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Abstract

The past century has seen cosmologists piece together a working theory for the origin

and evolution of structure in the Universe which has been hugely successful at de-

scribing a wide range of observations. This theoretical paradigm is called the ΛCDM

model, which describes the two main constituents of our Universe: Λ, representing

dark energy which drives the late time accelerated expansion of space and CDM, rep-

resenting cold dark matter, the main matter constituent of our Universe. Despite this,

this thesis lays out some of the current tensions which have arisen with the current

concordance model of cosmology and uses these to motivate exploring extensions to

ΛCDM. The thesis is comprised of three main parts; in the first part I explore one of

the predictions of inflation, which is a non-zero running of the scalar spectral index

– usually set to be zero in the ΛCDM model – and its effects on the formation and

evolution of large-scale structure. In particular I examine its effects on the abundance

(through the halo mass function), distribution (through the two point auto-correlation

function) and internal properties (through total matter density profiles) of dark matter

haloes, finding effects of the order 10% in all of these quantities when comparing to

a ΛCDM simulation. I also show that these effects due to cosmology are separable

from the effects present due to galaxy formation physics to typically better than 1%

accuracy. In the second part of this thesis, I focus on the effects warm dark matter,

self-interacting dark matter and a running scalar spectral index have on galaxy scales,

with particular focus on Milky Way mass haloes. In this part of the thesis I explore the

degeneracies present between the effects of these different cosmological models on the

abundance and distribution of substructure, as well as the distribution of matter inside

host haloes in dark matter-only simulation. In general these models all show strong
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degeneracies in their effects, but in detail differences can be discerned. This part of

the thesis also illustrates the degeneracy between the effects from baryons and galaxy

formation physics and cosmological effects. In the third and final part of this thesis I

explore whether future stage-IV weak lensing surveys will be able to place indepen-

dent and competitive constraints on the parameters associated with the aforementioned

extensions (MWDM, σ/m, αs). This is done using the non-linear matter power spec-

trum extracted from dark matter-only simulations to compute the cosmic shear power

spectrum. I then compute a realistic set of error bars associated with the cosmic shear

power spectrum which are representative of future upcoming surveys, taking into ac-

count the expected sky coverage, number density of source galaxies, and associated

shape noise. I find that weak lensing should be able to place useful, independent, con-

straints on each of these cosmological parameters, supporting current observational

efforts in doing so.

SAM STAFFORD JANUARY 7, 2022
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Chapter 1

General Introduction

Over the past century, the field of cosmology has undergone drastic and rapid devel-

opment. From its humble beginnings of philosophy and mythology, cosmology has

cemented itself as a scientific discipline, leading to the development of a quantitative

cosmological model which has stood firm to many observational tests in its description

of the formation and evolution of our Universe.

Our theories regarding the Universe, in their earliest forms, were expressed through

mythology and religion. One of the earliest examples of this is the Rigveda of Hin-

duism containing hymns about the creation of the Universe at around 1500 BCE. Fol-

lowing this, our understanding of the Universe, and our place in it has seen several

notable revisions. At around 400 BCE ancient Greek philosophers such as Aristotle

placed the Earth firmly at the centre of a spatially finite, temporally infinite Universe.

This anthropocentric view of the Universe was developed further by Ptolemy, who

placed the Earth at the centre of the solar system and posited that the Sun, Moon and

the visible planets revolved around it. From here, the next notable development comes

from Nicolaus Copernicus1, who overthrows this anthropocentric view of the Universe

and replaces it with his heliocentric view, which places the Sun stationary at the centre

of the solar system (and Universe), with the Earth and other planets orbiting around

1Although a similar heliocentric view was first presented by the ancient Greek astronomer
Aristarchus around the same time as the anthropocentric view was being pushed.
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1.1. The development of a concordance model 2

it. The next notable revision was developed by William Herschel who placed the solar

system at the centre of a wider collection of stars which we know as the Milky Way.

This view was eventually overthrown by Harlow Shapley who placed the galactic cen-

tre far away from the sun.

This series of drastic re-writings of our understanding of the Universe serves to eluci-

date the significant development the field of cosmology has undergone throughout its

long history and brings us up to the 20th century. It is from this time onwards where

our current understanding of the Universe, its origins and evolution, really gets into

gear. The 20th century saw, for the first time in human history, cosmology coming into

its own as a precise, testable scientific field; as such this past century has seen the de-

velopment of the so-called “standard model of cosmology”. However, as a victim of its

success, this standard model has been put under intense scrutiny, leading to questions

being asked about its very foundations.

1.1 The development of a concordance model

The currently accepted cosmological paradigm has various parts to it, which in combi-

nation, have been incredibly successful at describing the Universe that we live in. One

of the cornerstones of the current cosmological model is that gravitational interactions

in the Universe are assumed to be described by Einstein’s theory of General Relativ-

ity (GR) published in 1915, improving upon the previous description of gravity given

by Isaac Newton. However, one of the most notable developments in modern cos-

mological theory started in 1915 with Vesto Slipher who measured the Doppler shifts

of spiral nebulae (Slipher, 1915). This redshifting of spectral lines was later used by

Edwin Hubble (Hubble, 1929; Hubble and Humason, 1931) to detect the expansion

of the Universe. A natural conclusion of this detection was that at some point in the

past everything in the Universe was much closer together. This was the first hint for

the “Big Bang”, the epoch of formation of our Universe and everything in it, another

cornerstone of our current standard model of cosmology.
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The detection of an expanding Universe, although an important contribution, was not

the smoking gun needed to cement the Big Bang model as the accepted paradigm.

The Big Bang was proposed as a cosmological method for generating the abundance

of elements (Gamow, 1946; Alpher et al., 1948) and it was realised that in such a

scenario there should be a relic background radiation with temperature of a few K left

over from this initial hot dense beginning (Alpher and Herman, 1948, 1949). This

relic radiation, termed the cosmic microwave background (CMB), was indeed later

discovered by Penzias and Wilson (1965), and was found to be isotropic and free from

seasonal variation, firmly placing the Hot Big Bang model as the accepted description

of the beginning of the Universe.

The next key part of the standard model of cosmology is an era of rapid expansion

during the very early Universe. This epoch, termed inflation, was proposed in the

early 1980s (Guth, 1981; Linde, 1981) to naturally solve some of the problems that

had been highlighted in the intervening years with the Hot Big Bang model. Two of

the most notable are the flatness problem and the horizon problem (although more do

exist, such as the magnetic monopole problem, which inflation is also able to solve).

In the case of the flatness problem, it was identified early on (Dic, 1970) that for the

Universe to appear approximately flat today the total energy density of the Universe,

when expressed in units of the critical density2, had to be almost exactly one at early

times. As there is no a priori physical motivation for a flat Universe, the fact that this

appeared to be the case presented a fine-tuning problem with the Hot Big Bang Model.

The second problem mentioned, the horizon problem, addresses the fact that the CMB

appeared to be isotropic when observed, including from regions of the sky that are

causally disconnected. Furthermore, inflation also gives rise to the structure that we

see in the Universe today from quantum fluctuations in the scalar field responsible for

the rapid expansion of space. These fluctuations are blown up to cosmological scales

during inflation. These subtle perturbations in the matter density of the Universe are

able to grow over time into the cosmic structure we see today. One of the predictions

of inflation is that these initial density perturbations should be nearly Gaussian dis-

2The density required to halt the expansion of the Universe after an infinite amount of time.



1.1. The development of a concordance model 4

tributed, and their power spectrum should be close to scale-invariant. The search for

primordial non-Gaussianity is an area of active research (see e.g. Renaux-Petel 2015;

Shirasaki et al. 2021; Viljoen et al. 2021) and the spectral index has been confirmed,

with recent CMB experiments, to have a value almost equal to – but slightly less than

– one (Planck Collaboration et al., 2020).

The next components of the standard model are related to what makes up the Universe

and are also what gives the model its common reference. These components are dark

matter and dark energy. Starting with dark matter, its place in the current cosmolog-

ical paradigm as the main matter constituent of the Universe came from observations

of the Coma cluster by Fritz Zwicky. Zwicky noted that if one measured the mass of

the Coma cluster using the velocity dispersion of constituent galaxies, this mass was

far larger than the mass inferred from the luminous component of the cluster (Zwicky,

1933, 1937). For the galaxies to have such a large velocity dispersion, Zwicky realised

that the Coma cluster must in fact possess more mass than what was present in lumi-

nous matter, i.e. there must be “dark matter” holding the galaxies in the cluster. The

presence of dark matter in and around galaxies was further supported by observations

of flat rotation curves (Babcock, 1939; Rubin and Ford, 1970), indicating that galaxies

had a linearly increasing mass profile in the outskirts, which did not agree with the

stellar profile of galaxies.

Finally, one more, and potentially the most conclusive, piece of evidence for a non-

baryonic component of the total matter content of the Universe comes from detailed

measurements of the CMB. These measurements were pioneered by the COBE satel-

lite which detected tiny fluctuations in the temperature of photons originating from the

CMB. COBE was later succeeded by the increasingly sensitive WMAP and Planck

satellites. The angular power spectrum of these anisotropies in the CMB is a very pow-

erful probe of cosmology. Of interest here are the acoustic peaks present in the power

spectrum. The position of the first acoustic peak in the angular power spectrum of

temperature anisotropies of the CMB tells us the sound horizon at recombination. This

physical scale is then projected onto the sky at recombination as an angular scale that

depends on the geometry of the Universe. As such, this parameter is robustly measured
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independently of the cosmological model. This allows one to fix the sound horizon in

order to measure the matter densities using the CMB. Firstly, the total matter density,

Ωm, can be constrained using the amount of small-scale power, with larger values for

Ωm seeing a reduction, for example. Secondly, one can constrain the baryon density,

Ωb, from its effect on the relative heights of even and odd acoustic peaks. Using this

constraining power, most recently, the Planck satellite mission has confirmed that

baryons only account for approximately 16% of the matter content of the Universe,

with a dark component making up the other 84% (Planck Collaboration et al., 2020).

Following the discovery that there was some unseen constituent making up the matter

content of the Universe, a debate broke out over its nature. Cosmologists were split

into two camps, each relating to the nature of the dark matter, and in particular the mass

of the theorized dark matter particle. In the first case you had hot dark matter (HDM)

which would be a light particle with a mass of the order of a few tens of eV, and as

such would have a large thermal velocity at early times. In the second case, you had the

opposite, a heavy particle of the order of GeV, which would have a negligible thermal

velocity at early times and as such was termed cold dark matter (CDM). These different

models had distinct differences in their predictions for structure formation, in the case

of the former HDM model, due to their large thermal velocities at early times, density

perturbations on scales smaller than the free-streaming scale of the dark matter particle

are smoothed out. In the case of HDM, this scale corresponds to dark matter haloes

with mass ≈ 1015 M�, i.e. corresponding to cluster scales. Therefore, in a universe

dominated by HDM, structure formation proceeds in a top-down manner, with the

largest structures in the universe forming first which then fragment into smaller objects.

Conversely, for the case of the heavier CDM model, structure formed in a bottom-up

scenario, with the smallest objects forming first which then grow through mergers and

accretion into the largest objects seen in the universe. It was this latter model, the

CDM model, which prevailed out of the two as the currently accepted dominant matter

constituent of the Universe. This was primarily driven by the stark differences in the

predicted clustering of galaxies in a HDM universe to the observed clustering in galaxy

redshift surveys (White et al., 1983).
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The final component to be introduced for the standard model of cosmology is dark

energy. Dark energy was discovered through observations of supernovae (Riess et al.,

1998; Perlmutter et al., 1999) who noted that not only was the Universe expanding,

but the speed at which the Universe was expanding appeared to be increasing. In the

standard model of cosmology, this accelerated expansion is being driven by what we

call dark energy, a repulsive force, which is represented by the cosmological constant

Λ and is assumed to be constant with space and time. Together, we believe CDM and

Λ combine to form the majority of the energy budget of our Universe (≈ 95% Planck

Collaboration et al. 2020) at late times as well as forming the commonly accepted

name for the above described concordance model of cosmology, the ΛCDM model.

1.2 An incomplete model

The ΛCDM model has been hugely successful at predicting and reproducing observa-

tions made of our Universe. For example, the polarisation of the CMB (Kovac et al.,

2002), the presence of baryon acoustic oscillations (BAO) in the clustering of galaxies

(Eisenstein et al., 2005; Cole et al., 2005), the statistics of weak gravitational lensing

(see e.g. DES Collaboration et al. 2021), redshift space distortions (see e.g. Ruggeri

et al. 2019), the clustering of galaxies (see e.g. Alam et al. 2017) and the properties

of the CMB (Planck Collaboration et al. 2020). However, with the wealth and quality

of observations being made of our Universe today, such as those already outlined here,

hints have appeared that the current standard model might be missing something. I

have split the current “tensions” with the ΛCDM model up into large-scale tensions,

which are primarily related to constraints on cosmological parameters, and small-scale

tensions, which relate to observations of galactic and sub-galactic scales.

1.2.1 Large-scale structure tensions

One of the most highlighted tensions with the ΛCDM model is that relating to the

Hubble constant, H0, which stems from different methods of placing constraints on
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this parameter. On the one hand, you can use observations of the “early Universe”,

i.e. by using observations of the CMB, to place constraints on the parameter value

for H0. Existing constraints which have used this method include observations from

the WMAP satellite mission (H0 = 69.7 ± 2.4 km s−1 Mpc−1, Hinshaw et al. 2013),

the Planck satellite mission (H0 = 67.36 ± 0.54 km s−1 Mpc−1, Planck Collaboration

et al. 2020), the Atacama Cosmology Telescope (H0 = 67.9± 1.5 km s−1 Mpc−1, Aiola

et al. 2020) and the South Pole Telescope (H0 = 68.8 ± 1.5 km s−1 Mpc−1, Dutcher

et al. 2021). On the other hand, one can place constraints on H0 using observations of

the “late Universe” with most notable measurements coming from observations of type

Ia supernovae by the SH0ES team (H0 = 73.2± 1.3 km s−1 Mpc−1, Riess et al. 2021),

and observations of lensed quasars made by the H0LiCOW team (H0 = 73.3+1.7
−1.8 km

s−1 Mpc−1, Wong et al. 2020). Therefore, this discrepancy (see also Verde et al. 2019

for a recent review of the H0 tension) between early Universe constraints, which all

systematically prefer a lower value for H0, and late Universe constraints now stands at

> 4σ and poses a potentially significant problem with the standard ΛCDM model.

The second tension related to cosmological parameters is an emerging tension on the

parameter combination S8 = σ8(Ωm/0.3)0.5, where σ8 is the amplitude of mass fluctua-

tions on scales of 8 Mpc h−1 and Ωm is the matter density in units of the critical density.

Here, again constraints using the primary CMB prefer a different value than what is

preferred using measurements of large-scale structure. In the case of the CMB, Planck

places the constraint S8 = 0.832± 0.013 (Planck Collaboration et al., 2020), and ACT

gives S8 = 0.830 ± 0.043 (Aiola et al., 2020). Whereas, if one uses weak gravitational

lensing to constrain this parameter, it seems to prefer a lower value. For example,

three recent large cosmic shear surveys all consistently find lower values than that

preferred by Planck, the Subaru Hyper Suprime-Cam (HSC) gives S8 = 0.780+0.030
−0.033

(Hikage et al., 2019), the Kilo-Degree Survey (KiDS)-1000 gives S8 = 0.766+0.020
−0.014

3

(Heymans et al., 2021), the Dark Energy Survey (DES) Year 3 3x2pt function analysis

gives S8 = 0.776+0.017
−0.017 (DES Collaboration et al., 2021). In this case, the primary CMB

seems to prefer higher values than that preferred by large-scale structure observations,

3Note, this constraint comes from the KiDS-1000 3x2pt function analysis which includes the data
sets of cosmic shear, galaxy-galaxy lensing and galaxy-galaxy correlation functions together.
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which translates to the primary CMB preferring a more “lumpy” Universe than what

we seem to observe. Together, this tension and the H0 tension perhaps hint that the

ΛCDM model is incomplete and there may be some discrepancy between early and

late time evolution of the Universe that has not been included in the model.

These creeping tensions with the ΛCDM model are the motivation I use for explor-

ing a minimal extension to the standard model in Chapter 2. In this first part of my

thesis, I seek to explore the effects a running scalar spectral index has on large-scale

structure, and whether or not it can go some way in alleviating the above tensions. A

running spectral index works to alter the amount of power present on both large and

small scales. Physically this means a running scalar spectral index can either enhance

(or suppress) large- and small-scale density perturbations, which as a result, should

effect the resultant structure which forms on these scales. The motivation for choosing

this extension to study is two-fold. Firstly, as already detailed in this introduction, the

ΛCDM model is an incredible success of modern cosmology, and if it is wrong, at

this point it is only subtly wrong, at least in its mathematical description of our Uni-

verse. Therefore, any extension that is made to the standard model has to keep the

broad strokes of the resultant universe the same as what we observe, and a running

scalar spectral index is capable of doing this. Furthermore, some level of “running”

is expected from inflationary theory, even for the currently accepted slow-roll inflation

model (Kosowsky and Turner, 1995). However, currently, one of the assumptions of

the ΛCDM model is that the “running” is equal to zero, and so the spectral index has no

scale dependence. The second motivation for studying this extension to the standard

model comes from current observations. This is detailed more thoroughly in Chapter

2, but in short, there seems to be mounting evidence that the value for the running

of the spectral index is mildly negative (Planck Collaboration et al., 2020; Palanque-

Delabrouille et al., 2020). Therefore, anticipating the effects of a non-zero running of

the spectral index on large-scale structure will be important for upcoming surveys.
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1.2.2 Small-scale structure tensions

In the previous section, I detailed a couple of the tensions that have been highlighted

with the ΛCDM model, both of which were focused on parameter constraints from

large-scale structure observations. However, these are not the only problems that have

been raised regarding the standard model of cosmology. If one turns their attention

to smaller scales, in particular, focusing on galaxy scales, several problems have been

raised with the ΛCDM model. A comprehensive review of the identified small-scale

problems with ΛCDM can be found in Bullock and Boylan-Kolchin (2017), however,

I will introduce here three of the most relevant, and widely shared, problems which I

explore further in Chapter 3.

To start with there is the ‘missing satellites’ problem (Klypin et al., 1999; Moore et al.,

1999) which describes the apparent under-abundance of low-mass galaxies in the Lo-

cal Group as well as, in particular, around the Milky Way (MW). Secondly, there is the

‘cusp-core problem’ (Flores and Primack, 1994), which refers to the fact that measure-

ments of the rotation curves of dark matter-dominated galaxies appear to have a cored

(have a shallow, almost flat) inner density profile. In comparison, haloes from a nu-

merical simulation of a ΛCDM cosmology appear to have a cuspy (increasingly dense)

inner density profile (Navarro et al., 1996). Lastly, there is the ‘too-big-to-fail’ prob-

lem (Boylan-Kolchin et al., 2011), which describes the fact that satellites of the MW

appear to have central masses which are too low in comparison with their counterparts

from numerical simulations. Together, these so-called ‘small-scale problems’ with

ΛCDM highlighted here appear to point towards a common sign, the ΛCDM model

predicts more structure on small-scales than is observed in the real Universe.

One of the results found from Chapter 2 is that, because a running spectral index affects

the power spectrum on small-scales, either through an enhancement or suppression, it

also has an increasingly large effect on haloes of decreasing mass. For a cosmology

with a negatively running scalar spectral index, this was particularly interesting, as this

leads to a suppression of small-scale density perturbations which in turn leads to a

decrease in structure formation on small-scales. Therefore, this result, along with the
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above problems highlighted with the ΛCDM model on small-scales was the motiva-

tion for the work presented in Chapter 3. However, alongside a running scalar spectral

index, there are other extensions to the ΛCDM model which are not beyond current

observational constraints which work to suppress small-scale structure and therefore

go some way in alleviating the above tensions. These extensions are different to run-

ning, in that they alter the nature of dark matter (DM) somewhat, whereas a running

spectral index alters the initial conditions for structure formation. Firstly, there is warm

dark matter (WDM), which lies somewhere between the DM models mentioned pre-

viously of HDM and CDM. Here, the DM particles have enough thermal velocity at

early times to smooth out density perturbations on dwarf galaxy scales (compared with

the cluster scales associated with HDM). This suppression in small-scale power leads

to a reduction in the number of low-mass haloes which form in these cosmologies

while retaining the large-scale structure necessary to explain the clustering of galaxies.

Secondly, there is self-interacting dark matter (SIDM), which allows the DM particles

to have significant self-interactions and momentum exchange and again works to sup-

press small-scale density perturbations, being particularly successful at decreasing the

inner density profile of galaxies. Due to the similarity in the effects on small-scale

structure between these two additional extensions to the standard model of cosmology,

I include these cosmological models in my analysis in Chapter 3. Here I explore the

degeneracies which exist between the models and compare how well each does in turn

in alleviating the previously highlighted small-scale problems with ΛCDM.

One of the results of Chapter 3 is that these three cosmological models, as expected,

have significant degeneracies in their effects on small-scale structure, for example, all

of the models can reduce the number of satellite galaxies of MW analogues. This

has significant consequences when it comes to placing constraints on these additional

parameters as they all have very similar effects on the usual observables. As such, I

explore in Chapter 4 whether or not competitive constraints can be placed on these

additional cosmological parameters using the effects that they have on the non-linear

matter power spectrum. I do this by exploring the effects these parameters have on

the cosmic shear power spectrum, and whether or not future stage-IV weak lensing
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surveys will be sensitive enough to constrain these additional parameters.

1.3 Modifications due to baryons

One caveat to the small-scale problems discussed previously is that they are present

when comparing dark matter-only numerical simulations to the real Universe. How-

ever, the real Universe does not just consist of DM. Despite only accounting for≈ 16%

of the mass budget of the Universe, baryons have a non-negligible impact on the struc-

ture in the Universe. For example, past studies which account for the effects of bary-

onic processes either through semi-analytic models (e.g. Bullock et al. 2000; Benson

et al. 2002) or state-of-the-art hydrodynamic simulations, which incorporate baryonic

particles as well as subgrid recipes for galaxy formation physics, have shown that this

is sufficient enough to solve the aforementioned tensions with the ΛCDM model (see

e.g. Navarro et al. 1996; Kravtsov et al. 2004; Mashchenko et al. 2008; Governato et al.

2012; Brooks and Zolotov 2014; Oñorbe et al. 2015; Sawala et al. 2016). Furthermore,

previous studies have shown that the effects of baryonic physics are not contained to

galactic scales, with hydrodynamic simulations showing that galaxy formation physics

can have measurable effects on the masses of haloes (Velliscig et al., 2014), the clus-

tering of haloes (van Daalen et al., 2014) and the non-linear matter power spectrum

(van Daalen et al., 2011, 2020).

Therefore, given the importance of baryons and their effects on structure in the Uni-

verse, I also explore in Chapter 2, whether or not the effects due to a running scalar

spectral index are separable from those due to baryonic physics, which will be impor-

tant for future surveys which aim to measure the matter power spectrum to percent

level accuracy. I also explore in Chapter 3 the degeneracies that exist between the

different cosmological models already mentioned and simulations which incorporate

a realistic treatment of baryons in their effects on the satellite population of haloes as

well as the internal properties of haloes.
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1.4 Simulating the Universe

The results in this thesis rely completely on numerical simulations which have become

invaluable in modern cosmology allowing us to go beyond linear theory and perturba-

tion theory to study the deep non-linear regime of structure formation. Typically this is

done by simulatingN collisionless particles, which only interact gravitationally, inside

a periodic box with a side length equal to some relevant comoving scale. As comput-

ers and numerical techniques have improved, so has the scale of numerical simulations,

with for example a recent study by Euclid Collaboration et al. (2019) finding that to

have a converged non-linear matter power spectrum to k−scales of 5.48 Mpc−1 h one

requires a simulation with side length equal to 1250 Mpc h−1 and 20483 particles. This

is one giant leap beyond the first N -body simulation by Holmberg (1941) who used

37 light bulbs as gravitational particles to study the tidal interactions of two stellar

systems. Similarly, this is a giant leap beyond even the first numerical N -body simu-

lations that were run on computers (von Hoerner, 1960; Aarseth, 1963; Peebles, 1970)

which used between 25 and 300 particles in their simulations, illustrating how far the

field of numerical cosmology has come. I will provide a qualitative description of

simulations below but provide a quantitative description of key aspects (for example,

resolution and box size, etc.) in Chapters 2 & 3 (an extensive review on cosmological

simulations can also be found in Vogelsberger et al. 2020).

1.4.1 Generating initial conditions

Numerical simulations start at some desired redshift – e.g. z = 127 for the works in

this thesis – where an initial particle distribution is defined and then evolved through to

the present day (or desired final redshift). The initial particle distribution is called the

Initial Conditions (ICs), and they are generated such that the initial particle load match

some desired input power spectrum. To start with, however, the initial particle load

will typically be in a grid configuration, i.e. homogeneously distributed, and then the

positions of the particles will be perturbed such that they reproduce the desired power
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spectrum, as well as being given an initial velocity4. This process can be done using

methods such as the Zel‘dovich approximation (Zel’dovich, 1970). This only works,

however, provided that the density perturbations to be generated in the ICs are linear,

which is why the simulations typically start at higher redshifts.

The generation of the ICs is particularly relevant for this thesis as two of the cosmolog-

ical extensions examined here, a running of the spectral index and WDM, are modelled

primarily through their effect on the ICs of the simulations. Both of these extensions

affect the supplied input linear theory matter power spectrum by affecting either the

amount of small-scale power or both the amount of small- and large-scale power. The

resultant structure formation, and any differences therein, from these modified ICs, is

purely due to these initial differences from ΛCDM. This is discussed in more detail in

Chapter 3.

1.4.2 N -body simulations

Following the generation of the ICs, the particle distribution needs to be evolved

through to the present day, which requires an N -body solver. These N -body codes

solve the equations of motion, computing the acceleration each particle experiences

due to all other particles in the simulation at each time step, and updates the position

and velocity of each particle accordingly. These effects are then integrated over many

time steps through to the present day. The results I present in this thesis have relied

extensively on the Gadget3 (Springel, 2005) N-body code which uses a hybrid tech-

nique for computing the gravitational forces acting on each simulation particle. For

short-range separations between particles GADGET3 uses an oct-tree, whilst for large

separations, it uses a particle mesh. These hybrid techniques are used to significantly

speed up the calculation of the gravitational forces acting on each particle5.

4Note, in the case of a hydrodynamical simulation, as well as an initial position and velocity, the
baryonic particles also need to be given an initial density, velocity and temperature, which is often
initialised to the redshift-dependent CMB temperature.

5To calculate the gravitational force acting on each particle due to every other particle in the sim-
ulation scales as O(N2). However, by employing the hybrid techniques outlined here this cost can be
reduced to O(N log(N)).



1.4. Simulating the Universe 14

1.4.3 Hydrodynamic simulations

As described above, as the quality of numerical simulations has improved over the

years, so has their complexity. Modern simulations are now able to capture hydro-

dynamical effects through, typically, modelling the gaseous component as an ideal

fluid, going beyond the usual collisionless gravity-only simulations. A popular method

for simulating baryons in hydrodynamical simulations is using a Lagrangian method

which evolve the gas particles using smoothed particle hydrodynamics (SPH), where

the fluid is equally discretised in mass, with quantities being attached to particles and

smoothed over a spherically symmetric kernel function. These simulations, therefore,

start with two particle species, a collisionless dark matter particle, which is only sub-

ject to the forces of gravity, and a gas particle. It is this method which Gadget3 uses

in its hydrodynamic calculations6.

Although SPH allows numerical simulations to model a baryonic fluid component as

well as a dark matter component, this still neglects a host of astrophysical processes

important for structure formation. These processes are typically associated with scales

much smaller than the resolution limit of the simulations and so they have to be cap-

tured with “subgrid” routines. Modern hydrodynamic simulations include subgrid pre-

scriptions for radiative cooling, photoionizing heating, an ionizing background radi-

ation which models the reionization of the universe, star formation, stellar feedback,

supermassive black holes and feedback from active galactic nuclei. These are all very

important aspects of galaxy formation and have non-negligible effects on the structure

which forms in the Universe. The work in this thesis makes use of the BAHAMAS

(McCarthy et al., 2017, 2018) and EAGLE (Schaye et al., 2015; Crain et al., 2015)

hydrodynamic simulations to compare cosmological effects to a realistic treatment of

baryonic physics. A discussion on the modelling of the subgrid physics included in

these simulations, as well as its calibration, is included in Chapters 2 & 3.

6Note, however, that this is not the only method available for modelling hydrodynamical effects
in numerical simulations. Other techniques include Eulerian methods which focus on specific points
in space, and the flow of hydrodynamic quantities across their boundaries. Alongside this there is
also Lagrangian-Eulerian methods, which use techniques such as Voronoi tessellation which allow the
underlying mesh to adapt and move. A more detailed description of these other methods, and associated
references, can be found in Vogelsberger et al. (2020).
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1.5 Thesis Outline

This thesis is organised as follows:

In Chapter 2 I explore the differences present in the large-scale structure which forms in

cosmological models which have been chosen to have a non-zero value for the running

of the scalar spectral index when comparing to the ΛCDM counterpart. I do this using

statistics such as the halo mass function, the non-linear matter power spectrum and the

two-point autocorrelation function of haloes. I also explore the effects on the internal

properties of haloes by looking at the concentration-mass relation and the total matter

density profiles of haloes. Furthermore, as this work is part of the BAHAMAS project

(McCarthy et al. 2017), I examine how separable the effects on the aforementioned

statistics due to a non-zero running scalar spectral index are from the effects due to

galaxy formation physics.

In Chapter 3 the attention turns to smaller physical scales. Here I introduce a new suite

of simulations that includes cosmological models with a non-zero value for the running

of the scalar spectral index, warm dark matter and self-interacting dark matter. I focus

on the effects these non-standard cosmologies have on the abundance and distribution

of satellite haloes, pitching the results in the context of the small-scale problems asso-

ciated with the ΛCDM model. I also examine the effects on the dark matter distribution

in host haloes, examining again the concentration-mass relation, the total matter den-

sity profiles as well as the circular velocity profiles. Simultaneously I self-consistently

measure the same statistics in state-of-the-art hydrodynamical simulations, in partic-

ular the EAGLE-RECAL simulation and the ARTEMIS (Font et al., 2020) simulation,

commenting on the degeneracy between the effects due to galaxy formation physics

and different cosmological models.

In Chapter 4 I use the simulations, with some additional runs included, introduced

in Chapter 3 to explore the effects of the different cosmological models examined in

this thesis on the cosmic shear power spectrum. This chapter starts off by introducing

the effects on the non-linear matter power spectrum. I then motivate how I construct

a total matter power spectrum spanning a large range of k−scales. Following this,
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I detail how I calculate the cosmic shear power spectrum, as well as how I evaluate

realistic error bars for future stage-IV weak lensing surveys. I also introduce in this

chapter a new analytic form for the error associated with the cross-correlation power

spectrum incorporating a residual Poisson error term.

Finally, in Chapter 5 I summarise the results of this thesis and discuss future work

relating to jointly modelling baryons and extensions to ΛCDM.



Chapter 2

The BAHAMAS project: Effects of a

running scalar spectral index on

large-scale structure

The following chapter appeared in Stafford et al. (2020a). The appendices for this

work are included in Appendix A.

Recent analyses of the cosmic microwave background (CMB) and the Lyman-α forest

indicate a mild preference for a deviation from a power-law primordial matter power

spectrum (a so-called ‘running’). In the following chapter, I introduce an extension to

the BAHAMAS suite of simulations designed to explore the effects that a running scalar

spectral index has on large-scale structure (LSS), using Planck CMB constraints to

initialize the simulations. I do this by making use of the Planck Markov chains which

include the running of the scalar spectral index as a free parameter. These chains allow

me to choose values for all of the necessary cosmological parameters, for a given value

of the running, while assuring the resultant cosmology is consistent with current CMB

constraints. In this chapter I focus on 5 key statistics: i) the non-linear matter power

spectrum ii) the halo mass function; iii) the halo two-point autocorrelation function; iv)

total mass halo density profiles, and v) the halo concentration-mass relation. I find that

the matter power spectrum in a Planck-constrained running cosmology is affected on

17
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all k−scales examined in this study. These effects on the matter power spectrum should

be detectable with upcoming surveys such as LSST and EUCLID. A positive running

cosmology leads to an increase in the mass of galaxy groups and clusters, with the

favoured negative running leading to a decrease in mass of lower-mass (M . 1013M�)

haloes, but an increase for the most massive (M & 1013M�) haloes. Changes in

the mass are generally confined to 5-10% which, while not insignificant, cannot by

itself reconcile the claimed tension between the primary CMB and cluster number

counts. I also demonstrate that the observed effects on LSS due to a running scalar

spectral index are separable from those of baryonic effects to typically a few percent

precision. Finally, one key result I find in this chapter is that the effects of a running

scalar spectral index become more pronounced when looking at lower mass objects,

or by looking at its effects on smaller scales. I explore these effects further with an

additional complementary suite of simulations which are at a higher resolution. These

simulations are introduced in Chapters 3 & 4, where I exploit the increased resolution

to investigate these enhanced small-scale effects and compare them to the effects from

other popular extensions to the ΛCDM model.

2.1 Introduction

The standard model of cosmology is remarkably successful at describing how structure

in the Universe formed and, with the recent Planck mission, the model has been val-

idated and constrained to an unprecedented precision (see Planck Collaboration XIII

2016). One of the remarkable aspects of this model, termed the ΛCDM model, is that

it can be described in full by just 6 independent adjustable parameters. However, with

the wealth of observational data available today, being taken with ever more precise in-

struments, a few interesting tensions have arisen with some of the derived parameters

of this model. For example, there is the well-known tension in the Hubble constant

(H0) with local measurements (e.g. Bonvin et al., 2017; Riess et al., 2018), preferring

a higher value for H0 than the value obtained via the analysis of the primary Cos-

mic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) (e.g.
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Planck Collaboration XIII 2016). There also exists a mild tension when comparing

various large-scale structure (LSS) joint constraints on the matter density Ωm and σ8

(the linearly evolved amplitude of density perturbations on 8 Mpc h−1 scales) to the

constraints on these quantities from Planck measurements of the CMB. In particular,

there are a number of LSS data sets which appear to favour relatively low values for

Ωm and/or σ8 (see e.g. Heymans et al., 2013; Planck Collaboration, 2016; Hildebrandt

et al., 2017; Joudaki et al., 2018; McCarthy et al., 2018; Abbott et al., 2019). In addi-

tion to these tensions with low-redshift probes, a number of studies have demonstrated

that there are a few mild internal tensions in the Planck data/modelling itself (see

e.g. Addison et al., 2016; Planck Collaboration et al., 2017). Together, these tensions,

if they are not just statistical fluctuations or unaccounted for systematic errors in the

analyses, could be signs of interesting new physics.

There are many possible ways to extend the standard model of cosmology that could

potentially reconcile some of the above tensions, including (non-minimal) massive

neutrino cosmologies (e.g. Battye and Moss, 2014; Beutler et al., 2014; Wyman et al.,

2014; McCarthy et al., 2018), dynamical dark energy models (e.g. Di Valentino et al.,

2017; Yang et al., 2019), and deviations from general relativity (‘modified gravity’)

(e.g. De Felice and Tsujikawa, 2010; Li et al., 2012; Nunes, 2018) to name just a few.

One of the possible extensions that is perhaps less commonly discussed is a running

of the scalar spectral index of the primordial power spectrum. The primordial spectral

index, ns, of scalar perturbations is most often assumed to be independent of scale

(i.e., that the primordial power spectrum is a pure power-law). However, virtually all

models of inflation predict at least some small level of scale dependence in ns. For

example, the simplest models of inflation (e.g., single-field, slow-roll inflation) predict

a running of ns of order O(1 − ns)
2 (Kosowsky and Turner 1995) (this would be ∼

0.001 for Planck CMB constraints on ns), where the scale dependence of the spectral

index is given by ns(k) = ns(k0) + αs ln(k/k0), with αs being the ‘running’ of the

scalar spectral index and k0 the pivot scale.

Using the Planck 2015 full mission temperature data, αs is constrained to have a cen-

tral value of: αs = −0.00841+0.0082
−0.0082 (68% CL PlanckTT+lowTEB). That is, there is



2.1. Introduction 20

−0.06−0.04−0.02 0.00 0.02 0.04 0.06
αs

Planck TT+lowTEB

Planck(TT+lowTEB)+Lyα

ACT CMB

SDSS-III BAO

SPT+WMAP7

Figure 2.1: Summary of the observational constraints discussed in the introduction to this
study. The vertical dashed line indicates no running. There is currently a mild preference for a
negative value for αs.
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a very mild preference for a negative running from the Planck CMB data. Palanque-

Delabrouille et al. (2015) combine their measurements of the Lyman-alpha forest with

the Planck 2015 full mission temperature data and low multipole polarisation data to

find a much stronger preference for a negative running: αs = −0.0178+0.0054
−0.0048 (68%

CL Planck(TT + lowTEB) + Lyα). They do note, however, that this result may be

due to unaccounted for systematics in their measurements. In addition to this, there

have been other independent measurements (i.e., measurements which have not used

Planck CMB data) of a running scalar spectral index, at varying levels of significance

e.g.: αs = −0.034+0.018
−0.018 (ACT CMB) (Dunkley et al. 2011); αs = −0.017+0.018

−0.017

(SDSS − III BAO)(Zhao et al. 2013); αs = −0.024+0.011
−0.011 (SPT +WMAP7)(Hou

et al. 2014). A visual summary of the current empirical constrains on the running is

shown in Fig. 2.1.

Note that, since different models of inflation predict different scale dependencies, mea-

surements of αs and its running (i.e., running of the running) can be used to constrain,

or possibly rule out, models of inflation (see Escudero et al. 2016 for a discussion on

the impact on inflationary models in the light of the Planck results).

Given these results, and the possible tensions which currently exist, it is interesting to

see what effects a running spectral index that is within observational constraints would

have on the LSS that we see in the Universe today. This is the aim of this present study.

I use direct numerical simulations which allow us to accurately model the non-linear

growth of structure for cosmologies with a running spectral index imprinted into the

initial conditions (ICs) to explore the differences which arise compared to the standard

ΛCDM model. I do this using a new extension to the BAHAMAS suite of cosmological

hydrodynamic simulations (McCarthy et al., 2017, 2018), which is described below. In

this study, I will explore 5 main statistics to investigate the effects due to a ΛαsCDM

model. These statistics are: the non-linear total matter power spectrum, the halo mass

function (HMF), the halo two-point autocorrelation function, total halo mass density

profiles, and the halo concentration-mass relation. I will also examine how separa-

ble the effects of a running scalar spectral index are from the effects due to baryonic

physics, to assess if they can be treated as two separate multiplicative corrections to
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the standard model.

This chapter is organized as follows: in Section 2.2 I present a brief summary of the

simulations used, as well as my parameter selection method. In Section 2.3 I exam-

ine the effects of a running scalar spectral index on the LSS present in the simula-

tions, including the HMF, the two-point autocorrelation function, and the total matter

power spectrum. In Section 2.4 I show the effects a running scalar spectral index

has on certain internal halo properties, such as the total mass density profiles, and the

concentration-mass relation. In Section 2.5 I present a separability test of the effects

due to a running scalar spectral index, and baryonic physics, to assess if these two

processes can be treated independently. In Section 2.6 I summarise and discuss my

findings.

2.2 Simulations

2.2.1 BAHAMAS

This study extends the current BAHAMAS suite of cosmological hydrodynamic simula-

tions. In this extension, a running scalar spectral index is incorporated into the initial

conditions.

The BAHAMAS suite of cosmological simulations described in McCarthy et al. (2017)

(see also McCarthy et al. 2018) consists of 400 comoving Mpc h−1 on a side, periodic

box, smooth particle hydrodynamics (SPH) simulations containing 2 × 10243 parti-

cles. The present study adds to the pre-existing suite of BAHAMAS simulations with

a new subset, whose initial conditions are based on the Planck maximum-likelihood

cosmological parameters derived from the Planck 2015 data release (Planck Collabo-

ration XIII, 2016). The cosmological parameters of each run were varied, including

values for the running of the scalar spectral index αs (the method for how the cosmolo-

gies were chosen is discussed in detail in Section 2.2.4). The Boltzmann code CAMB1

1http://camb.info/

http://camb.info/
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(Lewis et al. 2000, August 2018 version) was used to compute the transfer functions,

and a modified version of N-GenIC was to used to create the initial conditions for the

simulations, which start at a redshift of z = 127. N-GenIC has been modified to in-

clude second-order Lagrangian Perturbation Theory corrections alongside support for

massive neutrinos2. Note that when producing the initial conditions, I use the separate

transfer functions computed by CAMB for each individual component (i.e., baryons,

neutrinos, and CDM) for the hydrodynamical simulations. Note also that, when pro-

ducing the initial conditions for each of the simulations, the same random phases are

used for each, implying that any comparisons made between the different runs are not

subject to cosmic variance complications.

The simulations were carried out using a modified version of the Lagrangian TreePM-

SPH code GADGET3 (last described in Springel 2005). This is a Lagrangian code used

to calculate the gravitational and hydrodynamic forces on a system of particles. It was

modified to include new subgrid physics as part of the OWLS project (see section 3

of Schaye et al. 2010). The gravitational softening is fixed to 4 kpc h−1 (in physical

coordinates for z ≤ 3 and in comoving coordinates at higher redshifts) and the SPH

smoothing is done using the nearest 48 neighbours. The BAHAMAS run used here for a

Planck maximum-likelihood cosmology (with no running of the scalar spectral index)

has dark matter and (initial) baryon particle mass of ≈ 4.36 × 109 M� h−1 and ≈ 8.11

× 108 M� h−1 respectively. The particle masses for the other cosmologies in this suite

do not differ much from these values but can be found in Table A.1 (note that these

slight differences in particle mass are due to the slight differences in Ωm and h).

This suite of BAHAMAS simulations also uses a massive neutrino extension, described

in McCarthy et al. (2018). Here the simulations incorporate the minimum summed neu-

trino mass equal to ΣMν = 0.06 eV implied by the results of atmospheric and solar

oscillation experiments when adopting a normal hierarchy of masses (Lesgourges and

Pastor, 2006). I adopt the minimum neutrino mass for consistency, as this was what

was adopted in the Planck analysis when constraining the running of the scalar spec-

tral index. To model the effects of massive neutrinos on both the background expan-

2https://github.com/sbird/S-GenIC

https://github.com/sbird/S-GenIC
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sion rate and the growth of density fluctuations, the semi-linear algorithm developed

by Ali-Haı̈moud and Bird (2013) (see also Bond et al., 1980; Ma and Bertschinger,

1995; Brandbyge et al., 2008; Brandbyge and Hannestad, 2009; Bird et al., 2012) was

implemented in the GADGET3 code. This algorithm computes neutrino perturbations

on the fly at each time step (see McCarthy et al. 2018 for further details). A study into

the combined and separate effects of neutrino free-streaming and baryonic physics on

collapsed haloes within BAHAMAS can be found in Mummery et al. (2017). In addi-

tion to neutrinos, all of the BAHAMAS runs (with or without massive neutrinos, or a

running scalar spectral index) also include the effects of radiation when computing the

background expansion rate.

Note that for each hydro simulation, I also produce a corresponding ‘dark matter-only’

simulation, where the collisionless particles follow the same total transfer function as

used in the hydro simulations3. These have the same cosmologies and initial phases as

the hydro runs, but a dark matter particle mass of≈ 5.17× 109 M�h−1 (a complete list

of dark matter particle masses for these simulations can also be found in Table A.1).

2.2.2 Baryonic physics

As in the original BAHAMAS suite of simulations, this extension also includes pre-

scriptions for various ‘subgrid’ processes, including: metal-dependent radiative cool-

ing (Wiersma et al. 2009a); star formation (Schaye and Dalla Vecchia 2008) and stellar

evolution; mass loss and chemical enrichment from Type II and Ia supernovae, Asymp-

totic Giant Branch (AGB) and massive stars (Wiersma et al. 2009b). Furthermore, the

simulations include prescriptions for stellar feedback (Dalla Vecchia and Schaye 2008)

and supermassive black hole growth and AGN feedback (Booth and Schaye 2009,

which is a modified version of the model originally developed by Springel et al. 2005).

3As shown in van Daalen et al. (2020) (see also Valkenburg and Villaescusa-Navarro 2017), this
setup leads to a small ∼ 1% offset in the amplitude of the z = 0 matter power spectrum of the hydro
simulations with respect to the dark matter only counterpart. This offset can be removed by instead
using a dark matter-only simulation with two separate fluids (one with the CDM transfer function and
the other with the baryon transfer function). This is unnecessary for the purposes of the present study,
as I am only interested in the relative effects of different values of the running on LSS.
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As explained by McCarthy et al. (2017) and discussed in Section 2.5, BAHAMAS is

calibrated to reproduce the present-day galaxy stellar mass function for M∗ > 1010M�

and the amplitude of the gas mass fraction-halo mass relation of groups and clusters,

as inferred from high-resolution X-ray observations (note that synthetic X-ray obser-

vations of the original simulations were used to make a like-with-like comparison).

The latter is particularly important for large-scale structure, since hot gas dominates

the baryon budget of galaxy groups and clusters. To match these observables, the feed-

back parameters which control the efficiencies of the stellar and AGN feedback were

adjusted. I have verified that the changes in cosmology explored here do not affect the

calibration of the simulations, as such I have left these parameters at their calibrated

values from McCarthy et al. (2017) for the present study.

2.2.3 Running of the scalar spectral index

As mentioned in the introduction, this study looks into an extension to the standard

model of cosmology in the form of adding a scale dependence to the spectral index ns

of the primordial matter power spectrum. This results in a modification to the equation

for the primordial matter power spectrum.

Ps(k) = As(k0)

(
k

k0

)ns(k0)+α′
s(k)

, (2.1)

where α′s(k) ≡ (αs/2) ln(k/k0), αs is the running of the scalar spectral index, which

is defined as dns/dln(k). The pivot scale k0 is the scale at which the amplitude of

the power spectrum (As) and the spectral index (ns) are defined. In this study I adopt

the same pivot scale as was used for the cosmological parameter estimation of Planck

Collaboration XIII (2016): k0 = 0.05 Mpc−1 .

The effect that the addition of this parameter has on the linear matter power spectrum

can be computed using CAMB and the result is shown in Fig. 2.2. This plot shows

directly how large the effects can be on both small and large scales, with the nega-

tive (positive) running cosmologies showing a suppression (enhancement) of power on
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these scales. In terms of overdensities, this can be thought of as a smoothing out (am-

plification) of these overdensities for a negative (positive) running. There is, however,

an interesting region near the pivot scale, where these effects are actually reversed, and

a negative running leads to an amplification of power and a positive running leads to

a suppression. This behaviour is due to how the other cosmological parameter values

are chosen, as described in Section 2.2.4.

Note that αs is not the only additional parameter predicted by inflation. There is also

the so-called running of the running, β. This parameter adds a second-order scale-

dependence to the spectral index in the form of: βs ≡ d2ns/d ln(k)2, and leads to a

power spectrum of the form:

Ps(k) = As(k0)

(
k

k0

)ns(k0)+α′
s(k)+β′

s(k)

, (2.2)

where β′s ≡ (βs/6)(ln(k/k0))2 and all other terms are as previously defined. Similarly

to αs, analysis of the Planck 2015 data indicates a mild preference for a non-zero run-

ning of the running, with βs = 0.029+0.015
−0.016 (68% CL PlanckTT + lowTEB) (Planck

Collaboration XX 2016). In the present study I focus just on the first-order effect and

leave an exploration of running of the running on large-scale structure for future work.

2.2.4 Cosmological parameter selection

To generate a set of cosmological parameters for the simulations, this study makes

use of the publicly-available set of Planck Collaboration XIII (2016) Markov chains,

in particular those which include αs as a free parameter. The parameter chains were

produced using CosmoMC4 using a fast-slow dragging algorithm (Neal 2005) and have

already had burn-in removed.

The parameter chains that are used are based on the Planck temperature power spec-

trum measurements, alongside low multipole measurements of the polarisation power

spectrum (TT+lowTEB). From these, the one-dimensional posterior distribution for αs
4https://cosmologist.info/cosmomc/

https://cosmologist.info/cosmomc/
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Figure 2.2: Linear matter power spectrum at z = 127, as computed by CAMB for the 5 models
presented in Table 2.1. The lines here are coloured by the adopted value of αs. The vertical
dashed grey line indicates the pivot scale k0. As expected, the largest effect on the power
spectrum is on the largest and smallest scales. At these scales, a negative running leads to
less power compared with a no-running cosmology, whereas the positive running cosmology
predicts more power on these scales.
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was obtained, which can be seen in the top panel of Fig. 2.3. From this distribution I

choose a sample of values for αs that probe as much of the available parameter space

as possible. These values were the maximum likelihood of the distribution, alongside

±1, 2σ of this value. With these adopted values, all chain sets which had a value of

the running within σ
200

of the target value were selected5. From them, the weighted

means of the other important cosmological parameters were taken using the weights of

each parameter chain provided. By selecting the values of the other parameters in this

way, the predicted angular power spectrum of CMB fluctuations should retain a good

match to the Planck data. In other words, I only select ‘running’ cosmologies which

are consistent with the observed primary CMB.

That procedure is followed for each chosen value of αs. Note, normally one would also

simulate a reference Planck cosmology, with αs fixed to zero, to be able to quantify

the differences between ΛαsCDM and ΛCDM itself. However, due to the closeness

of the +1σ value to 0 (αs = −0.00025), this cosmology will be treated as the base

Planck no-running cosmology throughout, and will be referred to as the “no-running”

model. Fig. 2.4 shows the 2D marginalized constraints on ns and αs, with points

coloured by the value for the joint constraint on the parameter S8 ≡ σ8

√
Ωm
0.3

. The

resultant cosmologies that were selected can be found in Table 2.1 and are indicated

by the black triangles in Fig. 2.4.

As a test, I have verified that when selecting the parameters in this way the resultant

predicted CMB TT angular power spectrum (as computed by CAMB) for each of these

different cosmologies is consistent with the Planck 2015 angular power spectrum,

which they are (see Fig. A.1). Choosing the parameters in this way, however, has

a non-negligible effect on the matter power spectrum (seen in Fig. 2.2), particularly

on the largest and smallest scales, the latter of which are not probed by the Planck

data. By forcing the model to match the CMB angular power spectrum over a range

of scales, the amplitude of the matter power spectrum at the pivot scale is forced to

vary between the models. The result of which is a negative running that has a larger

5This value was chosen so that when the weighted mean of αs was calculated, it recovered the target
value, but still had more than 50 chain sets available for a weighted average of the other important
parameters.
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Table 2.1: The cosmological parameter values for the suite of simulations are presented here.
The columns are as follows: (1) The labels for the different cosmologies simulated, that are
used throughout the chapter. (2) Running of the spectral index, (3) Hubble’s constant, (4)
present-day baryon density, (5) present-day dark matter density, (6) spectral index, (7) Ampli-
tude of the initial matter power spectrum at a CAMB pivot scale of 0.05 Mpc−1, (8) present-day
amplitude of the matter power spectrum on scales of 8 Mpc/h in linear theory (note that when
computing the initial conditions for the simulations,As is used, meaning that the ICs are ‘CMB
normalised’). (9) S8 ≡ σ8

√
Ωm/0.3.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Label αs H0 Ωb ΩCDM ns As σ8 S8

(km/s/Mpc) (10−9)
-2σ -0.02473 67.53 0.04959 0.26380 0.96201 2.34880 0.85147 0.87286
-1σ -0.01657 67.72 0.04905 0.26018 0.96491 2.28466 0.83939 0.85468

Planck ML -0.00841 67.54 0.04990 0.26186 0.96519 2.24159 0.83442 0.85167
no-running -0.00025 67.39 0.04901 0.26360 0.96535 2.21052 0.83156 0.85119

+2σ 0.00791 66.95 0.04915 0.26843 0.96478 2.14737 0.82140 0.85013
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Figure 2.3: Marginalized posterior distribution for the running of the primordial spectral index
when included in the Planck MCMC analysis as a free parameter. The vertical coloured lines
represent the regions of the αs distribution function chosen to calculate weighted means for the
other important cosmological parameters.
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amplitude (As), and a positive running that has a lower amplitude, compared with

the standard no-running model. Therefore, it can be expected from the matter power

spectrum alone that the inclusion of αs in the standard model should have measurable

effects on the LSS seen in the simulations, with the magnitude and sign of the effect

dependent on what range of modes is sampled within the simulated volume.

As briefly discussed in the introduction, a small number of mild ‘internal’ tensions

in the Planck CMB analysis have previously been noted (e.g., Addison et al. 2016;

Planck Collaboration et al. 2017) and these could have some bearing on cosmological

parameter selection. Of particular relevance for LSS is the apparent asymmetry in the

cosmological parameter constraints when derived from low and high multipole ranges

(Addison et al., 2016). In particular, the high-` peaks and troughs in the observed

angular power spectrum appear smoother than that predicted by the best-fit ΛCDM

model. This is qualitatively similar to the effect of lensing of the CMB by LSS, hence

when the CMB lensing amplitude, Alens, is allowed to float (rather than fixing to the

natural value of unity), the CMB TT power spectrum prefers Alens > 1. Allowing

the lensing amplitude to float results in cosmological parameter constraints that are

insensitive to the range of multipoles analysed, but does result in a few sizeable shifts

(1-2 sigma) of parameters important for LSS, including σ8 and Ωm (Addison et al.,

2016; McCarthy et al., 2018).

The Planck team did not explore the potential impact of allowing Alens to float on the

constraints on the running of the scalar spectral index. In Appendix A.1 I examine the

constraints on the running while marginalizing over Alens. I show that the constraints

on the running are virtually unaffected by marginalizing over Alens. I therefore adopt

the publicly-available Planck 2015 chains with Alens = 1 for my analyses.

Lastly, it is worth noting that the effects on the statistics examined in this study should

not be solely attributed to a running of the scalar spectral index. This is because as I

vary the running, the other cosmological parameters change in order to retain consis-

tency with the primary CMB constraints from Planck. Of particular relevance for this

study is the amplitude of the initial matter power spectrum, As, which I discuss further

in Section 2.3.1. As such, when discussing the results from the simulations, I will re-
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Figure 2.4: Marginalized constraints at 68% and 95% CL in the (ns − αs) plane. Here, points
are coloured by that chains’ value for the S8 parameter. The black triangles indicate values for
(ns − αs) that were chosen to be simulated.

fer to the changes seen as being a result of a Planck-constrained running cosmology,

abbreviated as a ΛαsCDM cosmology, rather than due to the running parameter alone.

2.3 Effects on large-scale structure

Here I present my predictions for the effects that a ΛαsCDM cosmology has on LSS.

Note that the results shown in this section and Section 2.4 are derived from the suite of

dark matter only simulations. The effects due to the inclusion of baryonic physics are

explored in Section 2.5.

Furthermore, as part of the BAHAMAS project, we are exploring the effects that massive

neutrinos (Mummery et al., 2017; McCarthy et al., 2018) and dynamical dark energy

(Pfeifer et al., 2020) have on LSS. I will comment throughout on the similarities and

differences between these extensions to ΛCDM.
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2.3.1 Non-linear matter power spectrum

I first look at what effect a cosmology with a free-running spectral index has on the

recovered non-linear matter power spectrum extracted from the simulations for red-

shifts ≤ 2. To compute this, I make use of the publicly-available code GenPK6 which

computes the 3D matter power spectrum for each particle species in the simulation.

The calculated total matter power spectrum is shown in Fig. 2.5 for z = 0, 1, 2. The

power spectra are plotted up to a maximum k-mode equal to the Nyquist frequency

of the simulation: knyq ≡ π(N/L), where N is the cube root of the total number of

particles in the simulation, and L, the side length of the box. This means that the sim-

ulations are able to probe the power spectrum into the linear and non-linear regimes

(k > 0.1 Mpc−1h), allowing us to see the effect a running spectral index has on these

scales. The bottom panel(s) of this plot shows the matter power spectra of the separate

cosmologies, at the three different redshifts, normalised with respect to the no-running

case at the corresponding redshift. It can be seen that, although there is a large amount

of scatter at large scales in the un-normalised power spectra (which arises due to the

fact that the simulations do not sample many independent modes on these scales), this

scatter largely divides out in the ratios. This is because the ICs of the simulations, as

mentioned, have the same random phases (i.e., there is no cosmic variance between the

different volumes).

The result shown in the bottom panel(s) is similar to that seen in the linear matter power

spectrum (see Fig. 2.2), in that a ΛαsCDM cosmology which has a negative value for

the running produces an excess of power in this k−range, and one which has a positive

value leads to a suppression of power. It is worth noting, however, that these effects

(the enhancement of power in the negative running cosmology for example) extend to

higher k-modes compared with what was seen in the linear matter power spectrum. The

reason for this is that there is a transfer of power from large scales down to small scales

during non-linear growth. As expected, the inclusion of running affects all scales in the

simulations, with the maximum effect being seen at k−scales around 0.1-1.0 Mpc−1h,

of≈ 5-10% increase in power on these scales in the most negative running cosmology,

6https://github.com/sbird/GenPK/

https://github.com/sbird/GenPK/
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Figure 2.5: Top: the 3D total matter power spectrum for all 5 cosmologies. The different
linestyles indicate the matter power spectra measured from the simulations at redshifts 0, 1 and
2 (solid, dashed and dotted respectively). Bottom: the matter power spectra of the different runs
normalised to the no-running model result at a given redshift. A negative running cosmology
can lead to an amplification of power on large scales by up to 5-10% compared to a standard
ΛCDM cosmology, and a positive running cosmology can lead to a ∼ 5% reduction in power.
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and ≈ 5% suppression in power on these scales in the positive running cosmology. To

put this into perspective, both LSST (LSST Dark Energy Science Collaboration, 2012)

and EUCLID (Amendola et al., 2013) are aiming to measure the matter power spectrum

(via weak gravitational lensing and galaxy clustering) to a precision of better than 1%

on scales (larger than, and) probed by this volume (see also Huterer 2002; Huterer

and Takada 2005; Hearin et al. 2012). If this precision can be achieved, measurements

from LSST and EUCLID should be able to distinguish between the (CMB-constrained)

cosmologies I have explored here.

Note that there is a slight redshift dependence in the differences between the differ-

ent cosmologies, with the largest amount of evolution apparent in the −2σ cosmol-

ogy. This redshift evolution highlights the transfer of power from large scales to small

scales. For example, in the most negative running cosmology, the k-scale where there

is a transition from an enhancement of power to a suppression, moves to larger k-scales

(i.e., smaller physical scales) with increasing redshift.

It is interesting that this cosmological volume size samples the region of the power

spectrum which sees a negative running produce an amplification, and a positive run-

ning produce a suppression. The reason for this being that the Planck pivot scale, and

so the scale at which As is defined, corresponds to cluster scales, i.e., scales for which

the dominant contribution to the matter power spectrum comes from groups and clus-

ters (van Daalen and Schaye, 2015). These are also the scales BAHAMAS is designed

to sample. Thus, because introducing a negative (positive) running into the standard

model of cosmology leads to an increase (decrease) in As (see Section 2.2.4), I see

this effect in the power spectrum of the simulations. It can be expected from Fig. 2.2

that if the resolution of the simulations were significantly increased or, alternatively,

significantly larger volumes were simulated, the effects one might naively associate

with a negative, or positive running, i.e. a suppression and amplification of power on

these larger and smaller scales respectively, would be more apparent.

I note that the effects on the power spectrum shown here are of a similar magnitude as

those that are seen through the inclusion of (CMB-constrained) dynamical dark energy

in the standard model (Pfeifer et al., 2020). The results seen in the dynamical dark
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energy extension also display an almost scale independent (over the k−range sampled

in these studies, at least) suppression/amplification of the power spectrum (depending

on the values forw0 andwa), with a maximum magnitude of around 10%. By constrast,

the inclusion of massive neutrinos always leads to a suppression of the matter power

spectrum. For example, Mummery et al. (2017) showed that for ΣMν = 0.24 (0.48)

eV, the matter power spectrum is suppressed by nearly 15% (30%) on non-linear scales.

(See McCarthy et al. 2018 for a discussion of current constraints on the summed mass

of neutrinos.)

In Fig. 2.6 I show the ratio of the non-linear matter power spectrum from the simu-

lations to the linear prediction result from CAMB (top) and the non-linear prediction

from HALOFIT (Smith et al., 2003; Takahashi et al., 2012) (bottom). The top panel

isolates the non-linear growth of structure. I note here that the most negative running

case shows the strongest non-linear growth, most likely because this model has an en-

hancement of power on large scales (due to the increase in As), which is transferred to

small scales during non-linear evolution. The bottom panel tests the accuracy of the

HALOFIT prescription for the non-linear matter power spectrum in running cosmolo-

gies. It can be seen that up to k ≈ 4 Mpc−1h, it can reproduce the power spectrum

relatively well (to within 5%). However, on scales smaller than this, it appears that

HALOFIT does not accurately model the impact that a running scalar spectral index

has on the non-linear matter power spectrum.

However, a recent study into modelling the non-linear effects of a running scalar spec-

tral index on the matter power spectrum was performed by Smith and Angulo (2019).

This was done using a suite of high-resolution N-body simulations, with an extended

cosmological parameter space, with values for these parameters centered on the best-fit

Planck 2015 standard model. Smith and Angulo (2019) produced a modification to

HALOFIT to try to better model the non-linear effects of non-standard cosmologies.

I have used the publicly-available software developed by Smith and Angulo (2019)

NGENHALOFIT7 to generate a non-linear matter power spectrum at z = 0 for the 5

separate cosmologies explored here. These are also plotted in Fig. 2.6, shown in the

7https://bitbucket.org/ngenhalofitteam/

https://bitbucket.org/ngenhalofitteam/
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Figure 2.6: Top: the power spectrum output from the simulation at z = 0, normalised with re-
spect to the CAMB result at this redshift. This demonstrates the non-linear growth of structure,
which linear theory is not able to predict. Bottom: the power spectrum output from the sim-
ulation, normalised with respect to the HALOFIT non-linear prediction. A prominent feature
present in both panels is the large fluctuations at low k which arise because the simulated vol-
ume does not sample these k−modes well, leading to increased numerical noise. Also shown
is the non-linear power spectrum prediction from NGENHALOFIT (dashed line), which models
the non-linear effects of a running scalar spectral index much better, except for the -2σ cosmol-
ogy. This is highlighted by the shaded region centred on unity which represents a 1% accuracy
region. It can be seen that almost all models lie within or just outside this shaded region up to
k ∼ 5 Mpc−1h.
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bottom plot as dashed lines. It can be seen that for 3 out of 4 of the different running

models NGENHALOFIT does indeed do better at reproducing the non-linear matter

power spectrum. There is still an offset for the −2σ cosmology, which may be due to

this cosmology being more extreme compared to the running cosmologies sampled in

Smith and Angulo (2019) (αs = −0.01, 0.01). Note, as mentioned in Section 2.2, all

of the BAHAMAS simulations include a prescription for massive neutrinos. However,

the power spectrum computed by GenPK in the collisionless simulations corresponds

to the dark matter + baryons power spectrum (i.e. it does not have a massive neutrino

component). As such, when taking the ratio, the corresponding statistic is used in the

approximate result (i.e. the power spectra computed by HALOFIT/NGENHALOFIT).

2.3.2 Halo counts

Halo mass function

I now examine the effects of a ΛαsCDM cosmology on the HMF. The HMF is defined

here as the number of haloes of mass, M200,crit, that exist per cubic comoving Mpc,

per logarithmic mass interval: φ ≡ dn/d log10(M200,crit). The masses of haloes used

in this study, unless otherwise stated, represent the mass that is contained within a

spherical overdensity whose radius encloses a mean density of 200 times that of the

critical density of the Universe at that redshift. Note also that all distances used in this

study are comoving, unless otherwise stated.

Haloes in this study are identified using the SUBFIND algorithm (Springel et al., 2001;

Dolag et al., 2009) which first runs a standard friends-of-friends (FoF) algorithm on the

dark matter distribution, linking all particles which have a separation less than 0.2 ×
the mean interparticle separation (Davis et al., 1985). This is used to return the spher-

ical overdensity mass M200,crit. It then goes through FoF groups and identifies locally

bound sub-structure within each group. The FoF group is centered on the position of

the particle in the central subhalo that has the minimum gravitational potential.

The measured HMF for the various running simulations can be seen in Fig. 2.7. The
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Figure 2.7: Top: Halo mass function (HMF) measured for the 5 separate running cosmologies.
The colours here represent the different values for αs, with the linestyles representing the
measured HMF at a particular redshift. Bottom: The HMFs normalised with respect to the
HMF measured in the no-running simulation. Here the effect due to a change in cosmology
and the inclusion of running is evident. A cosmology with a negative running in general leads to
fewer low-mass haloes, whereas a cosmology with a positive running leads to more low-mass
haloes, with the magnitude of this effect being insensitive to redshift. However, a negative
running cosmology predicts more high-mass haloes (at least in the case of the most negative
running case), with this effect amplified at earlier redshifts.
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inclusion of running in the simulation has a measureable effect, which is most obvious

when looking at the bottom panel of Fig. 2.7. Here the HMF is normalised with respect

to the measured HMF in the no-running simulation, and it can be seen that there is an

almost 10% decrease (increase) for the most negative (positive) running cosmology

in the number of lower mass haloes that exist in the simulation (1012 - 1013 M�). A

similar effect on the HMF in an N-body simulation was found by Garrison-Kimmel

et al. (2014), who showed that the inclusion of a negative running reduced the number

of haloes in their simulation at fixed low-mass. The effect on the HMF due to running

depends strongly on the adopted value for αs as expected, with a more negative value

leading to the largest effect on the HMF. An interesting feature is the fact that the most

negative running cosmology appears to predict more haloes that are of a higher mass

(1014 - 1015 M�), with this effect being stronger at earlier redshifts. This is likely

because these mass scales correspond to the regions of the matter power spectrum

where a negative running cosmology leads to an excess of power compared with the

no-running model (see Fig. 2.2). Therefore, if the initial seed fluctuations which will

grow into these massive haloes are amplified, these haloes will form earlier and will

therefore be present at earlier times, compared with the no-running model.

To try to understand this a little better, it is more intuitive to look at the mass of a halo

at fixed number density. The reason for this being that it is the halo masses that change,

not their number density (i.e. it is a shift along the x-axis, not the y-axis), which leads

to the changes seen in the HMF. For example, a halo which evolves from a peak in

the density field to a 1015M� halo will have this density peak either diminished, or

enhanced, depending on the value for αs, and thus its final mass is sensitive to this

effect.

To look at this, a matched set of haloes needs to be constructed. To match haloes one

first needs a reference, and so all haloes in the no-running (αs = 0) dark matter only

simulation are chosen as the reference haloes. For each halo in the reference simula-

tion, a matched halo is found in the simulations with a non-zero value for αs. Haloes

are matched using the unique particle IDs of the dark matter particles assigned to them.

Thus, for each dark matter particle assigned to a halo in the reference simulation, the
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Figure 2.8: The fractional change in halo mass for a matched set of haloes across the 5 different
cosmologies, indicated by colour. This plot illustrates the effect a running scalar spectral index
has on a halo by halo basis. Here, a halo in a standard ΛCDM cosmology, would be more
massive, if it were instead in a positive running cosmology. Likewise, if it were instead in a
negative running cosmology, it could be either less massive or more massive, depending on the
magnitude of the running, and the size of the halo. It is this effect on halo mass which drives
the differences seen in the HMF.
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particle with the matching ID in the other simulations is identified, along with what

halo they belong to. The halo in each case which contained the largest fraction of

identified particles8 is selected as the matching halo in that simulation. Any halo for

which a match could not be found across all 5 of the simulations was discarded from

the analysis. Overall > 99% of all haloes in the mass range 1012− 1015M� in the dark

matter-only reference simulation were matched across all other simulations.

The resultant fractional change in halo mass for the matched set of haloes as a function

of halo mass in the dark matter only-reference simulation is shown in Fig. 2.8. The

result is almost identical to the effect that is seen in the HMF. A cosmology with a

positive running leads to more massive haloes across the entire mass range compared

with the reference simulation. A cosmology with a negative running generally leads to

a decrease in matched halo mass. This is however a mass-dependent effect, with the

more massive haloes not being affected as much in the cosmologies with a negative

running. In fact, for the most negative running cosmology the most massive haloes are

somewhat more massive than their no-running counterparts. This is what leads to the

excess of these haloes in the HMF compared with the standard cosmology. This plot is

for haloes at redshift 0, however, I also looked into the fractional change in halo mass

at redshifts 1 and 2. It was found that the effects present in the HMF are echoed here,

in that at earlier redshifts, the effect on halo mass in the two most extreme cosmologies

in this study is amplified (Fig. A.3).

Going forward, when using a matched set of haloes, I use the values of M200,c and

R200,c for the matching halo in the reference no-running dark matter only simulation.

When comparing the effects on the HMF due to running, and those due to dynamical

dark energy (Pfeifer et al., 2020), and massive neutrinos (Mummery et al., 2017), it is

found that massive neutrinos have the largest effect. For example, for ΣMν = 0.24

(0.48) eV, the number of massive haloes at fixed mass can be suppressed by nearly

20% (40%) at the present day. This is in comparison to allowing the running to be free

but constrained by the CMB, which predicts either no suppression of the most massive
8Note: a minimum matching threshold is also set, so that a halo must contain at least 51% of the

particles from the reference simulation’s halo for it to be classified as the matching halo.
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objects, or conversely an increase in their numbers. Dynamical dark energy behaves

similarly to a running scalar spectral index, leading to an increase in the number of

massive objects at fixed mass (although certain models can lead to a suppression by

up to 20%). The effects from massive neutrinos also have the largest redshift depen-

dence, with the effects due to running not varying much with redshift, and those due to

dynamical dark energy having a slight redshift dependence, but not to the same extent.

Comoving halo number density

The HMF provides a measure of the number density of objects of a certain mass at

a certain redshift. Another, similar quantity is the comoving halo number density

n(M, z) which is the integral of the HMF above a certain mass threshold, at a cer-

tain redshift. This is a useful quantity to look at, as it is closer to what is actually

measured through observations. The effects that a ΛαsCDM cosmology on this quan-

tity are shown in Fig. 2.9 for three separate mass thresholds of 1012M�, 1013M� and

1014M�. Due to the steep, negative slope of the HMF, the majority of counts which

make up n(> M) come from haloes closest to the mass cut. The bottom panel of

Fig. 2.9 shows the measured halo number density normalised to the no-running result.

It can be seen here that the effects of running are mass dependent, with a negative

running cosmology predicting more massive objects at later redshifts compared with

the reference cosmology, and a positive running cosmology predicting fewer of these

massive haloes at later redshifts compared to the negative running and the no-running

cosmology. This result can be understood again in terms of the effect running has on

the overdensities in the initial conditions. As seen, although a negative running sup-

presses overdensities on small and large scales, there is a region of the power spectrum

which is enhanced in a best-fit cosmology, with a negative running of the spectral index

(due to the simultaneous increase in As). Thus, these enhanced density perturbations

are larger at earlier times than in the reference cosmology, or in a positive running

cosmology (which has density perturbations smoothed out on these scales and sees

a reduction in power). As a result, more of these high-mass systems form at earlier

times, and because one is looking at rarer systems as the mass threshold is increased,
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Figure 2.9: Top: redshift evolution of the comoving halo number density, for haloes above
three separate mass thresholds. The different linestyles in this plot correspond to the different
mass thresholds investigated in this study. Bottom: the comoving halo number density nor-
malised with respect to the no-running model. The effect that a ΛαsCDM cosmology has on
this quantity is mass and redshift dependent, with for example, the most negative running cos-
mology having fewer haloes above 1012M� at all redshifts, but more haloes above 1014M�.
This result is amplified with increasing redshift. The opposite holds for the positive running
cosmology: more haloes above 1012M� but fewer below 1014M�.
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the overall number of objects that exist at early times is small so the relative increase

can be quite large.

2.3.3 Clustering of haloes

Having looked at the effects that including αs in the cosmological model has on the

mass of dark matter haloes, it is interesting to see how it affects the haloes’ spatial dis-

tribution. In particular, I look at how running affects the 3D two-point autocorrelation

function (Davis and Peebles 1983) of haloes.

The correlation function of matter is related to the power spectrum through the Fourier

transform, and dark matter haloes are related to the clustering of matter via a prescrip-

tion for the halo bias (see Desjacques et al., 2018, for a recent review). Thus, it can

be expected based on the analysis of the matter power spectrum that a ΛαsCDM cos-

mology should have some effect on the spatial distribution of haloes. In this study

I compute the autocorrelation function ξ(r) of FoF groups as the excess probability,

compared with a random distribution, of finding another FoF group at some particular

comoving distance r:

ξ(r) =
DD(r)

RR(r)
− 1, (2.3)

where DD(r) and RR(r) are the number of pairs of haloes found at a radial distance

r in the simulation and the number of haloes expected for a random distribution, re-

spectively. RR(r) is computed analytically, by assuming that haloes are distributed

homogeneously throughout the simulation volume with a density equal to the mean

number density of haloes. Furthermore, I compute the correlation function for haloes

in specific mass bins, so the mean density of haloes is taken to be the mean density of

haloes in a particular mass range. To compute ξ(r), I use 20 logarithmically spaced

radial bins between 0.1 and 100 comoving Mpc h−1.

The effect that a ΛαsCDM cosmology has on the calculated two-point autocorrelation

function of haloes in the three separate mass bins is shown in Fig. 2.10. It can be seen
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Figure 2.10: Top: the effect a ΛαsCDM cosmology has on the 3D two-point halo autocorre-
lation function, ξ(r). The clustering signal is measured in 3 separate halo mass bins which
are indicated by the different line styles. The mass range is shown in the bottom panel and is
quoted in units of log10(M/M�). Bottom: the correlation function for the different running
cosmologies normalised with respect to the no-running model. The introduction of running
has a measureable effect on the clustering signal of haloes in the simulation, with the effect
depending strongly on mass. For example, the -2σ cosmology results in a near 10% increase
in the clustering signal of haloes in the mass range 1012− 1013M�, but a near 5% decrease for
haloes in the mass range 1014 − 1015M�.
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that the effect depends on halo mass, with the effects most clearly represented in the

bottom panel(s) where the measured correlation functions are normalised to the no-

running cosmology. Looking at the most negative running cosmology as an example

(as this shows the largest effects), for the lowest mass bin of 1012 − 1013 M� there is

an overall increase in the amplitude of the correlation function, with the most negative

running cosmology predicting an increase of ≈ 10%. Whereas for the largest mass bin

(1014 − 1015 M�) the most negative running cosmology leads to a very mild decrease

in the clustering amplitude, with this being around a 5% decrease. This makes sense

when looking at the HMF, or the comoving halo space density, which showed that a

negative running cosmology led to an increase in the number of haloes in this higher

mass bin, and therefore one can expect them to be a less biased tracer of the underlying

matter distribution, which as a result will lead to a lower clustering signal compared

to the no-running cosmology’s result. This result agrees with that predicted by Fedeli

et al. (2010), who showed that in a negative running cosmology dark matter haloes in

the cluster regime are less biased compared with the standard model (see figure 10 in

Fedeli et al. 2010). The other two negative running cosmologies see a similar trend, but

not to the same level. Conversely, the positive running cosmology shows the inverse

effect, with the clustering amplitude being lower for the lowest mass bin, but slightly

increasing as the mass range is increased (although it is still lower, or at the same level,

as the no-running model). This again makes sense as the number of objects in the

higher mass ranges tends towards the no-running simulation’s result (see Fig. 2.7).

Another feature which is present in Fig. 2.10 is the downturn in the clustering signal,

which occurs at around 0.7, 2, and 4 Mpc h−1 for haloes in the mass range: 1012−1013

M�; 1013 − 1014 M�; 1014 − 1015 M� respectively. This downturn is present as these

scales correspond to the radius of the FoF haloes in the respective mass bins. On scales

smaller than this, FoF haloes overlap and would not be distinguished as separate haloes

and so one cannot measure a clustering signal.

So far I examined the clustering signal measured with haloes being placed in mass

bins depending on their self-consistent masses, i.e. the mass they have in their own

simulation. However, since running changes the mass of a halo (Fig. 2.8), it is inter-
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esting to look at the effect it has on the distribution of matched haloes, i.e. for haloes

of a constant number density. The reason being that the clustering signal is bound to

be different simply because one is looking at a different set of haloes. This is done

by putting haloes in mass bins based on their no-running cosmology counterpart. The

result on the clustering signal when binning haloes this way is qualitatively the same

as that shown in Fig. 2.10. Again, in this case a negative running cosmology leads to

an increase in the clustering signal of low mass haloes, and a positive running cosmol-

ogy leads to a decrease, with this effect being mass dependent. The magnitude of this

effect also does not change much, with the effect being slightly less in the highest mass

bin for the -2σ cosmology, but otherwise almost unchanged for the different running

models in each mass bin. For brevity I do not show this here.

As a final comparison with the other extensions to ΛCDM examined in the BAHAMAS

project, Mummery et al. (2017) found that the most massive summed neutrino mass

cosmology leads to a suppression of the large-scale clustering signal of around 10%,

with all non-zero neutrino masses investigated leading to some level of suppression of

the clustering signal. Conversely, and similar to what is found in the present study, dy-

namical dark energy can lead to both a suppression and amplification of the clustering

signal, depending on the model. It is also found when comparing the three separate

studies that the clustering signal of the largest haloes in the simulations are much less

sensitive to the cosmology than the lower-mass haloes.

2.4 Internal Structure of Haloes

Having investigated the effect a running spectral index has on the LSS in the universe,

including the abundance of haloes and how they are distributed, I now turn my focus

to the internal structure of the haloes themselves. To look into this I use two statistics

in particular: the spherically-averaged density profiles of haloes, alongside the halo

concentration-mass relation.
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2.4.1 Total mass density profiles

To start, I look at the effect on the spherically-averaged total mass density profiles,

shown in Fig. 2.11. Each panel shows the median density profile of all haloes in

that mass bin (indicated in the top right hand corner of the plot), with the mass bins

ranging from 12.0 ≤ log10(M200,c/M�) ≤ 15.0, each with a width of 0.5 dex. In

order to reduce the dynamic range of the plot, I scale the mass density by r2, i.e., so

that an isothermal distribution would be a horizontal line. I plot the density profiles

in dimensionless units. The bottom plot for each panel shows the density profiles

normalised to the median density profile of that mass bin, as measured in the reference

no-running simulation.

As mentioned when looking at the two-point autocorrelation function in bins of halo

mass, if the haloes are binned according to their self-consistent masses, i.e., the mass

they have in their own simulation, this will result in looking at a slightly different pop-

ulation of haloes in each bin across the different simulations. Instead, the panels in Fig.

2.11 show the median density profile of matched haloes in mass bins corresponding to

the masses of haloes in the reference, no-running simulation. Similarly, the values of

R200,c used in this statistic are those corresponding to the haloes in the reference simu-

lations. This is done as I want to isolate the effects a running scalar spectral index has

on a given set of haloes.

It can be seen from Fig. 2.11 that the qualitative effect on the density profiles of haloes

in a ΛαsCDM cosmology is to either raise or lower the overall amplitude of the density

profile, depending on the sign of the running and the mass of the object. For example,

haloes in the lowest mass bin have the amplitude of their density profile decreased

in a cosmology which has a negative running and increased in one which as a positive

running. Whereas for haloes in the highest mass bin, almost all cosmologies, regardless

of the sign of the running, see an increase in the amplitude of the density profiles.

There is also a hint that a running in this mass range leads to a change in the shape

of the density profile, with the central regions being more dense in a cosmology that

has a running spectral index. This trend of a change in amplitude makes sense when
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Figure 2.11: Median total mass density profiles of all haloes in each simulation, split into 6 sep-
arate mass bins, as indicated in the top right corner of each panel. Haloes are binned according
to their mass in the reference no-running cosmology. The halo density profiles are plotted in
dimensionless units, normalised by the critical density, and re-scaled so that an isothermal dis-
tribution would be a horizontal line. Note, that the profiles are plotted as a function of r/r200

also, where r200 in this case is taken from the reference simulation. The bottom part of each
panel corresponds to the density profiles normalised to that measured in the reference simula-
tion. The vertical dashed line shows the convergence radius (discussed in Section 2.4.2), and
shows the point beyond which the density profiles are converged. The overall effect that a
ΛαsCDM cosmology has on the density profile of a halo is to either raise or lower its ampli-
tude, without much of an effect on the shape of the profile, although this depends both on mass
and on the sign of the running.
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looking at Fig. 2.8, which showed that for a matched set of haloes a negative running

cosmology leads to a decrease in mass for lower-mass haloes but an increase in mass

(dependent on the magnitude of αs) for larger-mass haloes. Conversely, a positive

running cosmology led to an increase in mass for all mass ranges. Also plotted in Fig.

2.11, shown by the grey-dashed line, is the maximum convergence radius of haloes in

each respective mass bin (the convergence radius is discussed in Section 2.4.2).

2.4.2 Concentration-mass relation

It has been shown through cosmological simulations that the internal structure of dark

matter haloes retain a memory of the conditions of the Universe at the time they were

formed, with the formation time of a halo being typically defined as the time when

the halo obtains some fraction of its final mass. For example, Navarro et al. (1996)

showed that lower-mass haloes have a higher central concentration than high-mass

ones, which they note is as expected given that lower-mass haloes tend to collapse at

a higher redshift when the mean density of the Universe was higher. This is a result

which has now been confirmed through many N-body simulations, in many different

ways (see for example Child et al., 2018, and references therein), with many now

relating this result to the mass accretion history (MAH) of a halo (e.g. Zhao et al., 2003;

Correa et al., 2015a; Ludlow et al., 2016; Child et al., 2018). The MAH represents the

increase in mass of the main progenitor of a halo, with lower mass systems accreting

more of their mass at earlier times, while larger haloes assemble most of their mass at

later times, when the mean density of the Universe has decreased.

During their hierarchical growth, dark matter haloes have been found to acquire an

approximately universal shape described by the Navarro, Frenk & White density profile

(NFW) (Navarro et al. 1996), which takes the form of:

ρ(r) =
δcρc

r
rs

[
1 + r

rs

]2 , (2.4)

where r is the radius, δc is an overdensity parameter, ρc is the critical density of the
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Figure 2.12: The best-fit c-M relation for all 5 cosmologies simulated. The solid curves repre-
sent the running median of the concentrations measured in the 5 separate cosmologies, coloured
by their values for αs. The shaded regions represent the scatter that is present in the reference
simulation, with the intensity of the colour indicating the number density of haloes in this re-
gion. The crosses represent the best fit to the data assuming a power-law relationship. The
top half of this plot shows the median c-M relation for all haloes in the simulation above the
threshold mass of 1012.8M�, with the lower subplot showing the Equation 2.5 fit normalised
with respect to the result obtained in the standard model case. The bottom half of the plot
shows the same when only relaxed haloes are included. The inclusion of a running spectral in-
dex as a an additional free parameter in the standard model tends to lower the concentration of
low-mass haloes, but increase the concentration of high-mass haloes. Making a cut on relaxed
haloes reduces the scatter in concentration at fixed mass, however the general result due to a
ΛαsCDM cosmology is maintained.
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Universe and rs is the scale radius, corresponding to the radius at which the logarithmic

slope of the density profile is -2 (i.e., equal to that of an isothermal distribution). This

profile can equivalently be parameterized with the halo mass M and the halo concen-

tration c, which is defined as the ratio of the radius enclosing a spherical overdensity

∆ times the critical density, which in this study I take as 200 times the critical density

of the universe, and the scale radius: c200,c ≡ R200,c/Rs. A result of this is that, if one

has a prescription for the concentration-mass (c-M) relation, one can fully specify the

internal structure of a DM halo at a fixed mass.

In order to measure the concentration of a halo, I derive an estimate for the scale

radius by fitting an NFW profile to each halo in the sample. However, haloes are

dynamically evolving objects, meaning that when taking these measurements there

is the potential that some haloes are not in virial equilibrium and not well described

by an NFW profile. It has been shown in previous studies that haloes which are not in

dynamic equilibrium tend to have lower central densities compared with relaxed haloes

(e.g. see Tormen et al., 1997; Macciò et al., 2007; Romano-Dı́az et al., 2007). Thus,

in order to limit this effect, a simple relaxation test was implemented as proposed by

Neto et al. (2007). This deems any halo whose barycentre is offset from the centre of

potential by more than 0.07R200,c to be unrelaxed and excluded from the relaxed halo

sample. Note that Neto et al. (2007) proposed two further checks on if a halo is relaxed

or not, however the test implemented in this current study was shown by Neto et al.

(2007) to remove the vast majority of unrelaxed haloes, as such, similar to what was

done in Duffy et al. (2008) I only use this criterion to remove unrelaxed haloes. The

centre of mass of a halo is calculated using all of the particles inside R200,c of the halo,

and is calculated using the iterative shrinking spheres algorithm (Power et al. 2003).

Another selection criterion I apply to the halo sample is that they must have a minimum

of 5000 particles inside R200,c. However, due to the relatively low resolution of these

simulations, I extend the mass range of the halo samples by stacking haloes that have

between 800 ≤ N200,c < 5000 particles, so that the stacked halo has the minimum

number of particles required. This allows us to plot the c-M relation down to haloes

of mass 1012.8M�. One final cut on haloes is performed after the NFW profile is fit
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to the haloes, which sees any halo which has an inferred convergence radius (defined

below) < 6 times the gravitational softening length ε removed from the halo sample.

This is quite a conservative cut and follows Diemer and Kravtsov (2015), who note

it was shown that halo density profiles are converged at radii beyond 4-5 × ε (Klypin

et al., 2000).

When fitting an NFW profile to haloes, the radial range used is between 0.1 ≤ r/R200,c ≤
1.0 and is divided into 20 logarithmically spaced bins. However, as a result this can

lead to the innermost bins being dominated by numerical noise, and two-body scatter-

ing effects, due to poor particle sampling of these innermost radial bins. This is studied

in detail in Power et al. (2003). In this study they showed that there is a critical radius

below which the density profile of a halo measured in an N-body simulation is not

converged (their equation 20, which is satisfied when the collisional relaxation time is

roughly the age of the Universe). Thus, when it comes to fitting an NFW profile to a

halo in this study, I only fit to radial bins which lie above the convergence radius. Note

that I fit to the quantity: ρr2 as done in several previous studies (e.g. see Neto et al.

2007). Note also that, most recently Ludlow et al. (2019) conducted a convergence

study on numerical results from an N-body simulation (such as the shapes of haloes)

using haloes simulated inside a cosmological volume, in contrast to the Power et al.

(2003) study where they only simulated the convergence of results for a single halo.

Ludlow et al. (2019) also provide a convergence criterion, which I tested to see if this

resulted in any differences in the computed c-M relation, which it did not. As such, I

use the Power et al. (2003) convergence radius when calculating the c-M relation.

The resultant effect a running spectral index has on the c-M relation is shown in Fig.

2.12. Here the solid line represents the running median of the concentration, which

I calculate using the locally-weighted scatterplot smoothing-method (LOWESS; see

Cleveland 1979). The top panel shows the recovered c-M relation for all haloes in the

sample, the bottom panel shows the recovered relation when only using relaxed haloes.

Previous studies have shown that the c-M relation for dark matter only haloes at z = 0
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is well fitted with a simple power-law (e.g. Bullock et al. 2001) of the form:

c∆ = A

(
M∆

MFiducial

)B
, (2.5)

where I adopt MFiducial = 1014M�. Equation 2.5 is fit to the data, and shown in Fig.

2.12 as crosses. Overall, a power-law form is able to describe the c-M relation well.

The bottom panel shown below each main plot shows the result of this fit normalised

with respect to the no-running simulation. Also shown by the shaded regions is the

overall scatter of the c-M relation at fixed mass, shown just for the no-running cos-

mology. As expected, the scatter is reduced at fixed mass when making a cut on

relaxed haloes. Looking at the bottom panels it can be seen that there is an overall

trend for a ΛαsCDM cosmology to produce lower concentrations in low-mass haloes

(M ≤ 2×1013M�), and larger concentrations in high-mass haloes (M ≥ 2×1013M�),

although the effect is not as large at low masses as it is at high masses.

A qualitatively similar result was found by Fedeli et al. (2010), who showed using

semi-analytic methods that the concentration of low-mass haloes in a negative running

cosmology is lower than in the standard ΛCDM model. They also showed that to a

small extent this effect was reversed at the high-mass end, with these objects being

slightly more concentrated. The reason for this may be attributable to formation time.

As mentioned, it has been shown that haloes which formed at earlier times have higher

concentrations. It has also been shown through the effect on the matter power spectrum

that the original overdensities of these high-mass haloes are amplified in cosmologies

which have a negative running spectral index. As a result, these haloes will have

formed earlier on, and thus formed when the universe had a larger mean density, and

so compared to the no-running cosmology these objects are centrally denser. The fact

that the differences seen in concentration at low-masses in the different cosmologies is

not as large, compared with that seen at higher masses (M ≈ 1015M�), may reflect the

fact that because these objects form at even earlier times, their concentrations are less

sensitive to their relative formation times.
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2.5 Separability of Baryonic Effects

I now turn my attention to how separable the effects of allowing the running to be free

are from the inclusion of baryonic physics in the simulations. That is, I explore whether

the effects of baryons on LSS are dependent on the choice of running cosmology (and

vice-versa).

The BAHAMAS suite of hydrodynamic simulations are a first attempt at explicitly cali-

brating the feedback in large-volume cosmological hydrodynamic simulations aiming

to quantify the impact of baryon physics on cosmological studies using LSS. It is

important, however, to check to what extent this calibration is dependent on the cos-

mology adopted in the simulation. The reason being that, if the calibration of the

simulations depended significantly upon cosmology, one would have to re-adjust the

feedback parameters for each cosmological model simulated. Thus, for this reason, the

baryonic processes in BAHAMAS were calibrated on internal halo properties (specifi-

cally the stellar and baryon fraction of haloes), as opposed to the abundance of haloes

or the power spectrum of density fluctuations (for more details see McCarthy et al.

2017 for the calibration method). The benefit of this being that the internal properties

of haloes ought to be less sensitive to cosmology.

With this in mind, I explicitly verified that the stellar and gaseous properties of haloes

in the simulations (particularly the galaxy stellar mass function and the gas fractions

of groups and clusters) are insensitive to the variations in cosmology presented here.

Thus, no aspect of the subgrid physics, feedback or otherwise, was changed from that

presented in McCarthy et al. (2017).

Previous simulation work has shown that the various physical processes which are

involved in galaxy formation and included in modern hydrodynamic simulations as

subgrid physics, are capable of affecting the underlying distribution of dark matter.

For example, it has been shown that the total matter power spectrum (e.g. van Daalen

et al. 2011; Schneider and Teyssier 2015) and the halo mass function (e.g. Sawala

et al. 2013; Cui et al. 2014; Velliscig et al. 2014; Cusworth et al. 2014; Schaller et al.

2015) along with the binding energies of haloes (Davies et al., 2019), can be affected
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by a non-negligible amount compared with a dark matter only simulation, through the

inclusion of feedback mechanisms. In addition, this study demonstrates that allowing

the running to be free can also have a near 10% level effect on the total matter power

spectrum at z = 0 and the halo mass function. Hence, an interesting and important

question is: how separable are these effects? Can they be treated independently of one

another, or do they work to amplify or perhaps suppress certain effects.

To answer this question, we separate the effects into two multiplicative factors: an

effect due to the change in cosmology (free-running) and an effect due to baryonic

physics. This results in the simple ansatz shown below, which is employed when trying

to reproduce an observed quantity measured in the full hydrodynamic simulation:

ψmult = ψDM
αs=0

(
ψDM
αs

ψDM
αs=0

)(
ψH
αs=0

ψDM
αs=0

)
, (2.6)

where ψ represents the quantity that is being measured, for example the halo mass

function or the matter power spectrum, with ψmult being the multiplicative prediction

made from treating the two effects separately; ψDM and ψH represent the quantity mea-

sured in the dark matter only, or the full hydrodynamic simulation respectively; ψαs=0

and ψαs represent the values measured in the simulation which has zero running and

a running equal to αs, respectively. This equation can be split up into two main parts:

one which accounts for the effects due to the change in cosmology (free-running), ac-

counted for by the first bracketed quantity in Equation 2.6; and one which accounts for

effects due to baryonic physics, such as AGN feedback, accounted for by the second

bracketed term.

All of the statistics examined in previous sections for the dark matter only simulation

were treated with this simple ansatz, to see if the result obtained in the full hydrody-

namic simulation could be recovered. However for brevity, I focus my attention on 4

main statistics: the total matter power spectrum, the halo mass function, the two-point

halo autocorrelation function, and the density profiles of haloes.
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2.5.1 Matter power spectrum

To begin, I go back to the total matter power spectrum of the simulations. As de-

scribed previously (Section 2.3.1), the power spectrum is computed using the algo-

rithm GenPK which computes the power spectrum of a simulation snapshot for each

individual particle species. As a result, one first needs to combine the individual matter

power components of each particle species to compute a total matter power spectrum.

The resulting total matter power spectrum for the hydrodynamic simulations can be

seen in the top panel of Fig. 2.13. Here the lines represent the total matter power spec-

trum measured for 3 different redshifts: z = 0, 1, 2. The crosses indicate the recovered

result when using Equation 2.6 (note, here ψ = P (k)) to try to reproduce the result

from simultaneously simulating baryonic physics and a running scalar spectral index

by treating the effects separately. The bottom panel(s) of this figure show that over

the entire k−range examined here, the total matter power spectrum for redshifts out

to at least z = 2 can be reproduced to < 2% by treating these effects separately. On

k−scales below 3.0 Mpc−1h, the result is even more accurate, with the matter power

spectrum being reproduced to sub-percent accuracy. This is better than the accuracy

required for the likes of LSST (e.g. Huterer and Takada, 2005; Hearin et al., 2012).

2.5.2 Halo mass function

Next, I look at the HMF, which is shown in Fig. 2.14. The HMF as measured for

the 5 separate cosmologies in the full hydro simulation is shown by the different lines

and is plotted for redshifts: z = 0, 1, 2. I use Equation 2.6 (where ψ ≡ φ in this

case) to test how separable the effects on the HMF due to the inclusion of baryonic

physics and a running scalar spectral index are. The resultant multiplicative prediction

is shown as crosses in Fig. 2.14. The bottom panel(s) of this figure shows the ratio for

each cosmology of the measured result from the hydro simulation, i.e. treating both a

running scalar spectral index and baryonic physics at the same time, to the predicted

result from the multiplicative prescription treating each effect separately. It can be

seen that for all redshifts examined here, the HMF can be reproduced with this simple
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Figure 2.13: Test of the separability of the effects that a running scalar spectral index and bary-
onic physics have on the total matter power spectrum. Top: The total matter power spectrum for
the 5 cosmologies. Here lines represent the result obtained from the simulations, with linestyle
representing the different redshifts at which the total matter power spectrum was measured.
The crosses represent the result obtained from treating the effects due to a running spectral
index and the effects due to baryonic physics on the total matter power spectrum separately.
Bottom: the ratio of the self-consistent result measured from the hydro simulation and the re-
sult obtained from treating the effects separately. Treating each effect as a simple multiplicative
correction, reproduces the total matter power spectrum on all k−scales examined here to better
than 2%.
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Figure 2.14: Test of the separability of the effects of inclusion of baryonic physics and a run-
ning scalar spectral index on the halo mass function measured in a full hydrodynamic simula-
tion. Top: the HMFs measured when simulating both a running spectral index and baryonic
physics, with the different linestyles indicating the HMFs measured at different redshifts. The
crosses represent the HMF recovered when treating the effects separately. Bottom: the ratio
of the measured HMF from the simulation to that predicted using the multiplicative prescrip-
tion (Equation 2.6). Treating each effect as a multiplicative correction is able to reproduce the
measured HMF to better than ≈ 3% up to z = 2.
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ansatz to within better than ≈ 3% over the full range of halo masses examined in this

study, up to z = 2, with an even better accuracy for lower redshifts.

As a separate test, I look at how separable these effects are on the mass of a halo, with

baryonic physics known to reduce the mass of a dark matter halo in the mass range

examined in this study (e.g. Sawala et al., 2013; Cui et al., 2014; Velliscig et al., 2014;

Schaller et al., 2015), and having seen here that a running spectral index can also have

a significant effect on halo mass.

The result is shown in Fig. 2.15. The top panel shows the effect baryonic physics has

on halo mass, for different values of the running scalar spectral index, i.e. it shows, for

a fixed value of αs, the ratio of masses of a matched set of haloes in the hydrodynamic

and dark matter only simulations. The result shown is the median ratio in bins of halo

mass. This shows that, to an accuracy of≈ 1%, the effect on halo mass due to baryonic

physics is independent of the change in cosmology. Also shown in the bottom panel

of this figure, is the effect that a running scalar spectral index has on halo mass in

the BAHAMAS calibrated feedback model normalised to the corresponding result from

the dark matter only simulations. This allows us to test how sensitive the effect a

running scalar spectral index has on halo mass is to different physics models. It can be

seen again here, for almost the entire range in mass, the effect due to a running scalar

spectral index is nearly independent of the baryonic physics. Poor statistics are likely

responsible for the larger deviations at high masses, whereas the small deviation at the

lowest masses is likely a resolution effect (note that the different cosmologies have

slightly different particle masses, due to the different values of Ωm and H0).

2.5.3 Clustering of haloes

The separability of the effects due to baryonic physics and allowing the scalar spec-

tral index to be free on the two-point autocorrelation function are shown in Fig. 2.16.

Here haloes are binned using their self-consistent masses, and not the masses of their

matched reference counterparts. The lines represent the measured two-point autocor-

relation function obtained from simulating baryonic physics and a running spectral



2.5. Separability of Baryonic Effects 61

0.80

0.85

0.90

0.95

1.00

M
H α s
/M

D
M

α
s

1012 1013 1014 1015

M200,DM
αs=0 [M�]

0.80

0.85

0.90

0.95

1.00

(M
H α s
/M

H α s
=

0
)

(M
D

M
α
s

/M
D

M
α
s
=

0
)

no-running

−2σ

−1σ

Planck-ML

+2σ

Figure 2.15: Test of the separability of the effect of baryonic physics and a running scalar
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haloes due the inclusion of baryonic physics. Bottom: the effect a running scalar spectral
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better than ≈ 4% by treating these two effects separately.
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Figure 2.17: Comparison of the median spherically-averaged total-matter halo density profile
measured from the hydro simulations, represented by the solid lines in this plot, and calcu-
lated using the simple functional form of Equation 2.6, shown by crosses. Haloes are binned
using their self-consistent masses, and not that of their matched reference counterparts. The
mass-range of each bin is indicated in the top right corner of each panel and is in units of:
log(M200,c/M�). The vertical dashed line in each panel represents the convergence radius for
haloes in the reference simulation. The bottom sub-panels show the ratio of the measured self-
consistent density profile to that predicted treating both effects separately. The results agree to
better than 2% for the entire radial range for each mass bin.

index simultaneously. The crosses represent the result obtained from using Equation

2.6 and multiplying the effects due to each separately (note that in this case: ψ ≡ ξ(r)).

The bottom panel(s) shows the measured result from simulating both effects simulta-

neously normalised with the result obtained from multiplying the effects separately.

It can be seen that the clustering signal of haloes in separate mass bins can be recov-

ered to better than ≈ 4% even for the most massive haloes, with the differences being

exacerbated due to the low number density of these massive haloes in the sample.
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2.5.4 Density profiles

Finally, I examine the separability of the effects due to baryonic physics and allowing

the running to be free on the total mass density profile of a halo. As was seen in Fig.

2.15, the effects on halo mass due to baryonic physics and the effect on halo mass

due to a running spectral index are largely independent effects. As a result, one might

expect that the density profiles of these haloes can also be reproduced relatively well

with a simple multiplicative prescription. To test this, I use Equation 2.6 (note that here

ψ = ρ̂ where ρ̂ is the dimensionless re-scaled ρ: ρ̂ ≡ (ρ/ρcrit)(r/R200,c)
2). The results

are shown in Fig. 2.17. An important note here is that, unlike in Fig. 2.11, here I plot

the density profiles of an unmatched set of haloes, meaning that the haloes are binned

using their self-consistent masses. Here the lines represent the median spherically

averaged total-mass density profiles of each mass bin. The crosses represent the density

profiles obtained from treating the effects due to a running scalar spectral index on the

density profile of a halo and the effects due to baryonic physics separately. The bottom

sub-panels show the ratio of the measured density profiles from the simulations to the

self-consistent result obtained from treating the effects separately. The plot shows that

even the combined effects on the internal structure of haloes can be reproduced (to

typically better than 2%) by treating baryons and running separately.

As mentioned, all of the other statistics examined in the dark matter only simulation

were also investigated in the way that has just been laid out in this section to see if

the effects of baryonic physics and allowing the running to be free could be treated as

separate effects. This includes the comoving halo number density and the c-M relation.

Although these are not shown, they were reproduced using the simple functional form

of Equation 2.6 to a similar level of accuracy to the tests presented above.
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2.6 Summary and Conclusions

This study has made use of a new extension to the BAHAMAS suite of large cosmolog-

ical hydrodynamic simulations which are 400 comoving Mpc h−1 on a side. This ex-

tension consists of 5 simulations, corresponding to different values for a running scalar

spectral index (αs), ranging from−0.02473 ≤ αs ≤ 0.00791 (a complete list of values

can be found in Table 2.1). This has allowed an investigation into the effects a cos-

mology with a freely varying αs has on the cosmic LSS and into how separable these

effects are from those produced by baryonic physics. The statistics which this study

focused on include the non-linear total matter power spectrum, the halo mass func-

tion (HMF), the two-point halo autocorrelation function, the spherically averaged halo

density profiles, and the halo concentration-mass (c-M) relation. This study focuses

mainly on haloes in the mass range: 1012 ≤ M/M� ≤ 1015. The main conclusions

that can be drawn from this chapter are as follows:

• On almost all scales probed in these simulations, a cosmology with a negative

value for the running of the scalar spectral index leads to an excess of power

compared with the standard cosmology, by a maximum of≈ 10%. This holds up

to at least z = 2 (see Fig. 2.5). Conversely, a cosmology with a positive running

leads to a suppression of the matter power spectrum over the entire k−range

investigated in this study (0.01 < k[Mpc−1h] < 8.0) at z = 0. Such an ef-

fect should be measurable in upcoming LSS surveys, such as those from LSST,

EUCLID and DESI9 which aim to measure the power spectrum to around 1%

accuracy. Naively, one might have expected a negative (positive) running to

lead to less (more) power relative to a no-running case. However, the imposed

requirement that my adopted cosmologies retain a good fit to the CMB tem-

perature angular power spectrum in the presence of running forces the power

spectrum amplitude, As, to slightly increase (decrease) for cosmologies with

negative (positive) running (see Table 2.1). This effect is retained down to z = 0

in the non-linear power spectrum.

9https://www.desi.lbl.gov/

https://www.desi.lbl.gov/
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• A cosmology with a running scalar spectral index is capable of suppressing the

low-mass end (M . 1013M�) of the HMF by nearly 10% in the case of a cosmol-

ogy with a negative running, but leads to an excess of low-mass haloes for a pos-

itive running cosmology (see Fig. 2.7). This effect on the HMF due to a running

scalar spectral index depends both on redshift and the mass bin, with a negative

running cosmology leading to an excess of high-mass objects (M & 2×1013M�)

with this effect being pronounced at earlier redshifts. This result is due to the

fact that, in a negative running cosmology, the density perturbations which lead

to these haloes are amplified and thus lead to higher-mass haloes forming earlier

on.

• A cosmology with a running spectral index leads to a change in the spatial distri-

bution of haloes (see Fig. 2.10). A negative running cosmology leads to haloes

with M < 1014M� being more clustered compared with a standard cosmology

(with a near 10% increase in the clustering signal for the most negative running

cosmology) and higher masses being less clustered. This result is reversed for

a positive running cosmology, which sees a reduction in the clustering signal of

haloes with M < 1014M�. This is due to the fact that, in a negative running

cosmology, the formation of these low-mass haloes is suppressed, leading them

to be a more biased tracer of the underlying matter distribution, and thus have a

stronger clustering signal.

• Looking at internal properties of matched haloes, a cosmology with a running

spectral index predominantly causes an amplitude shift in the density profiles of

haloes, without much of a change to their shape (see Fig. 2.11). The effect of a

running scalar spectral index depends both on the mass of the halo and the value

of the running. A cosmology with a negative running leads to a reduction in the

amplitude of the density profile for haloes with M < 1013.5M�, but lead to an

increase in the amplitude for high-mass (M & 1013.5M�) haloes. Conversely

a cosmology with a positive running leads to an amplitude increase across the

entire mass range investigated here. This is due to the fact that in a negative

running cosmology a low-mass halo has its mass decreased, compared with its
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matched no-running counterpart. Whereas for the same cosmology, the mass of

a high-mass halo (depending on the magnitude of αs) is increased. Conversely,

a cosmology with a positive αs leads to an increase in mass of a halo across the

entire mass range studied here.

• For the c-M relation, it was found that the effect of a ΛαsCDM cosmology is

once again mass-dependent, with all running cosmologies predicting the higher-

mass haloes to be more centrally concentrated than in a no-running cosmology

(see Fig. 2.12). Whereas at the low-mass end (M . 2 × 1013M�), the negative

running cosmologies tend to predict slightly lower concentrations, the effect on

these scales is small compared to the high-mass end. A similar result was found

by Fedeli et al. (2010), who predicted low-mass haloes to have a lower concen-

tration value in a negative running cosmology, but high-mass haloes to have a

slightly higher concentration.

Note that in the calculation of the c-M relation, haloes are binned according to

their self-consistent masses, not the masses of their no-running counterparts (as

was the case when looking at the density profiles). This is the reason why I see

some differences in the c-M relation, with these differences not being obvious

from looking at the density profiles of the matched haloes.

• This study also looked into the separability of the effects due to a running scalar

spectral index and baryonic physics. I found that these two effects can be treated

as separable multiplicative corrections to a standard cosmology. This simple

multiplicative procedure is capable of reproducing the combined effects seen for

all statistics looked at in this study (such as the non-linear total matter power

spectrum in Fig. 2.13, the HMF in Fig. 2.14, and the two-point autocorrelation

function in Fig. 2.16) to typically a few percent accuracy.

• As an aside, this study also investigated how well some current approximate

methods calibrated on standard ΛCDM cosmologies can predict some of the

results found in this study (see Appendix A.2). These include a prescription

for the HMF produced by Tinker et al. (2008), as well as a prescription for the
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redshift evolution of dark matter halo masses, and the c-M relation, produced by

Correa et al. (2015a). I find that for the Tinker et al. (2008) HMF, this is able to

reproduce the effects seen due to running out to z = 2 very well (Fig. A.4). I

also find that qualitatively, the method developed by Correa et al. (2015a), is able

to reproduce both the evolution of halo mass across the different simulations in

this study (Fig. A.5); as well as the effect a running scalar spectral index has on

the c-M relation of haloes at z = 0 (Fig. A.7).

This work has shown that a cosmology with a running scalar spectral index, consis-

tent with the observational constraints of the Planck Collaboration XIII (2016) cosmo-

logical parameter results, can have relatively large and measureable effects on LSS.

However, it is worth noting that, by itself, running is unable to reconcile the current

tension involving S8. For example, all of the Planck CMB-based runs I examined

here have S8 > 0.85 (see Table 2.1), whereas many current LSS tests prefer S8 in the

range [0.75, 0.8] (see McCarthy et al. 2018 and references therein). However, I remind

the reader that taking account of the internal tensions in the CMB data, by allowing

Alens to float, can significantly reduce the tension between the CMB and LSS (see Ap-

pendix A.1) and remove it altogether when the neutrino mass is also allowed to float

(McCarthy et al., 2018).

Nevertheless, if running is present at the levels suggested by current CMB and Lyman-

α forest data, it should be within the detectability range of upcoming surveys such as

LSST10, EUCLID11, and CMB-S412, and allow tangible constraints to be placed on

fundamental, early-Universe physics.

Finally, this study has demonstrated that the effects of a running scalar spectral index

are largest at low masses which sample far from the pivot scale. This is expected

as the pivot scale is where all of the power spectra are normalised, and thus forced

to have similar values (with the only differences here on these scales arising due to

slight differences in As). As mentioned, this scale corresponds to k0 = 0.05 Mpc−1 for
10https://www.lsst.org/
11https://www.euclid-ec.org/
12https://cmb-s4.org/

https://www.lsst.org/
https://www.euclid-ec.org/
https://cmb-s4.org/
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Planck CMB measurements, corresponding roughly to cluster scales which BAHAMAS

is designed to sample. Therefore, in a future follow-up study I will explore this larger

effect on lower masses in more detail, looking at the impact of running on “near-field”

(small-scale) cosmology.



Chapter 3

Exploring extensions to the standard

cosmological model and the impact of

baryons on small scales

The following chapter appeared in Stafford et al. (2020b). The appendices for this

work are included in Appendix B.

In Chapter 1 I introduced some of the apparent tensions which appear to plague the

standard model of cosmology with the wealth and quality of observational data being

collected recently. In Chapter 2 I detailed some of the apparent large-scale tensions,

namely tensions in cosmological parameters when constrained using different obser-

vational data sets, and I used these tensions to motivate a minimal extension to the

ΛCDM model in the form of a running scalar spectral index. One of the key results of

the previous chapters was that when you have a cosmological model with a non-zero

value for the running of the spectral index this can have quite large effects, with the

magnitude of these effects increasing as you start to observe smaller physical scales

and the objects associated with these scales. Therefore, in light of this result, in this

chapter, I seek to extend this analysis further and probe the effects of a non-zero run-

ning scalar spectral index on lower mass haloes and smaller physical scales. To com-

plement this study I also look into additional minimal extensions to the standard model

70
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of cosmology which are popular due to their ability to preferentially affect small-scale

structure. This study is further motivated by the claims that the ΛCDM model cannot

easily account for several observations on relatively small scales.

In this chapter, I introduce a new suite of cosmological simulations that systematically

explores three plausible extensions: warm dark matter, self-interacting dark matter,

and a running of the scalar spectral index of density fluctuations. These extensions

introduce 3 new parameters into the standard model of cosmology, MWDM, σ/m, αs

respectively. The values that I adopt for these additional cosmological parameters are

informed by current observational constraints. We make further use of these simula-

tions, as well as adding additional simulations to this suite, in the following Chapter 4

where we use these simulations to generate cosmic shear power spectrum.

In this chapter, however, I use these simulations to examine a large range of observable

metrics on small scales, including the halo mass function, density and circular velocity

profiles, the abundance of satellite subhaloes, and halo concentrations, exploiting their

higher resolution compared to the simulations introduced in Chapter 2. I find that for

any of the above metrics, significant degeneracies can be present between the exten-

sions. In detail, however, the different extensions have quantitatively distinct mass and

radial dependencies, suggesting that to place constraints on these parameters using ob-

servations a multi-probe approach over a range of scales should be used to break the

degeneracies. I also demonstrate that the relative effects on the radial density profiles

in the different extensions (compared to the standard model) are converged down to

significantly smaller radii than are the absolute profiles. I compare the derived cos-

mological trends with the impact of baryonic physics using the EAGLE and ARTEMIS

simulations. Significant degeneracies are also present between baryonic physics and

cosmological variations (with both having similar magnitude effects on some observ-

ables). Given the inherent uncertainties both in the modelling of galaxy formation

physics and extensions to ΛCDM, a systematic and simultaneous exploration of both

is strongly warranted.
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3.1 Introduction

The current cosmological paradigm describes a universe which has a matter content

that is primarily composed of collisionless cold dark matter (CDM), a cosmological

constant (Λ), and normal baryonic matter (Planck Collaboration XIII, 2016). The true

nature of dark matter, however, is still an unsolved problem. Aside from there not yet

being a confirmed direct detection of dark matter, there are also claimed problems with

the current cosmological model (most commonly abbreviated to the ΛCDM model) on

small scales which could hint at a deviation from CDM. For example, three of the

most widely discussed issues with this model are the ‘cusp–core problem’ (Flores and

Primack, 1994; Moore, 1994), the ‘missing satellites problem’ (Klypin et al., 1999;

Moore et al., 1999), and the ‘too-big-to-fail problem’ (Boylan-Kolchin et al., 2011). A

recent review on these, along with other apparent small-scale issues identified within

ΛCDM, can be found in Bullock and Boylan-Kolchin (2017).

These issues have fuelled research into alternatives/extensions to the standard model,

particularly modifications to the nature of dark matter. For example, one can relax

the assumption that dark matter is purely collisionless, allowing instead for a non-

negligible self-interaction with a cross-section that can be constrained by observations.

Previous studies on such self-interacting dark matter (SIDM) suggest it may be able to

solve the cusp–core problem (Spergel and Steinhardt, 2000; Yoshida et al., 2000; Davé

et al., 2001; Colin et al., 2002; Vogelsberger et al., 2012; Rocha et al., 2013; Elbert

et al., 2015; Kaplinghat et al., 2016), the too-big-to-fail problem (provided that the self-

interaction cross-section is large enough e.g. Zavala et al. 2013; Elbert et al. 2015), and

may help to explain the observed diversity of galaxy rotation curves (Kamada et al.,

2017; Creasey et al., 2017).

Another popular extension retains the assumption that dark matter is collisionless, but

invokes a non-negligible thermal velocity at early times. Termed warm dark matter

(WDM), the associated free-streaming erases small-scale density perturbations leading

to a characteristic cut-off in the linear matter power spectrum (Bond et al., 1980; Pagels

and Primack, 1982; Dodelson and Widrow, 1994; Hogan and Dalcanton, 2000; Viel
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et al., 2005; Abazajian, 2006). This leads to WDM potentially being able to resolve

the missing satellites problem due to the suppression of structure with masses close to

the cut-off scale in the matter power spectrum (Colı́n et al., 2000; Bode et al., 2001;

Polisensky and Ricotti, 2011; Lovell et al., 2012; Anderhalden et al., 2013; Bozek et al.,

2016; Horiuchi et al., 2016; Bose et al., 2017). Furthermore, due to the later formation

times of haloes in a WDM cosmology, haloes tend to have a lower central density

which helps to mitigate the too-big-to-fail problem (Lovell et al., 2012; Horiuchi et al.,

2016; Lovell et al., 2017a). Studies have also shown that WDM can produce cores in

the density profile of dark matter haloes, however, these are not large enough to solve

the cusp–core problem given current constraints on the mass of the dark matter particle

(Villaescusa-Navarro and Dalal, 2011; Macciò et al., 2012; Shao et al., 2013).

An alternative mechanism that can alter small-scale structure but which treats dark

matter in the standard way (cold and collisionless), is to invoke a change in the primor-

dial power spectrum on small scales. The standard model of cosmology assumes that

the primordial power spectrum of density fluctuations, P (k), laid down by inflation is

a pure power-law. Measurements of the cosmic microwave background constrain the

power-law exponent to be ns ≈ 0.96, in excellent agreement with generic inflation

models. However, even the simplest single-field inflation models predict some degree

of deviation from a pure power-law (Kosowsky and Turner 1995, see also Garcia-

Bellido and Roest 2014; Escudero et al. 2016).

A more general treatment of the primordial matter power spectrum allows the spectral

index to vary with scale, with this scale-dependence termed the ‘running’ of the spec-

tral index (αs). As discussed in Chapter 2, a growing body of observational evidence

suggests some preference for a mildly negative value for αs (Dunkley et al., 2011; Zhao

et al., 2013; Hou et al., 2014; Planck Collaboration XIII, 2016; Palanque-Delabrouille

et al., 2015; Palanque-Delabrouille et al., 2019), which will act to suppress power on

the smallest (and largest) of scales. Garrison-Kimmel et al. (2014) have previously

shown that a negative running can help resolve the missing satellite problem as well as

alleviate the too-big-to-fail problem.

It is possible, however, that the small-scale crises outlined previously which suppos-
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edly exist with the ΛCDM model are instead just a product of conclusions drawn from

comparing the observable Universe to the predictions from a series of dark matter-only

simulations. Recently there has been extensive research into the possibility that a real-

istic treatment of baryonic physics in simulations, such as supernovae feedback, stellar

winds, and feedback from active galactic nuclei (AGN), may be able to resolve some

of these tensions. These studies have shown the importance of including baryonic

physics in the simulations, demonstrating the potential to resolve for the cusp–core

problem (Mashchenko et al., 2008; Pontzen and Governato, 2012; Macciò et al., 2012;

Madau et al., 2014; Oñorbe et al., 2015; Read et al., 2016; Tollet et al., 2016; Wetzel

et al., 2016; Fitts et al., 2017), the missing satellites problem (Bullock et al., 2000;

Benson et al., 2002; Somerville, 2002; Kravtsov et al., 2004; D’Onghia et al., 2010;

Wetzel et al., 2016; Garrison-Kimmel et al., 2017; Sawala et al., 2017), as well as the

too-big-to-fail problem (Zolotov et al., 2012; Arraki et al., 2014; Brooks and Zolotov,

2014; Chan et al., 2015; Wetzel et al., 2016; Tomozeiu et al., 2016; Sawala et al., 2016;

Dutton et al., 2016; Brooks et al., 2017) and without having to invoke any extensions

to the standard model.

To what extent the successes of hydrodynamical simulations in helping to resolve

the aforementioned small-scale problems are a natural and robust consequence of the

physics implemented in the simulations, or is instead due to calibration (either implic-

itly or explicitly) of the feedback models to specifically address those issues, remains

somewhat unclear1. In any case, the correct approach should not to be overly prescrip-

tive about the nature of the cosmological model and the role of baryons, but to use

comparisons of simulations to observations to attempt to constrain both.

At present, the literature contains numerous studies that typically explore one cosmo-

logical extension at a time, or examine the impact of baryons alone (in ΛCDM), and of-

ten in the context of a very small sample of haloes simulated (zooms). Drawing general

conclusions from these studies about the relative impact of these effects, their differ-

ences and possible degeneracies, is hindered by large study-to-study variations in box

1See Schaye et al. (2015) for a discussion of the predictive power of current cosmological hydrody-
namical simulations.
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size, resolution, differences in feedback calibration schemes, and focus on different

aspects of small-scale structure. Here I aim to remedy these issues by simultaneously

studying the effects of the different extensions (SIDM, WDM, and a running spectral

index) to ΛCDM in a consistent way, using a suite of high-resolution dark matter-only

cosmological simulations. To compare to the impact of baryon physics, I make use

of the high-resolution EAGLE Recal model (Schaye et al., 2015; Crain et al., 2015)

and the new ARTEMIS suite of zoomed hydrodynamical simulations of Milky Way-

mass galaxies (Font et al., 2020). Note that ARTEMIS uses the same galaxy formation

physics as EAGLE but the stellar feedback has been re-calibrated for the increased res-

olution to yield an improved match to the stellar masses of haloes with similar mass

to the Milky Way. Both of these suites have comparable resolution and statistics to

my simulations of the above cosmological extensions. I examine the dark matter-only

and hydrodynamical simulations in a consistent way, examining the impact of cosmo-

logical variations and baryon physics on a wide range of metrics that characterise the

abundance and structure of dark matter haloes and their subhaloes.

The present study is structured as follows: In Section 3.2 I introduce the simulations

used as part of this study, covering each cosmological extension in turn. In Section

3.3 I examine some global properties of the simulated volumes, focusing on statistics

such as the halo and subhalo mass functions. In Section 3.4 I examine the effects from

these various cosmologies on several internal properties of simulated haloes, examin-

ing statistics such as the dark matter density profiles of haloes. Finally, in Section 3.5

I summarise and discuss my findings.

3.2 Simulations

For this study, I have run a suite of high resolution, cosmological volumes, sampling

different possible extensions to the ΛCDM model. The suite consists of 7 dark matter-

only, periodic box simulations which are 25 comoving Mpc h−1 on a side, each con-

taining 10243 dark matter particles. All of the cosmological parameters for the sim-

ulations in this suite use the fiducial Planck 2015 maximum likelihood values, apart
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from the simulations which include a running scalar spectral index (this is explained in

more detail below). The cosmological parameter values adopted can be found in Table

3.1.

The Boltzmann code CAMB2 (Lewis et al. 2000, August 2018 version) is used to com-

pute the transfer functions and power spectra for all of the simulations (with the WDM

power spectra being slightly altered, as explained below), and a modified version of

N-GenIC3 is used to create the initial conditions (ICs) for the simulations. The simu-

lations are initialised at a starting redshift of z = 127 and run to z = 0. I use a modified

version of N-GenIC which includes second-order Lagrangian Perturbation Theory

corrections, alongside support for massive neutrinos. Note that when producing the

initial conditions (ICs) for the simulations, the same random phases are used for all 7

periodic box runs, removing the effects of cosmic variance when comparing the runs.

The simulations are run using a modified version of the parallel Lagrangian TreePM-

SPH code GADGET3 (last described in Springel, 2005).

The gravitational softening is a fixed physical length of 250 pc h−1 at z ≤ 3, and is

a fixed comoving length at higher redshifts. The reference ΛCDM simulation (desig-

nated ‘Ref’) has a dark matter particle mass ofmDM = 1.266× 106 M� h−1. The SIDM

and WDM simulations also have this particle mass, as they adopt identical cosmologi-

cal parameters. The two simulations which incorporate a running scalar spectral index

have slightly different particle masses, owing to the slightly different values for Ωm and

h for those runs, as described below. I note that for all the Planck 2015 maximum-

likelihood cosmologies used in this study, including the cosmologies with a running

spectral index, I include massive neutrinos using the minimum summed neutrino mass

(equal to ΣMν = 0.06 eV), derived from atmospheric and solar oscillation experiments

and adopting a normal hierarchy of neutrino masses (Lesgourgues and Pastor, 2006).

As a result I use a version of GADGET3 which has the semi-linear algorithm (devel-

oped by Ali-Haı̈moud and Bird 2013, however see also Bond et al. 1980; Ma and

Bertschinger 1995; Brandbyge et al. 2008; Brandbyge and Hannestad 2009; Bird et al.

2http://camb.info/
3https://github.com/sbird/S-GenIC

http://camb.info/
https://github.com/sbird/S-GenIC
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2012) which models the effects of massive neutrinos on both the background expan-

sion rate and the growth of density fluctuations implemented into it. This algorithm

computes neutrino perturbations on the fly at each time step (see McCarthy et al. 2018

for further details of its implementation). Furthermore, I also include the effects of

radiation on the expansion history.

3.2.1 Running of the scalar spectral index

The epoch of inflation seeded small density perturbations in the matter distribution

of the Universe, with the power spectrum of these perturbations in the ΛCDM model

being of the form (Guth, 1981):

P (k) = Akns (3.1)

where P (k) is the power spectrum as a function of wavenumber k, A defines the am-

plitude of the primordial matter power spectrum, and ns is the scalar spectral index. In

the ΛCDM model, ns is assumed to be constant, with no k dependence. However, as

discussed in the Introduction, even the simplest models of inflation predict some level

of deviation from a power-law distribution.

Allowing for running, the modified power spectrum, P (k), can be expressed as (Kosowsky

and Turner, 1995):

Ps(k) = As(k0)

(
k

k0

)ns(k=k0)+α′
s(k)

(3.2)

where α′s(k) ≡ (αs/2) ln(k/k0), αs is the running of the scalar spectral index, which

is defined as dns(k)/dln(k). The pivot scale, k0, is the scale at which the amplitude of

the power spectrum (As) is defined, along with the scale at which the spectral index

is measured when αs 6= 0. In this study, I adopt the same pivot scale as that used for

the cosmological parameter estimation of Planck Collaboration XIII (2016): k0 = 0.05

Mpc−1. It is also worth mentioning that this is only a first-order extension to the power

spectrum of density perturbations. There can also be a ‘running of the running’, where
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the running of the scalar spectral index also varies with scale [αs → αs(k)] leading

to a second-order term being added to the functional form of the spectral index ns(k).

But for simplicity, I focus here on the first order effect.

As mentioned previously, all of the simulations, with the exception of the two simu-

lations that include a running scalar spectral index, adopt the Planck 2015 maximum

likelihood cosmological parameters. For the two simulations which include a run-

ning scalar spectral index, I adopt the same cosmological parameters as that derived in

Chapter 2. Here I will briefly explain how these cosmological parameters were chosen,

but more detail is provided in Chapter 2.

To generate a set of parameters which make up a cosmological model, I made use of the

Planck 2015 publicly available Markov chains which include αs as a free parameter.

Five values for αs which sampled the posterior distribution were chosen in Chapter 2,

corresponding to the maximum-likelihood value and±1σ and±2σ values. For a given

choice of the running, the values of the other important cosmological parameters were

obtained by taking the weighted average of the Markov chain data for all parameter sets

with αs close to the desired value. Choosing the cosmological parameters in this way

ensures that the resultant cosmological model is consistent with current measurements

of the CMB. In the present study, I use 2 out of the 5 cosmologies generated in this

way, corresponding to the ±2σ values of the posterior distribution of αs.

3.2.2 Warm dark matter

Instead of modifying the primordial power spectrum, as in the case of a running of the

scalar spectral index, the nature of dark matter itself can be modified. Warm dark mat-

ter (WDM) differs from CDM in the standard model, in that the subatomic particles

that constitute WDM are considerably lighter (∼keV) than CDM particles (∼GeV to

TeV masses). Consequently, WDM particles remain relativistic for longer in the early

Universe compared with CDM, resulting in non-negligible thermal velocities that al-

low the particles to free-stream out of small-scale density perturbations, smoothing

them out and suppressing the growth of structure on small scales (Bond and Szalay,
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1983; Bardeen et al., 1986).

This smoothing out of density perturbations due to the thermal velocity associated with

WDM leads to a characteristic cut-off in the WDM power spectrum. This effect can

be modelled as a transfer function TWDM(k), relative to the CDM power spectrum:

PWDM(k) = T 2
WDM(k)PCDM(k). (3.3)

Here I make use of the fitting formula of Bode et al. (2001):

TWDM(k) =
[
1 + (αk)2ν

]−5/ν
, (3.4)

with ν being a fitting constant and α corresponding to the scale of the cut-off in the

power spectrum, with this being dependent on the mass of the thermal WDM particle.

Note that this function assumes the dark matter is entirely composed of WDM. The

values adopted for these constants correspond to the best fit values obtained by Viel

et al. (2005) (for k−scales < 5 Mpc−1 h); i.e., ν = 1.12 and (assuming the WDM is

composed of thermal relics)

α = 0.049
( mx

1keV

)−1.11
(

Ωx

0.25

)0.11(
h

0.7

)1.22

Mpc h−1. (3.5)

Here mx corresponds to the mass of the WDM particle, Ωx is the present-day density

of WDM in units of the critical density, and h is the reduced Hubble’s constant.

Examining equation 3.5, it can be seen that the warmer the dark matter particle (i.e.,

the smaller the mass of the particle), the larger the scale of the break in the power

spectrum (i.e., the suppression moves to smaller k values).

As well as using a modified power spectrum as outlined previously, one should in

principle also assign a thermal velocity to the WDM particles; with the rms velocity

dispersion of these WDM particles being around 1.6 (0.6) km s−1 in the case of the

2.5 (5.0) keV WDM particle mass at the starting redshift of 127 (Bode et al., 2001),

which is a fraction of the rms velocity assigned through the Zel‘dovich Approximation
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(around 40 km s−1 at z = 127). Therefore, as the distance scales travelled during

the free-streaming of the WDM particles due to their thermal velocities corresponds

to ∼ tens of comoving kpc for WDM particle masses of ∼ keV (Lovell et al., 2012),

I neglect these thermal velocities in my simulations. Furthermore, for a given initial

power spectrum, the inclusion of thermal velocities tends to introduce spurious noise

which can adversely affect early structure formation in the simulations (Leo et al.,

2017). Note that the particles are, however, still initialised with a peculiar velocity

using the Zel‘dovich Approximation (Zel’dovich, 1970) plus 2LPT corrections.

In this study I investigate two different dark matter particle masses: a 2.5 and 5.0 keV

thermal relic dark matter mass. The choice for the WDM particle mass is influenced

by current astrophysical constraints. For example, a strong lower-limit is placed on

the mass of the WDM particles through observations of the Lyman-α forest flux power

spectrum, with Viel et al. (2013) placing a lower-limit of MWDM & 3.3 keV and Iršič

et al. (2017) providing a slightly more stringent constraint of MWDM & 5.3 keV. These

limits are consistent with constraints set from the Milky-Way’s satellite population,

which provide constraints ranging from MWDM > (1.5− 3.9) keV (Lovell et al., 2014;

Kennedy et al., 2014; Jethwa et al., 2018; Nadler et al., 2019; Nadler et al., 2020a).

Note, however, that the limits placed on the WDM particle mass through observations

of the Lyman-α forest are somewhat sensitive to the treatment of the thermal history of

the intergalactic medium (IGM). For example, Garzilli et al. (2019) demonstrated that

the Lyman-α forest constraints can be lowered to MWDM > 1.9 keV when marginalis-

ing over the plausible temperature range of the IGM.

More recently, time delay measurements of (strong) gravitationally-lensed quasars,

which are sensitive to the distribution of substructure around the lens, have been used

to derive MWDM > 5.58 keV (Hsueh et al., 2019). As such, the thermal relic masses

which I choose to simulate are consistent with the current tightest constraints placed

on this parameter by various observations.

As this study is focused on dark matter (sub)haloes, it is important that the results are

not influenced by numerical artefacts which may form. This is particularly relevant
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in the simulations of WDM universes, with some studies having shown an onset of

structure formation on small scales in WDM simulations due to spurious fragmentation

of filaments. Wang and White (2007) showed this to be due to particle discreteness

effects. They provided an empirical cut in halo mass to remove these spurious objects

from halo catalogues (see also Lovell et al., 2014). However, as this limiting mass

is lower than the the limit I place on resolved (sub)haloes, such spurious structure

formation should not impact my results (see Appendix B.1 for more details).

3.2.3 Self-interacting dark matter

Another possible extension to the ΛCDM model is to allow the dark matter particles

to self-interact (i.e., scatter with neighbouring particles). Here the dark matter is still

assumed to be cold initially as in the standard model.

To simulate the effects of these self-interactions, I use a slightly modified version of the

previously mentioned TreePM GADGET3N -body code. This version was modified by

Robertson et al. (2019) (see also Robertson et al. 2017a,b) to incorporate dark matter

self-interactions. I will provide a brief overview of the interaction process here, but

refer the reader to the original papers for more details.

At each time-step ∆t, particles search for any neighbouring particles that are within

some pre-defined radius h. The probability for each pair of nearby particles i and j to

scatter is calculated using:

P scat
ij =

|vi − vj|∆t
4π
3
h3

.
( σ
m

)
mDM. (3.6)

Here (σ/m) is the particle physics dark matter scattering cross-section, and mDM is

the dark matter particle mass in the simulation. vi,j is the velocity of particle i and

j respectively, and h is the search radius which I set to be equal to the gravitational

softening length ε of the simulations (see Robertson et al. 2017a for discussion). Note

this equation leads to the probability of a scattering event between two particles taking

place being proportional to the dark matter particle mass. As such, the total probability
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of a particle scattering with any other particle is independent of particle mass, as the

number of neighbouring particles available to scatter with is inversely proportional to

the dark matter particle mass.

The dark matter interactions are assumed to be fully described by an azimuthally-

symmetric differential cross-section, defined in the centre of momentum frame of the

two particles. Although the code has the functionality for scattering events to be both

velocity and angular dependent, in this study I only examine the case where the scat-

tering events are velocity independent and isotropic. Under these assumptions, the

interactions are described by a differential cross-section (which is the rate at which

particles are scattered into a region of solid angle) equal to:

dσ

dΩ
=

σ

4π
. (3.7)

I explore two different values for the total cross-section: σ/m = 0.1 and 1.0 cm2

g−1. These values are guided by current observational constraints. Current constraints

come from observations of strong lensing arcs, which suggest upper limits of σ/m .

(0.1, 1.0) cm2 g−1 (Meneghetti et al., 2001; Robertson et al., 2019, respectively); DM–

galaxy offsets in colliding galaxy clusters, which suggest σ/m < (0.47 - 2) cm2 g−1

(Randall et al., 2008; Kahlhoefer et al., 2015; Harvey et al., 2015; Kim et al., 2017;

Robertson et al., 2017a; Wittman et al., 2018); cluster shapes, have been used to in-

fer σ/m < (0.02, 0.1) cm2 g−1 (Miralda-Escude, 2002a; Peter et al., 2013, respec-

tively); as well as from subhalo evaporation arguments that suggest σ/m < 0.3 cm2

g−1 (Gnedin and Ostriker, 2001). Note, however, that these constraints are mainly

derived from galaxy cluster scales. If the focus is turned instead to the dwarf-galaxy

regime, cross-sections as high as 50 cm2 g−1 are within observational constraints and

can potentially alleviate some of the small-scale problems associated with ΛCDM (El-

bert et al., 2015). As such, a velocity-dependent cross-section may be needed to ex-

plain the entire dynamic range of observations. However, as mentioned, this study

focuses on velocity-independent cross-sections, with the cross-sections chosen to be

representative of the current constraints which exist for this parameter.
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3.2.4 Baryonic effects in the standard model

As discussed in the Introduction, many recent studies have concluded that the effects

of baryons on ‘small-scale’ structure are important. A primary aim of the present study

is to compare and contrast the effects of baryons with those of changes to the standard

cosmological model. I do this by comparing the gravity-only simulations introduced

above to one set of simulations from the EAGLE project (the highest-resolution ‘Recal’

run). I also make comparisons to the ARTEMIS simulations, a new suite of fully hydro-

dynamic zoom-in simulations of Milky Way-type analogues (Font et al., 2020). This

new suite of zoom-in simulations uses the same galaxy formation (subgrid-)physics as

the EAGLE project, but the stellar feedback has been re-calibrated for the higher reso-

lution as well as to yield an improved match to observed galaxy stellar masses at halo

masses of ∼ 1012M�.

Note that both sets of hydrodynamical simulations that I use fall within the context of

the standard cosmological model. Ideally, one would also like to explore the impact of

baryons in non-standard cosmologies, since star formation and feedback-driven winds

are observed to be ubiquitous in the Universe. I leave this for future work, noting

that it is not likely to simply be a matter of re-running the same galaxy formation

model in each cosmological extension, as the properties of the galaxies themselves

will likely change. Therefore, re-calibration of feedback prescriptions will presumably

be required. In other words, some degree of degeneracy between baryonic effects and

cosmological effects is to be expected. I comment on this possibility below, using the

simulations in hand.

EAGLE simulation

In this study I make use of the highest-resolution EAGLE run (data from McAlpine

et al. 2016), called ‘Recal’, which is a 25 Mpc on a side cosmological volume (Schaye

et al., 2015; Crain et al., 2015). For a full overview of this and other EAGLE runs,

including how the initial conditions were generated, I refer the reader to the aforemen-

tioned papers. I provide only a brief overview of the Recal simulation here.
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The simulation was run in the context of a Planck 2013 maximum-likelihood cosmol-

ogy (Planck Collaboration XVI, 2014), with the cosmological parameters provided in

Table 3.1. The simulation consists of a fully hydrodynamic run, containing 2 × 7523

particles, and a complementary dark matter-only run (containing 7523). This results in

particle masses ofmDM = 1.21×106 M� andmgas = 2.26×105 M�. The gravitational

softening is 350 pc (in physical below z = 3 and is a fixed comoving length at higher

redshifts). Thus, the mass and force resolution of this run is very similar to that of my

dark matter-only suite introduced above.

The galaxy formation (subgrid-)physics included as part of the EAGLE project include

metal-dependent radiative cooling (Wiersma et al., 2009a), star formation (Schaye and

Dalla Vecchia, 2008), stellar evolution, mass-loss and chemical enrichment from Type

II and Ia supernovae, Asymptotic Giant Branch and massive stars (Wiersma et al.,

2009c), black hole formation and growth (Springel et al., 2005; Rosas-Guevara et al.,

2015), stellar feedback (Dalla Vecchia and Schaye, 2012) and feedback from active

galactic nuclei (AGN) (Booth and Schaye, 2009).

Like the larger (but lower resolution) Reference EAGLE run, the stellar feedback in

the Recal model was adjusted to approximately reproduce the local galaxy stellar mass

function and the size–stellar mass relation (see Schaye et al., 2015). In practice, the

Recal model produces stellar masses that are somewhat below those inferred from the

observed galaxy stellar mass function near the knee of the mass function (i.e., for Milky

Way-mass halos, the stellar masses are somewhat too low), otherwise the galaxy stellar

masses match the observations rather well. I therefore compare the results derived from

EAGLE with those derived from the ARTEMIS zooms simulations (described below),

for which the stellar masses agree better with observations for Milky Way-mass haloes.

The ARTEMIS simulations

This study also makes use of the ARTEMIS simulations. This is a suite of zoom-in

simulations, which are introduced in detail in Font et al. (2020) but I provide a brief

overview here.
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The simulations were performed using a WMAP9 cosmology (Hinshaw et al., 2013),

with the cosmological parameters for this run provided in Table 3.1.

Note that the WMAP9 maximum-likelihood cosmology does not include massive

neutrinos, whereas, as mentioned previously, the Planck 2015 cosmologies used for

the cosmological volumes do. However, this should not impact the comparisons made

here, as I focus mainly on the relative effects of the cosmological extensions, as well

as the relative effects of baryonic physics, compared to a CDM dark matter-only pre-

diction. Furthermore, it was illustrated by Mummery et al. (2017) that the effects of

massive neutrinos are separable from the effects of baryonic physics.

The underlying galaxy formation (subgrid-)physics which is included in these full hy-

drodynamic zoom-in simulations is identical to that used in the EAGLE project (as

described in Section 3.2.4). However, the parameters which characterise the efficiency

of stellar feedback were adjusted to match the observed stellar mass–halo mass rela-

tion, as inferred from abundance matching. The motivation for the adjustment was

two-fold: i) the EAGLE Recal model predicted too low stellar masses on the scale of

Milky Way-mass haloes (as mentioned above); and ii) the effectiveness of feedback

in suppressing star formation tends to increase with increasing resolution for a fixed

feedback model, thus the feedback efficiency in the higher-resolution ARTEMIS sim-

ulations was reduced with respect to the EAGLE Recal model (see Font et al. 2020

details).

The MW analogues were selected from a parent cosmological volume, 25 Mpc h−1

on a side, containing 2563 particles. These MW analogues were then run at higher

resolution, using the zoom-in technique (see e.g Bertschinger, 2001), with the ICs

being generated by MUSIC (Hahn and Abel, 2011). The ICs are generated at a starting

redshift of z = 127, with a transfer function computed using the Boltzmann code

CAMB. Furthermore the ICs are generated including 2LPT corrections.

The MW type objects were selected based solely on a mass criterion, with any halo in

the original dark matter-only cosmological volume which had a spherical-overdensity

mass (defined in Section 3.3.1) in the interval 11.903 ≤ log10(M200,crit/M�) ≤ 12.301
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Table 3.1: The cosmological parameter values for the suite of simulations used in this study
are presented here. The columns are as follows: (1) The labels for the different cosmological
extensions simulated in this study, as well as the hydrodynamic simulations which I use. (2)
Hubble’s constant. (3) Present-day dark matter density in units of the critical density of the
Universe. (4) Present day baryonic density in units of the critical density. (5) Spectral index.
(6) Amplitude of the initial matter power spectrum at a pivot scale of 0.05 Mpc−1 for the
cosmological variations (corresponding to the Planck pivot scale), and 0.002 Mpc−1 for the
ARTEMIS simulations (corresponding to aWMAP9 pivot scale). (7) linearly evolved present-
day amplitude of the matter power spectrum on scales of 8 Mpc h−1. Note that when producing
the ICs for the simulations, I use the value for As, meaning that the ICs are normalised by the
CMB. (8) Simulation DM particle mass.

(1) (2) (3) (4) (5) (6) (7) (8)
Cosmology H0 ΩDM Ωb ns As σ8 mDM

(km s−1 Mpc−1) (×10−9) (×106 M� h−1)
Ref (ΛCDM) 67.31 0.264 0.049 0.966 2.199 0.830 1.063

σ/m = 0.1 cm2 g−1 67.31 0.264 0.049 0.966 2.199 0.830 1.063
σ/m = 1.0 cm2 g−1 67.31 0.264 0.049 0.966 2.199 0.830 1.063
MWDM = 2.5 keV 67.31 0.264 0.049 0.966 2.199 0.830 1.063
MWDM = 5.0 keV 67.31 0.264 0.049 0.966 2.199 0.830 1.063
αs = -0.02473 67.53 0.264 0.050 0.962 2.349 0.851 1.060
αs = 0.00791 66.95 0.268 0.049 0.965 2.147 0.821 1.079
ARTEMIS 70.00 0.233 0.046 0.972 2.410 0.821 0.118
EAGLE 67.77 0.259 0.048 0.961 3.097 0.829 0.821

being deemed a MW analogue. In total, this suite of zoom-in simulations contains 42

MW-analogues simulated at high resolution, with each hydrodynamic zoom-in hav-

ing a complementary dark matter-only zoom-in simulation. The resultant resolution of

these simulations is a dark matter particle mass equal to mDM = 1.17 × 105 M� h−1,

and initial baryonic particle mass equal tomgas = 2.23×104 M�h−1. The gravitational

softening length for these zoom-in simulations is set to 125 pc h−1 in physical coordi-

nates for z ≤ 3, and is changed to a constant comoving scale at earlier times. Thus,

ARTEMIS is somewhat higher resolution than the simulations described previously.

3.3 Global properties

Here I present results for the effects that these different cosmologies have on the struc-

ture which forms across the different simulations. I start by examining the effects on

global properties of the simulated volume, including the halo and subhalo mass func-

tion, and the subhalo Vmax function.
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3.3.1 Spherical-overdensity halo mass function

The first statistic I examine is the spherical-overdensity (SO) halo mass function (HMF),

shown in Fig. 3.1. Here I define the SO halo mass function as the number density of

haloes which exist per logarithmic mass interval: φ ≡ dn/d log10(M), which in this

study is plotted as a function of SO mass: M = M200,crit. This is defined as the mass

contained within a radius R200,crit, which encompasses an overdensity 200 × the criti-

cal density of the universe.

Haloes in this study are identified using the SUBFIND algorithm (Springel et al., 2001;

Dolag et al., 2009). First a standard Friends-of-Friends (FoF) algorithm is run on the

dark matter distribution (Davis et al., 1985), linking all particles which have a sep-

aration less than some fraction of the mean inter-particle separation (with this frac-

tion being set to 0.2 in this study). With the FoF groups identified, SUBFIND then

goes through each group and identifies locally bound substructures (subhaloes). The

FoF group is centered on the position of the most-bound particle (lowest gravitational

potential) in the central subhalo; i.e., the most massive subhalo in the FoF group.

SUBFIND calculates a variety of subhalo parameters, including Msub (the summed

mass of all particles deemed to be gravitationally-bound to a subhalo) and Vmax (the

value at which a subhalo’s circular velocity profile, V (r) ≡
√
GM(< r)/r, reaches

its maximum). Vmax is a more stable quantity compared to the mass of a subhalo as it

is less sensitive to how the subhaloes are identified and defined and it is more robust to

tidal stripping (e.g. Diemand et al., 2007; Springel et al., 2008).

Focusing first on the cosmologies which have a running scalar spectral index as a

free parameter, it can be seen in Fig. 3.1 that there is a relatively large suppression

(≈ 10 − 20%) in the number density of haloes with M200,crit . 1011 M� h−1 for the

case with a negative running cosmology. This is best illustrated in the bottom panel

of this plot, which shows the HMF of each cosmology normalised with respect to the

reference simulation4. Conversely the opposite is seen for the cosmology which has a

4Note that the result shown for the EAGLE hydrodynamical simulation in the bottom panel is nor-
malised by the complementary dark matter-only counterpart to the full hydrodynamical result. This is
true for all ratio panels shown throughout this chapter.
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Figure 3.1: Top: number density of haloes per logarithmic mass interval, plotted as a function
of their spherical overdensity mass. Bottom: the results in the top panel normalised with respect
to the ΛCDM result. Note for the EAGLE simulations, the hydrodynamical simulation result
is normalised with respect to the result from the complementary dark matter-only simulation.
The lines become transparent for mass bins which have fewer than 10 haloes.
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positively-running scalar spectral index, which sees an ≈ 10% increase in the number

density of haloes at these masses. These results illustrate how relatively subtle changes

to the primordial matter power spectrum are able to have relatively large effects on the

growth of structure on small scales.

Similar to the effects of a negative running cosmology, switching to WDM also leads

to a significant suppression in the mass function at low masses. As expected, the effect

is largest in the simulation with the lighter WDM particle mass. This is a well-known

result, having been found for a range of WDM masses and models previously (e.g.,

Smith and Markovic 2011; Angulo et al. 2013; Bose et al. 2016).

These results illustrate the potential difficulty in constraining some of these cosmolog-

ical extensions through simply counting the number of low-mass haloes. For example,

the cosmology with a negatively-running spectral index can lead to a suppression very

similar to that seen in the WDM cosmologies, particular at masses around 109 M�.

Furthermore, if the cosmology happened to be a combination of either WDM + posi-

tive αs or WDM + negative αs, this could lead to a universe very similar to a ΛCDM

universe in the case of the former, and a universe with an apparently much warmer

WDM model in the case of the latter.

Examining the simulations where the dark matter is allowed to interact with itself,

there is no significant effect on the number density of SO haloes which form. This

agrees with previous results that have been found when comparing large-scale statistics

in SIDM and CDM cosmologies (e.g. Rocha et al., 2013). However, as I show below,

SIDM can strongly affect the abundance of satellite haloes embedded within their hosts

relative to that of the reference cosmology. In addition, SIDM can have a large effect

on the internal properties (e.g., density distribution), which I also discuss below.

I now compare the previous effects, present due entirely to changes in the cosmo-

logical model, to those present in fully hydrodynamic simulations in the context of

the standard model. Examining the result from the EAGLE simulation, it is inter-

esting that the suppression seen in the HMF is bracketed by the results for the two

WDM cosmologies, and the cosmology with a negative running. For example the
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EAGLE simulation predicts a suppression of around 20% for haloes with mass around

109 M� h−1, whereas the suppression seen in the different cosmologies range between

≈ (15− 50)%. Note that the suppression of the HMF for EAGLE was also shown pre-

viously by Schaller et al. (2015). Physically, the suppression of the halo mass function

in the hydrodynamical simulations is the result of ejection of baryons due primarily to

stellar feedback at these mass scales (see also, Sawala et al. 2013, who demonstrated

this effect for subhaloes).

Another interesting feature is how the suppression of the halo mass function as a func-

tion of mass in the EAGLE run is closely mimicked by the result seen for a (dark

matter-only) cosmology with a negative running, at least in shape. Furthermore, as was

shown in Chapter 2, baryonic effects and the effects from the inclusion of a running

spectral index appear to be separable to within a few percent, with each effect treatable

as a multiplicative correction to the HMF of a ΛCDM gravity-only simulation. As

such, in the presence of an (unaccounted for) positively-running scalar spectral index,

one would tend to underestimate the role of baryons in suppressing the HMF. This

problem is compounded by the current uncertainty in the suppression of the HMF due

to baryonic physics on these scales. This is because current observations measuring

the gaseous component of haloes on these scales (e.g. Giovanelli et al., 2005; Brown

et al., 2017; Haynes et al., 2018) – which are a proxy for how efficient stellar feed-

back is at removing baryons from these haloes – are themselves quite uncertain. This

propagates through to poor constraints on the stellar feedback implemented into hydro-

dynamical simulations. For example, as was shown in Davies et al. (2020), there can

be a large discrepancy in the gas fractions predicted at halo masses around 1011.5 M�

in simulations with different feedback implementations. This was shown to be true

when comparing the gas fractions seen in the EAGLE simulation and those seen in the

IllustrisTNG simulation (Nelson et al., 2018; Springel et al., 2018; Pillepich et al.,

2018a,b). However, despite their differences, both of these simulations provide cold

gas fractions which are consistent with present constraints (Crain et al., 2017; Stevens

et al., 2019).

The change in the SO halo mass function can be more readily understood by examining
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Figure 3.2: The fractional change in mass of a matched set of haloes across the different cos-
mologies, plotted as a function of the matched mass in the reference simulation, computed at
z = 0. This result provides an intuitive explanation for the effects seen on the HMF due to the
changes in cosmology, or through the inclusion of galaxy formation physics in the simulations.
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how individual haloes change their mass across the different cosmologies5. In order to

calculate the change in mass, I first need to match haloes in different simulations using

the unique IDs of the dark matter particles. I do this by bijectively matching the 50

most bound particles of haloes in the reference cosmology to each cosmological exten-

sion in turn. I only use haloes which successfully match both forwards and backwards

in all simulations.

Using the list of matched haloes, I examine how the masses of individual haloes change

across the different simulations. Fig. 3.2 shows the median of the fractional change

in mass of haloes in the different cosmologies, alongside the result for the EAGLE

simulation.

In terms of the effects of a running scalar spectral index, the positive-running cosmol-

ogy boosts the halo masses by ≈5% compared to its ΛCDM counterpart, whereas the

masses are decreased in a negative-running cosmology by > 10% (with the largest ef-

fects coming at low masses). It is worth noting that, although the magnitude of this

effect (and the effects seen throughout this chapter on the various statistics examined)

is larger in the negative running cosmology, this cosmology is also slightly more ex-

treme than the cosmology with a positive running scalar spectral index (i.e. the initial

density field has a larger difference with respect to ΛCDM in the case of the negative

running cosmology). The reason for this is because the Planck 2015 results slightly

favour a negative running cosmology. As such, the effect on the initial matter distribu-

tion in this cosmology is larger than in the positive running cosmology (see e.g. Fig.

2.2). This effect echos what was found in Chapter 2, extending the findings of that

chapter down to lower masses and illustrating further how the effects of a cosmology

with a running spectral index are more pronounced on smaller scales.

There is also a strong effect on low-mass haloes in the most extreme WDM cosmology,

with these haloes being less massive compared to their reference counterpart. This is

expected due to the cut-off in the power spectrum on small scales, which preferentially

affects low-mass haloes. The two different SIDM cosmologies have little effect on the

halo mass over the entire mass-range sampled here.

5This is possible since the simulations use the same initial phases.
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Examining the results from the EAGLE simulation, again the result seen in the HMF is

echoed here, with the mass of a matched set of haloes being reduced in the full hydro-

dynamic run, compared with its dark matter-only result. The effect is strongest at lower

masses, where stellar feedback in particular is able to efficiently blow gas out of the

haloes, thus reducing their overall mass. This, in turn, reduces the mass accretion rate

onto the haloes, effectively amplifying the change in the final halo mass (Sawala et al.,

2013; Schaye et al., 2015). Note that the convergence of the halo mass in the EAGLE

hydrodynamical simulation to the matched mass in the dark matter-only simulation, at

around M200,crit ≈ 1012 M� h−1, likely happens at too low of a mass. Observations

show that only haloes above M200,crit ∼ 1014 M� h−1 are ‘baryonically closed’ (e.g.,

McCarthy et al. 2017), whereas the EAGLE simulations demonstrate convergence to

the universal baryon fraction at a considerably lower halo mass (see fig. 15 of Schaye

et al. 2015). A more realistic behaviour for the effects of baryons at high halo masses

can be found in Velliscig et al. (2014) (see their fig. 2).

As already discussed, the similarity in the magnitude of the change to halo mass and,

in some cases its dependence on mass itself (e.g., negative running cosmologies and

baryonic effects have a similar mass dependence), strongly suggest that baryonic and

cosmological effects on halo mass will be degenerate. As I will show, however, the

relative effects depend strongly on the nature of the probe, suggesting that multi-probe

data sets are a potential way to break these degeneracies.

3.3.2 The subhalo mass and Vmax functions

I now examine the subhalo mass function (SMF) and subhalo maximum circular ve-

locity function (SVF). Similarly to the HMF, these quantities are defined as the number

of subhaloes of mass Msub (maximum circular velocity Vmax) that exist per cubic co-

moving Mpc, per logarithmic mass (velocity) interval: φ ≡ dn/d log10(X) (where

X = Msub or Vmax). As these quantities are well-defined for both central and satellite

subhaloes (unlike SO masses), I investigate them separately.
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Figure 3.3: Top: the z = 0 number density of subhaloes as a functions of subhalo mass, split
into the result for central subhaloes (solid) and satellite subhaloes (dashed). Note that this only
includes subhaloes which have more than 200 particles bound to them, which was found to be
a conservative resolution cut. Bottom: this shows the results in the top panel normalised to the
result in the reference simulation, thus highlighting the differences between the simulations.
The lines turn transparent for mass bins which have fewer than 10 subhaloes in.
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The SMF is shown in Fig. 3.3, which I split into the satellite and central mass functions.

A central subhalo is defined as the most massive subhalo contained within a single

FoF group, with all other subhaloes in that same FoF group being defined as satellites.

The bottom panel in this plot shows the result (be it the satellite or the central mass

function) for each cosmology normalised with respect to the corresponding result in

the reference ΛCDM simulation. Note that when examining subhaloes in this study, I

focus on subhaloes with a mass > 5 × 108 M�, and Vmax > 15 km s−1. These values

were calculated by comparing theMsub-Vmax relation, along with the SMF, between two

different resolution simulations. This allows a conservative upper-limit to be placed on

the values of Vmax and Msub for which these parameters are numerically converged (see

Appendix B.1).

Focusing on the bottom panel of Fig. 3.3, the results largely mirror those for the SO

HMF in Fig. 3.1. Furthermore, in general there are no large differences in the mass

change for centrals and satellites for a given variation with respect to the reference

ΛCDM model, with the exception of the SIDM simulations. Here, in particular for the

simulation with the higher cross-section, satellites appear to be more strongly affected

than central subhaloes relative to the reference ΛCDM case. I return to this point

below.

Next I examine the subhalo Vmax function, which is shown in Fig. 3.4. The effect that

varying the underlying cosmology has on this is very similar to that seen in the SMF.

For example, the WDM models and the negative running cosmology all lead to a large

suppression in the number density of subhaloes at fixed Vmax, with the positive running

cosmology being the only model which produces an enhancement. Similarly, in the

most extreme SIDM cosmology, the number density of satellites is also suppressed,

whereas there is little effect on the centrals. The result for the EAGLE simulation is

also very similar to that seen in the SMF, in that at fixed Vmax there is a suppression in

the number density of subhaloes in the hydrodynamic simulation. This is true for both

centrals and satellites.

Returning now to the difference between the impact of SIDM on satellites relative to

central subhaloes, I believe this comes about due to the combination of two effects
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Figure 3.4: Top: the z = 0 number density of subhaloes, now as a function of Vmax, once again
split up into central subhaloes (solid line) and satellite subhaloes (dashed line) for the different
cosmologies examined in this study. Bottom: the above results normalised with respect to the
result in the reference cosmology, plotted to make the differences between the effects of each
cosmology more apparent. Note the lines are made transparent for mass bins with fewer than
10 subhaloes present.
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working in tandem. Firstly, there is the ‘evaporation’ of the subhaloes, which happens

due to elastic collisions between the particles from a subhalo, and the particles of the

host halo. These scattering events lead to neither particle being bound to the subhalo

(Vogelsberger et al., 2012), causing the subhalo to lose mass as it infalls into the host

halo. This evaporation mechanism was the original motivation for using SIDM to solve

the missing satellites problem (Spergel and Steinhardt, 2000). However, another effect

which causes the subhaloes to lose mass is tidal stripping. Due to the core which forms

in subhaloes, they are also more susceptible to tidal stripping (Peñarrubia et al., 2010)

(with Dooley et al. 2016 finding this to be the more dominant effect out of the two). As

such, both of these effects work to decrease the mass of a subhalo as it travels through

its host halo, which is what drives the differences between the central and satellite mass

(Vmax) functions in the more extreme SIDM cosmology. I explore this effect further in

Fig. 3.8, which shows a strong suppression in the number density of satellite subhaloes

in the central regions of their hosts in a SIDM cosmology, relative to the CDM case.

I have also examined the above statistics at early times, corresponding to z = 0.5, 1.0.

However the results seen at these earlier redshifts are quantitatively very similar to the

z = 0 result, except that the results become more noisy at the high-mass end due to the

finite box size. For this reason, and for brevity, I only show the z = 0 results.

3.3.3 Theoretical vs. observable quantities

It is important to note that some of the aforementioned quantities are not strictly ob-

servable with current measurements. For example, generally speaking, individual total

halo masses can only be estimated with reasonable accuracy on the scale of galaxy

groups and clusters6, where a variety of methods exist for measuring masses (e.g., X-

ray, gravitational lensing, and galaxy velocity dispersion measurements). Thus, mea-

surements of the halo mass function are currently very challenging on the scales I am

interested in here. On the other hand, observable quantities such as stellar mass are

thought to be very good proxies for total halo mass, with a typical scatter in the stellar

6Measurements of total masses are possible for lower-mass systems (e.g., with galaxy-galaxy lens-
ing), but generally require the stacking of large numbers of systems to make precise measurements.
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mass at fixed halo mass of 0.2 dex (e.g., Behroozi et al. 2013). In terms of the quantity

Vmax, while rotation curves are directly accessible observationally, current observa-

tions of low-mass galaxies struggle to reach the flat part of the rotation curve, so that

estimates of Vmax can sometimes require significant extrapolation.

Ultimately, in order to make definitive statements about the degeneracies between

baryon physics and changes in cosmology for low-mass galaxies, one should make

synthetic (or ‘mock’) observations from the simulations and analyse them in a way

that is faithful to what is done for genuine observations. In order to do this, however,

a simulation suite which includes baryon physics for all cosmological variations is

required. I leave this for future work.

3.4 Internal halo properties

I turn now to the internal structure of host haloes across the different simulations. I

stack haloes in 6 equally spaced logarithmic mass bins between 10.0 ≤ log10(M200,crit

[M�]) ≤ 13.5, with the results shown corresponding to the median result in each mass

bin. In particular, I examine the spherically-averaged dark matter density profiles of

haloes (which I also use to examine the concentration–mass relation later), along with

the circular velocity profiles of the haloes. I also examine how subhaloes are radially

distributed in their host haloes.

3.4.1 Dark matter density and circular velocity profiles

The spherically-averaged dark matter density and circular velocity profiles for all of

the simulations I consider are shown in Figs. 3.5 and 3.6, respectively. To place the

‘dark matter-only’ simulations on an equal footing to the hydrodynamical simulations,

I rescale dark matter particle masses in the dark matter-only simulations by the ratio

ΩCDM/Ωm (where Ωm is the total matter density in units of the critical density). As

mentioned, the results shown in this section correspond to the median result of all
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Figure 3.5: Spherically-averaged dark matter density profiles for the different cosmologi-
cal models at z = 0. The different panels here correspond to different mass bins, with
the mass window being shown in the top-right hand corner of each panel (equal to m1 ≤
log10(M200,crit [M�]) < m2). The different curves correspond to the median result in that
mass bin. The smaller panels below the density profiles show the median density profiles in
each mass bin normalised with respect to the median density profile in the reference cosmology
in that mass bin. The result is also plotted for haloes in the EAGLE simulation. Alongside this,
I also compare these results to the density profiles calculated for the MW analogues from the
ARTEMIS simulations. The results for this is shown in the bottom-left panel. I also plot in this
panel the stellar (shown by stars) and gaseous (shown by circles) density profiles for the two
hydrodynamic simulations. The shaded regions show the 16th-84th percentile result for the
most extreme SIDM cosmology. This scatter is representative of the other 6 cosmologies, and
shows the significance of the core produced in the SIDM cosmologies’ density profiles. The
vertical dashed line represents the median convergence radius for that mass bin, calculated in
the ΛCDM cosmology. The vertical dot-dashed lined shown in the ratio panel corresponds to
the convergence radius calculated using the ratios as a convergence diagnostic rather than the
actual density profiles themselves, as described in Section 3.4.2. Note that this radius corre-
sponds to a conservative upper-limit on the convergence of the ratios, as it is calculated based
on the minimum radius down to which a lower resolution simulation is converged with the
simulations for which these results were extracted. I only plot this result for the first three mass
bins, as it is for these mass bins that the absolute profiles are not converged over the entire ra-
dial range examined in this study. For instances where this convergence radius is exactly equal
for different cosmologies I slightly displace them to larger radii for clarity.
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Figure 3.6: The median dark matter circular velocity profile of haloes in 6 separate mass bins
for the different cosmologies examined in this study at z = 0, scaled by the virial circular
velocity. The result is plotted in the same mass bins examined in the previous plot, indicated
in the top right-hand corner of each panel. The bottom panel(s) below each main plot show
the above result normalised with respect to the median result in that mass bin in the reference
cosmology. Once again, the shaded regions correspond to the 16th-84th percentile plotted
for the more extreme SIDM cosmology, with this scatter being representative of the other
cosmologies. The vertical dashed line corresponds to the median convergence radius of haloes
in that mass bin in the ΛCDM cosmology. The vertical dot-dashed line shown in the ratio
panels corresponds to the convergence radius obtained from the Section 3.4.2 analysis. Once
again, I only show this result for the top three panels, and slightly displace any radii which are
exactly equal across different cosmologies for clarity.
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haloes in that mass bin, with the mass bin indicated in the top right-hand corner of

each panel. The results are shown in dimensionless units, with the density profiles

being scaled by the critical density of the universe at z = 0 and the circular velocities

scaled by the circular velocity at R200,crit, V200,crit =
√
GM200,crit/R200,crit. The profiles

themselves are computed in 32 logarithmically-spaced radial bins between: −2.5 ≤
log10(r/R200,crit) ≤ 0.

The plots are split into 6 panels according to halo mass bin. The smaller panels be-

low the main panels correspond to the median density/circular velocity profile in that

mass bin normalised with respect to the median density/circular profile in the refer-

ence ΛCDM cosmology in the same mass bin. The vertical dashed line in each panel

corresponds to the median convergence radius calculated for the ΛCDM simulation. I

compute the convergence radius following that advocated by Ludlow et al. (2019) (see

their equation 15). This is a follow-up study to that done in Power et al. (2003), where

the convergence radius is calculated explicitly for stacks of haloes. Ludlow et al. find

that the median result of a stack of haloes (circular velocity profiles in their study) is

converged to smaller radii than what was advocated by Power et al. (2003). In this

study, however, I am less focused on the absolute value of the density and circular ve-

locity profiles and more on the relative effects (shown by the ratio panels in each plot)

on the profiles due to changes in cosmology and inclusion of baryons. Therefore, as

an aside, I also investigate below (see Section 3.4.2) whether the ratio of the density

profiles of haloes in non-standard cosmologies with respect to ΛCDM are potentially

converged to smaller radii than that advocated by Ludlow et al. (2019). This is par-

ticularly relevant for the first three mass bins, which are not converged over the entire

radial range which I examine here. I indeed find the ratios are generally converged to

small radii and as such I also plot on Figs. 3.5, 3.6 the convergence radii that I advocate

for these first three mass bins.

The strongest cosmological effect on the profiles come from the SIDM model, partic-

ularly the run with the largest cross-section. The scattering acts as an efficient mecha-

nism for dynamically heating and redistributing the mass in the inner regions, produc-

ing a near constant-density core. The size of the core relative to the virial radius is an
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increasing function of halo mass, this is expected given the fact that the scattering rate

depends on both the local density and velocity. This means that the scattering rate at

a fixed fraction of R200,crit, scales with V200,crit; as such, more massive haloes (higher

V200,crit) have higher scattering rates, at a certain fraction of R200,crit, resulting in larger

cores forming. This effect has been seen in previous studies (e.g. Colin et al., 2002;

Rocha et al., 2013; Vogelsberger et al., 2019; Robertson et al., 2019). Interestingly, in

the σ/m = 1.0 cm2 g−1 cosmology, the redistribution of matter from the inner regions

to the outer regions tends to lead to a small enhancement in the dark matter density on

scales of ≈ 0.05–0.1 R200,crit relative to the baseline collisionless ΛCDM model.

The next largest cosmological effect is seen in the cosmology with a negative running

of the spectral index. Here there is also a suppression in density in the inner-regions,

particularly for the lower-mass haloes, with there being an ≈ 20% decrease in the

central density of these objects (M200,crit < 1011 M�). This effect decreases with in-

creasing mass, with the profile in the highest-mass bin being broadly consistent with

the result in the reference cosmology.

This trend, however, continues further, as was shown in Chapter 2; a cosmology with

a negative running actually predicts an enhancement in the density profile of haloes

with mass & 1014 M�. Conversely to the SIDM models where there is a very sharp

drop in the density profile and a small increase in density over a narrow radial range

just outside of the core, the decrease in the density profile towards the center in the

negative running cosmology is far more gradual.

There is also a slight decrease in the profiles in the inner regions in the two WDM

models, particularly at the low mass end, with this effect disappearing quickly with

increasing mass; with haloes of mass M200,crit ≥ 1011.17 M� having density profiles

almost indistinguishable from the ΛCDM result. This agrees with the results of Bose

et al. (2016), along with the lower-concentration of low-mass haloes found in Ludlow

et al. (2016) (see also Fig. 3.9).

The cosmology with a positive running of the spectral index is the only cosmology

which appears to predict an enhancement in the central density (and circular velocity)
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profiles of haloes. However, this enhancement is generally quite mild and decreases

with increasing halo mass.

I now investigate the impact of baryons on the dark matter density and circular velocity

profiles, using the EAGLE and ARTEMIS simulations. For the three lowest-mass bins,

the impact of baryons on the dark matter density profiles in the EAGLE simulations is

relatively mild. As the stellar mass fractions are very low in this regime (Schaye et al.,

2015; Schaller et al., 2015), there is no significant adiabatic contraction of the dark

matter. On the other hand, EAGLEmay underestimate the effects of repetitive feedback

episodes in introducing a core in the dark matter, due to its lack of an explicit cold phase

of the ISM and a relatively low density threshold for star formation (e.g., Benı́tez-

Llambay et al. 2019). However, when examining mass bins with M200,crit ≥ 1011.75

M�, where it is not thought that feedback can produce such cores (e.g., Dutton et al.

2011), the inner density and circular velocity profiles appear far more pronounced in

the hydrodynamic result compared to the dark matter-only result. This illustrates the

contraction of the dark matter in the central regions due to the presence of stars in the

inner regions of the central galaxies of these haloes. A similar result was shown by

Schaller et al. (2015) (see their fig. 6), who also showed the density profile of stars

in their host haloes, illustrating how these dominate the total matter density in these

regions, particularly for these higher mass haloes.

Focusing on haloes in the mass range 1011.75 ≤ M200,crit/M� < 1012.33 (shown in the

bottom-left panel of the same figure), I also plot the median result for the dark mat-

ter density and circular velocity profiles computed for the 42 MW analogues from the

ARTEMIS simulations. Recall that the mass-range sampled by these zoom-in simu-

lations is from: 1011.9 ≤ M200,crit/M� < 1012.3, roughly corresponding to the same

range examined for the cosmological extensions 7. Similarly to the results seen in the

EAGLE simulation, at large r, the dark matter density and circular velocity profiles in

the hydrodynamic simulations are quite similar to the result seen for the dark matter-

only simulation. However, the density and circular velocity profiles in the inner regions

7When taking the ratio for the ARTEMIS, I divide the median result for the haloes in the full hydro-
dynamic run by the median result from the complementary dark matter-only zoom simulations
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of the haloes (r . 0.1R200,crit) are far steeper in the ARTEMIS simulations than their

dark matter-only counterpart. This effect is also larger than that seen in the EAGLE

simulations and extends to larger radii. I argue that this is the case because ARTEMIS

has higher stellar masses than EAGLE for this halo mass range (with the former being

in better agreement with observations).

To demonstrate this, I also plot in this panel the density profiles of the stellar and

gaseous components of the halo. Here one can see that ARTEMIS has a systematically

larger stellar density at all radii compared to the EAGLE result (along with an increased

circular velocity). It is these differences which produce the differing profiles between

the two hydrodynamical simulations. Note that the apparent offset between the density

and circular velocity profiles in the hydrodynamic simulations relative to the gravity-

only simulations is due to the former having a larger median mass in each of the mass

bins.

These results demonstrate the importance of having simulations which also include a

prescription for galaxy formation physics, as baryonic physics has one of the largest

effects on the underlying dark matter distribution in Figs. 3.5 and 3.6. This is particu-

larly apparent when examining the panels which also show the stellar density (circular

velocity) profiles. These show how the stellar component dominates the profiles in

the inner regions and, via adiabatic contraction, produces the changes seen in the dark

matter profiles. It is in these regions also where the different cosmological models are

seen to have the largest effects. Therefore, as discussed in the Introduction, the ideal

scenario is to simulate not only the standard cosmological model, but also plausible

non-standard cosmologies using full cosmological hydrodynamical simulations. To

date, only a small number of studies have attempted this. For example, recent simula-

tions presented in Despali et al. (2019) explored SIDM hydrodynamical simulations,

concluding that the gravitational potential of the stars at the centre of intermediate mass

haloes (Mvir ≈ 1012 M�) significantly alters the DM distribution, removing the SIDM-

induced core, while cores still formed in more massive haloes (Mvir ≈ 1013 M�), with

this being related to the formation time of the halo. Using zoomed hydrodynamical

simulations of clusters, Robertson et al. (2018) found a very complex interplay be-
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tween baryons and SIDM, with some haloes showing dark matter cores, and others

which do not. How the results of combined baryons + non-standard cosmology runs

depend on the method for implementing and calibrating the feedback, the modelling

of the cold ISM (or lack thereof), and the resolution of the simulations, has not yet

been explored in much detail, but it would not be surprising if the conclusions about

the interplay of baryons and cosmological effects were sensitive to these factors and

should be explored.

The above analysis of the density and circular velocity profiles was done in bins of halo

mass, using the self-consistently computed halo masses from each of the simulations.

Since the halo mass itself changes as a result of cosmological and baryonic effects

(as I showed in Section 3.3), this implies that, in general, for a given mass bin I am

not analysing precisely the same haloes in each simulation. However, I have also

examined a versions of Figs. 3.5 and 3.6 where I use matched haloes and binned the

profiles according to the mass from the matched reference ΛCDM model. In general,

the effects are very similar but are slightly more pronounced in the matched halo plot.

For brevity, I do not include these figures here.

3.4.2 Convergence radius of relative cosmological effects

There have been multiple studies which examined the convergence of internal halo

properties in numerical simulations (e.g. Power et al., 2003; Diemand et al., 2004;

Navarro et al., 2010; Ludlow et al., 2019), which have shown that 2-body relaxation ef-

fects impose a lower-limit on the radius to which one can trust mass profiles of haloes.

This was most recently investigated by Ludlow et al. (2019), who provided a criterion

on the number of particles needed below a radius r for the median mass profiles of a

stack of haloes to be converged.

These studies have been extremely useful when interpreting gravity-only N-body sim-

ulations. It is noteworthy, however, that they have all been done in the context of a

ΛCDM universe and have focused on the convergence of the absolute values for the

statistics examined. In this study, I am instead mostly interested in the relative effects
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Figure 3.7: Comparison of the convergence of median spherically-averaged dark mat-
ter density profiles to the convergence of their ratios with respect to a ΛCDM cosmol-
ogy. Columns are separated into different mass bins: Left are haloes in the mass range
10 ≤ log10 (M200,crit [M�]) < 10.58, right are haloes in the mass range 11.75 ≤
log10 (M200,crit [M�]) < 12.33. The different rows show the results for different cosmological
extensions: top – running spectral index, middle – SIDM, bottom – WDM. Panels below the
absolute density profiles show the ratios with respect to the result in the ΛCDM cosmology.
Crosses show the radius at which the ratios diverge by greater than 10% relative to the higher
resolution simulation. Hollow squares represent the radius at which the absolute density pro-
files diverge by greater than 10%. The veritcal solid and dashed lines show the median Ludlow
et al. (2019) convergence radius for the ΛCDM cosmology in that mass bin, for the different
tiers of resolution.
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on certain statistics. In particular the ratio of, for example, the median spherically-

averaged density profiles of haloes in non-standard cosmologies with respect to the re-

sult in the ΛCDM case. For this reason, as an aside, I briefly explore the convergence

of relative cosmological effects. Readers who are less interested in the convergence

properties may wish to skip ahead to Section 3.4.3.

To examine the convergence properties, I have run an additional set of simulations

but at lower resolution, with 5123 particles, mDM,ΛCDM = 1.013 × 107 M� h−1, and

ε = 500 pc h−1. I compute the density profiles in 32 logarithmically-spaced radial

bins, ranging from: −4.5 ≤ log10 (r/R200,crit) ≤ 0 (note that this minimum radius is

smaller than the minimum radius used in the previous section, this was chosen to test

the ratios to as small a radius as possible).

The results are shown in Fig. 3.7, which is set up as follows: the columns represent

two different halo mass bins (indicated in the bottom right corner of the top panel), the

left column corresponds to the smallest mass bin of main FoF haloes examined in this

study. The right column corresponds roughly to a MW analogue mass window. I look

at these mass bins because, in the case of the former, these haloes will be most subject

to numerical effects, and, in the case of the latter, because much of the emphasis of

testing models of dark matter have been at MW scales (for obvious reasons). The

rows in this plot correspond to the three different cosmological extensions (running,

SIDM, WDM), indicated in the top-right of each right-column panel. I show both the

median spherically-averaged dark matter density profiles for each cosmology, as well

as, below this, the ratios of the median result taken with respect to the ΛCDM result.

I also plot the median convergence radius calculated using equation 14 from Ludlow

et al. (2019) for the two different ΛCDM simulations, with their line-styles indicating

their resolution.

Similarly to what was done in previous convergence test studies, I define the con-

vergence radius as the minimum radius for which (Rhigh −Rlow) /Rlow ≤ 0.1 is true,

where Rhigh (Rlow) is the ratio in the high-resolution (low-resolution) simulation of the

density profile of a cosmological extension with respect to the ΛCDM result. This

radius is shown by the coloured crosses. I also show the radius to which the absolute
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values of the density profiles in the lower-resolution simulations agree to within 10%

of the higher-resolution result (indicated by the open squares).

Focusing first on the left column, it can be seen that in the case of the cosmologies

with either a running spectral index or WDM species, that the ratios are converged

with the result in the higher-resolution simulation to the smallest possible radius cal-

culable in the lower-resolution simulation. If one focuses on the region between the

two vertical lines, where I still trust the absolute value of the density profiles in the

higher-resolution simulation, it can be seen that the ratio of the lower-resolution sim-

ulations agree extremely well with that in the higher-resolution result. This result is

also echoed in the right column, but the ratios are more subject to shot noise due to the

fewer number of haloes in this bin used to take a median.

However, this trend breaks in the case of the SIDM cosmologies, which may not be sur-

prising due to the fact that cores develop in the inner regions due to physical processes

and not just numerical two-body relaxation effects. In the case of the left column and

for the cosmology with the larger cross-section for interaction, it can be seen that the

lower-resolution simulation fails to capture both the core-formation due to SIDM (and

the resulting density excess at slightly larger radii), which is resolved in the higher-

resolution simulation. On the other hand, in the right-column the result is reversed

relative to the other cosmologies. Here the absolute density profiles agree all the way

to the inner-most radial bin in the case of the lower-resolution simulation, whereas the

ratio is converged to the calculated convergence radius. I speculate that the reason

for this is that the energy exchange due to the particle collisions is far larger than the

small changes in energy due to two-body relaxation. As such, the core formed due

to these particles collisions dominates that induced due to discrete sampling effects.

The reason the ratio is not converged as well is because the core is now converged to

the higher-resolution result, whereas there is an artificial core induced in the ΛCDM

result. Consequently, the suppression in the ratio underestimates the core for the lower-

resolution simulation.

These results are interesting and motivate us to examine the ratios below the conver-

gence radius of Ludlow et al. (2019) calculated for these simulations. For the case of
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SIDM cosmologies, this strategy may result in a slight underestimation of the actual

(relative) effects present, as explained above.

Furthermore, these results show that when studying the effects of cosmological exten-

sions on quantities such as the density profiles and circular velocity profiles, it may

be possible to run a single high-resolution ΛCDM simulation and use the ratios from

interesting cosmological extensions run at considerably lower resolution as a multi-

plicative adjustment to the high-resolution simulation. This approach can potentially

save a great deal of computational expense.

3.4.3 Radial distribution of subhaloes

So far I have focused on the effects that cosmological variations or baryons have on

the matter distribution in host haloes. I turn now to the effects on the subhaloes that

exist within these host haloes. In particular, I show in Fig. 3.8 the median radial number

density of subhaloes as a function of host halo mass. Note that I only include subhaloes

which satisfy the Vmax (> 15 km s−1) and Msub (> 5 × 108 M� h−1) convergence

criteria. I normalise the resultant value in each mass bin, for each cosmology, by

the average number density of subhaloes inside R200,crit calculated for the reference

cosmology. The bottom panels show the results when normalised to the reference

ΛCDM cosmology in that mass bin.

It can be seen that the largest effect in all mass bins comes from the cosmology with the

lightest WDM mass. This makes sense, as this model has the largest suppression of the

SMF (particularly at the low-mass end, which will dominate the signal seen here due

to the steepness of the SMF). Adopting a 2.5 (5 keV) WDM particle mass, I see a 40%

(20%) suppression in the number density of subhaloes, which is roughly independent

of distance from the centre of the host halo (this is in agreement with, for example, the

suppression seen in the number of satellites in Lovell et al. 2017b).

A similar effect is seen in the cosmology which has a negative running, in that, for

all mass bins there is a suppression at all radii compared with the result in the stan-
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Figure 3.8: The stacked median spherically-averaged radial number density of all satellite
subhaloes identified by the SUBFIND algorithm with a mass > 5 × 108 M� h−1, and Vmax
> 15 km s−1 inside host haloes in different mass ranges (indicated in the top right-hand corner
of each panel). The result in each panel is normalised with respect to the average number
density of subhaloes inside R200,crit for that mass bin, in the reference cosmology. The bottom
panel(s) below each plot show the result normalised with respect to the median result in the
reference cosmology.
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dard cosmology. The magnitude of the suppression in the number density (≈ 20%

in this case) is similar to that seen for the 5 keV WDM model. Conversely, for the

positive-running cosmology, there does not appear to be much of an effect relative to

the reference cosmology, with there being only a very mild hint of an enhancement in

the number of subhaloes at all radii in the larger mass bins.

Examining the result for the SIDM cosmologies, in the σ/m = 0.1 cm2 g−1 cross-

section there appears to be no discernible effect in any of the mass bins. When exam-

ining the more extreme SIDM model, there is also little to no effect in the low mass

bins. However, at the high-mass end it can be seen that there is a clear suppression

in the number density of subhaloes in the inner regions of these haloes, which in-

creases with increasing host halo mass and with decreasing distance to the centre of

the host halo. As discussed in Section 3.3, this effect is the result of heat transfer (the

dark matter equivalent of thermal evaporation) due to scattering between ‘hot’ host

dark matter particles and ‘cooler’ subhalo/satellite particles. This effect happens in

conjunction with enhanced tidal stripping, due to the cored density profiles of these

subhaloes (Peñarrubia et al., 2010). This effect was previously observed in Vogels-

berger et al. (2012) for a MW-type halo (see also Nadler et al. 2020b; Banerjee et al.

2020).

These results are interesting as they show that, in the case of the WDM cosmolo-

gies, there is an almost systematic suppression in the number density of subhaloes

as a function of radius in all mass bins. This means that, in principle, a technique

where one simply counts the total number of subhaloes (satellite galaxies) could be

used to rule out the most extreme WDM models, which as discussed in Section 3.2,

is a technique already being used to place constraints on WDM masses (e.g. Lovell

et al., 2014). However, this is slightly more complicated in the case of the less extreme

WDM model, as this plot shows that the effects present in a cosmology with a negative

running of the spectral index are highly degenerate to those in this WDM cosmology8.

As such, it would be potentially difficult to disentangle these two effects through this

8Note that even the more extreme WDM model could effectively masquerade as a less extreme one
if one also invokes a positive running scalar spectral index.
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type of observation alone. However, going back to the density and circular velocity

profiles of the haloes which host these satellites, there are more apparent differences in

the underlying matter distribution which could then be used to differentiate these two

cosmologies. Similarly, in the case of the most extreme SIDM cosmology, counting

subhaloes could also potentially be used to constrain these models, in that for high-

mass haloes, there appears to be a clear radial dependence in the suppression of the

number density of subhaloes. This is a result which is unique among the cosmolog-

ical extensions examined here. It is worth noting, however, that these are the signals

predicted in the absence of baryonic physics. Including baryonic effects may modify

many of these signatures (e.g. Richings et al. 2020), making potential constraints with

these observations more difficult.

I can get a sense of the potential impact of baryons by examining the hydrodynamical

simulations. For EAGLE, there is a suppression in the number density of subhaloes

at virtually all radii and across all mass bins. I speculate that this suppression is due

not only to change in subhalo mass and maximum circular velocity, but is also a result

of the central region of the host halo being considerably more dense (due to stars and

associated contraction of the dark matter), which will result in enhanced tidal stripping

of the satellites in the hydrodynamical simulations (see e.g. Samuel et al., 2020). The

baryonic effects are therefore similar to those seen for almost all the cosmological

extensions explored here (with the exception of the positive-running cosmology). This

is also true for the ARTEMIS simulations (lower-left panel of the plot), which shows

an almost systematic suppression in the number density of subhaloes. It does appear

however that there is a slight radial dependence to this suppression (which is also hinted

at in the EAGLE result).

3.4.4 Concentration–mass relation

The concentration–mass relation is of particular interest as it has been shown through

cosmological simulations that the inner density profiles of haloes are representative of

the conditions of the Universe at the formation time of the halo, at least in a ΛCDM
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Figure 3.9: Top: the concentration-mass relation computed for stacks of host haloes in the mass
range 9.81 ≤ M200,crit/M� ≤ 13.0 for each cosmology at z = 0. The haloes are stacked into
9 equally spaced logarithmic mass bins. The concentration parameter is calculated for each
stack by computing the logarithmic slope of the stacked density profile, and finding the radius
for which this value is equal to -2. Bottom: the c–M relation normalised with respect to the
result in the reference simulation. The red crosses corresponds to the empirical relation found
in Dutton and Macciò (2014); with the dashed red line corresponding to this relation, with the
parameters tuned to best-fit the reference simulation in this suite.
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model. This result (illustrated by Navarro et al. 1996 for example, but confirmed by

many additional studies), implies that low-mass haloes, which form first, have a higher

central concentration than higher-mass haloes, which tend to assemble most of their

mass late on. This is just due to the fact that low-mass haloes formed at a redshift

when the mean density of the universe was higher.

It has also been shown that the concentration of low-mass haloes is affected in a WDM

cosmology (e.g. Eke et al., 2001; Bode et al., 2001; Avila-Reese et al., 2001; Schnei-

der, 2015; Ludlow et al., 2016), with lower-mass haloes having lower-concentrations

compared with the corresponding halo mass CDM haloes, with this difference decreas-

ing with increasing halo mass. Alongside this, it has been shown that a running scalar

spectral index can also alter the c–M relation of high-mass haloes (Fedeli et al., 2010;

Stafford et al., 2020). It has been shown by Despali et al. (2019) that allowing for

self-interactions between the dark matter, also tends to slightly alter the c–M relation.

As such, it is interesting to compare and contrast all of these different models in a

consistent manner to see the relative effects they have on this important statistic.

It is commonplace when computing the concentration of a halo to fit a Navarro, Frenk

& White (NFW) profile (Navarro et al., 1996) to the halo (or equivalently an Einasto

profile Einasto 1965). The NFW profile has two free parameters: a scale radius and

a scale density, or equivalently to this, a halo mass and a concentration. The concen-

tration is defined as c∆ ≡ R∆/rs (rs → r−2 in the case of the Einasto profile), where

∆ corresponds to a choice of spherical overdensity (which in this study is set equal to

200, with respect to the critical density) and rs is the scale radius, defined as the radius

where the logarithmic slope of the density profile is −2.

In this study I take a different approach, as I want to consistently compare the concen-

tration parameter obtained as a function of mass for the different cosmologies exam-

ined here. This is not possible using either the Einasto or NFW forms for the SIDM

models, as the SIDM models produce prominent cores in the dark matter density pro-

files (see for example Fig. 3.5). One could instead use a Burkert profile (Burkert,

1995), which is able to fit the cored-region in these dark matter haloes. However, this

comes at the expense of poorly fitting the outer regions of SIDM haloes (see e.g. Rocha
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et al. 2013) and would also provide a poor fit to the haloes in the other cosmologies.

Therefore, I instead take a non-parametric approach and numerically evaluate the log-

arithmic slope of the computed density profiles using a 2nd-order Savitzky and Golay

(1964) filter, smoothing over the 7 nearest bins. I then identify the radius for which the

logarithmic slope equals −2. Thus, my non-parametrically estimated concentration

parameter is defined in a way which is consistent with the standard definition of con-

centration using either the NFW or Einasto parametric forms, but it means the same

technique can be applied to all the simulations. To check my method, I have com-

pared the concentration parameter obtained for stacked density profiles in 6 different

mass bins using this method to that obtained by fitting an NFW and Einasto profile to

the stacks of haloes in the reference ΛCDM model. My method provides consistent

concentrations with those estimated using the NFW or Einasto forms.

I stack haloes with masses between 9.81 ≤ M200,crit/M� ≤ 13.0 in 9 equally spaced

logarithmic mass bins, with the lower mass limit being chosen in order to only include

haloes with a minimum of 5000 particles insideR200,crit. The spherically-averaged dark

matter-only density profiles are computed in 32 logarithmically spaced radial bins,

spanning a radial range: −2.5 ≤ log10(r/R200,crit) ≤ 0, as in Ludlow et al. (2016).

The resultant c–M relation can be seen in Fig. 3.9, where the bottom panels in this plot

is the c–M relation for each cosmology normalised to the result in the reference ΛCDM

simulation. This figure shows that qualitatively lower-mass haloes are more centrally

concentrated, with the concentration steadily declining with increasing halo mass, irre-

spective of the details of cosmology or baryons. However, there are clear quantitative

differences between the individual models. For example, as expected, the two different

WDM models predict the low-mass haloes to be less centrally-concentrated compared

to the standard model result, with this effect being more extreme for the lighter 2.5 keV

model. This cosmology predicts a ≈ 20% suppression in the concentration levels of

1010 M� haloes. This is a similar level of suppression to that found in previous studies

such as Schneider (2015) and Ludlow et al. (2016), who adopted similar WDM masses

([3.0, 3.3] keV respectively).

The magnitude of the effect on the c–M relation in a cosmology with a running spectral
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index scales with the magnitude of the running parameter. For example, the cosmology

with a negative running produces a suppression of around 10% in the central concen-

trations of haloes of fixed mass, with this effect extending over almost the entire mass

range covered in this study. Whereas a positive running cosmology does not appear

to have much of an effect in this mass range, confined to the few percent level. These

results extend the trends seen previously in Chapter 2 to lower halo masses with, for

example, lower mass haloes being less centrally concentrated in a cosmology with a

negative running spectral index relative to the standard model.

The largest effect seen is in the most extreme SIDM model, which produces a large

increase in the concentration at fixed mass. There also appears to be a change in slope

for the c–M relation in the more extreme SIDM cosmology, with the offset between the

standard model result and the SIDM result increasing with increasing mass. Naively,

this appears to be inconsistent with the cores seen in the density profiles shown earlier

(Fig. 3.5). The increase in the concentration, or more specifically the decrease in the

radius where the logarithmic slope equals −2, is a consequence of the enhancement in

the density just outside the core. The enhancement causes the transition radius from a

constant density core in the inner regions of a SIDM halo to an NFW-like logarithmic

slope of -3 in the outer regions to move inwards.

When examining the result in the EAGLE Recal simulation, there appears to be a

change in slope for the c–M relation, compared to the result in the dark matter-only

simulation. In particular the c–M relation in the full hydrodynamic simulation is some-

what flatter, in agreement with that found in Schaller et al. (2015). This is because the

decrease in M200,crit, seen in Fig. 3.2, also results in a decrease in a haloes’ R200,crit.

This causes a decrease in concentration, preferentially at low halo masses.

Previous studies have shown that simple power-laws or functions are able to describe

well the average c–M relation of haloes over a narrow range in halo masses (e.g. Avila-

Reese et al., 1999; Neto et al., 2007; Duffy et al., 2008; Dutton and Macciò, 2014; Child

et al., 2018). I highlight one such result here, that by Dutton and Macciò (2014), who

found that the c–M relation of haloes in a Planck Collaboration XVI (2014) cosmology
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is well described by a power-law of the form:

log10(c) = a+ b log10

(
M

Mpivot [M� h−1]

)
, (3.8)

where a, b are fitting constants, found to be 0.905, -0.101 respectively in Dutton and

Macciò (2014), Mpivot is a reference mass-scale, set to be 1012 M� h−1. I show this

result as red crosses in Fig. 3.9. I also show an updated fit to the reference cosmology,

which provides best-fitting parameters a = 0.936, b = -0.132. The reasons for the slight

change in these parameters are two-fold. Firstly, the cosmologies are slightly different,

for example the values for Ωm and σ8 which the c–M relation is particularly sensitive

to (Duffy et al., 2008; Dutton and Macciò, 2014). Also, the method of taking the

logarithmic slope of the median density profile in a mass bin predicts slightly higher

values for the concentration than what one typically gets when fitting an NFW profile

to that same stack. This is particularly true at low-masses, which is where the two

best-fitting relations differ most.

3.5 Discussion and Conclusions

In this study I have systematically explored different proposed mechanisms for alter-

ing the distribution of matter on small scales. This includes alterations to the standard

model of cosmology or including baryonic effects within the standard model (but not

yet both simultaneously). These mechanisms are motivated in part by apparent ten-

sions between the standard model and observational data in the local Universe (see the

Introduction).

In terms of the alterations to the standard model, I consider three scenarios: warm dark

matter (WDM), self-interacting dark matter (SIDM), and a running of the scalar spec-

tral index of the power spectrum of primordial density fluctuations. These cosmologi-

cal alterations come with additional free parameters (e.g., WDM particle mass, SIDM

cross-section, value of the running) and I use current observational constraints to guide

my choice of the parameter values. To characterise the potential role of baryons within
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the standard model, I use the high-resolution EAGLE ‘Recal’ run and the ARTEMIS

suite of zoom-in simulations of Milky Way-mass haloes. Using all of the simulations,

I compare and contrast the effects of altering the standard model in different ways and

I frame this within the context of the potential role of baryons, highlighting potential

degeneracies between the different effects for different observables.

The main findings of my study may be summarised as follows:

• Baryon physics, WDM, and a running spectral index alter the spherical-overdensity

(SO) halo mass function (Fig. 3.1) in similar ways and are expected to be degen-

erate if they are constrained solely using this metric. A cosmology where the DM

is allowed to self-interact (SIDM) is the only cosmological extension examined

here which has no significant effect on the SO halo mass function. There are,

however, noticeable effects present when examining the subhalo population in

SIDM cosmologies (Fig. 3.3). Specifically, while the central subhalo mass func-

tion resembles the SO mass function strongly, the satellite subhalo mass function

can be strongly suppressed, particularly for satellites that are located close to the

centres of their host halo (Fig. 3.8). This effect is plausibly due both to a form

of evaporation in which energetic DM particles from the host halo scatter off

satellite DM particles (and thus unbinding them) and enhanced tidal stripping as

a result of the cored density profiles of SIDM subhaloes.

• When examining the radial dark matter distribution within host haloes, WDM

and a (negative) running spectral index can behave similarly (Figs. 3.5, 3.6).

This degeneracy is only prevalent for haloes with mass . 1011.75 M�, how-

ever, with there being no significant suppression in the density profiles in the

WDM cosmologies for haloes with mass greater than this, but still an ≈ 10%

suppression in the inner regions for the negative running cosmology. The SIDM

cosmologies produce large cores, strongly distinguishing them from any of the

other cosmological extensions. These results are echoed in the concentration–

mass relation of haloes (Fig. 3.9). Consistent with previous works, there is a

large enhancement in the dark matter density profile for the hydrodynamical sim-
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ulations, shown both for the EAGLE Recal simulation, as well as the ARTEMIS

zoom-in simulations. Interestingly, among the cosmological extensions I also

find that a positive running scalar spectral index is able to produce an enhance-

ment in the dark matter density profiles relative to the ΛCDM case, but at a much

reduced level (around 10%) for haloes of mass ≤ 1012.33 M�.

• I have shown that for cosmological extensions such as a running scalar spec-

tral index and WDM, the relative effects on the density profiles with respect to

the standard model are reliably followed down to significantly smaller radii than

standard ‘convergence’ radii (for absolute quantities) would suggest (Fig. 3.7).

This potentially allows one to save a great deal of computational expense, by

running only a single ΛCDM simulation at very high resolution and then using

the ratios of cosmological extensions to ΛCDM from lower-resolution simula-

tions to produce high-resolution non-standard cosmologies.

• There is a strong degeneracy for the suppression in the radial distribution of

subhaloes in their host haloes for WDM, running, and hydrodynamical effects

(Fig. 3.8). For example, the results for the 5.0 keV WDM model are nearly iden-

tical to those with the negative running cosmology. In the high halo-mass bins

(M & 1011.75 M�) there is also a suppression in the number density of sub-

haloes in the SIDM cosmology with the larger cross-section for interaction, due

to evaporation of the satellites and enhanced tidal stripping of cored subhaloes.

The different cosmological extensions explored here are able to produce large, and

potentially measureable effects on the structure which forms in the Universe. All of

the cosmological extensions examined are within current observational constraints, and

are able to potentially help alleviate some of the small-scale crises which (may) exist

with the standard model of cosmology. An interesting problem arises, however, in that

some of the models have highly degenerate effects.

As such, when making constraints on these different cosmological extensions, it is po-

tentially necessary to combine probes which examine different aspects of haloes and

their satellite subhaloes in order to break degeneracies between the different exten-



3.5. Discussion and Conclusions 120

sions. This is because, in detail, the different extensions do have different mass and

radial dependencies which can be exploited to simultaneously constrain them.

However, it is important to note that this study has focused on dark matter-only sim-

ulations when extending ΛCDM. I examined the EAGLE ‘Recal’ and ARTEMIS sim-

ulations to compare the results from these gravity-only simulations to those from full

hydrodynamical simulations (in the context of the standard model). I find that baryonic

physics can also be highly degenerate with varying the cosmological model. Further-

more, there are inherent differences in the results predicted by the inclusion of bary-

onic physics, due to the uncertainty associated with the subgrid implementation of this

physics. This is highlighted by the differences present between the ARTEMIS results

and the EAGLE results. Even though these simulations have the same subgrid physics

implementations, they were calibrated slightly differently, leading to somewhat differ-

ent results. While it is clear that baryonic effects are important, how robust the pre-

dictions are remains an open question. Since feedback efficiencies cannot be predicted

from first principles and must therefore be calibrated against some set of observable

properties of galaxies (Schaye et al., 2015), there is a danger that we may come to

erroneous conclusions about the role of baryons if those calibration observables also

depend on cosmology.

Thus, given the degeneracies that exist between cosmological extensions and also that

of baryon effects and the uncertainties inherent to galaxy formation modelling, it seems

the best approach is to simultaneously explore variations to cosmology and baryon

physics, using a multi-observational probe approach to constrain both. I am adopting

such a strategy in forthcoming work.



Chapter 4

Testing extensions to ΛCDM on small

scales with forthcoming cosmic shear

surveys

The following chapter appeared in Stafford et al. (2021). The appendices for this paper

are included in Appendix C.

In this chapter, I investigate the constraining power of forthcoming Stage-IV weak

lensing surveys (EUCLID, LSST, and NGRST) for extensions to the ΛCDM model

on small scales, via their impact on the cosmic shear power spectrum. The extensions

explored in this chapter are the same as those introduced in Chapter 3 and I make use of

the same high-resolution cosmological simulations to calculate how warm dark matter

(WDM), self-interacting dark matter (SIDM) and a running of the spectral index affect

the non-linear matter power spectrum, P (k), as a function of scale and redshift. One

difference in the suite of simulations used in this chapter, compared to the previous

chapter, is that I have added an additional, more extreme, run for both the warm dark

matter simulations (smaller thermal relic mass) and the self-interacting dark matter

(larger cross-section for interaction) to the suite.

I evaluate the cosmological constraining power of cosmic shear using synthetic weak

121
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lensing observations derived from these power spectra and that take into account the

anticipated source densities, shape noise and cosmic variance errors of upcoming sur-

veys. I show that upcoming Stage-IV surveys will be able to place useful, independent

constraints on both WDM models (ruling out models with a particle mass of . 0.5

keV) and SIDM models (ruling out models with a velocity-independent cross-section

of & 10 cm2 g−1) through their effects on the small-scale cosmic shear power spec-

trum. Similarly, they will be able to strongly constrain cosmologies with a running

spectral index.

Finally, in this chapter, I explore the error associated with the cosmic shear cross-

spectrum between tomographic bins, finding that it can be significantly affected by

Poisson noise (the standard assumption is that the Poisson noise cancels between to-

mographic bins). I provide a new analytic form for the error on the cross-spectrum

which can accurately capture this effect. I exploit this new analytic form in my anal-

ysis by using it to predict the Gaussian errors associated with the cosmic shear power

spectrum up to an `max = 20,000 which otherwise would have been prohibitively ex-

pensive.

4.1 Introduction

In the current concordance cosmological framework, termed the ΛCDM (Λ-cold dark

matter) model, structure in the Universe forms hierarchically. The initial density per-

turbations laid down by inflation eventually grow large enough that they become grav-

itationally unstable and collapse to form low-mass ‘haloes’. These low-mass haloes

merge to build up progressively larger systems, eventually culminating in the large-

scale structure (LSS) that we observe today (see, e.g., Davis et al. 1985). This theoret-

ical picture has been immensely powerful in describing observations of our Universe,

accurately reproducing the observed properties of the cosmic microwave background

(see e.g. the recent results from Planck Collaboration et al. 2020) as well as low-

redshift probes such as baryon acoustic oscillations (Eisenstein et al. 2005; Cole et al.

2005) and redshift-space distortions (see e.g. Alam et al. 2017). Given its success, this
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theoretical framework has come to be known as the ‘standard model of cosmology’.

It is noteworthy that, while the ΛCDM model accurately describes many observables

on large scales, there have been a number of recent mild tensions reported in the best-fit

parameter values for certain cosmological parameters, including the Hubble constant

(see Verde et al. 2019 for a review) and the LSS parameter S8 ≡ σ8

√
Ωm/0.3 (see,

e.g., discussion in McCarthy et al. 2018) as derived from independent measurements.

Whether these tensions are signaling the presence of unaccounted for systematic errors

in some of the cosmological analyses, that there is new physics (i.e., beyond the stan-

dard model), or that they are merely the result of statistical fluctuations, is presently

unclear and the subject of much investigation.

Although the ΛCDM model does remarkably well at describing observations of our

Universe on large scales (tens to hundreds of Mpc, modulo the recent mild tensions

described above), the last decade or so has seen a ramping up of detailed compar-

isons on smaller scales (typically kpc to Mpc), some of which have reported signifi-

cant tensions with the predictions of ΛCDM-based cosmological simulations. Three of

the most widely discussed tensions are the ‘cusp-core’ problem (Flores and Primack,

1994; Moore, 1994), the ‘missing satellites’ problem (Klypin et al., 1999; Moore et al.,

1999) and the ‘too-big-to-fail’ problem (Boylan-Kolchin et al., 2011). The common

thread between these tensions is that the ΛCDM model appears to predict too much

structure (and too high densities) on small scales compared with what is inferred from

observations. These tensions are often evaluated with respect to gravity-only calcula-

tions in the context of ΛCDM, but recent work has suggested that neglecting important

baryonic physics may have significant implications for these tensions. For example,

including processes such as reionisation, star formation, stellar feedback through su-

pernovae and winds, and feedback associated with active galactic nuclei in the models

have been shown to help alleviate some of these problems with ΛCDM on small scales

(see e.g. Efstathiou 1992; Navarro et al. 1996; Bullock et al. 2000; Benson et al. 2002;

Mashchenko et al. 2008; Pontzen and Governato 2012; Wetzel et al. 2016; Sawala et al.

2016).

Nevertheless, it is worthwhile to consider other possibilities, which may act in con-



4.1. Introduction 124

junction with baryon physics, for these small scale problems, not least because the

modelling of baryon physics on small scales is quite complex and requires a degree of

fine tuning to resolve some of the aforementioned tensions. Also, it is important that

we continue to test the standard model as rigorously as possible on small scales, in

order to shed light on the nature of dark matter.

The apparent deficit of small-scale structure has led to the study and development

of many extensions to the ΛCDM model which aim to reconcile these differences.

Promising extensions to the current ΛCDM paradigm, such as warm dark matter (WDM)

and self-interacting dark matter (SIDM), can reduce the formation of structure on

small scales. These different cosmological models focus on changing one of the as-

sumed aspects of dark matter. In the case of the former, dark matter decouples in

the early universe whilst still relativistic leading to non-negligible thermal velocities

and free-streaming, while in the latter case dark matter is allowed to have strong self-

interactions (scattering). Both of these extensions have been shown to have success

in alleviating the outlined challenges which exist with ΛCDM (see e.g. Colı́n et al.

2000; Lovell et al. 2012 for the case of WDM and Spergel and Steinhardt 2000; Zavala

et al. 2013 for the case of SIDM). One further extension which has not been studied

quite so extensively is a running scalar spectral index. A running spectral index is dif-

ferent from the previous two extensions as it does not alter the nature of dark matter

but instead changes the initial conditions for structure formation, which is motivated

by certain classes of inflation models. Previously this has also been demonstrated to

be a promising candidate for reducing the formation of small-scale structure (see e.g.

Garrison-Kimmel et al. 2014; Stafford et al. 2020b).

In Chapter 3, I compared how effective these three different extensions were in altering

various small-scale structure statistics. To do this I used gravity-only cosmological

simulations with the values adopted for the additional parameters associated with each

extension being guided by current observational constraints. I found that all of the

models can have similar effects on certain statistics, such as the abundance of satellite

galaxies inside hosts (which is one of the primary tests of ΛCDM on small scales). As

such, it is of interest to explore new observables which could help differentiate these
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models and the effects they have on structure formation.

In this study, I exploit the fact that these different models alter the non-linear matter

power spectrum along with its redshift evolution in different ways (as I will show).

Consequently, observational probes which are directly sensitive to the non-linear mat-

ter power spectrum may provide a strong test of these extensions and of ΛCDM. One

potentially promising observable is the cosmic shear power spectrum. As the light

emitted from distant galaxies travels towards us on Earth, its path becomes distorted

due to intervening matter, a phenomenon known as gravitational lensing. One can

use the correlated effect this has on galaxy shapes to extract information about the

non-linear matter power spectrum. This can be done either through the two-point auto-

correlation function of galaxy shapes or its Fourier analogue, the cosmic shear power

spectrum. It is this latter statistic that I examine in this chapter and how it is affected

by SIDM, WDM and a running spectral index in comparison with the ΛCDM result.

The impetus for this study stems from the increasing quantity and quality of cosmic

shear observations being made by current Stage-III surveys, such as the Dark En-

ergy Survey (DES)1 (DES Collaboration et al., 2021), the Hyper Suprime-Cam Subaru

Strategic Survey (HSC)2 (Hamana et al., 2020), and the Kilo-Degree Survey (KiDS)3

(Asgari et al., 2021), and forthcoming Stage-IV cosmic shear surveys, such as EU-

CLID4 (Euclid Collaboration et al., 2020a), the Rubin Observatory Legacy Survey of

Space and Time (LSST)5 (Zhan and Tyson, 2018), and the Nancy Grace Roman Space

Telescope (NGRST)6 (Spergel et al., 2015). Stage-IV surveys will greatly improve on

current observations, by covering a much larger area of the sky and/or being signif-

icantly deeper, ultimately resulting in greatly improved measurements of the cosmic

shear power spectrum.

To date most of the forecasting work for Stage-IV surveys has been with regards to

anticipated constraints on the standard model of cosmology and extensions that affect

1https://www.darkenergysurvey.org/
2https://hsc.mtk.nao.ac.jp/ssp/survey/
3http://kids.strw.leidenuniv.nl/overview.php
4https://www.euclid-ec.org/?page id=2581
5https://www.lsst.org/scientists/
6https://www.jpl.nasa.gov/missions/the-nancy-grace-roman-space-telescope

https://www.darkenergysurvey.org/
https://hsc.mtk.nao.ac.jp/ssp/survey/
http://kids.strw.leidenuniv.nl/overview.php
https://www.euclid-ec.org/?page_id=2581
https://www.lsst.org/scientists/
https://www.jpl.nasa.gov/missions/the-nancy-grace-roman-space-telescope
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large-scale structure (such as evolving dark energy and massive neutrinos). Only a

small number of studies have been dedicated to the possible constraints that may be

obtained for small-scale extensions. For example, Markovic et al. (2011) explored how

future cosmic shear surveys can be used to place constraints on the mass of thermal

relic particles. More recently, Hubert et al. (2021) explored constraints on decaying

dark matter models. The present chapter seeks to examine the impact of the three

cosmological extensions described above (WDM, SIDM, and a running scalar spectral

index) on the cosmic shear power spectrum using the non-linear matter power spectrum

extracted from numerical simulations. I then explore the prospect of these upcoming

Stage-IV surveys in differentiating these extensions from ΛCDM.

The chapter is structured as follows. In Section 4.2 I describe in more detail the ex-

tensions studied in this chapter. I also discuss the numerical simulations which I use

as well as how I create a non-linear matter power spectrum which covers the full dy-

namic range of interest for this weak lensing study. In Section 4.3 I discuss how I

compute the cosmic shear power spectrum and the associated uncertainties. In Section

4.4 I present my results for the cosmic shear auto- and cross-correlation power spectra

for each cosmological model and finally in Section 4.5 I discuss and summarise my

results.

4.2 Cosmological Extensions

In this study, I analyse three separate cosmological extensions, a running scalar spectral

index, warm dark matter and self-interacting dark matter. I briefly describe these in the

following subsections, with more details provided in Chapter 3. Note, however, in

Chapter 3 I only examined two WDM models and two SIDM models, whereas in this

study I extend my analysis slightly and look at an additional, more extreme, case for

both of these extensions.
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4.2.1 Extensions

Running of the scalar spectral index

In the standard model of cosmology, the power spectrum for scalar perturbations gen-

erated by inflation is assumed to follow a simple power-law of the form (Guth, 1981;

Kosowsky and Turner, 1995):

P (k) = Akns , (4.1)

where A is the amplitude of the primordial matter power spectrum, k is the wavenum-

ber and ns is the spectral index. A first order extension is that the spectral index has

some level of scale dependence, which results in a modification to the functional form

of the primordial matter power spectrum (Kosowsky and Turner, 1995):

P (k) = As(kpivot)

(
k

kpivot

)ns(kpivot)+
αs
2

ln

(
k

kpivot

)
. (4.2)

Here, αs is termed the ‘running’ of the scalar spectral index and is defined as dns(k)/d ln(k)7.

Here, ns(k) is still equal to the logarithmic slope of the power spectrum, however, it

now has a k-dependence due to the (αs/2) ln(k/kpivot) term in equation 4.2. The value

adopted for kpivot here corresponds to that for the Planck satellite mission, kpivot = 0.05

Mpc−1, and corresponds to the k−scale at which values for As and ns are quoted. In

this work I explore the effects that a positive value for the running (with αs = 0.00791)

and a negative value for the running (with αs = −0.02473) have on the non-linear mat-

ter power spectrum and how these propagate through to an observable impact on the

cosmic shear power spectrum. Note the cosmological parameter values chosen for the

running simulations are in the context of a Planck 2015 cosmology; the maximum-

likelihood values are computed from the Markov chains which includes αs as a free

cosmological parameter in the analysis. This results in slight differences to the quoted

values of the other cosmological parameters in Section 4.2.2 (a table of all of the pa-

7Although in the ΛCDM model αs is assumed to be zero, virtually all models of inflation predict
some level of scale dependence for ns. However, the simplest single field slow-roll inflation models
predict that this scale-dependence should only be of the order 10−3 (Kosowsky and Turner, 1995).
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rameter values for each cosmology can be found in Chapter 3). The values chosen

for αs are discussed in detail in Chapter 2, but in summary represent the ±2σ values

of the posterior distribution extracted from the Planck 2015 Markov chains8 (Planck

Collaboration et al., 2014).

These two cosmological models with a running scalar spectral index were chosen in

Chapter 2, prior to the release of the Planck 2018 cosmological parameter constraints

(Planck Collaboration et al., 2020). The updated CMB constraints on αs are tightened

somewhat to αs = −0.0045 ± 0.0067 (68% CL TT,TE,EE+lowE+lensing) making

the posterior distribution for αs used in Chapter 2 slightly out of date. However, it

is worth noting that, even with the updated CMB constraints from the Planck team,

a mildly negative value for the running of the spectral index is not ruled out (see the

discussion in section 7.2.1 in Planck Collaboration et al. 2020). Furthermore, updated

constraints from the Lyman-α forest find a ≈3σ detection for a negative αs with αs =

−0.010± 0.003 (Palanque-Delabrouille et al., 2020)9. Therefore, the values I simulate

are still compatible with current observations, even if they lie on the more extreme end

of current constraints. Furthermore, as discussed later on in the chapter in the context

of warm dark matter models, this work seeks to answer the question whether cosmic

shear can be used as a complementary probe to place independent constraints on these

additional cosmological parameters (αs, MWDM, σ/m).

Warm dark matter

Another assumption of the standard model of cosmology is that dark matter decoupled

from the primordial plasma after it became non-relativistic. This results in negligible

thermal velocities at early times (hence “cold” dark matter) and would be expected if

dark matter was composed of particles with masses in the GeV range (or larger), such

as the currently favoured candidate, the WIMP (Weakly Interacting Massive Particle).

If, however, dark matter is made up of lighter particles with masses in the keV range,

8http://pla.esac.esa.int/pla/#home
9Note, however, that Palanque-Delabrouille et al. (2020) marginalise over neutrino mass at the same

time as αs, whereas the Planck analysis fixed ΣMν to 0.06 eV when constraining αs.

http://pla.esac.esa.int/pla/#home
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such as thermal relic sterile neutrinos, the dark matter particles decouple whilst still

relativistic. This type of model is referred to as a thermal relic warm dark matter

(WDM) model. The resulting larger thermal velocities that these dark matter particles

have (compared to CDM) at early times allows them to free-stream out of density

perturbations. The free-streaming of dark matter particles works to suppress the growth

of structure on small scales (Bond and Szalay, 1983; Bardeen et al., 1986).

The suppression of small-scale density perturbations due to the thermal velocity asso-

ciated with the dark matter particles leads to a characteristic cut-off in the WDM power

spectrum below a k−mode corresponding to the free-streaming scale. In this work I

model the suppression of the initial linear matter power spectrum as a transfer function

relative to the corresponding cold dark matter power spectrum:

PWDM(k) = T 2
WDM(k)PCDM(k). (4.3)

I compute TWDM using the fitting formula developed in Bode et al. (2001):

TWDM(k) =
[
1 + (αk)2ν

]−5/ν
, (4.4)

where ν is a fitting constant and α dictates the scale of the cut-off in the power spec-

trum, with this being dependent on the mass of the thermal relic particle. I follow

Viel et al. (2005), adopting ν = 1.12 and (assuming the WDM is composed of thermal

relics) and computing α as:

α = 0.049

(
MWDM

1keV

)−1.11(
ΩWDM

0.25

)0.11(
h

0.7

)1.22

Mpc h−1, (4.5)

where MWDM corresponds to the mass of the WDM particle, ΩWDM is the present-

day density of WDM 10 in units of the critical density and h is the reduced Hubble’s

constant.

It is evident from equation 4.5 that for lighter WDM particles α increases, pushing the

scale of the cut-off in the matter power spectrum to smaller k−modes (larger physi-
10I assume all of the dark matter is in the form of WDM and so ΩWDM = ΩCDM.
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cal scales). In this study I examine MWDM = (0.5, 2.5, 5.0) keV. My choice for the

parameter values investigated in this study aims to bracket the current observational

constraints placed on the mass of a WDM particle from different probes such as the

Lyman-α forest (Viel et al., 2013; Iršič et al., 2017), the Milky-Way’s satellite popula-

tion (Lovell et al., 2014; Kennedy et al., 2014; Jethwa et al., 2018; Nadler et al., 2019;

Nadler et al., 2020c) and time-delay measurements of strongly gravitationally lensed

quasars (Hsueh et al., 2019; Gilman et al., 2019). Although the 0.5 keV model is per-

haps currently in tension with constraints from the previous observations, I examine

it here to see if cosmic shear, as an independent test with very different systematics

compared to previous methods, can also rule out such a model.

Self-interacting dark matter

In terms of the possible interactions that dark matter particles can experience, the stan-

dard model of cosmology adopts the simplest assumption that dark matter interacts

only via gravity and is therefore ‘collisionless’. The final extension that I investigate

is a relaxation of this assumption, allowing the dark matter particles to have strong

self-interactions. SIDM was proposed to alleviate the ‘cusp-core problem’ (Flores and

Primack, 1994; Moore, 1994) by Spergel and Steinhardt (2000) and has indeed been

shown in the literature to produce strong cores inside dark matter haloes and can have

particularly large effects on satellite subhaloes, strongly reducing their masses (see e.g.

Peñarrubia et al. 2010; Vogelsberger et al. 2012; Dooley et al. 2016). I explore how

these effects translate through to the non-linear matter power spectrum.

To study the effect of strong self-interactions I use a version of the GADGET3 N-body

code (discussed in Section 4.2.2) which was modified in Robertson et al. (2019) to

include dark matter self-interactions, which are assumed to be elastic. The additional

parameter this adds to the standard 6 free parameters of the ΛCDM model is (σ/m),

which is the cross-section for interaction of dark matter particles. In this study the

values which I explore are (σ/m) = (0.1, 1.0, 10.0) cm2 g−1. Again, my choices for

the values adopted for this cosmological parameter are guided by the current observa-
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tional constraints. In the case of the self-interaction cross-section, these constraints are

placed by probes such as perturbations in strong lensing arcs (Meneghetti et al., 2001;

Robertson et al., 2019), dark matter-galaxy off-sets in colliding galaxy clusters (Ran-

dall et al., 2008; Kahlhoefer et al., 2015; Harvey et al., 2015; Kim et al., 2017; Robert-

son et al., 2017c; Wittman et al., 2018), cluster shapes (Miralda-Escude, 2002b; Peter

et al., 2013) group shapes (Sagunski et al., 2021) and also from subhalo evaporation

arguments (Gnedin and Ostriker, 2001). Furthermore, Banerjee et al. (2020) showed

that constraints of the order σ/m . 2 cm2 g−1 can be placed on the cross-section for

self interaction when combining observations of the distribution of subhaloes and weak

lensing measured density profiles.

The largest cross-section I examine is somewhat in tension with some of the observa-

tions listed here, but it is worth noting that these are primarily focused on large scales

(galaxy clusters). There is evidence to suggest that SIDM models with cross-sections

as high as 50 cm2 g−1 are viable when using constraints coming from dwarf galaxies

(Elbert et al., 2015; Correa, 2021). As my focus is on small scales, the range of cross-

sections I explore is therefore plausible given current constraints. Note, although the

simulation code developed by Robertson et al. (2019) has the functionality for scatter-

ing events to be both angular and velocity dependent, for simplicity I focus on the case

where scattering events are velocity-independent and isotropic.

4.2.2 Simulations

The simulations used in this study are those first introduced in Chapter 3. All of the

simulations follow dissipationless physics only, meaning they follow either just the

gravitational evolution (for CDM, WDM, and the running spectral index models) or

the gravitational and self-scattering (SIDM) evolution. The impact of physical pro-

cesses associated with the baryonic component (i.e., radiative cooling, star formation,

feedback processes) is not included but is discussed further in Section 4.5.

The simulations are run with the GADGET3 code (last described in Springel 2005).

Each simulation is 25 comoving h−1Mpc on a side and contains 10243 dark matter
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particles. I adopt a fixed physical gravitational softening length of 250 h−1 pc at z ≤
3, with this being a fixed comoving length at higher redshifts. The particle mass for

all of the simulations, with the exception of the two with a running spectral index, is

mDM = 1.266 × 106 M� h−1. For the two ‘running’ simulations, the particle mass

is slightly different, owing to the slightly different values adopted for Ωm and h (see

Table 3.1 in Chapter 3). Alongside these main simulations, I also use a secondary suite

of simulations of varying box size and resolution. These include a suite of simulations

which are 400 comoving h−1Mpc on a side, as well as a suite which are 100 comoving

h−1Mpc on a side. Both suites contain 10243 collisionless particles. Note, however,

that I only run the cosmologies with a running scalar spectral index (as well as the

reference ΛCDM cosmology) in these larger volumes, as they are required for the

process of creating a spliced power spectrum (see Section 4.2.3).

The initial conditions (ICs) for the simulations are generated using a modified ver-

sion of the N-GenIC11 code (Springel et al., 2005) which was modified to include

second-order Lagrangian Perturbation Theory corrections. The ICs are generated at a

starting redshift of z = 127 with each simulation being initialised with the same ran-

dom phases. The input linear theory matter power spectrum and transfer functions

are computed with the Boltzmann code CAMB (Lewis et al. 2000, August 2018 ver-

sion). The initial conditions and the background expansion rate in the simulations

are computed assuming the Planck 2015 maximum-likelihood cosmological parame-

ters (Planck Collaboration et al., 2014) (H0 = 67.31 km s−1 Mpc−1; ΩDM = 0.264;

Ωb = 0.049; ns = 0.966; σ8 = 0.830; ΣMν = 0.06 eV), with the exception of the two

running simulations (as explained above).

Note that I use a version of the GADGET3 code (see McCarthy et al. 2018) that in-

cludes the impact of massive neutrinos on the expansion rate and the growth of fluc-

tuations (i.e., accounts for their free streaming), using the semi-linear algorithm of

Ali-Haı̈moud and Bird (2013). As the simulations employed here adopt the mini-

mum allowed neutrino mass (ΣMν = 0.06 eV), consistent with what is assumed in

the Planck analysis, their incorporation will not have important consequences for the

11https://github.com/sbird/S-GenIC

https://github.com/sbird/S-GenIC
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present study, but I include them for consistency.

4.2.3 Matter power spectra

In this study I probe the theoretical cosmic shear power spectrum over a large range of

multipoles/angular scales. This requires that I have a model for the non-linear matter

power spectrum which spans a large range of wavenumbers/physical scales. However,

the high-resolution 25 h−1Mpc simulations that I use to probe the non-linear effects

only have a k-range spanning from ≈ 0.25 hMpc−1 to 257.36 hMpc−1. While the

simulations extend to large enough k (i.e., small scales) for upcoming lensing sur-

veys, they are clearly too small to capture all of the relevant structure on large scales.

Even though my interest is primarily focused on small scales, I nevertheless want to

construct realistic synthetic cosmic shear observations. (Furthermore, as I will show,

the running of scalar spectral index models have important contributions from large

scales.) I thus require a way of modelling the non-linear matter power spectrum over a

wide range of scales.

Method for constructing matter power spectra

In order to model the non-linear matter power spectrum over a wide range of wavenum-

bers, I combine the direct simulation measurements with predictions from Halofit

(Smith et al., 2003; Takahashi et al., 2012) on larger scales. Briefly, the Halofit

algorithm provides an empirical correction for scaling the linear power spectrum (e.g.,

from a Boltzmann code) for a given cosmology to the non-linear power spectrum. The

empirical corrections were derived from fits to a large suite of CDM-based cosmolog-

ical (N-body) simulations. I use the Boltzmann code CAMB to compute the Halofit

prediction at a given redshift. This provides us with the fiducial non-linear ΛCDM

power spectrum. To construct a full power spectrum for each of the extensions to

ΛCDM, I use the ratios of the non-linear matter power spectra extracted directly from

the simulations (with respect to the ΛCDM case) as a multiplicative ‘boost factor’ for
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the non-linear Halofit ΛCDM prediction via:

PC(k, z) = P Halofit
ΛCDM (k, z)RC(k, z), (4.6)

where PC(k, z) is the non-linear matter power spectrum in a given cosmological ex-

tension, and RC(k, z) is the constructed ratio (boost factor) for a given cosmology.

This approach allows us to combine multiple simulations of varying box size or reso-

lution (by combining their ratios), following in a similar vein to the power spectrum

splicing in previous Lyman-alpha forest work (e.g., Palanque-Delabrouille et al. 2015).

The combined ratios can then be used to seamlessly scale the power spectra derived

on very large scales (e.g., via linear theory, perturbation theory, Halofit, etc.) via

equation 4.6 to produce an absolute power spectrum for a cosmological model.

Note that previous studies have shown that cosmological simulations which do not sim-

ulate the smaller k−modes (larger physical scales) do not accurately represent the in-

termediate k−modes sampled in the cosmological volume (see e.g. Power and Knebe

2006; Heitmann et al. 2010; Klypin and Prada 2018; Euclid Collaboration et al. 2019),

making it difficult to combine the absolute matter power spectra from simulations of

different box sizes. This motivates the use of combining ratios of power spectra rather

than splicing the absolute power spectra themselves. I have explicitly tested how sensi-

tive the ratio of the different power spectra are to resolution as well as box size effects

(see Fig. C.1 in Appendix C.1), concluding that they are more robust to such effects

than are the absolute power spectra.

To explain how I construct the non-linear matter power spectrum in a bit more detail,

firstly, I compute the matter power spectra for the different simulations using GENPK12

(Bird, 2017). I then re-bin the matter power spectra to have 10 k-modes per bin (cor-

responding roughly to rebinning the power spectra in logarithmic bins of width 0.0143

dex), in order to smooth out some of the associated noise. I compute the mean power

in each bin, as well as the mean wavenumber. The ratios of the power spectrum for

each cosmological extension with respect to the ΛCDM result are then computed. In

12https://github.com/sbird/GenPK

https://github.com/sbird/GenPK
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the case of the SIDM and WDM models, all six of these simulations have ratios which

tend to 1 within the simulated volume (i.e., the physical effects of these modifications

are confined to small scales), as such I simply extrapolate these ratios to smaller k-

values (larger physical scales) assuming they are fixed at unity over the entire range. In

the case of the two simulations which have a running scalar spectral index, the ratios of

these power spectra do not tend to unity within the high-resolution 25 h−1Mpc boxes,

as such I need to simulate the ratio over a wider k-range. To do this I use two fur-

ther sets of simulations of size 100 h−1Mpc and 400 h−1Mpc, each with 10243 dark

matter particles, to compute the ratio of these models with respect to a corresponding

ΛCDM result. As a result, I can accurately probe the non-linear matter power spec-

trum in these simulations up to approximately linear scales where I can then make use

of the theoretical prediction from Halofit. The reason I do not use the Halofit

prediction over the entire k-range for the simulations with running is because it does

not tend to reproduce the effects I see in the running simulations on non-linear scales

(as shown by the dotted line in Fig. C.1), discussed in Chapter 2 (see also Smith and

Angulo 2019).

With a combined ratio spanning the entire desired k-range for each cosmological

model, I fit a cubic spline to the the data, which is smoothed with a 3rd order Savitsky-

Golay filter (Savitzky and Golay, 1964) over the nearest 51 wavenumbers. These two

steps are done to ensure a smooth continuous function describing the ratio over the

entire k-range. I repeat this process at each redshift for which I have a simulation

snapshot. Once I have the ratio for each cosmology at each redshift relative to the

ΛCDM prediction, I use it as a multiplicative boost factor to a ΛCDM matter power

spectrum (at the corresponding redshift) to obtain the absolute power spectrum for

each cosmology. Note that I have simulation snapshots at z = {0.0, 0.125, 0.25, 0.375,

0.5, 0.75, 1.0} for which I compute the non-linear total matter power spectrum. When

I compute the shear power spectra described in Section 4.3.1, I use a cubic spline to

interpolate between both redshift and k−modes. I set the power to zero for k−modes

outside of the range sampled by the above constructed matter power spectrum.
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Figure 4.1: Top: the constructed non-linear matter power spectrum for each cosmological
extension indicated with varying colours, computed at z = 0. Bottom (three panels): the matter
power spectrum of each cosmological extension normalised to the ΛCDM case. Redshifts
0, 0.5 and 1.0, respectively, are shown, demonstrating the redshift evolution of the ratios for
each cosmological model. All models, with the exception of a cosmology with a positively
running scalar spectral index, result in some level of suppression of the non-linear matter power
spectrum compared to the ΛCDM prediction on small physical scales. This suppression ranges
from around 5% in the case of the less extreme WDM cosmology to ≈ 60% for the more
extreme WDM cosmology for the smallest scales examined here at the present day.
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Resulting non-linear matter power spectra

The resultant constructed matter power spectra can be seen in Fig. 4.1, where I show

the absolute power spectra at redshift z = 0 in the top panel, and the redshift evolution

of the ratios computed with respect to the ΛCDM result in the bottom three panels. I

only show here the results up to a maximum redshift of z = 1.0 as this is the maxi-

mum source redshift I use in my weak lensing calculations (I discuss my choice of a

maximum source redshift of z = 1.0 in Section 4.4.1).

A feature common to most of the cosmological extensions examined here is the sup-

pression of small-scale power at k > 10 hMpc−1. A cosmological model with a nega-

tively running scalar spectral index has less power on small scales due to a dampening

effect on the initial density perturbations generated by inflation. WDM cosmologies

have small-scale density perturbations erased due to free streaming. Finally, SIDM

cosmologies have small-scale clustering erased at late times due to the self-interactions

creating cores (and generally erasing structure) in otherwise high-density dark matter

haloes. In detail, however, differences between the three models do exist. For exam-

ple, whereas the suppression in the matter power spectrum decreases with decreasing

redshift for WDM and a negative value for αs, the suppression increases with time in a

SIDM cosmology. The suppression reduces with time for the other two cosmological

models due to mode mixing transferring power from large scales to smaller scales. A

similar result to this was seen in Chapter 2 for the case of a running spectral index

and in Viel et al. (2012) for the case of WDM. However, in the case of SIDM the ef-

fect seen in the non-linear matter power spectrum of the suppression becoming larger

with decreasing redshift, which is a feature unique to SIDM, occurs due to the higher

virial velocities present at late times. This causes scattering events to be more efficient

at redistributing the mass inside the inner regions of haloes. Furthermore, there is a

cumulative number of scattering events which occur with decreasing redshift. These

combined effects result in the suppression in the matter power spectrum extending to

smaller k-modes. The differences seen in the redshift evolution of the matter power

spectrum are important as measurements at a single fixed redshift could result in dif-

ferent cosmological models having very similar effects. See, for example, the z = 0.5
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panel in Fig. 4.1 where the MWDM = 5.0 keV and the σ/m = 0.1 cm2 g−1 are predicted

to have an almost indistinguishable effect on the non-linear matter power spectrum.

However, at earlier and later redshifts the predictions for their suppression of the mat-

ter power spectrum are noticeably different.

The model with a positive running scalar spectral index is the only model to predict

an enhancement in power on these same scales, except for the slight increase in power

seen in the more extreme SIDM models on k−scales ≈ 25 hMpc−1. The increase in

power on small-scales in the SIDM models is due to the re-distribution of dark matter

in the central regions of dark matter haloes. In particular, the enhancement mainly

occurs due to the outward scattering of dark matter particles from the very central

regions to somewhat larger radii (see Figure 3.5 in Chapter 3, for example). This outer

radii, where particles tend to gather in stable orbits corresponds approximately to the

radius where one would expect each particle to have interacted at least once per Hubble

time (see section 5.3 of Rocha et al. 2013, for example, for a discussion on this).

One obvious feature of the two cosmologies with a running scalar spectral index is the

cross-over regions seen in the ratio panels (in the range −2 ≤ log10(k[hMpc−1]) ≤ 1).

The reason these cross-over regions exist is because of differences in the amplitude of

the primordial matter power spectrum, As, which is larger in the case of the positive

running cosmology and smaller in the negative running case with respect to As for the

fiducial ΛCDM case. (Note thatAs varies between the models in order to retain a good

match to the Planck CMB angular power spectrum, see discussion in Chapter 2.) This

amplitude difference produces an additional offset with respect to the ΛCDM power

spectrum on top of the the resulting increase (decrease) in power on large and small

scales due to the positive (negative) running of the spectral index.

4.3 Tomographic Weak Lensing

In this section I describe my methodology for computing cosmic shear power spectra

from the non-linear matter power spectra described above and how I generate noisy
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realisations (synthetic observations) of the cosmic shear power spectra.

4.3.1 Theory

Weak lensing describes the deflection of light rays due to the presence of large-scale

structure in the Universe, which results in slight correlated distortions in the observed

shapes of galaxies (Blandford et al., 1991; Miralda-Escude, 1991; Kaiser, 1992). The

lensing of galaxies leads to two effects: the dilation or magnification of an image

which can be described by the convergence, κ, and the stretching (shearing) of an

image, γ1,2. In this study I focus on the shears of galaxies which can be used to probe

the projected mass distribution via the galaxy shape correlation functions. Additional

information on the growth of structure over cosmic time can be obtained if one has

redshift measurements of the background galaxies. In this case, the source distribution

can be discretized into redshift (or tomographic) bins, allowing one to probe the three-

dimensional matter distribution (see Kilbinger 2015 for a recent review).

The 2-point correlation function of galaxy shapes, and its Fourier analogue the power

spectrum, are directly linked to the underlying matter distribution and its power spec-

trum integrated along the line of sight. I compute the cosmic shear power spectrum

via:

P γ
ij(`) =

∫ χH

0

dχl(1 + zl)
2Wi(χl)Wj(χl)P3D

(
k =

`

χl

, χl

)
, (4.7)

where χl is the comoving distance to the lens at redshift zl, χH is the comoving distance

to the horizon, which in this case is the comoving distance associated with a maximum

lens redshift of 1, P3D is the non-linear matter power spectrum, and Wi and Wj are the

lensing efficiencies in the tomographic bins i and j, defined as:

Wi,j(zl) =
3

2
Ωm

(
H0

c

)2 ∫ zmax

zl

χl − χs

χs

ni,j(zs)dzs. (4.8)

Here χs corresponds to the comoving distance to the source at redshift zs and ni is the
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normalized homogeneous source distribution in tomographic bin i given by:

ni(z) =
n(z)∫ zmax

0
n(z)dz

, (4.9)

It is worth mentioning that equation 4.7 is predicated upon some important assump-

tions. These include the Limber approximation (Limber, 1953; Kaiser, 1992), which

only includes modes in the plane of the sky, neglecting those between structures at

different epochs in the line of sight integration. The small-angle and flat-sky approx-

imations have also been adopted, which allows one to replace a spherical harmonics

transform with a Fourier transform (Hu, 1999). Other assumptions which are em-

bedded inside the lensing efficiency Wi,j (see equation 4.8) is that of a homogeneous

galaxy distribution, which ignores source-source clustering (Schneider et al., 2002) as

well as source-lens clustering (Bernardeau, 1998; Hamana et al., 2002). Spatial flat-

ness has also been assumed in equation 4.7.

Although the previous assumptions may introduce some level of systematic error in

the calculation of the shear power spectrum, I neglect them here owing to the fact

that, firstly, they will be common to each cosmology and should therefore be less

important when I focus on the ratios of the cosmic shear power spectra, and, secondly,

they mainly affect the largest angular scales (` . 10) (see for example Schmidt, 2008;

Giannantonio et al., 2012; Kilbinger et al., 2017) which is not my focus.

The uncertainty in the shear power spectrum can be expressed as (Kaiser 1998; Hu

1999; Euclid Collaboration et al. 2020a):

∆P γ
ij(`) =

√
2

(2`+ 1) ∆`fsky

[
P γ
ij(`) + δij

〈γ2
int〉
ni

]
, (4.10)

where ∆` is the multipole bandwidth, fsky is the fraction of sky surveyed, δij is the

Kronecker delta symbol, 〈γ2
int〉 is the shape noise, representing the variance of ob-

served galaxy ellipticities (which I take to have a value of 0.261, motivated by Gatti

et al. 2021), and ni is the surface density of source galaxies in the tomographic bin,

expressed in steradians−1. The term under the square root accounts for the limited
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number of available independent ` modes. The first term in the square brackets corre-

sponds to the cosmic variance and the second term is a Poisson noise term. In addition

to introducing scatter in the cosmic shear power spectrum (via the Poisson noise term),

the shape noise also contributes to an additive shot noise term that biases the auto power

spectrum but not the cross-power spectrum, as the shot noise in different tomographic

bins is uncorrelated. Thus, the shot noise must be subtracted from the estimated auto

power spectra.

As written in equation 4.10 (see also Euclid Collaboration et al. 2020a, eqns. 118 and

125), it appears that the Poisson noise only applies to the uncertainty in the autocorre-

lation power spectrum and not the uncertainty in the cross-correlation power spectrum,

in analogy to the way shot noise contributes to the measured power spectrum but not

the cross-spectrum. While the Poisson noise is uncorrelated between tomographic

bins and therefore does not bias the cross-spectra, I find that there is a significant

contribution to the uncertainty in the measured cross-spectra due to Poisson noise.

Furthermore, equation 4.10 only provides an estimate of the Gaussian errors; i.e., the

diagonal elements of the covariance matrix, but in principle there could be significant

non-Gaussian contributions. For these reasons, instead of using the standard analytic

error estimate in equation 4.10, I instead generate synthetic weak lensing observations

using the FLASK software package, as described below.

I note that cosmic variance, shape noise, and Poisson errors are not the only sources

of uncertainty for the cosmic shear power spectrum. One of the major astrophysical

sources of uncertainty stems from the intrinsic alignment of galaxy shapes. This stems

from tidal interactions during the formation period of nearby galaxies which induces

an intrinsically correlated orientation of the galaxies’ shapes (Joachimi et al., 2015;

Kiessling et al., 2015; Kirk et al., 2015) which works to dilute the cosmological signal

in the two-point correlation function of these shapes. Additionally, another important

source of error stems from photometric redshifts being used for source galaxies. This

leads to some galaxies being ascribed the wrong redshift and blurring the edges of

tomographic bins. A comprehensive discussion on the systematic errors affecting weak

lensing surveys can also be found in Mandelbaum (2018). For simplicity I ignore these
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effects in the present study.

4.3.2 Synthetic cosmic shear observations

For my cosmic shear analysis there are several choices one needs to make to specify

the setup. For example, as seen in equation 4.7, the shear power spectrum will directly

depend on the redshift distribution of the source galaxies. It will also depend on how

many tomographic bins are used in the analysis. Furthermore, the associated uncer-

tainty on the shear power spectrum will depend on the density of source galaxies as

well as on the survey sky coverage.

In this study I am interested in whether or not future Stage-IV weak lensing surveys

such as EUCLID, LSST, and NGRST would be able to rule out, or help place con-

straints on, the different cosmological extensions examined in this study. For my fidu-

cial results I compute the shear auto- and cross-power spectra for a EUCLID-like setup,

however, the survey parameters of an LSST-like setup would be very similar, and so

the results I present below would not differ much (I have explicitly verified this). I

discuss the differences with respect to an NGRST setup in Section 4.4.1.

When constructing the EUCLID-like setup, I follow as closely as possible that de-

scribed in Euclid Collaboration et al. (2020a). In particular, the source galaxy distri-

bution is defined via:

n(z) = zα exp

(
−
[
z

z0

]β)
, (4.11)

where α, β and z0 are survey specific parameters which describe the source distri-

bution. I adopt values of 2, 1.5 and 0.636, respectively, to be similar to the source

distribution expected for the EUCLID survey.

The planned analysis of the EUCLID survey splits the galaxy distribution up into 10

tomographic bins with a redshift range of 0.001 ≤ zs ≤ 2.5. However, in this study

I focus on redshifts ≤ 1, which approximately corresponds to the first 6 tomographic

bins in the EUCLID setup. As such, I split my galaxy distribution up into 6 tomo-

graphic bins between 0.001 ≤ zs ≤ 1.0. The edges of each tomographic bin are zi
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= {0.001, 0.414, 0.554, 0.669, 0.777, 0.885, 1.0} and are defined such that there is

an equal number of galaxies in each bin, essentially fixing the associated shot noise

in each bin. I choose a maximum source redshift of 1 as, for a fixed range of angular

scales, higher redshift measurements correspond to larger physical scales.13 As the

extensions I explore mostly affect small physical scales, I do not expect them to be

easily distinguishable from ΛCDM at high redshifts (the exception to this are the mod-

els which have a running of the scalar spectral index, as I discuss below). Specifically,

I compute the cosmic shear power spectrum up to an `max = 4, 000, which lies close

to the ‘optimistic’ case for the EUCLID survey of `max = 5000 (with their ‘pessimistic’

case being `max=1500, if one does not include non-Gaussian contributions to the co-

variance matrix). This `max corresponds to angular scales of around 0.44 arcmin, or k

[hMpc−1] = 2.18, at z = 1.

Note that, as surveys such as EUCLID and LSST will make use of photometric redshifts

(see e.g. Euclid Collaboration et al. 2020b), one needs to account for the associated

uncertainty by convolving the number density distribution in equation 4.9 with a prob-

ability distribution function accounting for uncertainties in the photometric redshifts,

along with accounting for catastrophic outliers (see for example equation 115 in Euclid

Collaboration et al. 2020a). These are galaxies which have a severely incorrect mea-

surement of their redshift and have therefore been placed in the wrong tomographic

bin. I ignore this effect in this chapter, however.

To generate the synthetic weak lensing observations using the cosmic shear power

spectra computed in Section 4.3.1 and the details of the EUCLID survey choices above,

I use the publicly available software package FLASK14 (Xavier et al., 2016). FLASK can

generate lognormal (or Gaussian) realisations of correlated fields on spherical shells.

I make use of its ability to generate weak lensing shear fields. Each field can be gen-

erated tomographically, with the statistical properties of these fields (including their

cross-correlations) being defined via input angular power spectra (where one provides

as input the auto- and cross-spectra that they want maps created for). I provide as input

13Note, the minimum source redshift of 0.001 was chosen to coincide with the minimum redshift
used in Euclid Collaboration et al. (2020a).

14https://github.com/hsxavier/flask

https://github.com/hsxavier/flask
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Table 4.1: The shift parameters used to define the lognormal realisations of each shear field.
The columns from left to right are the tomographic bin number, the mean redshift of the tomo-
graphic bin, the calculated shift parameter for that bin.

i zmean λ
1 0.3003 0.0048
2 0.4874 0.0099
3 0.6126 0.0141
4 0.7233 0.0181
5 0.8307 0.0224
6 0.9417 0.0272

the theoretical cosmic shear power spectra as computed in equation 4.7, which in the

flat-sky approximation is equivalent to the convergence power spectrum (Hu, 2000;

Kilbinger et al., 2017; Bartelmann and Schneider, 2001). I use FLASK to produce

many realisations of my theoretical shear power spectra, allowing us to evaluate the

full covariance matrix in the error analysis, rather than just using the Gaussian errors

computed using equation 4.10, and to evaluate the potential Poisson noise contribu-

tion to cross-power spectra between tomographic bins. Note that the measured power

spectra computed from the FLASK maps will contain a shot noise contribution. There-

fore, when computing the full covariance matrix I subtract this shot noise from the

autocorrelation power spectra.

In order to define the log-normality of the shear field, one needs to specify a shift pa-

rameter. I compute this shift parameter (λ) following Hilbert et al. (2011) who used the

Millennium Simulation (Springel, 2005) to produce synthetic convergence and shear

maps (see, for example, equation 22 in this paper for how this relates to the definition

of a lognormal distribution). From these maps they measure the convergence distribu-

tion and find that it is best fit with a zero-mean shifted log-normal distribution. They

do this at multiple redshifts and provide an empirical formula, which I use here, that

captures the redshift evolution of the shift parameter λ (κ0 in Hilbert et al. 2011)

λ(z) = 0.008z + 0.029z2 − 0.0079z3 + 0.00065z4. (4.12)
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I substitute in the mean redshift of each tomographic bin to calculate the associated

shift parameter for that field. The values calculated can be found in Table 4.1.

I want FLASK to output shear maps which will also capture the noise associated with

measurements of the cosmic shear power spectrum (see Section 4.3.1). Therefore,

I also supply FLASK with an angular selection function, such that the map will be

masked to reproduce a survey’s specific fsky, as well as providing a redshift selection

function so that the number of galaxies in a tomographic bin is reproduced. One also

needs to supply the software with a value for the ellipticity dispersion of galaxy shapes,

〈γ2
int〉, in order to incorporate shape noise into the shear maps created. As already noted,

I adopt 〈γ2
int〉 = 0.261.

The maps output by FLASK, which are output in HEALPix15 format, contain the mean

source ellipticity in each pixel, calculated via:

ε(j) = g(j) +
εs√
Ngal

, (4.13)

where g(j) is the reduced shear associated with pixel j, εs is a value for the intrinsic

ellipticity associated with galaxy shapes randomly sampled from a zero-mean Gaus-

sian distribution with width equal to 〈γ2
int〉, and Ngal is the number of galaxies that fall

within that pixel. I produce 200 map realisations of each tomographic power spectrum

in this way. Following this I compute the auto- and cross-correlation power spectra of

these maps using the PYTHON package HEALPY16. I use these power spectra to eval-

uate the covariance matrix in 14 multipole bins in the range 10 ≤ ` ≤ 4, 000, which I

calculate as:

cov
[
P γ
ij(`), P

γ
i′j′(`

′)
]

=
〈(
P γ
ij(`)−

〈
P γ
ij(`)

〉) (
P γ
i′j′(`

′)−
〈
P γ
i′j′(`

′)
〉)〉

(4.14)

The resultant cosmic shear auto- and cross-power spectra can be seen in Fig. 4.2 for

all cosmologies, along with the associated uncertainties on the cosmic shear power

15https://healpix.sourceforge.io/
16https://github.com/healpy/healpy

https://healpix.sourceforge.io/
https://github.com/healpy/healpy
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Figure 4.2: The shear auto- and cross-correlation power spectra computed for each cosmolog-
ical model. The source galaxy tomographic bins are distributed between a minimum source
redshift of 0.001 and a maximum source redshift of 1.0 and such that each tomographic bin has
the same number density of source galaxies. I split the distribution up into 6 tomographic bins
to mimic a EUCLID-like survey and plot up to `max=4,000, which lies between the pessimistic
and optimistic case for the EUCLID survey. Here the error bars show the standard deviation
of the realisations of each power spectrum evaluated using the FLASK package (see text). In
general, the deviations to ΛCDM case are subtle and require a quantitative evaluation of the
signal-to-noise ratio.
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spectrum, which serves to illustrate the absolute power spectra and how the associated

changes due to the different cosmological models are generally quite subtle. The dif-

ferences in the cosmic shear power spectra are better highlighted in Fig. 4.3, which

shows the ratio of each auto- and cross-correlation power spectrum with respect to the

ΛCDM prediction in that same tomographic bin. I discuss here the calculation of the

error bars in Figs. 4.2 and 4.3 and leave the scientific interpretation of these results for

Section 4.4.

The red error bars in Fig. 4.3 show the theoretical uncertainty associated with the shear

power spectrum as computed using equation 4.10. The black error bars represent the

diagonal elements of the covariance matrix for a ΛCDM cosmology calculated using

multiple realisations of each shear power spectrum as generated by FLASK. Note here

that the error bars which are shown are normalised to the ΛCDM power spectrum in

each tomographic bin, i.e., ∆P γ
ij(`)/P

γ
ij(`).

It can be seen in Fig. 4.3 when comparing the theoretical error bars shown in red to

the black error bars extracted from the covariance matrix computed with the assistance

of FLASK, that the errors are in excellent agreement (as one would expect) for the

autocorrelation power spectra. There is some disagreement at low multipoles, which

stems from cosmic variance issues associated with the maps.17 However, importantly,

this agreement does not hold for the cross-correlation power spectra, with significant

disagreements at large multipoles (small angular scales). Specifically, the analytic

calculation in equation 4.10 ignores the effects of Poisson noise on uncertainty in the

cross-spectrum, but I find there is always a non-negligible Poisson error.

In Appendix C.2 I use realisations of pure shape noise fields generated with FLASK to

derive a more accurate and general equation for incorporating the impact of shape noise

17I tested whether the error bars at small multipole were brought into better agreement if one created
full sky realisations of the power spectra using FLASK rather than a masked version and found that this
was indeed the case. Therefore, it is likely that the masking is adding some additional spurious noise to
the signal on large angular scales.
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(Gaussian errors only) on the cross-spectrum, namely:

∆P γ
ij(`) =

√
2

(2`+ 1) fsky

[
P γ
ij(`) + δij

〈γ2
int〉
ni

+ (1− δij)
〈γ2

int〉√
2ninj

]
. (4.15)

The new term (right most in the square brackets) represents the contribution of Poisson

noise to the uncertainty in the cross-power spectrum. Note the similarity of the noise

terms for the auto- and cross-spectra, which is expected because they are caused by

the same effect: random alignments of galaxy shapes. The only difference is that for

the cross-spectrum term I allow for the possibility of different source densities in the

tomographic bins being cross-correlated, and the extra factor of square root of 2, which

is the result of having more galaxy pairs to evaluate in the cross-spectrum compared to

the power spectrum (the error scales as the number of pairs).

Finally, I note that the black error bars plotted in Figs. 4.2 and 4.3 correspond to just

the diagonal elements of the covariance matrix, but I use the full covariance matrix

when evaluating signal-to-noise ratios in in Section 4.4.

4.3.3 Summary of theoretical cosmic shear pipeline

Here I provide a very brief summary of the steps described above in generating cosmic

shear power spectra for the different cosmological models in this study, alongside a

realistic estimate of the uncertainties.

• Compute P (k) for each cosmological simulation (including box size variations

for the two αs simulations) and re-bin to smooth out some of the initial numerical

noise associated with the power spectra.

• Compute the ratio of each power spectrum with respect to a corresponding ΛCDM

simulation (of same box size and resolution).

• For cosmologies with a running spectral index, combine the ratios computed

from the 400, 100, 25 Mpc h−1 box simulations along with the Halofit pre-
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diction to a log(kmin) = −4. For all other cosmologies, extrapolateRC(k, z) = 1

for large scales not sampled in the 25 Mpc h−1 box. Fit a cubic spline to the con-

structed ratios and smooth.

• Calculate the absolute P (k) for each cosmology using the constructed ratio as a

boost factor to modify the ΛCDM prediction computed using Halofit (equa-

tion 4.6).

• Generate theoretical tomographic shear power spectra for each cosmological

model using equation 4.7.

• Construct multiple synthetic tomographic weak lensing shear maps for a ΛCDM

universe including galaxy shape noise using the FLASK package. Compute C(`)

for each realisation to construct a covariance matrix for the ΛCDM prediction

using equation 4.14.

4.4 Results

In this section I present the main results of this work. This includes predictions for the

tomographic cosmic shear auto- and cross-power spectra for each cosmological model,

along with their respective ratios with respect to ΛCDM. I also explore how large the

differences in the cosmic shear power spectrum due to a change in cosmology are

compared to the expected error associated with the cosmic shear power spectrum.

4.4.1 Comparisons up to `max = 4, 000

I now discuss the main results of my investigation for the fiducial EUCLID-like setup,

examining the cosmic shear power spectrum up to a maximum multipole of `max =

4, 000.

Examining the ratios of the various cosmological extensions with respect to ΛCDM

shown in Fig. 4.3, I can immediately conclude (by eye) that all of the cosmological
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Figure 4.3: The shear auto- and cross-correlation power spectrum for each cosmological model
normalised to the corresponding ΛCDM auto/cross-correlation power spectrum. The different
coloured lines represent the different cosmological modes, indicated in the legend. The red
error bars show the standard theoretical (analytic) prediction for the noise on the shear power
spectra (which does not include the effects of Poisson noise on the shear cross-spectra), and
the black error bars show the noise computed using multiple realisations of each auto and cross
power spectrum in a ΛCDM cosmology with the FLASK package. This plot helps highlight
the resultant changes to the cosmic shear power spectrum, particularly due to the inclusion of
a running scalar spectral index as a free parameter in the standard model. The numbers in
square brackets in the top left of each panel indicate the tomographic bin number. Increasing
tomographic bin number corresponds to higher redshifts (see Table 4.1 for the mean redshift of
each bin).
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extensions studied here are capable of producing some level of deviation in the cosmic

shear power spectrum compared to the ΛCDM prediction over this range of multipoles.

However, in the case of WDM and SIDM, these changes appear most noticeable for the

two extremest models examined in this study. The other models do produce differences

as well, but they are comparatively smaller and a more quantitative analysis of their

‘detectability’ is thus required.

I quantitatively characterise the constraining power of the cosmic shear observations

via a signal-to-noise ratio (SNR), which I evaluate as:

(S/N)2 =
∑

`,`′≤`max

(|R(`)− 1|)
(

Cov[Pγ
ij(`),P

γ
ij(`
′)]

P γ
ij(`)P

γ
ij(`
′)

)−1

(|R(`′)− 1|) , (4.16)

where R(`) is the ratio of each cosmological extension with respect to ΛCDM as plot-

ted in Fig. 4.3. I make use of the full covariance matrix calculated using equation

4.14, which I normalise with respect to the absolute power spectra themselves. I do

this because I am comparing the error bars to the ratios rather than the absolute power

spectra.

The resultant plot of the integrated SNR as a function of `max can be seen in Fig. 4.4.

The solid curves represent the integrated SNR as a function of scale when using the

full covariance matrix to estimate the uncertainties. For comparison, the dashed curves

show the integrated SNR when using only the Gaussian (diagonal elements) errors. A

legend is provided which lists the integrated SNR when summed (in quadrature) over

all tomographic bins for the full covariance matrix case and for the diagonal errors

only (the latter is in parentheses).

As expected from Fig. 4.3, the cosmology with a negative value for the running of

the spectral index shows strong deviations from the ΛCDM prediction over almost the

entire multipole range, with these differences becoming larger at higher redshift. The

reason for this stems mainly due to an increase in the absolute power on these multi-

poles in the later tomographic bins, as seen in Fig. 4.2. This causes the relative error

bars to decrease with increasing redshift resulting in a larger SNR. When summed over
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Figure 4.4: The integrated signal to noise ratio (SNR) as a function of `max to demonstrate how
significant the deviations in the shear power spectra are for the different cosmological models
relative to ΛCDM. I plot here two variants of this statistic shown by solid and dashed lines.
In the first case (solid line), the SNR is calculated using the entire covariance matrix, whereas
the dashed line only uses the diagonal elements of the covariance matrix. The total integrated
SNR, summed (in quadrature) over the tomographic bins, is shown next to the bottom left panel
with the values in brackets indicating the SNR if one only uses the diagonal elements of the
covariance matrix.
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all tomographic bins, a Planck-based cosmology with a negative running of the scalar

spectral index will likely be easily distinguishable from a Planck-based ΛCDM cos-

mology with a EUCLID-like cosmic shear survey.

One apparent feature in the SNR for the negative running cosmology is the plateau

towards higher multipoles. The reason for this behavior is that the signal I see here is

dominated by the region of the power spectrum for which a negative running cosmol-

ogy produces an enhancement in power (due to the increase in As) relative to ΛCDM.

However, on the largest multipoles the ratio begins to turn over and decrease, where

it would eventually cross over the ΛCDM prediction and predict a suppression in the

cosmic shear power spectra, rather than the enhancement that I see on these scales.

Therefore, the signal, relative to the error bars, decreases over this range of scales

yielding a plateau in the integrated SNR. The same effect is also seen, perhaps some-

what more clearly, in the cosmology with a positively running scalar spectral index

where the opposite is true. In this case, there is initially a slight suppression in the cos-

mic shear power spectra which flips and becomes an enhancement at high multipoles,

producing the initial increase in the SNR, followed by a plateau and then a second in-

crease after the ratio has crossed unity. As a result, the positive running cosmology has

an integrated SNR in the later multipole bins exceeding 1, showing that upcoming fu-

ture surveys such as EUCLID and LSST are perhaps able to put constraints on a value

for the running of the scalar spectral index that are competitive to those from cosmic

microwave background and Lyman-α forest constraints.

Note that the SNR would likely continue to increase if I increased the maximum source

redshift beyond the limit of zs=1.0 that I adopt here, at least for the running cosmolo-

gies. If one was to include tomographic redshift bins beyond zs = 1.0 the relative error

bars shown in Fig. 4.3 would decrease (due to the increase in the cosmic shear signal);

hence this would enhance the SNR seen here. The reason I do not include these higher

redshift tomographic bins in this study is because, as mentioned, at fixed `max, but in-

creasing zs the region of the matter power spectrum one becomes sensitive to tends

towards smaller k−modes. As such, although this would still result in a measurable

signal for the two models with a running spectral index, it would not result in a mea-
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surable signal for the WDM and SIDM cosmologies (their effects are confined to small

physical scales). However, these higher redshift tomographic bins will be included in

future weak lensing surveys, resulting in potentially increased constraining power on

αs compared to what is shown here.

For the SIDM and WDM cosmologies it appears that one needs to probe to much

smaller scales (higher multipoles) to be able to distinguish most of the models I ex-

plored from ΛCDM. The only exceptions are the most extreme WDM (0.5 keV) and

SIDM (σ/m = 10 cm2 g−1) models. My calculations suggest that a EUCLID-like

survey with realistic source densities and shape noise may be able to (marginally) dis-

tinguish these models from ΛCDM. Pushing to higher multipoles would help in these

cases as well.

An important aspect of a EUCLID-like survey is the fact that it has a large sky cov-

erage, meaning the cosmic variance error associated with the measurements of the

cosmic shear power spectrum is strongly reduced on all but the largest angular scales.

Therefore, the limiting factor in the ability of detecting a difference between some of

these cosmological models and ΛCDM, particularly at the upper-end of the multipole

range I analyse in this study, is a result of the uncertainty in galaxy shapes. Thus, I have

also investigated a similar tomographic setup as that expected for the NGRST survey

which instead of a large fsky (NGRST is envisioned to have fsky = 0.0485), is expected

to have a larger number density of source galaxies equal to ns = 51 galaxies/arcmin2

compared to ns = 30 galaxies/arcmin2 for a EUCLID-like (or LSST-like) setup.

For the NGRST setup I use five tomographic bins up to redshift 1.0, defining the

source galaxy distribution using equation 4.11 (here I adopt the parameter values: α =

2, β = 0.9, z0 = 0.28 in order to closely mimic the galaxy distribution described

in Eifler et al. 2020). I find that, although the shot noise error is decreased in such

a survey setup, the increase in the cosmic variance error due to the reduction in sky

coverage compensates, resulting in no improvement on the SNR18. Therefore, it seems

18The total integrated SNRs calculated for a NGRST-like setup for each cosmology, using the full
covariance matrix are: {9.657, 1.733, 2.203, 0.481, 0.082, 1.39, 0.023, 0.009}, in the same order as that
displayed in Fig. 4.4.
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that one would need both a large fsky (although potentially not as large as EUCLID or

LSST), and a large number density of source galaxies, ns, to use cosmic shear to better

constrain these cosmological models without having to push to higher multipoles.

It is apparent from the above analysis that, if it was possible to push to higher multi-

poles, this could considerably increase the constraining power for the SIDM and WDM

scenarios. However, if I were to evaluate the uncertainties using a full covariance ma-

trix approach this would be much more computationally expensive, as each realisation

has around 2×108 pixels in each tomographic map and (NT(NT+1)/2) auto- and cross-

correlation power spectra (where NT is the number of tomographic bins)19. However,

I can considerably simplify the process if the Gaussian errors (in equation 4.15) are

sufficient to calculate a SNR. Comparing the solid and dashed curves in Fig. 4.4, I

conclude that the difference in the integrated SNRs are fairly significant for the run-

ning cases (particularly the negative running scenario), but not for the SIDM or WDM

cases, at least over the range of multipoles examined here. As such, below I examine

if pushing to `max = 20, 000 improves the SNR for the models with WDM, SIDM and

positive running scalar spectral indices, using the estimated Gaussian errors rather than

a full covariance matrix approach.

4.4.2 Comparisons up to `max = 20, 000

I show in Fig. 4.5 the new integrated SNR, extended up to an lmax = 20,000, with the

vertical dashed grey line in each panel showing the previous lmax. Note that I have re-

placed the reduced covariance matrix term in equation 4.16, with simply
(
∆P γ

ij/P
γ
ij

)−2,

where ∆P γ
ij is calculated using equation 4.15, which includes the additional Poisson

error on the cross-correlation power spectra.

Pushing to higher multipoles does indeed reveal regions of the cosmic shear power

spectrum where the differences due to changes in cosmology are not yet completely

drowned out by the associated noise. This is particularly true for the positive running

cosmology and the two SIDM cosmologies with the smallest cross-sections, which

19Note that I produce 200 unique realisations in order to evaluate the covariance matrix.
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Figure 4.5: Same as Fig. 4.4, however, here I plot the integrated SNR up to an increased
`max of 20,000. To do this I only make use of the Gaussian terms of the covariance matrix,
computed using the updated error equation shown by equation 4.15. This shows that if one was
able to push to these smaller angular scales, these observations could potentially be fruitful in
putting constraints on the the cross-section for interaction of dark matter particles, as well as
increased constraining power on the running of the spectral index. The vertical grey dashed
line corresponds to the previous `max = 4,000.
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all show a marked improvement in the total integrated SNR when summed over tomo-

graphic bins, as shown at the bottom of Fig. 4.5. However, although the total integrated

SNR is now > 1 for the less extreme SIDM cosmology of the two, the integrated SNR

never exceeds 1 in any single tomographic bin, meaning the full tomographic informa-

tion will be needed to place constraints on the cross-section for interaction.

Note that the signal present in each tomographic bin will be somewhat sensitive to

the tomographic binning strategy. For example, at fixed source density for a given

survey, the fewer tomographic bins one has the larger the effective number density of

source galaxies in each tomographic bin. This will work to decrease the shot noise

associated with each tomographic power spectrum, thus increasing the integrated SNR

in an individual bin. The integrated SNR when summed over all bins, though, should

be a more robust quantity.

In the case of the WDM cosmologies, pushing to these higher multipoles does not

result in a significant gain in SNR, insofar as detection is concerned. As explained

previously, this is in part because the suppression in the matter power spectrum in a

WDM cosmology is maximal at larger redshifts. However, the k−scales affected in a

WDM cosmology move out of range of the `−modes covered in this study at higher

redshifts.

While it is clear from the above analysis that pushing to higher multipoles in general

results in increased SNRs, a potentially important caveat is that my analysis does not

take into account additional sources of uncertainty that may be prevalent on such small

angular scales, including source deblending difficulties. This refers to the phenomenon

where sources (be them galaxies or stars) overlap on the sky, disrupting the shear es-

timation of a source galaxy. This can be accounted for by rejecting objects which are

flagged as blended. However, as was shown in, for example Hartlap et al. (2011) and

MacCrann et al. (2017), this can lead to a selection bias on the source galaxies used in

the cosmic shear analysis. In particular, this selection bias works to exclude galaxies

in high density environments, which will have a higher convergence than average, re-

sulting in a biased (low) two-point correlation function of galaxy shapes, particularly

on small-scales (see e.g., fig.8 in MacCrann et al. 2017). However, recently Hoek-
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stra et al. (2021) showed that this bias can be effectively mitigated using a process of

METADETECTION (Sheldon et al., 2020). In addition to this, an effective modelling

of baryonic physics will be needed on these scales to fully extract the cosmological

information on these small scales (see below).

4.5 Discussion & Conclusions

In this study I have explored the effects that different extensions to the standard model

of cosmology have on the non-linear matter power spectrum, particularly on small

scales. This was achieved using a suite of numerical simulations which contain three

cosmological variations (in addition to the fiducial ΛCDM realisation): i) a running

scalar spectral index (αs), warm dark matter (MWDM) and self-interacting dark mat-

ter (σ/m). I focus on these extensions in particular as they have previously been

shown to suppress small-scale structure and therefore offer a potential means to mit-

igate small-scale challenges which have been highlighted with the ΛCDM model. I

combined the small-scale power spectra extracted from the simulations with the pre-

dictions of Halofit on large scales to construct non-linear matter power spectra

for the different extensions spanning over six orders of magnitude in wavenumber

(−4 ≤ log10(k[hMpc−1]) ≤ 2.4). These power spectra were used to compute the cos-

mic shear power spectrum. Finally, I evaluated via synthetic lensing observations (gen-

erated with FLASK) whether forthcoming Stage-IV lensing surveys (EUCLID, LSST,

and NGRST) will potentially be able to differentiate these extensions from the stan-

dard ΛCDM model.

The main findings of my study are as follows:

• A negative running spectral index, WDM and SIDM are all capable of producing

a significant suppression in the non-linear matter power spectrum at late times

(Fig. 4.1). At z = 0, this suppression can range from ≈ 5% to ≈ 40% in the

case of WDM, at k ≈ 100 hMpc−1. Furthermore, in the case of WDM, the sup-

pression in the matter power spectrum increases with increasing redshift, rising
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to & 60% at z = 1. A similar trend is seen for the negative running cosmology,

although not to the same extent as for WDM. Conversely, the suppression in the

matter power spectrum increases with decreasing redshift in an SIDM cosmol-

ogy. This is due to the strong cores developing in the density profiles of haloes

as structures collapse and the relative velocities of particles increase.

• From the different cosmological extensions I have examined, a running scalar

spectral index looks the most promising in having a measurable effect on the

cosmic shear power spectrum for upcoming surveys such as EUCLID. This can

be seen, somewhat counter-intuitively, in the enhancement that is produced in the

cosmic shear signal on intermediate scales, due to the change in the amplitude

of the non-linear power spectrum with respect to ΛCDM on the important scales

(Fig. 4.3). I find that there is a significant signal for both a negatively running

spectral index and a positively running one, shown through the signal-to-noise

ratio (Fig. 4.4). This illustrates that cosmic shear could be an additional probe

which, if used in combination with other probes such as the CMB, could help

place strong constraints on the running αs.

• The constraining power for the other two cosmological extensions of interest

here, the mass of the WDM particle and the self-interaction cross-section, is

slightly weaker, owing to the fact that these extensions affect only the smallest

scales. I have shown that upcoming cosmic shear measurements should be able

to rule out SIDM models with σ/m > 10 cm2 g−1 or WDM models with ther-

mal relic masses MWDM < 0.5 keV. While these are perhaps weaker constraints

than what can be obtained from other methods (e.g., satellite abundances, strong

lensing time delay, Lyman-α forest), I note that cosmic shear is independent test

that has very different systematics than previous small-scale probes, making it

still a very worthwhile test of these small-scale extensions. In addition, I have

demonstrated that, if it is possible to push to higher multipoles with these ex-

periments, there is the potential that cosmic shear could help place some of the

strongest constraints on the SIDM cross-section (σ/m) (Fig. 4.5).

• Finally, I have illustrated that the standard analytic prediction for the error asso-
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ciated with the cosmic shear cross-correlation power spectrum (between tomo-

graphic bins) significantly underestimates the true error that one recovers when

computing the same power spectrum from a map which includes a prescription

for galaxy shape noise by a factor of around 20 at ` ≈ 1, 000 (Fig. C.2) . This

is because the standard prescription ignores the associated Poisson error. I have

introduced a modification to the analytic form of the error which modifies the

error associated with cross-correlation power spectrum (equation 4.15) and is

found to bring the analytic errors into much better agreement with my empirical

findings based on cross-correlating shape noise maps.

One of the main focuses of upcoming weak lensing surveys, such as EUCLID, LSST and

NGRST, is to help place constraints on the dark energy equation of state parameter

w, or the time varying dark energy equation of state parameters w0, wa. It is well-

established that cosmic shear tomography provides a sensitive probe of the growth of

structure which, in turn, depends on the evolution of dark energy. However, here I

illustrate that the constraining power of cosmic shear measurements also extends be-

yond dark energy and the other Friedmann parameters. Specifically, I have shown that

cosmic shear observations can potentially place constraints on the running of the spec-

tral index, as well as the cross-section for interaction of dark matter particles (SIDM)

and the thermal relic mass (WDM). As a final test, I have calculated the source density

required to improve constraints on the less extreme cosmological models such as the

MWDM = 2.5, 5.0 and σ/m = 0.1 cm2 g−1 models. I find that for a sky coverage equal

to that of EUCLID, the required source density of background galaxies should be ≈
{85, 525, 60} galaxies/arcmin2, respectively, in order to obtain a SNR of > 1, when

pushing the analysis to `max=20,000.

The tests performed in this study consisted of whether forthcoming cosmic shear sur-

veys could distinguish (on the basis of SNR) a number of extensions, with specific

parameter values, from the baseline ΛCDM model. The tests were particularly sim-

ple in that, in most cases, all of the cosmological parameters were held fixed, apart

from the new parameters describing the extension. A more realistic test would be to

allow the various parameters to be free and to marginalise over them when estimat-



4.5. Discussion & Conclusions 161

ing the uncertainty (and potentially bias) in the recovered extension parameters (e.g.,

WDM particle mass). However, to achieve this requires many more simulations than

produced here and potentially sophisticated methods (e.g., emulators) for interpolating

the results for arbitrary cosmological parameter values. While my promising results

demonstrate that this is clearly worthwhile, it is a large undertaking and I leave this for

future work.

In this study I focused on the constraining power of future cosmic shear measurements.

However, there are additional complementary two-point statistics that may be helpful

in placing constraints on these cosmological extensions. In particular there is galaxy

clustering, which describes the clustering between lens galaxies, and galaxy–galaxy

lensing, which describes the over-density of mass around lens galaxies. Together with

cosmic shear, these 3×2pt statistics have been shown to help place tighter constraints

on the cosmological parameters Ωm and σ8 (see e.g. fig. 6 of DES Collaboration et al.

2021). However, combining all three of these probes is beyond the scope of this work,

which focused on the constraining power of cosmic shear alone. In future work, I

will explore how the constraints in this paper change when combining these 3×2pt

statistics.

An important caveat to the work I have presented is that the simulations I used ne-

glected the effects of baryonic physics. Previous work has demonstrated that when

numerical simulations include complex galaxy formation physics, such as feedback

from supernovae and active galactic nuclei, they can produce relatively large effects

(typically 5-20%) on the non-linear matter power spectrum (e.g., van Daalen et al.

2011; Chisari et al. 2018; Springel et al. 2018; van Daalen et al. 2020). Furthermore,

these effects due to galaxy formation physics have been shown to be visible in the cos-

mic shear two-point correlation functions at a similar level (Semboloni et al., 2011).

My work has focused mostly on small scales where, as opposed to baryons suppress-

ing the power spectrum via the expulsive effects of feedback on relatively large scales

(the focus of most previous studies), it is more likely that cooling and star formation

will lead to an enhancement in the power spectrum. Regardless of whether baryons

produce a suppression or an enhancement, the effects may be degenerate with the cos-
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mological extensions I have examined here. As discussed in Chapter 3, ultimately

what is required is a systematic and simultaneous exploration of the (uncertain) impact

of baryons and cosmological variations on small scales and an understanding of how

these effects propagate through to observables on small scales such as the cosmic shear

power spectrum.

In closing, to help mitigate potential degeneracies, recent studies have shown the power

of combining complementary probes when placing constraints on additional cosmolog-

ical (and baryon) parameters. For example, Enzi et al. (2020) and Nadler et al. (2021)

have illustrated the power of combining multiple probes (Lyman-α forest, strong lens-

ing and the abundance of Milky Way satellites) in placing constraints on the WDM

particle mass. Measurements of cosmic shear on small scales provide an important

new tool in this regard and one that has very different systematic uncertainties from

currently used small-scale probes. Forthcoming Stage-IV lensing surveys therefore of-

fer a promising new window to study cosmological and galaxy formation physics on

small scales.



Chapter 5

Conclusions and Future Work

5.1 A summary

The ΛCDM model is able to successfully predict a remarkably wide range of observa-

tions of our Universe and this is in spite of it having only six free parameters. With

this in mind, it is no wonder it has come to be known as the standard model of cos-

mology. However, we are currently living in very exciting times for the field of cos-

mology, with several apparent tensions with ΛCDM now reaching the threshold of

statistical significance, potentially heralding unaccounted for physics beyond that con-

tained within the currently accepted standard model. Over the previous chapters in

this thesis, I have outlined several possible extensions to the standard model. These

extensions have been motivated using tensions associated with cosmological parame-

ter constraints from large-scale structure observations, as well as tensions associated

with the apparent under-abundance of structure on small-scales in the real Universe

compared with ΛCDM simulations.

163
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5.1.1 Effects of a running scalar spectral index on large-scale struc-

ture

In Chapter 2, I introduced an extension to the BAHAMAS suite of cosmological hydro-

dynamical simulations (first presented in McCarthy et al. 2017). This suite consists

of 5 hydrodynamical simulations (along with complementary dark matter only reali-

sations) exploring different values for the running of the scalar spectral index which

is usually assumed to be zero in the standard model of cosmology. I found that the

matter power spectrum in a Planck-constrained running cosmology is affected on all

k−scales examined in this study. These effects on the matter power spectrum should

be detectable with upcoming surveys such as LSST and EUCLID (which is supported

by the results of Chapter 4). A cosmology with a positive value for the running leads

to an increase in the mass of galaxy groups and clusters, with the favoured negative

running leading to a decrease in mass of lower-mass (M . 1013M�) haloes, but an

increase for the most massive (M & 1013M�) haloes. Changes in the mass are gen-

erally confined to 5-10% which, while not insignificant, cannot by itself reconcile the

claimed tension between the primary CMB and cluster number counts. Furthermore,

this change in the mass of haloes results in a change to the linear bias, which manifests

itself in changes to the clustering signal of haloes in different mass bins.

5.1.2 Separability of cosmological effects and baryonic effects

Additionally, in Chapter 2, I examined whether or not the effects present due to changes

in cosmology are separable from the effects seen when incorporating galaxy formation

physics in the simulations. In detail, I found that the observed effects on LSS due to a

running scalar spectral index are separable from those of baryonic effects to typically

a few percent precision. This is particularly relevant for the non-linear matter power

spectrum and the halo mass function, both of which are sensitive probes of cosmology.

Therefore these results showed that one can marginalise over baryonic effects without

compromising any constraining power on the underlying cosmological parameters.
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5.1.3 Effects of non-standard cosmologies on small-scale structure

formation

In Chapter 3, I introduced a new suite of high-resolution dark matter only cosmolog-

ical simulations exploring 3 different extensions to the standard model of cosmology.

I used these high-resolution simulations to examine a large range of observable met-

rics on small scales, including the halo mass function, total matter density and circular

velocity profiles, the abundance of satellite subhaloes, and halo concentrations. For

any given metric, significant degeneracies can be present between the extensions ex-

amined in this chapter (non-zero αs, WDM and SIDM). In detail, however, the differ-

ent extensions have quantitatively distinct mass and radial dependencies, suggesting

that a multi-probe approach over a range of scales can be used to break the degenera-

cies. I also demonstrated that the relative effects on the radial density profiles in the

different extensions (compared to the standard model) are converged down to signifi-

cantly smaller radii than are the absolute profiles. Additionally to comparing the effects

present between different cosmological models, I also compared the derived cosmo-

logical trends with the impact of baryonic physics using the EAGLE and ARTEMIS

simulations. Significant degeneracies are also present between baryonic physics and

cosmological variations (with both having effects of similar magnitude on certain ob-

servables). Given the inherent uncertainties both in the modelling of galaxy formation

physics and extensions to ΛCDM, a systematic and simultaneous exploration of both

is strongly warranted.

5.1.4 Constraining power of stage-IV cosmic shear surveys

In Chapter 4, I investigated the constraining power of forthcoming Stage-IV weak

lensing surveys (such as EUCLID, LSST, and NGRST) for extensions to the ΛCDM

model, via their impact on the cosmic shear power spectrum. This was done using

high-resolution cosmological simulations which were introduced in Chapter 3 to calcu-

late how warm dark matter (WDM), self-interacting dark matter (SIDM) and a running

of the spectral index affect the non-linear matter power spectrum, P (k), as a function
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of scale and redshift. To evaluate the cosmological constraining power of these future

surveys I created synthetic weak lensing observations derived from these measured

power spectra taking into account the anticipated source density, shape noise and sky

coverage of each survey. I showed that upcoming Stage-IV surveys will be able to

place useful, independent constraints on both WDM models (ruling out models with

a particle mass of . 0.5 keV) and SIDM models (ruling out models with a velocity-

independent cross-section of & 10 cm2 g−1) through their effects on the small-scale

cosmic shear power spectrum. Similarly, they will be able to strongly constrain cos-

mologies with a running spectral index. Finally, I explored the error associated with

the cosmic shear cross-spectrum between tomographic bins, finding that it can be sig-

nificantly affected by Poisson noise (the standard assumption is that the Poisson noise

cancels between tomographic bins).

5.2 Future Work

To conclude this thesis I will briefly outline some of the ways I foresee the research

I have presented being extended in the future. The thrust of the work in this thesis

has been to explore extensions to the standard model of cosmology which are able

to reproduce the many successes of the ΛCDM model while also possibly reconcil-

ing some of the highlighted tensions with the model. The results of this work, how-

ever, have relied extensively on dark-matter only simulations. However, as highlighted

in this thesis, and shown in other works (e.g. Mummery et al. 2017; Schaller et al.

2015), galaxy formation physics plays an important role in the evolution of structure

in the universe. Therefore, to fully understand the interplay between galaxy formation

physics and cosmological effects, a similar study as that done in Chapter 2, where one

self-consistently models galaxy formation physics as well as changes to the underly-

ing cosmological model, is warranted. This will enable a study on the separability

between the two effects on statistics such as the number of satellite haloes, and the

internal structure of haloes providing a more detailed understanding of the interplay

between cosmological and baryonic effects on structure formation; one could do this
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in the context of zoom-in simulations. Similar studies have been done in the past (see

e.g. Lovell et al. 2017b; Macciò et al. 2019; Sameie et al. 2021), however, they often

look at individual extensions in isolation and compare the results to a ΛCDM pre-

diction. Furthermore, these past studies have only looked at a very small number of

systems, focusing mainly on dwarf galaxies, therefore there is scope to expand this

by looking at a much more diverse range of systems, with more statistically signifi-

cant samples. I advocate the process done by (Fitts et al., 2019) where they simulate

SIDM and WDM in the context of a hydrodynamical simulation and compare the re-

sults to ΛCDM. However, again this was done in the context of dwarf galaxies, and

so exploring the effects of the extensions discussed in this thesis, in the context of

hydrodynamical simulations, over a broad range of host halo masses will potentially

help when placing observational constraints on these cosmological extensions, or at

the very least will help better understand the uncertainty introduced due to baryonic

physics.

The extensions to ΛCDM explored in this thesis are all independent of one another,

but there is no theoretical reason that they cannot be combined, and in fact, when com-

bined they may help better describe observations of the Universe we live in. Therefore,

another potential avenue of research is to investigate the effects on structure formation

in cosmological models which combine these extensions. For example, Hannestad and

Scherrer (2000) noted that having a WDM particle that can also self-interact increases

the amount of power on small-scales than that predicted by the same standard WDM

model. This could have interesting consequences for certain cosmological combina-

tions, for example, a positive running of the spectral index which increases the amount

of small-scale power could be paired with WDM models, which produces a suppres-

sion. In conjunction with one another, this would potentially significantly loosen the

constraints on both αs and MWDM. Or for example, WDM does an excellent job at

reducing the amount of small-scale structure but struggles to produce a core in dwarf

galaxies in-line with observations (Macciò et al., 2012). As such one could combine

a WDM model with a velocity-dependent SIDM model to produce both a core, and

reduce the number of satellite haloes, whilst on large-scales being almost indistin-
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guishable from a ΛCDM universe.

One final avenue of research I think would be interesting is to extend the analysis done

in Chapter 4 into a full parameter forecast, which could be done in a couple of ways, ei-

ther through a Fisher matrix prediction, or a full MCMC analysis. However, in the case

of a Fisher matrix analysis, this would require many more realisations of the predicted

observables (in this case either the cosmic shear power spectrum or the non-linear mat-

ter power spectrum), more finely sampling the available parameter space. Whereas in

the case of a full MCMC analysis, in theory, this would require a numerical simulation

to be run for every point sampled in the parameter space to get an accurate prediction

of the observables. To do either of these methods would quickly become very compu-

tationally expensive. To help reduce the computational cost one could instead build an

emulator to predict the non-linear matter power spectrum for these non-standard cos-

mologies (as done for example in, Heitmann et al. 2014; Lawrence et al. 2017; Euclid

Collaboration et al. 2019, but not in the context of WDM, SIDM or αs). Having an

emulator would drastically reduce the number of simulations needed to accurately pre-

dict the non-linear matter power spectrum over a large parameter space sufficient for

either a Fisher matrix analysis or MCMC. Furthermore, this work could be combined

with the results shown in Chapter 2, and the first point made in this section, wherein

you first investigate the separability of cosmological and baryonic effects on the non-

linear matter power spectrum. Such a study would be interesting for the non-linear

matter power spectrum, as on small physical scales, at large values of k, there is an

enhancement in the non-linear matter power spectrum extracted from hydrodynamical

simulations due to the presence of stars (see e.g. van Daalen et al. 2020). However,

Lovell et al. (2020) recently showed that in local group analogues, WDM delays star

formation by ≈ 200 Myrs, therefore, an investigation into the separability of these two

effects on the non-linear matter power spectrum may produce different results than

those found for large scales in Chapter 2 for a running spectral index. If, however, the

effects are separable, one could also build an emulator for the baryonic effects on these

very non-linear scales, to use as a correction factor for the cosmological emulator, this

would allow baryonic effects to be marginalised over in the parameter forecast.



Appendix A

This appendix contains all of the material from the appendices of Stafford et al. (2020a)

copied verbatim.

A.1 Supplementary

Here I provide the particle mass for each of the 5 simulations, note, the slight differ-

ences in the particle masses between the different simulations is due to their slightly

different values for Ωm and H0.

As mentioned in Section 2.2.4, as a test of my cosmological parameter selection I

examined the predicted CMB angular power spectra measurements of Planck. The

result of this can be seen in Fig. A.1 and demonstrate that the adopted cosmologies are

Table A.1: (1) Simulation label, (2) the dark matter particle mass in the full hydro simulations,
(3) the dark matter particle mass in the dark matter only simulations and (4) the initial baryonic
particle mass in the hydro simulations.

(1) (2) (3) (4)
Label MDM,HYDRO MDM,DMONLY Mbar,init

(109 M� h−1) (109 M� h−1) (108 M� h−1)
-2σ 4.37 5.19 8.2
-1σ 4.31 5.12 8.11

Planck ML 4.32 5.15 8.25
no-running 4.36 5.17 8.11

+1σ 4.44 5.26 8.13

169
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Figure A.1: The angular power spectrum of temperature anisotropies of the CMB. Data points
here are the measurements made by the Planck satellite, and the solid lines represent the
theoretical prediction for the different cosmological models. All models are virtually indis-
tinguishable at high-multipoles, with the results at low-multipoles still within observational
errors. The corresponding k−scales which the Planck observations cover are indicated at the
top of the plot. The Planck pivot scale (k = 0.05Mpc−1) is indicated by the vertical grey
dashed line.

indistinguishable with regards to current Planck measurements1 for high-multipoles

(` & 100), and consistent with Planck measurements at low-multipoles (` . 100).

Lastly here, I present results from allowing both Alens and αs to be free. As men-

tioned in the main text, for a standard ΛCDM cosmology, Alens assumes the value of 1.

However, when also treated as a free parameter in the standard model there is a mild

preference for a value greater than unity (Planck Collaboration XIII, 2016), which has

a knock on effect on other cosmological parameters, such as H0, σ8, and Ωm. There-

fore, I test whether the mild preference for a non-zero negative running which also

exists in the Planck 2015 results is mitigated if you no longer fix Alens and αs to their

assumed values of: 1, and 0 respectively. To do this, I create a new set of chains using

the publicly available Planck 2015 likelihood function. I give these parameters the

following flat prior ranges:

1https://pla.esac.esa.int/

https://pla.esac.esa.int/
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Figure A.2: Posterior distribution for the running of the spectral index parameter when in-
cluded in the Planck MCMC analysis, along with Alens. Here, the black curve corresponds to
constraints on αs using the Planck 2015 TT + lowTEB dataset, while the red curve shows
the same only now Alens is also allowed to vary. The vertical dashed lines correspond to the
maximum likelihood value for each distribution. This shows how allowing Alens to also vary in
the cosmological model does not affect the constraints on αs much.
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Table A.2: Cosmological parameter values obtained when treating both Alens and αs as free
parameters. All symbols have their previous meaning, with definitions for all excluding (3)
Alens (the lensing amplitude of the CMB TT angular spectrum) present in Table 2.1.

(1) (2) (3) (4) (5) (6)
σ αs Alens Ωm σ8 S8

-2 -0.02232 1.19141 0.29153 0.82160 0.80991
-1 -0.01442 1.19927 0.29681 0.81539 0.81104

Max Likelihood -0.00652 1.21847 0.29476 0.80750 0.80042
+1 0.00138 1.22956 0.29371 0.80025 0.79182
+2 0.00928 1.24425 0.28979 0.79459 0.78094

Alens ∈ [0.0, 10.0]

αs ∈ [−1.0, 1.0]

I then select values for αs and the other important cosmological parameters, including

Alens this time, in the same way as that described in Section 2.2. The results on the

1D density distribution for αs are shown in Fig. A.2, with the effects on other key

parameters for LSS shown in Table A.2. Looking at Fig. A.2, it can be seen that

when allowing Alens to also be free, the mild preference for a negative running value is

maintained, although the maximum likelihood value is shifted slightly closer to 0.

As allowing Alens to be free does not drastically impact the resultant values for αs one

would simulate, I focus this study on the one parameter extension to ΛCDM where I

only allow αs to vary.

Finally in this section I show in Fig. A.3 the redshift evolution of the fractional change

in halo mass. This helps explain the results which were seen in the redshift evolution

of the HMF (Fig. 2.7).
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Figure A.3: The fractional change in halo mass for a matched set of haloes across the 5 different
cosmologies for 3 separate redshifts (indicated in the top-left corner of each panel). This shows
that a halo in a negative running cosmology is more massive than it would be in a no-running
cosmology, with this effect amplified with redshift. Conversely a halo in a positive running
cosmology is more massive at the present day, but less massive as you go back in redshift.

A.2 Approximate Methods

Although a systematic exploration of the effects a running scalar spectral index on

LSS in the Universe using large cosmological hydrodynamic simulations has not been

conducted, research has gone into the effects of running using semi-analytic models

(e.g. Fedeli et al. (2010)). Here, I explore how well these approximate methods work

in reproducing the HMF, and the redshift evolution of dark matter haloes.

A.2.1 Halo mass function

First, I look at how well the prescription for the HMF provided in Tinker et al. (2008)

(T08) is able to describe the HMF that I measure for the 5 separate cosmologies from

the simulations. The resultant plot can be seen in Fig. A.4, which shows the HMF at

three separate redshifts generated using the prescription of T08, represented with the

different curves. Also shown is the actual HMF measured from the simulations. Note

that here, I plot the HMF as a function of M200,mean instead of M200,crit as was done

previously. Here M200,mean describes the mass enclosed in a spherical overdensity,



A.2. Approximate Methods 174

10−5

10−4

10−3

10−2
φ

[M
p

c−
3
h

3
d

ex
−

1
] z = 0

z = 1

z = 2

Simulation

no-running

−2σ

−1σ

Planck-ML

+2σ

1.0

1.2

R
at

io

z = 0

1.0

1.2

R
at

io

z = 1

1012 1013 1014 1015

log10[M200mean (M�h−1)]

0.8

1.0

1.2

R
at

io

z = 2

Figure A.4: Top: the halo mass function (HMF) for the 5 separate cosmologies looked at in this
study. Here, the lines represent the halo mass function calculated according to the Tinker et al.
(2008) prescription, with the linestyles indicating the different redshifts for which the HMF
was computed. Also shown in this plot is the HMF measured from the simulations themselves,
indicated by the crosses. Note that here, unlike the HMF shown in Fig. 2.7, the HMF is plotted
in terms of M200,mean and not M200,crit. The bottom panel shows the HMF normalised with
respect to the αs = 0 case, for each respective method, at each redshift. It can be seen that
the Tinker et al. (2008) HMF reproduces the effects due to a running scalar spectral index
remarkably well.
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whose radius contains an overdensity equal to 200 × the mean density of the Universe

(ρcΩm). The bottom panel of this plot shows the HMFs normalised with respect to the

αs = 0 model, for each case, and at each redshift. This plot shows that the T08 HMF

can reproduce the measured HMF remarkably well at z = 0, 1, 2. There is a hint from

the top plot that there is a slight under prediction of the number of high-mass haloes at

z = 2, but the relative effect shown in the bottom panel is almost perfectly reproduced.

It is important to highlight that, the above T08 mass function was computed by using

the linear matter power spectrum output using CAMB to compute the mass variance

σ(M). Off the shelf packages such as HMFCALC2 are not able to reproduce the ob-

served HMF, due to the fact that they are hardwired to use the transfer function when

computing the power spectrum at a certain redshift, with their primordial matter power

spectrum assuming a constant power law.

A.2.2 Mass accretion histories

I now look at the effects a running scalar spectral index has on the the evolution of dark

matter haloes. I do this using the method developed by Correa et al. (2015b) (see also

Correa et al., 2015c,a) to reproduce the mass-accretion histories of haloes, along with

the concentration-mass relation.

I used a slightly modified version of the python package developed by Correa et al.

(2015b): COMMAH3. I modify it to account for a running scalar spectral index in its

calculation of the z = 0 linear matter power spectrum. Following Correa et al. (2015a),

I also calculate a value for Acosmology, for each cosmology in order to compute the c-M

relation.

The redshift evolution of halo mass can be seen in Fig. A.5. Here the dashed curves

show the result obtained using the modified COMMAH code, with crosses representing

the evolution of halo mass with redshift computed from the actual simulations. To

compute this, I choose haloes in a narrow mass bin centered on the desired redshift 0

2http://hmf.icrar.org/
3https://bitbucket.org/astroduff/commah/src/master/

http://hmf.icrar.org/
https://bitbucket.org/astroduff/commah/src/master/
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mass. I then find that halo’s progenitor at each snapshot up to z = 3. This is done by

matching the 50 most bound particles from the z = 0 halo, and selecting the halo at

each redshift which contains the most of these particles. It can be seen that there is a

qualitatively good agreement between the simulation’s result and that predicted using

COMMAH. The bottom panels on this plot show the predicted redshift evolution of three

haloes of different mass, normalised with respect to the no-running evolution for that

mass. It can be seen that the introduction of a running spectral index affects how

these haloes evolve. For example, the −2σ cosmology predicts a 1015M� halo to be

around 10% more massive at z = 3, compared with a no-running cosmology. Whereas,

for that same cosmology, a 1013M� is near 5% under-massive compared with a no-

running cosmology. This general trend agrees with the mass-dependent effects seen in

this study for the HMF. It also implies that the MAH of these objects are going to be

different, which I examine next.

The predicted MAH for the same set of halo masses as examined previously is shown

in Fig. A.6. The bottom panels in this plot show the MAH for the 5 cosmologies,

normalised with respect to the result in the no-running cosmology at that mass. This

result helps explain Fig. A.5. For example, looking at the 1015M� halo’s MAH, it can

be seen that for the −2σ cosmology, it accretes a lot of its mass at early times, causing

it to be more massive earlier on. Conversely, in the positive running cosmology, it has

a steady incline in its mass accretion rate, compared with the no-running cosmology,

and has a higher accretion rate at present. This allows haloes of this mass, in a positive

running cosmology, to start with a smaller seed mass, compared to no-running. Sim-

ilarly, for the 1013M� halo, for all negative running cosmologies, M(z) is lower than

the no-running prediction, but this is made up for, by an increase in the MAH of these

haloes as z approaches 0.

Finally, I show the predicted halo concentration-mass relation for these 5 separate cos-

mologies in Fig. A.7. The bottom panel shows the halo concentration-mass rela-

tion normalised with respect to the no-running cosmology. Qualitatively, the results

are similar to what was found from the simulations. For example, a positive run-

ning cosmology predicts all haloes in the mass-range examined here to have a higher
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Figure A.5: Evolution of halo mass, with redshift. Top: the dashed lines here indicate the
predicted M(z). The crosses show the results obtained directly from the simulations. The
general trend of these results are in qualitative agreement. Bottom: the ratio of the COMMAH
predicted M(z), with respect to the no-running cosmology, for three separate halo masses,
indicated in each panel. It appears to show again, that a running scalar spectral index has a
mass dependent effect on haloes. With larger-mass haloes being more massive at early times
in a negative running cosmology, and lower-mass haloes, less massive. This effect is reversed
somewhat for the positive running cosmology.
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Figure A.6: Mass accretion histories (MAHs) predicted using the slightly modified version of
the COMMAH python package for 3 different halo masses for each cosmology examined here.
Top: MAH predicted for 3 different halo masses, indicated above each curve. The bottom
panels how the MAH of each halo normalised to its respective no-running counterpart. How a
halo forms in a cosmology which has a running scalar spectral index depends on both the sign
and magnitude of the running, along with the mass of the object.
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concentration, compared to the no-running cosmology. Alongside lower-mass haloes

(M . 2 × 1013M�) having lower concentrations in a negative running cosmology.

However, whereas in the simulations all haloes above M ≈ 1014M� were found to

have higher concentrations, here they are predicted to have slightly lower concentra-

tions, with the results converging towards (but not exceeding) the no-running predic-

tion at the high-mass end.
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Figure A.7: The halo concentration-mass relation for the different running cosmologies pre-
dicted using the slightly modified COMMAH python package. The bottom panel of this plot
shows the result normalised with respect to the no-running cosmology. A negative running
cosmology is predicted to have less concentrated lower-mass haloes, whereas a positive run-
ning yields higher concentrations. This is in qualitative agreement to the results found in this
study (see Fig. 2.12). Conversely, for larger-mass haloes only a positive running cosmology
predicts higher concentrations, whereas it was found in this study that all cosmologies with a
non-zero running spectral index had higher concentrations compared to the no-running result.



Appendix B

This appendix contains all of the material from the appendices of Stafford et al. (2020b)

copied verbatim.

B.1 Convergence tests

Here I determine the mass and maximum circular velocity limits for the subhaloes that

I include in the statistics examined in this paper.

I examine the Msub-Vmax relation, shown in Fig. B.1, for two different resolution levels.

Following Boylan-Kolchin et al. (2010), I fit a power-law to this relation of the form:

log10

(
Msub [M� h−1]

)
= 11.04 + 3.38 log10

(
Vmax

100 km s−1

)
, (B.1)

which is shown as crosses in the plot. It can be seen that the higher-resolution simu-

lations used throughout this study follow the power-law down to a Vmax ≈ 15 km s−1

(≈ 3 × 108 M� h−1), before the turn-up indicative of resolution effects. The same

effect is seen in the lower-resolution simulation, but at a lower value for Vmax ≈ 28

km s−1. In addition, I plot the subhalo mass function, shown in Fig. B.2, for both cen-

trals and satellites, for two tiers of resolution. Here, I examine at what particle limit

does the subhalo mass function in the lower-resolution simulation start to significantly

differ from the higher-resolution simulation. This is illustrated in the bottom panel of

this figure, which shows the ratio of the lower-resolution simulation, with respect to

181
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Figure B.1: Msub-Vmax relation for subhaloes in simulations ran at two different resolution
levels indicated by colour. These simulations correspond to the reference cosmology used
through this study. The green crosses correspond to the power-law fit calculated using equation
B.1, as done in Boylan-Kolchin et al. (2010). The vertical dashed lines correspond to the
resolution limit for these simulations, beyond which numerical effects become important. The
shaded regions show the 16th and 84th percentiles.
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Figure B.2: Top: the subhalo mass function for two different resolution tiers (indicated by
colour). The solid line corresponds to this quantity calculated for centrals, with the dashed line
corresponding to satellites. Bottom: the above result normalised with respect to the result in the
higher resolution simulation. The vertical dashed line corresponds to the lower-mass limit for
each simulation, calculated using the mass at which the lower-resolution simulation diverges
from the higher-resolution case.
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the higher-resolution simulation. I place a conservative lower-limit on the number of

particles, for which I deem this quantity to be converged, which is indicated by the

vertical dashed lines, and corresponds to subhaloes containing at least 200 particles.

This corresponds to a mass-limit of 2.5 × 108 M� h−1. Therefore, throughout this

paper, I only select subhaloes with Msub > 5 × 108 M� h−1, and Vmax > 15 km s−1,

satisfying both convergence tests.

As mentioned in the main text, it was shown by Wang and White (2007) that spuri-

ous fragmentation of filaments is a significant problem in WDM simulations due to

discreteness effects. They derived an empirical mass cut to remove these spurious

objects: Mlim = 10.1ρdk−2
peak, where ρ is equal to the mean density of the universe

(Ωmρcrit), d is the mean inter-particle separation, and kpeak is equal to the maximum

of the dimensionless linear theory matter power spectrum (∆2(k) = k3P (k)/(2π2)).

Therefore, I show in Fig. B.3 the cumulative abundance of haloes above a certain mass

M , with this mass limit shown with a vertical dashed line. I plot this for both of the

WDM models simulated as part of this study, at two different resolutions, illustrating

the resolution dependence of this effect. The resultant mass-cut advised is equal to ≈
(0.5, 2)×108 M� h−1 for the the MWDM = 5.0, 2.5 keV cosmologies respectively. Both

of these mass limits lie below the resolution cut I derived above. I therefore do not

need to make an additional cut for the WDM simulations.

One additional note worth mentioning here is the apparent lack of spurious haloes in

the lower-resolution simulation, which at first sight seems to contradict the expectation

that they should be more prevalent at lower resolution. However, the reason for this

behaviour is that the WDM models which I explore have a cut-off in their initial matter

power spectrum that results in a sufficiently large kpeak that the spurious halo mass limit

is barely resolved in the lower resolution simulation. For example, Mlim corresponds

to ≈ 10 (40) particles for the MWDM = 5.0 keV (2.5 keV) model. As such, the vast

majority of these haloes will not be identified as FoF groups (I require there to be at

least 20 particles in identified FoF groups), which is why the characteristic turn up in

the mass function is not seen for the lower-resolution simulations.
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Figure B.3: Top: cumulative abundance of subhaloes above a mass M for the different WDM
cosmologies, along with the reference cosmology. Bottom: the above result normalised with
respect to the reference simulation. The vertical dashed lines indicate the mass cut advocated
by Wang and White (2007) for the two different WDM models.



Appendix C

This appendix contains all of the material from the appendices of Stafford et al. (2021)

copied verbatim.

C.1 Resolution and box size study

In Section 4.2.3 I detail my method for constructing the non-linear matter power spec-

trum spanning a large range of k-modes, which is done using the ratio of the matter

power spectrum extracted from the numerical simulations with respect to the result

from the ΛCDM simulations. As I show here, splicing ratios of power spectra, rather

than absolute power spectra, is more robust to changes in resolution and box size. I do

this using an additional sub-suite of simulations, examining the running spectral index

cosmological extensions, which consists of various box sizes and resolutions. Firstly,

there are two setups which are used in the analysis detailed in the paper, which have

box sizes of 25 and 400 h−1Mpc, each with 10243 particles. I then compare the non-

linear matter power spectrum extracted from these simulations to that extracted from

simulations which are a step down in resolution. These simulations are 25 and 100

h−1Mpc on a side and have 5123 and 2563 particles respectively. Thus, this allows us

to explore the effects of both box size and resolution on both the absolute matter power

spectrum and the ratio with respect to ΛCDM.

Fig. C.1 shows the non-linear matter power spectrum for two running of the spectral

index models. In the left panel I show how the simulation box size affects the absolute

186
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Figure C.1: Testing how both box size and resolution affect the ratios of the power spectrum
extracted from a cosmology with a running spectral index with respect to the ΛCDMresult.
Left panels show the results for fixed resolution and varying box size, while the right panels
show the opposite. The top panel in each case shows the absolute power spectra at z = 0.
The three sub-panels below show the ratio as a function of redshift. The ratio is com-
puted with respect to the power spectrum from the ΛCDM simulation with the same
box size and resolution as in the running spectral index case. The ratio of the power
spectra appears to be well converged for the various box sizes and resolutions examined
here which motivates us to combine the ratios over the extended k−scale, as described
in Section 4.2.3, rather than the absolute power spectra.
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power spectra (top) and the ratio with respect to a complementary ΛCDM simulation

of the same box size (bottom), both at fixed resolution. In the right panel, I show how

resolution affects these two statistics at fixed box size. Therefore, it is important to

note that when comparing the solid to dashed lines (or dotted) in the bottom panels,

both the numerator and denominator have changed. Comparing the different linestyles

allows us to assess the convergence of the ratio of power spectra from the running

cosmologies with respect to a ΛCDM power spectrum as a function of varying box

size at fixed resolution, or vice versa.

One can see that while the absolute power spectra tend to disagree with each other on

the largest scales sampled in the box, the ratio is a much better converged quantity. This

is particularly relevant for the smaller volume boxes, where the size of the simulations

cause an almost order of magnitude suppression in the matter power spectrum on the

largest scales sampled by the simulated volume (comparing the simulation curves to

the HALOFIT curve). Conversely, if I compare the ratios at a k−scale of around 10

hMpc−1, one can see that these agree to within a few percent across the varying box

sizes and resolutions.

C.2 Analytic error on cross power spectra

As discussed in Section 4.3.1, there are two sources of error associated with measure-

ments of the cosmic shear power spectrum (ignoring other systematic errors which ex-

ist such as intrinsic alignment errors), these being cosmic variance and Poisson noise.

It is commonplace to assume that Poisson noise only affects the uncertainty in the au-

tocorrelation power spectrum. However, as I show here, cross-power spectra can still

have a significant Poisson noise term.

As shown in Fig. 4.3, I find there to be a significant difference in the error bars on

small angular scales (large multipoles) when comparing equation 4.10 to the error bars

I derive from synthetic weak lensing maps using FLASK. The level of disagreement

between the two sets of error bars is more clearly illustrated in Fig. C.2, which shows
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result being the same for the rest). The black line shows the result when one includes a pre-
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on the auto/cross-correlation power spectrum, i.e. computed using equation 4.15, with the red
line being the result if one does not, i.e. computed using equation 4.10.
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the ratio of the errors extracted directly from the FLASK power spectra to the errors

computed using equation 4.10. Note that for clarity I only show here the result for the

bottom three panels of Fig. 4.3, although the results presented here is true for the other

auto- and cross-correlation spectra. This shows how well the two sets of errors agree

with one another in the case of the autocorrelation power spectra, whereas, examining

the red curve in the cross-correlation power spectrum panel, the error bars diverge

significantly at high multipoles, due to equation 4.10 having no treatment for Poisson

noise on the cross-correlation power spectrum.

The fiducial error associated with the cosmic shear power spectrum (shown in equation

4.10) is unable to capture the residual error which exists on the cross-correlation power

spectrum. This motivates us to produce a more general formula which is able to capture

this residual error without having to rerun FLASK for each possible tomographic setup.

For this reason, I have run a set of FLASK noise-only realisations (with the weak

lensing signal due to gravity removed) to derive a functional form for the residual

Poisson noise error on the cross-correlation power spectrum. The maps were produced

using the same tomographic setup described in Section 4.4.1, for varying levels of

the source density of galaxies. In total I produced four sets of realisations sampling:

ns = 15, 30, 45, 60 galaxies/arcmin2, with each set having 100 realisations of each

tomographic bin. I then computed the auto- and cross-correlation power spectra of

these maps, along with cross-correlation power spectra of maps with varying source

densities (to test the case where two tomographic bins may not have the same effective

number density of galaxies).

I find that an additional term, which only contributes to the cross-correlation power

spectrum, is required. See equation 4.15. This term includes a multiplicative com-

bination of the two effective source densities in each tomographic bin and is able to

reproduce the additional error on the cross exceptionally well. This is illustrated again

in Fig. C.2 in the cross-correlation power spectrum panel (top left), where the black

line now shows the ratio of the theoretical error bars, now computed using equation

4.15, with the error bars extracted from FLASK. Note that here I show the results from

the full analysis (i.e., including an intrinsic lensing signal, as well as the noise). Note
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that the slight disagreement which exists between the errors on large angular scales is

strongly dependent on the sky coverage of the survey. I computed this same test where

I had a EUCLID-like galaxy sample, but a full sky survey and this brought the errors

into excellent agreement even at low multipoles.
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Andrea V. Macciò, Sinziana Paduroiu, Donnino Anderhalden, Aurel Schneider, and

Ben Moore. Cores in warm dark matter haloes: a Catch 22 problem. MNRAS, 424

(2):1105–1112, August 2012. doi: 10.1111/j.1365-2966.2012.21284.x.

Shi Shao, Liang Gao, Tom Theuns, and Carlos S Frenk. The phase-space density of

fermionic dark matter haloes. MNRAS, 430(3):2346–2357, 2013. ISSN 00358711.

doi: 10.1093/mnras/stt053.

Juan Garcia-Bellido and Diederik Roest. Large- N running of the spectral index of

inflation. PRD, 89(10), 2014. ISSN 15502368. doi: 10.1103/PhysRevD.89.103527.

Nathalie Palanque-Delabrouille, Christophe Yèche, Nils Schöneberg, Julien Lesgour-
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E. Majerotto, K. Markovič, M. Martinelli, V. Pettorino, A. Pourtsidou, Z. Sakr,

A. G. Sánchez, D. Sapone, I. Tutusaus, S. Yahia-Cherif, V. Yankelevich, S. An-

dreon, H. Aussel, A. Balaguera-Antolı́nez, M. Baldi, S. Bardelli, R. Bender, A. Bi-

viano, D. Bonino, A. Boucaud, E. Bozzo, E. Branchini, S. Brau-Nogue, M. Bres-

cia, J. Brinchmann, C. Burigana, R. Cabanac, V. Capobianco, A. Cappi, J. Car-

retero, C. S. Carvalho, R. Casas, F. J. Castander, M. Castellano, S. Cavuoti,

A. Cimatti, R. Cledassou, C. Colodro-Conde, G. Congedo, C. J. Conselice, L. Con-

versi, Y. Copin, L. Corcione, J. Coupon, H. M. Courtois, M. Cropper, A. Da Silva,

S. de la Torre, D. Di Ferdinando, F. Dubath, F. Ducret, C. A. J. Duncan, X. Du-

pac, S. Dusini, G. Fabbian, M. Fabricius, S. Farrens, P. Fosalba, S. Fotopoulou,

N. Fourmanoit, M. Frailis, E. Franceschi, P. Franzetti, M. Fumana, S. Galeotta,

W. Gillard, B. Gillis, C. Giocoli, P. Gómez-Alvarez, J. Graciá-Carpio, F. Grupp,
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Claude-André Faucher-Giguère, Andrew Wetzel, and Dušan Kereš. Dwarf galaxies
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