rate and distribution state are similar although the initial positions of the agents in the map are

different. Fig. 6 demonstrates the effectiveness of VFSI under the cases with a larger monitoring range

or  a  smaller  perception  range.  A  larger  monitoring  range  means  less  agents  are  needed  and  the

monitoring area of a single agent may be larger than a single obstacle. A smaller perception range also

makes the monitoring coverage task more difficult to complete. From the results in Table 4 and Fig. 6,

it is shown that VFIS works well with different combination of Rm, R p and Rc. 

For the uniform degree, we expect to see a large first term and a small second term for an even

distribution. For a given problem, the first term is small at the initial stage because of agents gathering

together. From Table 4, we can find that the first term is less than 6 when the number of agents is N su,

and the second term is relatively large when the number of agents is small. According to the results of

Exps.  1-4 and 7 in Table 4, one can find that the average path length of agents increases with the

complexity  of  obstacle  distribution  increasing.  Different  from the  coverage  rate,  the  average  path

length relates to the initial positions of agents. The average path length is shortest when the agents start

from the center of the target area and it is longest when the agents start from the corner of the target

area. The average path in the cases with a larger monitoring range or a smaller perception range is

greater.



   

(a) Exp. 15 (b) Exp. 16

 (c) Exp. 17 (d) Exp. 18
Fig. 5.  Coverage performance of benchmark problems No. 15-18.

1

(a) Exp. 19 (b) Exp. 20



(c) Exp. 21 (d) Exp. 22
Fig. 6.  Coverage performance of benchmark problems No. 19-22.

Fig. 7 presents six examples of agents’ paths in different benchmark problems. The paths of agents

are overall reasonable except for some oscillatory movements near their final positions. The average

path length in Exp. 17 is longest and the one in Exp. 15 is relatively short according to Table 4. Some

obvious near-end oscillation can be observed in some experiments, for example Exp. 11, as shown in

Fig. 7(b). Such oscillation may cause longer paths, since the agents continue to update their positions in

the final stages due to the effect of vortex forces. 

   

(a) Exp. 10 (b) Exp. 11

(c) Exp. 13 (d) Exp. 15



(e) Exp. 17 (f) Exp. 19
Fig. 7.  Examples of generated paths using VFIS.

Table 5

Results of Comparative Experiments.

Exp.

No.
Algorithm

Benchmark

problem
Coverage Rate(%)

Uniform

Degree
Average Path Length

1 VFA No. 1 68.4 [6.28,1.30] 55.7

2 IVFAI No. 1 64.2 [5.62,0.79] 38.1

3 OAVFA No. 1 73.7 [6.63,0.71] 57.2

4 VFIS No. 1 73.9 [6.47,0.80] 66.0

5 VFA No. 3 45.2 [4.56,1.74] 31.1

6 IVFAI No. 3 64.2 [5.78,0.87] 41.6

7 OAVFA No. 3 64.5 [6.18,1.24] 43.0

8 VFIS No. 3 67.2 [6.30,0.91] 76.8

9 VFA No.9 34.1 [4.51,1.59] 17.3

10 IVFAI No.9 45.9 [6.39,1.10] 33.8

11 OAVFA No.9 44.8 [6.41,1.34] 33.5

12 VFIS No.9 52.3 [7.64,1.21] 80.5

13 VFA No.10 61.2 [4.25,1.48] 38.7

14 IVFAI No.10 58.4 [3.80,0.78] 29.7

15 OAVFA No.10 58.1 [3.84,0.75] 29.1

16 VFIS No.10 82.5 [5.06,0.76] 77.4

5.3 Algorithms Comparison

To verify the effectiveness of our algorithm in improving coverage performance, the basic virtual

force algorithm  [12] (VFA), obstacle avoidance virtual force algorithm [20] (OAVFA) and improved

virtual force algorithm based on area intensity [21] (IVFAI)  are selected for comparative analysis and

discussion based on the benchmark problems No. 1, No. 3, No. 9 and No.10. The influence of the



number of obstacles and the number of agents on the algorithms’ quality can be observed. For IVFAI,

we modified the air intensity calculation in distributed form and added the basic repulsive force from

the environment border and obstacle due to this algorithm was tested only in obstacle-free environment

in literature. The iteration times in one stage is set as only 20 and the stage number is set as 30 in the

above three algorithms considering no periodic randomization scheme for virtual force proposed in

VFIS and this means these algorithms would require less iterative calculation to achieve their final

deployment state compared with VFIS. The simulation results are presented in Table 5. 

From Exps. 1-4 in Table 5, we can observe that the coverage rate and uniform distribution degree of

VFIS in the simple environment with a moderate number of agents are similar to the results of OAVFA

and are better than the results of IVFAI and VFA. As Exps. 5-9 in Table 5, the coverage quality of

VFIS in the complex environment with a moderate number of agents exceeds IVFAI and OAVFA

cases a bit and is much better than the VFA case. Fig. 8 illustrates the results intuitively.

(a) VFA (b) IVFAI

(c) OAVFA (d) VFIS
Fig. 8.  Coverage performance of benchmark problems No. 3 based on various algorithms.

In Benchmark problem No.3, No. 9, and No. 10, the maps keep the same and the number of agents

are  0.67 N su,  0.5 N su and  N su respectively. Fig. 9 presents the performance of coverage rate and



uniform degree with  the number  of  agents changes according to  the results  of Exps.  5-16. In this

specific  environment,  the  coverage  quality  of  VFA  is  the  worst  among  these  algorithms  in  most

conditions, the performance of IVFAI and OAVFA improved with increase of the number of agents

firstly and then deteriorate and VFIS always keeps the best coverage rate and uniform degree among

these algorithms. As the results in the final column of Table 5, one can find that the average path length

of agents with VFIS is greatest compared with other algorithms in all 4 selected benchmark problems,

but this is necessary for maximizing coverage rate in the complex environment. Overall, VFIS is the

most suitable for environment monitoring task in the complex environment considering three indices’

results compared with other algorithms although it cost more running time.
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Fig. 9.  Comparison of coverage performance in various algorithms.

6. Parameter Analysis

6.1 Vortex force mechanism

Fig. 10 illustrates the coverage performance of two non-vortex-force solutions to the benchmark

problem  No.  3.  Agents  are  blocked  by  obstacles  and  cannot  spread  when  the  obstacle-to-agent

repulsive force is calculated based on a fixed provisional monitoring range, as shown in Fig. 10(a). The

blocking situation is eased by calculating the repulsive force based on a varying provisional monitoring

range, as shown in Fig. 10(b). When the vortex force is exerted at the probabilityP=0.6, the coverage

performance becomes much better as shown in Fig. 3(c). The vortex force in VFIS can provide active

exploration  ability  to  agents  so  as  to  improve  the  coverage  performance  in  monitoring  coverage

problems. 

The action times of the vortex force is mainly controlled by the probabilityP . In this section, we

investigate  the influence of different  probability  values.  Table 6 present  the coverage  performance

against  benchmark problem No. 12 when  P  is  0.2,  0.4,  0.6,  0.8,  0.9 and 1.  Fig.  11 illustrates the

change of three performance indices with the increase of P  from 0 to 1. We can see that the coverage



rate increases with P  increasing from 0.2 to 0.8 and then decreases. We can also find that the travel

distance increases with the increase of  P  but keeps relatively stable in the range of 0.5 to 0.8. The

uniform degree becomes better when P  increases from 0 to 0.95 and it becomes worse when P  is over

0.95. Considering the overall performance for all benchmark problem configurations, the value in the

range between 0.6 and 0.9 is an appropriate choice forP .

    

(a) fixed monitoring range. (b) varying provisional monitoring range
Fig. 10.  Two non-vortex-force solutions for Problem 3

Table 6

Experiments on Vortex Force Probability. 

P Average Coverage Coverage Rate (%)
Uniform

Degree
Average Path Length

0.

2
3106.0±90.9 70.6±2.1 [4.81, 1.16] 56.2±3.4

0.

4
3262.5±85.0 74.1±1.9 [5.19, 1.17] 66.0±2.6

0.

6
3483.1±117.0 79.2±2.7 [5.68, 1.12] 69.8±4.4

0.

8
3633.8±93.5 82.6±2.1 [6.16, 1.10] 71.8±4.2

0.

9
3631.6±113.1 82.5±2.6 [6.32, 1.08] 75.8±5.7

1 3465.2±126.6 78.8±2.8 [6.18, 1.07] 87.8±7.8
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Fig. 11.  Effects of the vortex force probability P  based on Problem 12. The coverage rate and the first term of

uniform degree are based on the left column axis, and the average path length refers to the right column axis.

6.2 Step size in one iteration

We set the step size L in one iteration to different values and investigated the influence of the step

size in the benchmark problem No. 3. Each experiment was repeated 10 times and the selected results

are recorded in Table 7. Fig. 12 illustrates the change of three performance indices with the increase of

L from d ath/50 to d ath/5. We find that the coverage rate and uniform degree increase with the step

size increasing in a certain range and it deteriorates when the step size is too large. When the step size

is  larger,  the  average  path  length  becomes  longer.  The  step  size  value  d ath/12 has  the  best

performance considering all three indices.

Table 7

Experiments on Step Size.

L Average Coverage Coverage Rate (%) Uniform Degree Average Path Length

d ath/30 5478.2±223.6 62.3±2.5 [5.82,1.37] 54.4±3.6

d ath/20 5787.0±144.8 65.8+1.6 [6.14,1.10] 64.6±2.3

d ath/12 5912.8±103.7 67.2±1.2 [6.30,0.91] 76.8±4.2

d ath/5 5671.5±152.0 64.4±1.7 [6.23,0.96] 123.2±3.1
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Fig. 12.  Effects of the step size L based on Problem 3. The coverage rate and the first term of uniform degree are 

based on the left column axis, and the average path length refers to the right column axis.

6.3  Repulsive force range between agents

The effective range for generating repulsive force between two agents d ath should be at least 2Rm

to decrease the overlap between the monitoring zones of the agents. When it is fixed at 2Rm, the agents'

distribution is not very even across the whole target area, although the coverage rate is high, where an

example relating to Problem 9 is shown in Fig. 13(a). We defined a coefficientCa as √N su /N a and

used it in setting the d ath value. Ca is greater than 1 whenN a is less thanN su. The uniform degree of

agents’ final distribution is better when d ath increases from 2 Rm toCa × 2 Rm, as Fig. 13 and Table 8

show, though the coverage rate slightly decreases. To take a balance between coverage and distribution

performance,  we set  d ath randomly  vary  as either  2 Rm orCa × 2 Rm and this  achieved the  most

desirable overall performance compared to the fixed d ath settings. 

(a) d ath=2 Rm (b) d ath=C a∗2 Rm

Fig. 13.  Effects of repulsive force range d ath between agents. 



Table 8

Experiments on Effective Range of Repulsive Force.

d ath Average Coverage Coverage Rate (%)
Uniform

Degree
Average Path Length

2 Rm 4526.6±107.5 51.4±1.2 [6.85, 1.21] 62.8±3.1

Ca × 2 Rm 4504.8±155.2 51.2±1.8 [7.66, 1.14] 80.6±4.8

Varied 4598.1±67.2 52.3±0.8 [7.64, 1.21] 80.5±3.8

7. Experiments using mobile robots

We  also  conducted  practical  experiments  to  validate  the  proposed  VFIS  approach  using  nine

AlphaBot robots. Each robot was equipped with two micro-controllers: an Arduino board was used to

accomplish  1)  localization  based  on  odometers  and  inertial  measurement  units,  2)  environmental

perception through an ultrasonic range finder with the 360-degree rotation, and 3) movement control; a

Raspberry Pi was used for communication and the calculation of position update based on the proposed

algorithms  through  MATLAB  Support  Package  for  Raspberry  Pi  Hardware.  The  experimental

environment was a 4m by 4m square and several cardboard boxes were used as obstacles, whose area is

about  5.5%  of  the  target  area.  The  surface  of  obstacles  was  roughened  for  better  reflections  of

ultrasonic signals, and ultrasonic sensors were set a 30-degree upward tilt angle for better detection of

obstacles without the influence of other robots. 

We set the stage number as 10, the coverage distance as 70 cm, the perception distance as 120 cm

and the communication distance as 210 cm. The value of the coefficient W m was doubled in (11) and

(12) considering a relatively large map area and relatively small obstacles. At the beginning of the

experiment, each robot was located along the edge of the target environment, as shown in Fig. 14(a).

The experiment was repeated five times and its performance was compared with the results  in the

MATLAB simulation with the same configuration and parameter settings.

(a) Initial position of the robots



(b) Three-stage movement

(c) Final position of the robots

Fig. 14.  Experiments based on nine AlphaBot robots. 

Fig. 14(b-c) illustrates examples of  multi-robot deployment after three-stage movement and ten-

stage  movement.  Fig.  15  presents  the  agents’  final  deployment  in  the  comparative  simulation

experiment. Table 9 illustrates the comparison of all three performance indices between the AlphaBot

experiments and the simulation experiments. We can find that the coverage rate and uniform degree are

similar  between these  two sets  of  experiments.  In  the  AlphaBot experiments,  the coverage  rate  is

slightly smaller and the uniform degree is even better. It is noticeable that the average path length in the

AlphaBot experiments is much greater. This is caused by inaccurate obstacle detection from ultrasonic

sensors. Due to the ultrasonic sensors’ beam pattern, each robot might detect the obstacles’  border

differently at different positions. This would cause a frequent update of obstacles’ locations and more

movement of agents according to the updated perception of surroundings.



Fig. 15.  Final deployment of the control experiment in MATLAB simulation

Table 9

Coverage Performance of Comparative Experiments.

Comparativ

e

Experiments

Average

Coverage

Coverage

Rate(%)

Uniform

Degree

Average

Path Length

AphaBot 113628±4603 75.2±3.0
[6.57,0.82

]
410.0±24.7

Simulation 116871±4396 77.3±2.9
[6.32,0.62

]
286.7±20.4

8. Conclusion

In this work, we have addressed the problem of applying a large number of autonomous agents for

monitoring complex unknown environments and designed a series of benchmark testing problems for

the  monitoring  coverage  task.  In  this  paper,  we  developed  a  multi-stage  virtual  force  interaction

scheme, where the virtual vortex forces were introduced to collaborate with repulsive forces to enhance

the global exploration ability of agents. Our method has been investigated in simulation according to

the  benchmark  configurations  and  the  results  revealed  that  each  agent  could  achieve  the  good

deployment with a desired coverage rate and uniform distribution. We have also investigated the key

parameters and provided guidelines on their settings. In addition, some experiments using Alphabots

were conducted and the effectiveness of VFIS was successfully verified. Future works will focus on the

convergence analysis, the extension to the dynamic 2D environment and 3D network scenarios with

UAVs.
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