
Criado, N, Such, JM and Botti, VJ

 Norm reasoning services

http://researchonline.ljmu.ac.uk/id/eprint/162/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Criado, N, Such, JM and Botti, VJ (2014) Norm reasoning services.
Information Systems Frontiers, 16 (2). pp. 201-223. ISSN 1387-3326

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Noname manuscript No.
(will be inserted by the editor)

Norm Reasoning Services

N. Criado · J.M. Such · V. Botti

the date of receipt and acceptance should be inserted later

Abstract Norms are used in open Multi-Agent Systems as a formal specification
of deontic statements aimed at regulating the actions of agents and the interactions
among them. In this paper, we propose a set of services facilitating the development
of both non-normative and normative agents for norm-governed MAS. Specifically,
we propose to provide agents with norm reasoning services. These services will help
agent designers/developers to programme agents that consider norm reasoning
without having to implement the needed mechanisms to reason about norms by
themselves. This article shows how these services perform as well as the results of
the experiments that we conducted to evaluate their performance.

Keywords: norms, services, agents.

1 Introduction

The main feature of open Multi-Agent Systems (MAS) is that they are populated
by heterogeneous agents, which can enter and leave the system dynamically. These
heterogeneous agents may have been designed independently, according to different
goals, and no assumption about their behaviours can be made [2]. To ensure social
order and avoid potential conflicts, norms are used in open MAS as a formal
specification of deontic statements aimed at regulating the actions of agents and
the interactions among them [32].

A great amount of research has been conducted to support the use norms in
open MAS [8]. For example, there are works aimed at: allowing system designers to

N. Criado
University of Bolton, UK,
E-mail: ncriado@bolton.ac.uk

V. Botti
DSIC, Universitat Politècnica de Valencia, Spain,
E-mail: vbotti@dsic.upv.es

J.M. Such
School of Computing and Communications, Lancaster University, UK,
E-mail: j.such@lancaster.ac.uk

2 N. Criado et al.

define and represent the norms that regulate a particular application [30], control-
ling norms inside specific agent platforms [26], and proposing norm-autonomous
agent architectures [4] that are endowed with norm reasoning capabilities. Norms
have also been used in MAS to coordinate the activities of heterogeneous agents
that participate in auctions modelled as Electronic Institutions [16]. Norms have
also been applied into MAS used for social simulation purposes, e.g., in [21] Gar-
rido et al. have applied norms in a MAS that simulates a water-right market, the
basin, users, regulations and grievance situations. Moreover, norms have been ap-
plied to MAS to develop assistant agents to which humans can delegate tasks that
are regulated by legal and social norms [12].

In the existing literature on norms and MAS, agents are classified as normative,
when their behaviour is influenced by norms that are explicitly represented inside
its mind; and as non-normative, when they are not endowed with capabilities for
considering norms. There are different types of normative agents according to the
norm reasoning capabilities that they have. Specifically, normative agents [7] are
endowed with some of the following capabilities for: acquiring and recognising the
norms that are in force (i.e., applicable) in their environment [1,7]; determining
whether a norm concerns their case and it is relevant to them [23]; and making
decisions about norm compliance [10]. In contrast, non-normative agents do not
take norms into account. This does not imply that non-normative agents do not
comply with norms. In fact, they may comply with norms unintentionally.

As previously mentioned, norms are needed in open MAS to control and co-
ordinate the behaviour of heterogeneous agents. As the designers of open MAS,
we cannot know a priori which are the capabilities for reasoning about norms of
the agents that will join the MAS. Therefore, supporting different levels of norm
reasoning capabilities is of crucial importance to ensure social order in open MAS.
Agent platforms are the software that supports the development and execution
of MAS. Thus, agent platforms should not only provide support for monitoring
and controlling norms, but they should also facilitate non-normative as well as all
kinds of normative agents to participate inside norm-governed open MAS.

In this paper, we propose a set of norm reasoning services. These services range
from simple services that inform about the norms that are in force at a given
moment, so that normative agents with capabilities for reasoning about norm
relevance of norms and norm compliance can decide which norms are relevant to
them and which ones they want to obey, to more elaborated services that allow
agents to known which are the normative goals that they should pursue, allowing
non-normative agents to behave accordingly to norms.

For example, a virtual assistant agent that imitates the behaviour of a human
seller must be endowed with capabilities that allow it to participate in different
and, even unknown, e-markets such as eBAY1 or Amazon2. Each e-market has its
own norms that define the protocols; e.g., the process by which purchase contracts
are formalised, how transactions are fulfilled, the mechanism that must be used to
sanction contract violations, etc. As a consequence, the virtual assistant agent re-
quires capabilities for reasoning about norms and knowing the specific mechanisms
and protocols by which the trading operations are performed in each market. Over

1 http://www.ebay.com
2 http://www.amazon.com

http://www.ebay.com
http://www.amazon.com

Norm Reasoning Services 3

the course of this paper, we will use a running example of an e-market to illustrate
and motivate the need for the norm reasoning services that we propose.

It is important to note that agents are not forced to use the norm reasoning
services. Instead, they can decide (i.e., they are autonomous) whether they make
use of the services or not. For instance, agents that want to follow the norms but
do not know the norms that regulate their environment a priori may be interested
in a service that provides information about the norms that are in force. Similarly,
agents that want to follow the norms but are not endowed with mechanisms for
interpreting and reasoning about them may be interested in using more elaborated
services that suggest them how to behave. In contrast, agents that ignore the norms
or agents that are fully capable of reasoning about the norms may not be interested
in using our services. Clearly, this has also very important implications from the
point of view of agent designers. In particular, agent designers can decide that their
agents make use of our proposed services (i.e. outsourcing either part or the whole
of their capabilities to reason about norms) or not (i.e., programming the norms
in the agents’ code, endowing agents with capabilities for reasoning about norms
or even programming agents that ignore norms). Obviously, coordination among
interacting agents is achieved when there is a common point of view of norms
governing that interaction. To prevent agents from ignoring norms and persuade
them to either reason about norms or use our norm reasoning services, a norm
enforcing architecture, such as the one described in [11], can be put in place.

This paper is structured as follows: Section 2 contains a brief description of
related works; Section 3 briefly describes Magentix2; Section 4 describes the norm
reasoning services; Section 5 provides an evaluation of the norm reasoning services;
and Section 6 contains a brief conclusion and future work.

2 Related Work

Traditionally, two different approaches have been considered for establishing norms
in agent societies [33]. On the one hand, the top-down approach, where the system
designer defines the normative system statically off-line as in Electronic Institu-
tions [16], or norms are created dynamically on-line by some agent that acts as a
leader or a norm recommender [25]. On the other hand, the bottom-up approach,
which analyses how norms can emerge inside a group of agents [6]. In this ap-
proach norm has emerged when it is followed by a considerable portion of the
society without being previously created. Therefore, agents recognise norms based
on their observations3.

Our proposal is based on the top-down approach. Thus, we assume that there
is an explicit set of norms that specifies how agents should behave. In particu-
lar, norms may be created off-line by the system designer or on-line by an agent
empowered to change the normative system.

The idea of providing agents with normative information or services in sys-
tems following the top-down approach is not new. In [17], Felićıssimo et al. propose
a solution for continuously supporting agents with updated norm information. In
the proposal of Felićıssimo et al. the scope of norms is defined using contexts.
Therefore, agents are provided with information about the norms that are in force

3 See [33] for a review of works on the recognition of norms.

4 N. Criado et al.

in their current context. Similarly, in [28] Okuyama et al. propose the definition of
normative objects that allow agents to be informed about the norms that regulate
their context. However, these two solutions do not provide agents with information
about norm dynamics (i.e., the activation and expiration of norms), norm compli-
ance and norm judgement. Therefore, these functionalities must be implemented
by agent programmers at the agent level.

Other solutions that provide agents with normative information are based on
the use of normative artifacts. Artifacts are resources and tools that agents can cre-
ate and use to perform their individual and social activities [29]. For example, the
ORA4MAS [22] proposal defines artifacts as first-class entities to instrument multi-
agent organisations to support agent activities within them. In the ORA4MAS the
monitoring of norms has been implemented by means of artifacts, which detect
norm violations; and by means of agents, which are informed about norm viola-
tions and carry out the evaluation and judgement of these situations. Therefore,
the agent designers are responsible for programming agents endowed with capabil-
ities for performing these tasks. Finally, in [31] Piunti et al. propose that normative
artifacts provide a series of observable properties that can be inspected by agents
to know the actual normative state of the organisation. Therefore, agents are able
to know which norms are active at a given moment. Autonomous agents can use
this information to reason about whether to follow or not the norms that are
active.

Table 1 summarizes the performance of the proposals that provide agents with
normative information with respect to the specific information that they provide.
In particular, providing norm information consists of informing agents about the
norms that are in force. Providing norm relevance information means informing
agents about the instances that are relevant to the current situation. Providing
norm advice information consists of advising agents to make decisions on whether
or not to follow the instances that are relevant to them. Providing norm judgement
information entails the detection of norm violations and judging these situations.
As illustrated in this table, issues such as the provision of norm advice information

and norm judgement information have not been properly addressed by the existing
proposals. With the aim of meeting these pending requirements we propose in
Section 4 a set of norm reasoning services for allowing heterogeneous agents to
participate inside norm-governed open MAS. Specifically, the services proposed
in this paper are based on the organization and interaction support offered by
Magentix2. Next, the Magentix2 AP is briefly described.

3 The Magentix2 Agent Platform

Magentix2 is an agent platform for open MAS in which heterogeneous agents
interact and organize themselves into Virtual Organizations (VOs) [20]. VOs are
open systems formed by the grouping and collaboration among heterogeneous
entities. In VOs there is a separation between form and function that requires
defining how behaviour will take place [18]. VOs are social entities formed by
agents that try to achieve the organizational goals. These agents are organized in
groups that are controlled by norms.

Magentix2 is formed by different building blocks that provide support for VOs
at three levels:

Norm Reasoning Services 5

N
o
r
m

In
fo

r
m

a
t
io

n

N
o
r
m

R
e
le

v
a
n
c
e

In
fo

r
m

a
t
io

n

N
o
r
m

A
d
v
ic

e
In

fo
r
m

a
t
io

n

V
io

la
t
io

n
In

fo
r
m

a
t
io

n

J
u
d
g
e
m

e
n
t

In
fo

r
m

a
t
io

n

Felićıssimo et al. √
[17]

Okuyama et al. √
[28]

ORA4MAS √
[22]

Piunti √ √
[31]

Table 1 Summary of proposals on providing agents with normative information

– Organization level. Magentix2 provides access to the organizational infrastruc-
ture through the Organization Management System (OMS) [13], which is in
charge of the management of VOs, taking control of their underlying struc-
ture, the roles played by agents, and the norms that govern the VO.

– Interaction level. Magentix2 provides support to: agent communication, support-
ing asynchronous reliable message exchanges and facilitating the interoperabil-
ity between heterogeneous entities; agent conversations [19], which are auto-
mated Interaction Protocols; tracing service support [5], which allows agents in
a MAS to share information in an indirect way by means of trace events; and,
finally, Magentix2 incorporates a security module [34] that provides features
regarding security, privacy, openness and interoperability.

– Agent level. Magentix2 provides native support for executing Jason agents [3]
and conversational agents [19] that carry out simultaneous conversations.

Norms define what is considered as permitted, forbidden or obligatory in an
abstract way. However, norm compliance must be controlled considering the ac-
tions and messages exchanged among agents at the interaction level. Magentix2
fills the gap between the organizational level, at which norms are registered by
the OMS; and the interaction level, at which actions and communications occur,
through a norm-enforcing architecture, named MaNEA [11]. MaNEA is responsible
for sanctioning agents that violate norms and rewarding norm compliance. Thus, it
can be used in conjunction with our Norm Reasoning Services (NRSs) to persuade
agents to comply with norms. However, not all agents in a MAS are endowed with
norm reasoning capabilities. For agents with different norm reasoning capabilities
we propose to extend Magentix2 with a set of NRSs. Specifically, we aim at filling
the gap between the organizational level, at which norms are defined; and the
agent level, at which norms must be considered before taking action. Next, the
tracing service and the storage of norms, provided by the OMS, are described.

6 N. Criado et al.

3.1 Tracing Service

In order to facilitate indirect communication (i.e., indirect ways of interaction and
coordination), Magentix2 provides the Tracing Service Support [5]. This service
is based on the publish/subscribe software pattern, which allows subscribers to
filter events satisfying the values of some attributes (content-based filtering), so
that agents only receive the information in which they are interested and only
requested information is transmitted. In addition, security policies define which
entities are authorized to receive which specific events. These tracing facilities are
provided by a set of components named Trace Manager (TM). There can be three
types of tracing entities (i.e., those elements of the system capable of generating
and/or receiving events): agents, services or groups of agents.

A trace event or event is a piece of data representing an action, message ex-
change or situation that has taken place during the execution of an agent or any
other component of the MAS. Generic events, which represent application inde-
pendent information, are instrumented within the code of the platform. Application

events are domain dependent information.

Definition 1 (Event) An event e is defined as a tuple e = 〈Type, T ime,Origin,Data〉,
where:

– Type is a constant that represents the nature of the information represented
by the event;

– T ime is a numeric value that indicates the global time at which the event is
generated;

– Origin is a constant that identifies the tracing entity that generates the event;
– Data = ψ1 ∧ ... ∧ ψn is a conjunction of possibly negated first-order grounded

atomic formulae that contains extra attached data required for interpreting
the event.

Trace events can be processed or even combined to generate compound trace
events, which can be used to represent more complex information.

Any tracing entity is provided with mail boxes for receiving or delivering events
(EIn and Eout). Entities that want to receive certain trace events request the sub-
scription to these events by sending to the TM a subscription event that contains
the template of those events they are interested in.

Definition 2 (Template) A template t is a tuple t = 〈Type,Origin,Data〉 that
contains the filtering specified criteria for events, where:

– Type is a constant that represents the nature of the information represented
by the event;

– Origin is a constant that identifies the entity that generates the event;
– Data = ψ1 ∧ ... ∧ ψn is a conjunction of possibly negated first-order atomic

formulae that may contain free variables.

Let us consider the standard notion of substitution as a finite and possibly
empty set of pairs X/y where X is a variable and y is a grounded term. Let us also
define the application of a substitution σ as:

1. σ(c) = c if c is a constant.
2. σ(X) = y if X/y ∈ σ; otherwise σ(X) = X.

Norm Reasoning Services 7

3. σ(ψ1 ∧ ... ∧ ψn) = σ(ψ1) ∧ ... ∧ σ(ψn).
4. σ(〈ρ0, ..., ρn〉) = 〈σ(ρ0), ..., σ(ρn)〉

Therefore, the application of a substitution on a template is defined as follows:

σ(〈Type,Origin,Data〉) = 〈Type,Origin, σ(Data)〉

since Type and Origin take constant values.
According to the definitions of events and templates the matching relationship

between events and templates is defined as follows:

Definition 3 (Matching Function) Given an event e = 〈Type, T ime,Origin,Data〉
and a template t = 〈Type′, Origin′, Data′〉, their matching is a boolean function
defined as follows:

matching(e, t) =

true if (Type = Type′)∧

((Origin = Origin′) ∨ (Origin′ is undefined))∧
(∀ψi : Data′ ` ψi ∧Data ` ψi)

false otherwise

Definition 4 (Unification Function) Given an event e and a template t, their
unification is a boolean function defined as follows:

unification(e, t) =

true if exists a substitution of variables σ such that

matching(e, σ(t)) is true

false otherwise

3.2 Organization Management System (OMS)

The Organization Management System (OMS) [13] is responsible for the manage-
ment of VOs and their constituent entities. The OMS provides a set of services:
structural services, which comprise services for adding/deleting norms (regis-

terNorm and deregisterNorm services allow entities to modify the norms that are
in force or applicable within a VO), and for adding/deleting roles and groups;
informative services, which provide information of the current state of the or-
ganization; and dynamic services, which allow agents to enact/leave roles inside
VOs (acquireRole and leaveRole services). Moreover, agents can be forced to leave
a specific role (expulse service). When the OMS carries out any of these services
successfully, then it generates an event for informing about the changes produced
in the VO.

3.2.1 Virtual Organization Model

VOs have been employed as an abstraction for modelling open MAS. VOs include
the integration of organizational and individual perspectives and also the dynamic
adaptation of models to organizational and environmental changes [15]. In [9] the
model of VO considered by the OMS is described in detail. It is based on the
Human Organization Theory [14] and classifies the main aspects of a VO into four
dimensions as follows:

8 N. Criado et al.

– The Structural dimension, which describes components of the system and their
relationships. Thus, it describes the roles and groups that form a VO. Roles
allow dividing the VO functionalities in an abstract way. Groups represent the
context in which these activities take place.

– The Functional dimension, which describes the system functionality in terms
of the services provided by agents and groups.

– The Normative dimension, which describes the norms defined to control the
society members. Norms are a coordination mechanism that attempt to: (i)
promote behaviours that are satisfactory to the organization (i.e., actions that
contribute to achievement of global goals); and (ii) avoid harmful actions (i.e.,
actions that prompt the system to be unsatisfactory or unstable).

– The Environmental dimension, which describes the environment in terms of its
resources and how agents can perceive and act on them.

3.2.2 Norm Definition

According to the normative definitions provided in [30], in Magentix2 a distinc-
tion among norms and instances is made. Norms define patterns of behaviours
by means of deontic modalities: obligations, which define which actions or states of
affairs should be performed or satisfied by agents; and prohibitions, which define
which actions or states of affairs should not be performed or achieved. Magentix2
takes a closed world assumption where everything is considered as permitted by
default. Therefore, permissions are not considered in this paper, since they can be
defined as normative operators that invalidate the activation of an obligation or
prohibition. Therefore, norms define a pattern of behaviour (or norm condition in
our terminology) as obligatory or prohibited. This norm condition can be repre-
sented as actions to be performed or states of affairs to be achieved. In fact, we
make no sharp distinction between actions and states of affairs, since what in one
situation is best described as an action may be best described in another situation
as a state of affairs [24]. Also inspired by the representation of [30], we define
norms as conditional rules that are relevant to a set of agents under specific cir-
cumstances. Thus, the set of agents that is affected by a specific norm are the ones
that are playing the target role of this norm. Thus, norms represent the responsi-
bilities, rights and duties of roles. In general, norms are not applied at all times,
but include the notions of activation and expiration conditions. Specifically, the
activation condition defines when obligations and prohibitions must be instantiated
and must be fulfilled by all agents playing the target role. These instances remain
active, even if the activation condition ceases to hold. Specifically, the expiration

condition defines the validity period or deadline of an instance. Finally, inspired
by [24], norms also include information about the enforcement mechanisms: sanc-

tions, to punish agents that do not obey the norm and rewards, for rewarding norm
fulfilment.

Definition 5 (Norm) A norm n is defined as a tuple n = 〈id,D, T,A,E,C, S,R〉,
where:

– id is the norm identifier;
– D ∈ {F ,O} is the deontic modality of the norm, F represents prohibition and
O represents obligation;

– T is the target of the norm, the role to which the norm is addressed;

Norm Reasoning Services 9

– A is the norm activation condition, it defines under which circumstances the
norm is active and must be instantiated;

– E is the norm expiration condition that determines when the norm expires and
no longer affects agents;

– C is the norm condition that represents the action or state of affairs that is
forbidden or obliged;

– S and R describe the sanctioning and rewarding actions that will be carried
out in case of norm violation or fulfilment, respectively.

Since Magentix2 builds on the event tracing approach to monitoring, the conditions
A,E and C are expressed in terms of event templates.

As previously mentioned, the OMS provides agents with services for creating
and deleting norms on-line. Once norms have been registered they are in force or
applicable. Similarly, norms become deleted when they are unregistered. Figure 1
shows an overview of the norm life-cycle.

In Force DeletedregisterNorm deregisterNorm

Fig. 1 Norm life-cycle

As mentioned in the introduction of this paper, we will use an e-market ex-
ample which consists on an auction house that has been implemented as a VO in
Magentix2. Heterogeneous agents can enter or leave the auction house. To control
the system and avoid the potential excesses of malicious agents, this auction house

is regulated by a set of norms that define which are the rights and responsibilities
of each role in terms of obligations, prohibitions and permissions. For instance,
let us suppose the existence of norm n1 that forbids bidding for an item once the
auction corresponding to this item has been closed:

〈n1,F , buyer, 〈auctionEnd,−, item(I)〉, 〈auctionStart,−, item(I)〉,
〈bid,−, item(I)〉,−,−〉

According to norm n1 once the 〈auctionEnd,−, item(I)〉 event is sent, any agent
that enacts the buyer role is forbidden to bid for the item I. This prohibition expires
when the item I is auctioned again (i.e., when the 〈auctionStart,−, item(I)〉 event
is sent).

3.2.3 Instance Definition

When the activation condition of a norm holds; i.e., the activation event is de-
tected, then it becomes active and several norm instances (or instances for short)
are created, according to the possible groundings of the activation condition.

Definition 6 (Instance) Given a norm n = 〈id,D, T,A,E,C, S,R〉 and a perceived
event e, an instance i of n is the tuple i = 〈id′, D′, T ′, E′, C′, S′, R′〉, where:

– unification(e,A) is true, i.e., there is a substitution σ such thatmatching(e, σ(A))
is true (the norm is active);

– C′ = σ(C), E′ = σ(E), S′ = σ(S), and R′ = σ(R);

10 N. Criado et al.

– id′ = id,D′ = D and T ′ = T .

Figure 2 shows an overview of the instance life-cycle. Instances are active when
their activation conditions hold. Then, if the instance is an obligation and the norm
condition holds, then the obligation is fulfilled. On the contrary, if the instance
is a prohibition and the norm condition holds, then it is violated. Finally, when
the expiration condition of an instance is true or the norm that gives rise to the
instance is deleted, then the instance expires.

Active Fulfilledactivation condition norm condition Expiredexpiration condition
normDeletion

expiration condition | normDeletion

Violated

Fig. 2 Instance life-cycle

In our example, let us suppose that the event 〈auctionEnd,−, item(car)〉 is sent.
Thus, norm n1 will be instantiated as follows:

〈n1,F , buyer, 〈auctionEnd,−, item(car)〉, 〈auctionStart,−, item(car)〉,
〈bid,−, item(car)〉,−,−〉

Definition 7 (Instantiation Function) Given an event e = 〈Type, T ime,Origin,Data〉
and a norm n = 〈id,D, T,A,E,C, S,R〉, instantiation is a function that instantiates
norm n as follows:

instantiation(e, n) = 〈id′, D′, T ′, E′, C′, S′, R′〉

where: there is a substitution σ such that matching(e, σ(A)) is true; C′ = σ(C),
E′ = σ(E), S′ = σ(S), and R′ = σ(R); id′ = id,D′ = D and T ′ = T .

The operational semantics of norms and instances (i.e., how they are created,
deleted, fulfilled and violated) is described in [11].

4 Norm Reasoning Services

Norm Reasoning Services (NRSs) have been designed with the aim of allowing
both non-normative and normative agents (with different levels of norm reasoning
capabilities) to interact within norm-governed VOs4.

To provide their functionality, the NRSs require the existence of a Normative
Monitor (NM) that keeps track of VOs. Figure 3 shows an overview our proposal.
Specifically, the NM subscribes to those events that allow it to monitor the VOs.
As a result, the NM is informed by the OMS about norms that have been reg-
istered and deregistered and the enactment of roles. With this information the
NM observes the behaviour of agents and detects the activation and expiration of
instances. The information maintained by the NM is consulted by the norm rea-
soning services when they answer agent requests. This picture also illustrates the
use of MaNEA to persuade agents without norm reasoning capabilities to use the
NRSs. Specifically, this picture shows an agent without norm reasoning capabilities
that has been sanctioned.

4 Note that the NRSs are a set of related functionalities provided to agents. Thus, NRSs
cannot be modelled as agents since they are not autonomous goal-driven entities.

Norm Reasoning Services 11

NM

ac
qu

ire
R

ol
e

le
av

eR
ol

e
| e

xp
el

ex
pi

ra
tio

n
co

nd
iti

on
ac

tiv
at

io
n

co
nd

iti
on

OMS

RE
(role

enactment)

OMSNIS RIS NAS NJS
re

gi
st

er
N

or
m

de
re

gi
st

er
N

or
m

Norm Reasoning Services

re
qu

es
t

inf
orm

I
(instances)

N
(norms)

MaNEA

TM

ev
en

t

su
bs

cr
ip

tio
n

sanction

Fig. 3 NRSs architecture (ovals denote agents, cylinders denote lists or data stores, grey boxes
denote those components of Magentix2 that have a close relationship the NRSs (i..e, the OMS,
TM, and MaNEA). The white boxes denote the components we propose in this paper. Links
represent the exchanges of information between components and the agents.

4.1 Normative Monitor (NM)

The NM is responsible for monitoring VOs and providing NRSs with the informa-
tion that they require. Specifically, it maintains three lists that contain the set of
norms (N), instances (I) and the roles that are enacted by agents (RE) at a given
moment. Moreover, it records information that can be used to judge past actions.
Specifically, it maintains two log files: the log named LogI contains information
about the activation and expiration of instances, and the LogRE contains infor-
mation about which roles agents are playing (or played) at a given moment 5. To
maintain these lists and logs, the NM subscribes to the events sent by the OMS re-
lated to the creation and deletion of norms (i.e., registerNorm and deregisterNorm
events) and the enactment of roles (i.e., acquireRole, leaveRole and expel events).
Algorithm 1 illustrates the pseudocode of the control loop performed by the NM.
Each time the NM receives an event (e), it handles the event according to the event
type. The NM carries out a process that can be divided into three differentiated
tasks: norm management, instance management and role enactment management.

4.1.1 Norm Management

Algorithm 2 contains the portion of pseudocode corresponding to the norm man-
agement process. Any time the NM receives an event informing about the creation
of a new norm, then it adds this norm into its norm list and subscribes to the
event that activates the norm. When a norm is deregistered, then the NM removes

5 The lists and log files may be implemented as blackboards, a database that can be accessed
by the NRSs, or simply as files that are shared with the NRSs.

12 N. Criado et al.

Algorithm 1 Normative Monitor Control Loop
Require: Norm list N
Require: Instance list I
Require: Instance log LogI
Require: Role Enactment list RE
Require: Role Enactment log LogRE
1: Add 〈subscription,NM, 〈registerNorm,OMS,−〉〉 to EOut

//where NM stands for Norm Monitor
2: Add 〈subscription,NM, 〈deregisterNorm,OMS,−〉〉 to EOut

3: Add 〈subscription,NM, 〈acquireRole,OMS,−〉〉 to EOut

4: Add 〈subscription,NM, 〈leaveRole,OMS,−〉〉 to EOut

5: Add 〈subscription,NM, 〈expel, OMS,−〉〉 to EOut

6: while EIn is not empty do
7: Retrieve e from EIn // e = 〈Type, T ime,Origin,Data〉

//...
// Norm Management
//...
// Instance Management
//...
// Role Enactment Management

72: end while

it from its norm list. Moreover, it removes all instances that have been created out
of this norm. For each one of these deleted instances, the NM registers the expira-
tion of the instance in the corresponding log and unsubscribes from the expiration
event.

Algorithm 2 Norm Management

8: if Type = registerNorm then // Data = 〈id,D, T,A,E,C, S,R〉
9: Add Data to N

10: Add 〈subscription,NM,A〉 to EOut

11: end if
12: if Type = deregisterNorm and Data in N then // Data = 〈id,D, T,A,E,C, S,R〉
13: Remove Data from N
14: Add 〈unsubscription,NM,A〉 to EOut

15: for all i in I do // i = 〈id′, D′, T ′, E′, C′, S′, R′〉
16: if id′ = id then
17: Remove i from I
18: for all (i′, tIn, tOut) in LogI do
19: if i′ = i and tOut = null then
20: Remove (i′, tIn, tOut) from LogI
21: Add (i, tIn, T ime) to LogI
22: end if
23: end for
24: Add 〈unsubscription,NM,E′〉 to EOut

25: end if
26: end for
27: end if

4.1.2 Instance Management

According to Algorithm 3, when the activation event of a norm is received, then
the NM instantiates the norm and adds it to the instance list. At this moment, the

Norm Reasoning Services 13

NM registers the creation of the instance in the corresponding log and subscribes
to the expiration event. Similarly, when the NM receives the expiration event of
any instance, then it removes it from the instance list, unsubscribes from the
expiration event and registers the expiration of the instance in the log file.

Algorithm 3 Instance Management

28: for all n in N do // n = 〈id,D, T,A,E,C, S,R〉
29: if unification(e,A) then // the norm is active
30: i := instantiation(e, n) // i = 〈id′, D′, T ′, E′, C′, S′, R′〉 is an instance
31: if i not in I then
32: Add i to I
33: Add (i, T ime, null) to ILog
34: Add 〈subscription,NM,E′〉 to EOut

35: end if
36: end if
37: end for
38: for all i in I do // i = 〈id′, D′, T ′, E′, C′, S′, R′〉
39: if unification(e, E′) then
40: Remove i from I
41: for all (i′, tIn, tOut) in LogI do
42: if i′ = i and tOut = null then
43: Remove (i′, tIn, tOut) from LogI
44: Add (i, tIn, T ime) to LogI
45: end if
46: end for
47: Add 〈unsubscription,NM,E′〉 to EOut

48: end if
49: end for

4.1.3 Role Enactment Management

Algorithm 4 illustrates the pseudocode corresponding to the role enactment man-
agement process. Specifically, if the OMS informs that an agent (AgentID) has
acquired a new role (RoleID), then the NM updates the role enactment list and
the log file. When the OMS informs that an agent is not longer playing a role,
then both the role enactment list and log are updated.

Algorithm 4 Role Enactment Management

50: if Type = acquireRole then // Data is a pair (AgentID,RoleID)
51: Add Data to RE
52: Add (Data, T ime, null) to LogRE
53: end if
54: if Type = leaveRole or Type = expel then // Data is a pair (AgentID,RoleID)
55: Remove Data from RE
56: for all ((agentID, roleID), tIn, tOut) in LogRE do
57: if agentID = AgentID and roleID = RoleID and tOut = null then
58: Remove ((agentID, roleID), tIn, tOut) from LogRE
59: Add ((agentID, roleID), tIn, T ime) to LogRE
60: end if
61: end for
62: end if

14 N. Criado et al.

4.2 Norm Reasoning Services

Magentix2 allows heterogeneous agents to interact via FIPA-ACL messages. Sim-
ilarly, NRSs are provided with mail boxes for receiving or sending FIPA-ACL
messages (MIn and MOut)

6. For the purpose of this paper we will define a mes-
sage as a tuple 〈Type, Sender,Receiver, Content〉; where Type contains the message
performative, Sender contains the ID of the entity that has delivered the message,
Receiver contains the identifier of the entity to which the message is addressed,
and Content contains the content of the message. Agents access NRSs by sending
a request message to the corresponding service. The result of the service is sent
back to the agent through an inform message7.

4.2.1 Norm Information Service (NIS)

The existence of a norm enforcing architecture, which persuades agents to fulfil
norms by applying sanctions and rewards, does not ensure that all agents are
considering the same norms. To solve this problem, we have defined a service
that allows agents to know the norms that they should take into account. In
our example, suppose that an auditor agent (a) analyses the performance of the
auction house and that it aims at ascertaining the influence of the norms on the
transactions that take place in the auction house. Thus, it needs to gather evidences
from both the actions and the norms. Specifically, it needs to know not only which
norms are in force, but also the instances that are active at a given moment.

The Norm Information Service (NIS) is in charge of proving information about
the norms and the instances that have been created out of these norms. Requesting
the NIS is equivalent to recognising and acquiring norm and instances. Algorithm
5 contains the pseudocode corresponding to this functionality.

Algorithm 5 Norm Information Service Control Loop
1: while MIn is not empty do
2: Retrieve m from MIn // m = 〈Type, Sender,Receiver, Content〉
3: if Type = request and Receiver = NIS and Content = norm then
4: Add 〈inform,NIS, Sender, norm(N)〉 to Mout

5: end if
6: if Type = request and Receiver = NIS and Content = instance then
7: Add 〈inform,NIS, Sender, instance(I)〉 to Mout

8: end if
9: end while

In our example, if a wants to know the norms are in force, it could asks NIS
about the norms that are in force by sending the following message:

〈request, a,NIS, norm〉

Then the NIS checks the list of norms that are in force and sends the following
message:

〈inform,NIS, a, norm({〈n1,F , buyer, 〈auctionEnd,−, item(I)〉,
〈auctionStart,−, item(I)〉, 〈bid,−, item(I)〉,−,−〉})〉

6 Do not confuse with the mail boxes EIn and EOut for receiving/sanding events.
7 Note that this is a simplification of the FIPA Request Interaction Protocol.

Norm Reasoning Services 15

4.2.2 Relevance Information Service (RIS)

Even if agents know the same norms it does not imply that all agents apply
(consider as active) the same set of instances; e.g, an agent with limited capabilities
may not be aware that it is under the influence of an instance. To address this
problem we have created a service that informs agents about the instances that
are relevant to a particular agent. In our example, suppose that a buyer agent (b1)
enters the auction house. Agent b1 wants to know which its expected behaviour is
and which the expected behaviours of its interaction partners are.

The Relevance Information Service (RIS) is in charge of proving information
about the instances that are relevant to a target agent, which is specified in the
service request. Thus, requesting the RIS is equivalent to determining which norms
concern and are relevant to agents. Algorithm 6 contains the pseudocode corre-
sponding to this functionality. When the service is requested, then the RIS obtains
the set of roles that are currently played by the target agent (RoleList). After this,
the RIS searches the instance list for the instances that are addressed to the roles
currently played by the target agent (InstanceList).

Algorithm 6 Relevance Information Service Control Loop
1: while MIn is not empty do
2: Retrieve m from MIn // m = 〈Type, Sender,Receiver, Content〉
3: if Type = request and Receiver = RIS and Content = relevance(AgentID) then
4: InstanceList := {}
5: RoleList := {}
6: for all (agentID, roleID) in RE do
7: if AgentID = agentID then
8: Add roleID to RoleList
9: end if

10: end for
11: for all i in I do // i = 〈id′, D′, T ′, E′, C′, S′, R′〉
12: if T ′ in RoleList then
13: Add i to InstanceList
14: end if
15: end for
16: Add 〈inform,RIS, Sender, relevance(InstanceList)〉 to Mout

17: end if
18: end while

For instance, if b1 is not capable of reasoning about which of the instances
are relevant to it, b1 could ask RIS about its relevant instances by sending the
following message:

〈request, b1, RIS, relevance(b1)〉

Then the RIS checks the instances that are relevant to b1. Since b1 is affected
by the instance that has been created out of n1 (as detailed in Section 2.2), this
instance is relevant to b1, so that the RIS sends the following message:

〈inform,RIS, b1, relevance({〈n1,F , buyer, 〈auctionEnd,−, item(car)〉,
〈auctionStart,−, item(car)〉, 〈bid,−, item(car)〉,−,−〉})〉

16 N. Criado et al.

4.2.3 Norm Advice Service (NAS)

Now suppose that b1 does not even have capabilities for reasoning about instances
(e.g., b1 does not understand the language used for representing instances). Thus,
it could not consider them when it decides its next action. However, b1 would like
to respect the norms to avoid sanctions and maintain a good reputation.

The Norm Advice Service (NAS) determines which goals (NormativeGoals)
must be pursued according to norms. Requesting the NAS is equivalent to accept-
ing norms and making norm compliance decisions. Agents that request this service
provide their intrinsic desires, which are a set of literals formed by event templates
(or the negation of event templates). This set represents the actions or states of af-
fairs pursued (or avoided) by the agent. With this information, the NAS calculates
which goals must be pursued according to norms and to what extent these goals
are advisable for the agent. Algorithm 7 contains the pseudocode corresponding to
the NAS. Once the service receives a request, then the NAS calculates the set of
instances that are relevant to the petitioner agent. For each relevant instance, the
NAS computes how much the instance is advisable for the agent. This advisability
degree is calculated by a function as follows:

Definition 8 (Advisability Function) Given an instance (i) and a set of goals
(Goals) the advisability of this instance is calculated as follows:

advisability(i, Goals) =
fInterest(i, Goals) + fExpectations(i, Goals)

2

The advisability function is defined as the average among the values calculated by
two functions:

– fInterest. This function considers the influence of norm compliance on the
agent’s goals:

fInterest(〈id′, D′, T ′, E′, C′, S′, R′〉, Goals) =

1 if D′ = O and C′ ∈ Goals
1 if D′ = F and ¬C′ ∈ Goals
0 otherwise

– fExpectations. This function considers the influence of the external enforcement
on the agent’s goals:

fInterest(〈id′, D′, T ′, E′, C′, S′, R′〉, Goals) =

1 if R′ ∈ Goals and ¬S′ ∈ Goals
0.5 if R′ ∈ Goals or ¬S′ ∈ Goals
0 otherwise

The value calculated by the advisability function is used to annotate the goal that
is added to the NormativeGoals set. Each normative goal is annotated with a real
number that represents to what extent the agent is interested in complying with
the instance that has inferred the normative goal. If the instance is an obligation, a
new goal to pursue the obliged condition is added. On the contrary, if the instance
is a prohibition, a new goal for avoiding the forbidden condition is added.

Let us assume that b1 is only interested in buying cars. Therefore, its goal set
only contains one proposition 〈bid,−, item(car)〉. Since it wants to obey norms, it
asks NAS about its normative goals by sending the following message:

〈request, b1, NAS, {〈bid,−, item(car)〉}〉

Norm Reasoning Services 17

Algorithm 7 Norm Advice Service Control Loop
1: while MIn is not empty do
2: Retrieve m from MIn // m = 〈Type, Sender,Receiver, Content〉
3: if Type = request and Receiver = NAS and Content = compliance(Goals) then
4: NormativeGoals := {}
5: RoleList := {}
6: for all (agentID, roleID) in RE do
7: if Sender = agentID then
8: Add roleID to RoleList
9: end if

10: end for
11: for all i in I do // i = 〈id′, D′, T ′, E′, C′, S′, R′〉
12: if T ′ in RoleList then
13: if D′ = F then
14: NormativeGoals := NormativeGoals ∪ {(¬C′, advisability(i, Goals))}
15: end if
16: if D′ = O then
17: NormativeGoals := NormativeGoals ∪ {(C′, advisability(i, Goals))}
18: end if
19: end if
20: end for
21: Add 〈inform,NAS, Sender, compliance(NormativeGoals)〉 to Mout

22: end if
23: end while

The NAS checks the instances that are relevant to b1 and calculates the advisability
of complying with them. Only the instance that has been created out of n1 is
relevant to b1. The advisability of complying with this instance is 0 and the NAS
sends the following message:

〈inform,NAS, b1, compliance({(¬〈bid,−, item(car)〉, 0)})〉

Since ¬〈bid,−, item(car)〉 contradicts the main goal of agent b1 and the advisability
of complying with this norm is 0, then agent b1 decides to violate the norm and it
makes a bid.

In this paper we propose to determine the agent advisability of complying
with a given instance by simply considering the effect of this instance on the
agent goals. However, if the norm reasoning services are provided with domain
information, then a more complex decision making procedure could be used. For
example, the decision making mechanism proposed in [10] could be used if the
norm reasoning services are informed about the importance of each norm and the
situations that are predicted to occur when the norms are violated.

It should be noticed that the NAS does not ensures that the set of normative
goals is consistent: i.e., it is possible that a proposition and its negation belong to
the set of normative goals. It is the responsibility of agents to decide which of the
normative goals will be pursued, resolving conflicts between normative goals and
their intrinsic goals.

4.2.4 Norm Judgement Service (NJS)

Finally, suppose that a seller agent, identified by s1, receives the bid made by b1.
s1 may be unable to judge whether this bid is legal or not with respect to the
normative system. Specifically, it may want to know whether b1 has violated any

18 N. Criado et al.

norm and its bid must be ignored, or whether b1 has acted legally and b1 wins the
auction. In case the seller is not able to judge this bid, we propose it calls the NJS.

The Norm Judgement Service (NJS) allows agents to determine if an event
that may have happened at some moment in the past is legal or not according
to the normative system. Requesting the NJS is equivalent to accepting norms
and making norm judgements on the basis of normative expectations. Therefore,
the NJS judges the performance of this event with respect to the context (i.e.,
active instances and roles, and their interplay) when the event was performed.
Algorithm 8 contains the source code corresponding to this functionality. When
the NJS receives a request then it determines: which roles were played by the agent
that performed the event (Origin), at the time the event was performed (T ime).
Then, the NJS determines which norms were relevant to that agent at that time.
Agents can play several roles simultaneously and these roles may be affected by
conflicting norms. For this reason, the NJS counts the number of prohibitions that
were violated by the event (FulfilmentCount), and the number of obligations
that were fulfilled by the event (V iolationCount). It is up to the agents how to use
this information: e.g., to select the most suitable interaction partners, to exclude
non-compliant agents, etc.

In our example, s1 asks NJS about the bid made by b1 by sending the following
message:

〈request, s1, NJS, 〈bid, time, b1, item(car)〉〉

The NJS answers with the following message:

〈inform,NJS, s1, normJudgement(1, 0)〉

Then s1 is able to know that the bid is illegal, and thus, s1 ignores.

4.3 Scalability

Initially, there is a single NM registered in the Magentix2 platform. However, the
NM is capable of simple adaptation behaviours (i.e., replication and death) in
response to changing situations. For example, before the NM collapses (i.e., its
event reception box is full), it might replicate itself and unsubscribe from the reg-
isterNorm event. Thus, the new NM is responsible for controlling the activation
of the new norms. If the NM reaches a state in which it has no norm to control
and it is not the last NM subscribed to the registerNorm event, then it removes
itself. Moreover, the data stores containing the norms, instances, and role enact-
ment information can be distributed and/or replicated. Similarly, the NRSs been
described assuming that there is a single service provider of each service. However,
these services may be formed by a set of federated service providers that whose
number can be dynamically adapted according to service demands by performing
cloning and self-deletion operations.

These replication and distribution mechanisms are a simple example that il-
lustrates how the NRSs infrastructure can dynamically adapt to changes in the
scale MAS (i.e., situations in which the number of agents or norms to be controlled
changes dramatically). However, the definition of more elaborated procedures for
adapting dynamically to changing environments [27] is a complex issue that is out
the scope of this paper.

Norm Reasoning Services 19

Algorithm 8 Norm Judgement Service Control Loop
1: while MIn is not empty do
2: Retrieve m from MIn // m = 〈Type, Sender,Receiver, Content〉
3: if Type = request and Receiver = NJS and Content = judgement(e) then //

e = 〈Type, T ime,Origin,Data〉
4: RoleList := {}
5: for all ((agentID, roleID), tIn, tOut) in RELog do
6: if Origin = agentID and tIn ≤ T ime and (tOut = null or tOut > Time) then
7: Add roleID to RoleList
8: end if
9: end for

10: V iolationCount := 0
11: FulfilmentCount := 0
12: for all i in ILog do // (〈id′, D′, T ′, E′, C′, S′, R′〉, tIn, tOut)
13: if T ′ in RoleList and tIn ≤ T ime and (tOut = null or tOut > Time) then
14: if unification(e, C′) then
15: if D′ = O then
16: FulfilmentCount := FulfilmentCount+ 1
17: end if
18: if D′ = F then
19: V iolationCount := V iolationCount+ 1
20: end if
21: end if
22: end if
23: end for
24: Add 〈inform,NJS, Sender, normJudgement(V iolationCount, FulfilmentCount)〉

to Mout

25: end if
26: end while

5 Evaluation

This section provides an evaluation of the NRSs in terms of the behaviour exhib-
ited by agents that make different uses of our NRSs in a general situation. We
have performed two different type of experiments to analyse the performance of
the NRSs, to determine their usefulness and to compare them to other similar
proposals. In the first type of experiments, we seek to illustrate the performance
and the usefulness of the NRSs. To this aim we have performed a set of random
simulations to illustrate the performance of the NRSs and their effect on norm
compliance (i.e., the number of norms that are complied by agents) in a wide
range of situations. Moreover, we have analysed the effect of the different elements
considered in the simulations on the performance of the NRSs. These experiments
are described in Section 5.1. In the second type of experiments, we compare the
performance of the NRSs with other similar proposals that provide agents with
normative information. Specifically, we compare norm compliance when agents
use the different proposals for being informed about the norms. This experiment
is described in Section 5.2.

5.1 Performance Experiments

The experiments described in this section have two main goals: (i) to analyse the
effect of the NRSs on norm compliance, and (ii) to evaluate the performance of

20 N. Criado et al.

the NRSs in terms of service requests and the events that are sent. Specifically,
in these experiments we demonstrate that the use of the NIS, the RIS and the
NAS8 aids agents to comply with norms. Moreover, we also demonstrate that the
NRSs operate effectively in changing environments in which the number of agent,
norms, etc., may change.

5.1.1 Simulation Description

We have considered a scenario in which there is a set of agents that belong to
the same VO in Magentix2 (e.g., an e-market). Agents direct their activity to-
wards achieving goals (e.g., participate in auctions for buying some items). To
achieve these goals agents know a fixed and predefined set of plans. Moreover, a
set of norms has been registered in the OMS for specifying the agents expected
behaviour. Agents may perform different actions during their execution causing
changes in the environment (e.g., sold items may be delivered) and in the nor-
mative state (i.e., a norm may become instantiated or expired). We have built a
simulator of this scenario with the parameters that we sum up in Table 2.

Algorithm 9 contains the pseudo code of this simulator. According to this al-
gorithm, in our simulator there is a VO in which a set of agents perform actions to
pursue their goals. Specifically, each simulation is populated by agents with differ-
ent norm-reasoning capabilities. Specifically four main agent types are considered
in our simulation. Thus, 4 agents are created in each simulation (one of each type).
These agents pursue goals that describe states of affairs. Each agent pursues a set
of goals that are randomly selected form a set of 20 goals. A plan is a sequence of
actions that allows agents to achieve one goal. Specifically, we generate randomly
a set of 300 plans in each execution. We consider that agents are able to carry
out 100 different actions. Thus, for each plan we generate randomly a sequence
of actions (line 1 on Algorithm 9). Specifically, the length of plans (in terms of
number of actions they involve) varies randomly within the [1, 10] interval. All
agents know the same plans for achieving goals.

Parameter Fixed Value Experimentation Interval

of steps 100 [10, 1000]
of actions 100 [50, 200]
of plans 300 [20, 1000]
of norms 20 [1, 100]
of agents 4 [4, 100]

Table 2 Parameters used in the experiments

Norm Definition Agents enact one or more roles randomly in each simulation.
Specifically, 4 different roles have been considered. In order to specify the desired
behaviour of these roles, 20 norms are created in each simulation (line 2 on Algo-
rithm 9). Each norm is randomly assigned to a single role, which is the target of

8 Note that the effect of the NJS on norm compliance depends on the enforcement actions
that agents carry out when they are informed by the NJS about the fulfilment or violation of
norms. The definition of sanctioning and rewarding systems is out of the scope of this paper.
For this reason, the NJS has not been considered in the experiments.

Norm Reasoning Services 21

Algorithm 9 Pseudocode of algorithm executed by our simulator
Require: Action set Act
Require: Goal set G
1: P := randomPlanCreation(G,Act)// Plan Definition
2: N := randomNormCreation(Act)// Norm Definition
3: E := randomEnvironmentCreation(N)// Environment Definition
4: NU := randomNormUnawareAgentCreation(G,P)// Agent Definitions
5: NI := randomNormIncapableAgentCreation(G,P)
6: NR := randomNormReasoningAgentCreation(G,P)
7: NA := randomNormAutonomousAgentCreation(G,P)
8: FulfilmentNU := 0// Obligation Fulfilment Count Initialization
9: FulfilmentNI := 0

10: FulfilmentNR := 0
11: FulfilmentNA := 0
12: V iolationNU := 0// Prohibition Violation Count Initialization
13: V iolationNI := 0
14: V iolationNR := 0
15: V iolationNA := 0
16: EventNA := 0// Event Reception Count Initialization
17: EventNM := 0
18: RequestNAS := 0// Service Request Counts Initialization
19: RequestRIS := 0
20: RequestNIS := 1 // Norm-autonomous agents request NIS once
21: while the simulator has not been executed all the steps do
22: ActionNU := NU.executeAction()
23: FulfilmentNU := FulfilmentNU + E.checkFulfilments(ActionNU)
24: V iolationNU := V iolationNU + E.checkV iolations(ActionNU)
25: if NI.requestNRS() =true then
26: RequestNAS := RequestNAS + 1
27: end if
28: ActionNI := NI.executeAction()
29: FulfilmentNI := FulfilmentNI + E.checkFulfilments(ActionNI)
30: V iolationNI := V iolationNI + E.checkV iolations(ActionNI)
31: if NR.requestNRS() =true then
32: RequestRIS := RequestRIS + 1
33: end if
34: ActionNR := NR.executeAction()
35: FulfilmentNR := FulfilmentNR + E.checkFulfilments(ActionNR)
36: V iolationNR := V iolationNR + E.checkV iolations(ActionNR)
37: ActionNA := NA.executeAction()
38: FulfilmentNA := FulfilmentNA + E.checkFulfilments(ActionNA)
39: V iolationNA := V iolationNA + E.checkV iolations(ActionNA)
40: EventNA := EventNA+NA.eventCounts(ActionNU , ActionNI , ActionNR, ActionNA)

41: EventNM := EventNM+NM.eventCounts(ActionNU , ActionNI , ActionNR, ActionNA)

42: E.instanceDynamics(ActionNU , ActionNI , ActionNR, ActionNA)
43: end while

the norm. As previously mentioned, norms are defined in terms of three conditions,
which correspond to the activation, expiration and normative condition (i.e., A,E
and C). We assume that these conditions are expressed in terms of event templates
that inform about the actions that agents perform. Thus, in each simulation the
actions that are included in the activation, expiration and normative condition of
each norm are randomly selected from the set of 100 actions. Initially, we create
randomly a set of instances out of the norms defined in the simulation (line 3 on
Algorithm 9).

22 N. Criado et al.

Agent Definition. As previously mentioned, agents have different capabilities for
taking norms into account in their decisions. Specifically, we consider the following
agent types:

Norm-unaware agents are the least sophisticated agents. They do not realise norms
and try to achieve their goals regardless of norms. Thus, they start their ex-
ecution by selecting randomly the goal to be pursued as one of their pending
goals. Then, they select randomly one plan that achieves this goal. In each
step they execute one action of the plan. They repeat this process until they
achieve all their goals9.

Norm-incapable agents are unable to make their own decisions according to norms
and their goals. However, they want to fulfil norms and, as a consequence, they
make use of the NAS proposed in this paper. Specifically, they request the NAS
in order to know the best plan to be executed according to the instances of
norms that are addressed to them and their goals. Then, they execute all
actions indicated by the plan. Once they have completed the execution of this
plan, they ask the NAS service again. They repeat the whole process until they
achieve all their goals.

Norm-reasoning agents are able to make their own decisions according to norms
and their goals. However, they need to be informed about the specific instances
that are relevant to them at a given moment. Thus, they start their execution
by asking the RIS about the specific instances that affect them. Then, they
select the best plan to be executed according the instances that are addressed
to them and their own goals. In each step they execute one action of this plan.
Once they have completed the execution of this plan, they ask the RIS service
again. They repeat the whole process until they achieve all their goals.

Norm-autonomous agents are also able to make their own decisions according to
norms and their goals. Furthermore, these agents are able to keep track of the
activation and expiration of instances and, as a consequence, they know which
instances they must consider at any moment. When they join a VO they request
the NIS in order to know the norms (not the instances) that are in force in
this VO. As the NM does, these agents also subscribe to the events that make
norms active and to the events that make instances expire (i.e., to the events
that allow them to know which norms have been instantiated). However, in
contrast to the NM they are only interested in receiving information about
the specific norms that are addressed to them. Then, they select the best plan
to be executed according the instances that are addressed to them and their
goals. In each step, they execute one action of this plan. They repeat the whole
process until they achieve all their goals.

Our simulations are populated by one agent of each type (lines 4-7 in Algorithm
9). Therefore, normative and non-normative agents are created. Specifically, norm-

unaware and norm-incapable agents do not have norm reasoning capabilities and
are non-normative. On the contrary, norm-reasoning and norm-autonomous are
normative agents.

In each step of the simulations, we simulate the actions performed by each
agent, the service request made by each agent to the corresponding NRS (NIS,
RIS, and NAS) and the events that are sent to the NM and to agents (lines 21-42

9 For simplicity we assume that there is a perfect execution of actions: i.e., agents never fail
when they perform actions.

Norm Reasoning Services 23

in Algorithm 9). With this information we calculate the percentage of obligations
that are fulfilled and the percentage of prohibitions that are violated by each
agent type, the number of service request that are made by each agent type and
the number of events that are sent to the NM and to agents. We have repeated
each experiment 10000 times to support the findings with statistically significant
evidence.

We have performed 5 different experiments to illustrate the performance of
the NRSs with respect to: the number of steps that the simulator is executed, the
number of norms, the number of agents, the number of actions, and the number
of plans. In the experiments, the values of the parameters range as indicated by
the Experimentation Interval column in Table 2. The results of these experiments
are described below.

5.1.2 Results

Number of Steps. This experiment is aimed at determining the number of steps
that the simulator must be executed to obtain significant results.

Figure 4 illustrates the percentage of obligations that are fulfilled on aver-
age per agent type with respect to the number of steps that the simulation is
executed. All agents that use the NRSs (i.e., norm-incapable, norm-reasoning and
norm-autonomous agents) comply with a similar percentage of obligations. This
means that with the information provided by the NRSs, agents with limited rea-
soning capabilities (e.g., norm-incapable and norm-reasoning agents) are able to
comply with as many obligations as agents with full reasoning capabilities (e.g.,
norm-autonomous). When the number of steps is very low agents have lower pos-
sibilities to comply with obligations and the percentage of obligations that are
fulfilled is low. As the number of steps increases, agents execute more actions and
it is more possible that they fulfil obligations. We can observe that the percent-
age of fulfilled obligations peaks around 30 steps and then decreases slightly over
time. This is explained by the fact that all normative agents consider norms to
select the next plan to be executed among the ones that achieve one of their goals.
When simulations are executed less than 30 steps, agents have achieved few of
their goals. Thus, any time normative agents use the norms to select the next
plan to be executed, they can choose among several plans. When simulations are
executed more than 30 steps, agents have achieved most of their goals. Thus, at
some point normative can choose among a few plans. In this situation, the proba-
bility of finding a plan that achieves one remaining goal while complying with the
norms is low. Finally, when agents have achieved all their goals they stop executing
actions and, as a consequence, they cannot fulfil their pending obligations. Note
that the obligation fulfilment percentage of all normative agents in our simulation
converges to 60%. This is due to the fact that normative agents are not always
able to comply with their pending obligations; e.g., it is possible that an agent
selects a plan that contains one action that fulfils one of its pending obligations
but that when this action is executed the obligation has already expired, so this
would count a as violation.

Figure 5 illustrates the percentage of prohibitions that are violated on aver-
age per agent type with respect to the number of steps that the simulation is
executed. Again, agents that use the NRSs (i.e., norm-incapable, norm-reasoning

and norm-autonomous agents) violate a similar percentage of prohibitions. Again,

24 N. Criado et al.

when the number of steps is very low, agents execute few actions and there is a
low probability of violating norms. When the number of steps increases agents
execute more actions and it is more possible that they violate prohibitions. In
light of the results shown by these two figures, we can conclude that the infor-
mation provided by the NRSs aids agents comply with norms noticeably; i.e., the
percentage of fulfilled obligations is higher in agents that make use of NRSs and
the percentage of violated prohibitions is lower in agents that make use of NRSs.
Since prohibitions and obligations are considered by agents similarly (i.e., obliga-
tions and prohibitions are used to select the next plan to be executed), we can
derive the same conclusion from analysing the percentage of fulfilled obligations
and the percentage of violated prohibitions. Thus, for the rest of the experiments
condicted we only show the percentage of fulfilled obligations.

f

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 30 50 70 90 110 130 150 170 190

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 4 Percentage of obligations that are fulfilled on average per agent type with respect to
the number of steps that the simulation is executed.

Figure 6 illustrates the number of service requests that are made on average
per each agent type. Obviously, norm-unaware agents never request any of the
NRSs. Norm-incapable and norm-reasoning agents are the ones that send more
service requests on average. Specifically, norm-incapable agents make a request
to the NAS any time they select the next plan to be executed. Similarly, norm-

reasoning agents make a request to the RIS any time they select the next plan to
be executed. Finally, norm-autonomous agents make only one request to the NIS
at the beginning of the simulation to know the norms that are in force. As the
number of steps increases, the number of service requests made by norm-incapable

and norm-reasoning agents also increases.

Figure 7 illustrates the number of events that are received on average per each
agent type and the NM. Only norm-autonomous agents and the NM receive events.
The number of events that are received by the NM is higher than the number of
events that are received by norm-autonomous agents since the NM must receive
events to detect the instantiation of all of the norms, whereas norm-autonomous

agents only receive the events that allow them to determine the instantiation of

Norm Reasoning Services 25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 30 50 70 90 110 130 150 170 190

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 5 Percentage of prohibitions that are violated on average per agent type with respect to
the number of steps that the simulation is executed.

the norms that affect them10. Again, the number of events increases as the number
of steps increases. However, when the number of steps is equal or higher to 100,
then the number of events remains quite stable. This is explained by the fact that
when the number of steps is equal or higher to 100, all agents have achieved all
their goals and no more actions are executed. If no more actions are executed, no
more events are sent for reporting those actions.

0

2

4

6

8

10

12

10 30 50 70 90 110 130 150 170 190

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 6 Number of service requests made on average per agent type with respect to the number
of steps that the simulation is executed.

10 Note that in this experiment there is one norm-autonomous agent and it is only affected
by a subset of the norms. However, when there is more than one norm-autonomous agent,
then the number of events sent to these agents is higher than the number of events that is sent
to the NM. This can be observed in the following experiments.

26 N. Criado et al.

0

20

40

60

80

100

120

140

160

180

200

10 30 50 70 90 110 130 150 170 190

norm-unaware norm-incapable norm-reasoning

norm-autonomous NM

Fig. 7 Number of events received on average per agent type and the Normative Monitor (NM)
with respect to the number of steps that the simulation is executed.

As shown in the previous figures, in all experiments the results obtained remain
quite stable from 100 steps, so that we have fixed the number of steps to 100 in
the following experiments.

Number of Norms. This experiment illustrates the performance of the NRSs when
the number of norms that regulate the VO changes. It demonstrates that the NRSs
are scalable with an increasing number of norms.

Figure 8 illustrates the percentage of obligations that are fulfilled on average
per agent type with respect to the number of norms that are created in each simu-
lation. As the number of norms increases, agents are affected by more obligations
and, thus, they are able to comply with a lower percentage of them. However, we
can observe that agents that use the NRSs comply with more obligations than
norm-unaware agents; i.e., norm-incapable, norm-reasoning, and norm-autonomous

agents comply with a similar number of obligations regardless their reasoning ca-
pabilities.

Regarding the number of service requests (see Figure 9), this number is not
affected by the number of norms and, as we expected, the results remain stable
regardless of the number of norms.

Finally, Figure 10 illustrates the number of events that are received on average
by norm-autonomous agents, which are the only agents that receive events for
determining which norms are relevant (the other ones obtain this information when
they actively contact any of the NRSs), and the NM, which receives the events
and updates the information needed by the NRSs accordingly. As we expected,
the number of events received by the NM and norm-autonomous agents increases
linearly with the number of norms; i.e., if there are more norms, more events must
be sent to keep norm-instantiation information up to date.

Number of Agents. This experiment shows the performance of the NRSs when the
number of agents that populate a VO changes. It shows which of the NRSs are
more suitable to handle an increasing number of agents.

Norm Reasoning Services 27

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 30 40 50 60 70 80 90 100

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 8 Percentage of obligations that are fulfilled on average per agent type with respect to
the number of norms.

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 9 Number of service requests made on average per agent type with respect to the number
of norms.

Figure 11 illustrates the percentage of obligations that are fulfilled on aver-
age per agent type with respect to the number of agents that are created in the
simulations. In each simulation, we create the same number of agents per agent
type. When the number of agents is low, few actions are executed in each step and
obligations are active during several steps. As a consequence, agents comply with a
higher percentage of obligations since they have more opportunities for complying
with them. As the number of agents increases, more actions are executed in each
step and obligations are active during fewer steps. For this reason, the percentage
of complied obligations decreases in all agents.

Obviously, if there number of agents increases, the number of service requests
made by these agents increases as well (see Figure 12). Specifically, the number of
service requests increases linearly with the number of agents in case of agents that
use the NRSs.

28 N. Criado et al.

0

100

200

300

400

500

600

700

800

900

10 20 30 40 50 60 70 80 90 100

norm-autonomous NM

Fig. 10 Number of events received on average per agent type and the Normative Monitor
(NM) with respect to the number of norms.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 14 24 34 44 54 64 74 84 94

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 11 Percentage of obligations that are fulfilled on average per agent type with respect to
the number of agents.

Finally, Figure 13 illustrates the number of events that are received on average
by norm-autonomous agents and the NM. In this picture we can observe how the
number of events sent to the NM increases linearly with the number of agents.
This is explained by the fact that if there are more agents then more actions
are executed and, thus, more events reporting the execution of actions are sent.
However, the number of events that are sent to norm-autonomous agents increases
exponentially with the number of agents. This is explained by the fact that several
agents play the same roles and are affected by the same norms. Thus, all of these
agents receive the same events for detecting the instantiation of norms, so that
replicated events are sent to several agents. Therefore, the use of the RIS and the
NAS, that externalise the detection of norm activations and expirations (so that
this task is carried out by the NM), reduces the overload of events that are sent
in the system.

Norm Reasoning Services 29

0

50

100

150

200

250

300

4 14 24 34 44 54 64 74 84 94

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 12 Number of service requests made on average per agent type with respect to the
number of agents.

0

5000

10000

15000

20000

25000

30000

35000

40000

4 14 24 34 44 54 64 74 84 94

norm-autonomous NM

Fig. 13 Number of events received on average per agent type and the Normative Monitor
(NM) with respect to the number of agents.

Number of Actions. This experiment illustrates the performance of the NRSs when
the number of actions that can be performed by agents changes. It demonstrates
that the NRSs remain effective and efficient with an increasing number of actions.

Figure 14 illustrates the percentage of obligations that are fulfilled on average
per agent type with respect to the number of actions that agents can execute. When
the number of actions is low, then almost all actions have an effect on the state of
norms; i.e., they make norms become activated or expired. Therefore, obligations
are active for few steps and agents have little opportunities for complying with
them. As the number of actions increases, obligations are active for more steps
and agents have more opportunities to comply with norms. For this reason, the
percentage of complied obligations increases in all agents that use NRSs. However,
we can observe that in agents that do not use the NRSs the percentage of complied
obligations decreases lightly as there are more actions. This is explained by the
fact that if there are more actions, there are fewer probabilities that the obliged

30 N. Criado et al.

actions are executed. Recall that norm-unaware agents randomly pick the plans
that fulfil their goals.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 70 90 110 130 150 170 190

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 14 Percentage of obligations that are fulfilled on average per agent type with respect to
the number of actions.

Regarding the number of service requests, this number is not affected by the
number of actions and, as we expected, the results remain stable regardless of the
number of actions (see Figure 15).

0

2

4

6

8

10

12

50 70 90 110 130 150 170 190

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 15 Number of service requests made on average per agent type with respect to the
number of action.

Finally, Figure 16 illustrates the number of events that are received on average
by norm-autonomous agents (the rest of agents do not receive events) and the NM.
As aforementioned, when the number of actions is low almost all actions have an
effect on the state of norms and more events reporting those changes are sent. As

Norm Reasoning Services 31

the number of actions increases, fewer actions have an effect on the state of norms
and fewer events are sent11.

0

50

100

150

200

250

300

350

50 70 90 110 130 150 170 190

norm-autonomous NM

Fig. 16 Number of events received on average per agent type and the Normative Monitor
(NM) with respect to the number of actions.

Number of Plans. This experiment shows the performance of the NRSs when the
number of plans known by the agents changes.

Figure 17 illustrates the percentage of obligations that are fulfilled on average
per agent type with respect to the number of plans that can be executed by agents.
When the number of plans is low, then agents know fewer plans that achieve their
goals. Thus, agents that make use of the NRSs have few possibilities for complying
with norms. As the number of plans increases, these agents know more options to
achieve their goals and it is possible to select one that ensures compliance with
norms. For this reason, the percentage of complied obligations increases as the
number of plans increases in all agents that use NRSs. Norm-unaware agents select
plans to achieve their goals randomly and, as a consequence, their behaviour is
not affected by the number of plans.

Agents made the same service request regardless of the number of plans that
they know for achieving their goals. Similarly, the number of plans does not affect
the execution of actions that have a normative effect. Therefore, the results in
this case have been obtained since they remain stable regardless of the number of
plans.

5.1.3 Discussion of Results

In light of all the results of all the experiments described in this section, we can
conclude that NRSs allow heterogeneous agents (i.e., agents with different norm

11 Notice that there is only one norm-autonomus agent which is affected by a subset of norms
and, as a consequence, only the events that determine the activation and expiration of this
subset of norms is sent to it. In contrast, the NM receives events that determine the activation
and expiration of all norms.

32 N. Criado et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 120 220 320 420 520 620 720 820 920 1020

norm-unaware norm-incapable norm-reasoning norm-autonomous

Fig. 17 Percentage of obligations that are fulfilled on average per agent type with respect to
the number of plans.

reasoning capabilities) to participate in VO regulated by norms; i.e., to fulfil their
goals while complying with norms. Specifically, all agents that use the NRSs com-
ply with a similar percentage of norms, which means that the information provided
by the NRSs allow agents with limited reasoning capabilities to be able to behave
(i.e., complying with norms) as agents with full reasoning capabilities.

Another interesting result is that the use of the RIS and NAS reduces the
number of events that are sent with respect to the use of the NIS; i.e., having a
NM that controls the instantiation of all norms is more efficient than informing
all agents about changes in the VO. Specifically, the experimental results show
that the number of events sent to the NM increases linearly with the number of
agents, whereas the number of events sent to agents increases exponentially with
the number of agents. Obviously, if agents externalise the reasoning about norms
(i.e., if they make use of the RIS and NAS instead of using the NIS), they need to
request the NRSs more frequently. However, the experimental results show that
the number of requests made to any service increases linearly with the number of
agents and remains stable in the rest of experiments. Thus, the use of the RIS and
NAS reduces the overload of the system since it reduces the number of events that
are generated.

For simplicity, the NRSs have been described assuming that there is a single
entity that acts as service provider. Although the number of service requests in-
creases linearly with the number of agents, it could become a bottle-neck in ultra
large-scale systems (with thousands of agents making thousands of service re-
quests). However, it is also possible to dynamically adapt the amount of providers
of the NRSs by performing cloning and self-deletion operations. Similarly, the NM
is capable of simple adaptation behaviours (i.e., replication and death) in response
to changing situations. For example, before the NM collapses (i.e., its event re-
ception box is full), it might replicate itself. Thus, the new NM is responsible
for controlling the instantiation of the new norms. Similarly, if the NM reaches a
state in which it has no norm to control and it is not the last NM, then it removes
itself.The definition of these elaborated procedures for adapting dynamically to
changing environments [27] is a complex issue that is out the scope of this paper.

Norm Reasoning Services 33

5.2 Comparison Experiment

This section contains the results that have been achieved in the experiments that
compare our proposal against similar proposes. Specifically, we have compared
to what extent the use of the NRSs services increases compliance with norms
with respect to: (i) proposals that allow agents to be informed about the norms
but that do not provide agents with information about norm dynamics (i.e., the
proposals made by Felićıssimo et al. in [17] and Okuyama et al. in [28]); and (ii)
works that allow agents to know information about instances (i.e., the proposal
made by Piunti et al. in [31]). Note that the ORA4MAS [22] proposal does not
provides agents with information that allows them to take norms into account in
their actions, but it provides information about norm violations that can be used
by agents to select the most suitable interaction partners.

5.2.1 Simulation Description

Again, we considered a scenario with the same parameters that we sum up in Table
2. We have also implemented agents that can be norm-unaware, norm-incapable,
norm-reasoning and norm-autonomous. The main difference is that these agents
can make use of three different set of services: NRSs, the Felićıssimo-Okuyama
services (i.e., a set of services that implement the functionality described in the
proposals made by Felićıssimo et al. [17] and Okuyama et al. [28]) and the Piunti
services (i.e., a set of services that implement the functionality described in the
proposal made by Piunti et al. [31]). Each agent type makes use of the different
set of services as follows:

Norm-unaware agents. They do not care about norms and they do not make use
of any normative service.

Norm-incapable agents. If they make use of the NRSs, they request the NAS in
order to know the best plan to be executed. Felićıssimo-Okuyama services and
the Piunti services do not provide this functionality. As a consequence, if norm-

incapable agents make use of any one of these two set of services they cannot
ask for any service and norm-incapable agents behave as norm-unaware agents
by selecting randomly a plan to be executed.

Norm-reasoning agents. When they make use of the NRSs, they ask the RIS to
know the specific instances that affect them. Felićıssimo-Okuyama services only
inform about the norms that have been registered. Thus, when norm-reasoning

agents make use of the Felićıssimo-Okuyama services they ask for the norms
that have been registered and they consider that norms are always relevant12.
Piunti services inform about the instances that are relevant to agents. Thus,
when norm-reasoning agents make use of the Piunti services, they are able to
know the specific instances that affect them.

Norm-autonomous agents. When they make use of the NRSs, they request the
NIS in order to know the norms that have been registered. This functionality
is also provided by the Felićıssimo-Okuyama services and the Piunti services.
As a consequence, norm-autonomous agents are always able to know the norms
that are in force.

12 Norm-reasoning agents could also consider all norms as not active. However, we have not
chosen this alternative since they would behave again as norm-unaware

34 N. Criado et al.

As in the previous experiments, we simulate the actions performed by each
agent in each step13. With this information we calculate the number of obligations
that are fulfilled by each agent type and the number of prohibitions that are
violated by each agent type. We have repeated each experiment 10000 times to
support the findings with statistically significant evidence.

We have performed 3 different experiments to illustrate the performance of
the each agent type with respect to the set of services that they use: the NRSs,
the Felićıssimo-Okuyama services and the Piunti services. The results of these
experiments are described below.

5.2.2 Results

Figure 18 illustrates the percentage of obligations that are fulfilled on average
per agent type with respect to the set of services that they use. As previously
mentioned, norm-unaware agents do not make use of any service and the percentage
of fulfilled obligations is the same regardless of the set of services that is used.
When norm-incapable agents make use of the Felićıssimo-Okuyama services or the
Piunti services they behave as norm-unaware. Only when norm-incapable agents
use the NRSs, they comply with a higher percentage of obligations because the
NAS provides them with the goals they should pursue to comply with norms.
When norm-reasoning agents make use of the Felićıssimo-Okuyama services they
consider that norms are always relevant and they comply with less norms. This is
explained by the fact that norm-reasoning are not able to determine which norms
are relevant to them and they focus on complying with all the norms (e.g., agents
may select a plan to comply with norms that are not even active). On the contrary,
when they make use of the NRSs or the Piunti services, they comply with a higher
number of obligations. Finally, norm-autonomous agents comply with a similar
percentage of obligations regardless of set of services that are used. Similar results
could be observed if we analyse the percentage of violated prohibitions.

5.2.3 Discussion of Results

From these results we can determine that the use of the NRS in VO that are popu-
lated by heterogeneous agents endowed with different norm-reasoning capabilities
increases norm compliance with respect to existing approaches. In particular, we
have demonstrated that the existence of a more complete set of services increases
compliance with norms noticeably.

6 Conclusion

In this paper, we described a set of Norm Reasoning Services (NRSs) that were
developed considering the facilities provided by the Magentix2 platform. The main
aim of the NRSs is to provide agents with normative information that can be of

13 Note that implementations of proposals made by Felićıssimo et al., Okuyama et al. and Pi-
unti et al. are not available and we cannot evaluate the performance of these implementations.
Thus, we have implemented a simulator that computes the number of norms that are complied
by agents when they receive the normative information that is described by the algorithms
specified by Felićıssimo et al., Okuyama et al. and Piunti et al.

Norm Reasoning Services 35

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

norm-unaware norm-incapable norm-reasoning norm-autonomous

NRS Felicissimo-Okuyama Puinti

Fig. 18 Percentage of obligations that are fulfilled on average per agent type with respect to
the set of services that they use.

interest to heterogeneous agents (i.e., agents that are endowed with different ca-
pabilities for reasoning about norms) that participate in norm-regulated VO. Our
proposal extends previous works since the NRSs range from simple services that
inform agents about norms and instances, to more elaborated services that can
help agents to make decisions about norm compliance and to judge the behaviour
exhibited by them or other agents. We have also demonstrated experimentally that
the normative information provided by the NRSs aids agents (with different capa-
bilities to reason about norms) to fulfil their goals while complying with norms.
In particular, we have shown that if these agents use our proposed services, this
allow them to equally comply with norms regardless of their specific capabilities.

As future work, we plan to improve the norm judgement service to deal with
norm conflicts. Currently, the norm judgement service only considers how many
norms are violated and fulfilled by an event without considering norm salience. In
the future, we plan to annotate norms with their salience. The salience of norms
determines the hierarchy of norms. With this information the judgement process
will be able to determine not only the number of norms that are violated and
fulfilled by an event, but also to determine if an event may be considered as an
offence in case of norm conflict.

7 Acknowledgments

This work has also been partially funded by grants CONSOLIDER-INGENIO
2010 CSD2007-00022, TIN2009-13839-C03-01. This research has also been par-
tially funded by Valencian Prometeo project 2008/051.

References

1. G. Andrighetto, M. Campenni, R. Conte, and F. Cecconi. Conformity in multiple contexts:
imitation vs. norm recognition. In World Congress on Social Simulation, pages 14–17,
2008.

36 N. Criado et al.

2. A. Artikis and J. Pitt. A formal model of open agent societies. In Proc. of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 192–193,
2001.

3. R. Bordini, J. Hübner, and M. Wooldridge. Programming multi-agent systems in AgentS-
peak using Jason, volume 8. Wiley-Interscience, 2008.

4. J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre. The boid architecture:
conflicts between beliefs, obligations, intentions and desires. In Proceedings of the fifth
international conference on Autonomous agents, pages 9–16. ACM, 2001.

5. L. Burdalo, A. Garcia-Fornes, V. Julian, and A. Terrasa. TRAMMAS: A tracing model for
multiagent systems. Engineering Applications of Artificial Intelligence, 24(7):1110–1119,
2011.

6. R. Conte, G. Andrighetto, M. Campenǹı, and M. Paolucci. Emergent and immergent
effects in complex social systems. In Proc. of the AAAI Symposium, Social and Organi-
zational Aspects of Intelligence, pages 42–47, 2007.

7. R. Conte, C. Castelfranchi, and F. Dignum. Autonomous norm acceptance. Intelligent
Agents V: Agents Theories, Architectures, and Languages, pages 99–112, 1999.

8. N. Criado, E. Argente, and V. Botti. Open Issues for Normative Multi-Agent Systems.
AI Communications, 24(3):233–264, 2011.

9. N. Criado, E. Argente, and V. Botti. Thomas: An agent platform for supporting normative
multi-agent systems. Journal of Logic and Computation, 2011.

10. N. Criado, E. Argente, P. Noriega, and V. Botti. Determining the Willingness to Com-
ply With Norms (Extended Abstract). In Proc. of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 2012.

11. N. Criado, E. Argente, P. Noriega, and V. Botti. MaNEA: A Distributed Architecture
for Enforcing Norms in Open MAS. Engineering Applications of Artificial Intelligence,
26(1):76–95, 2012.

12. N. Criado, E. Argente, P. Noriega, and V. Botti. Human-inspired model for norm compli-
ance decision making. Information Sciences, 245:218–239, 2013.

13. N. Criado, V. Julián, V. Botti, and E. Argente. A norm-based organization management
system. Coordination, Organizations, Institutions and Norms in Agent Systems V, pages
19–35, 2010.

14. R. Daft. Organization Theory and Design. South-Western College, 2003.
15. V. Dignum and F. Dignum. Towards an agent-based infrastructure to support virtual

organisations. In Proc. of the Working Conference on Infrastructures for Virtual Enter-
prises: Collaborative Business Ecosystems and Virtual Enterprises, pages 363–370, 2002.

16. M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions editor.
In Proc. of the first international joint conference on Autonomous agents and multiagent
systems (AAMAS), volume 3, pages 1045–1052. ACM, 2002.

17. C. Felićıssimo, C. Chopinaud, J. Briot, A. Seghrouchni, and C. Lucena. Contextualiz-
ing normative open multi-agent systems. In Proc. of the ACM symposium on Applied
computing, pages 52–59. ACM, 2008.

18. J. Ferber, F. Michel, and J. Baez. Agre: Integrating environments with organizations.
Environments for Multi-agent Systems, pages 48–56, 2005.

19. R. L. Fogues, J. M. Alberola, J. M. Such, A. Espinosa, and A. Garcia-Fornes. Towards
Dynamic Agent Interaction Support in Open Multiagent Systems. In Proc. of the Interna-
tional Conference of the Catalan Association for Artificial Intelligence (CCIA), volume
220, pages 89–98. IOS Press, 2010.

20. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable vir-
tual organizations. International Journal of High Performance Computing Applications,
15(3):200, 2001.

21. A. Garrido, A. Giret, V. Botti, and P. Noriega. mWater, a Case Study for Modeling
Virtual Markets. In New Perspectives on Agreement Technologies, volume Law, Gover,
pages 563–579. Springer, 2013.

22. J. Hubner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organisations
with organisational artifacts and agents. Journal of Autonomous Agents and Multi-Agent
Systems, 20(3):369–400, 2010.

23. M. Kollingbaum. Norm-governed practical reasoning agents. PhD thesis, University of
Aberdeen, 2005.

24. F. López, M. Luck, and M. dInverno. A normative framework for agent-based systems.
Computational & Mathematical Organization Theory, 12(2):227–250, 2006.

Norm Reasoning Services 37

25. F. López y López and M. Luck. A model of normative multi-agent systems and dynamic
relationships. In Proc. of the Workshop on Regulated Agent-Based Social Systems, volume
2934 of LNCS, pages 259–280. Springer, 2002.

26. S. Modgil, N. Faci, F. Meneguzzi, N. Oren, S. Miles, and M. Luck. A framework for
monitoring agent-based normative systems. In Proc. of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 153–160, 2009.

27. T. Nakano and T. Suda. Self-organizing network services with evolutionary adaptation.
IEEE Transactions on Neural Networks, 16(5):1269–1278, 2005.

28. F. Okuyama, R. Bordini, and A. da Rocha Costa. A distributed normative infrastruc-
ture for situated multi-agent organisations. In Proc. of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 1501–1504, 2008.

29. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-agent
systems. Journal of Autonomous Agents and Multi-Agent Systems, 17(3):432–456, 2008.

30. N. Oren, S. Panagiotidi, J. Vázquez-Salceda, S. Modgil, M. Luck, and S. Miles. Towards
a formalisation of electronic contracting environments. Coordination, Organizations, In-
stitutions and Norms in Agent Systems IV, pages 156–171, 2009.

31. M. Piunti, A. Ricci, O. Boissier, and J. Hubner. Embodying organisations in multi-agent
work environments. In Proc. of IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technologies (WI-IAT), volume 2, pages 511–518,
2009.

32. R. Rubino and G. Sartor. Preface. Artificial Intelligence and Law, 16:1–5, 2008.
33. B. T. R. Savarimuthu and S. Cranefield. A categorization of simulation works on norms. In

Normative Multi-Agent Systems, number 09121 in Dagstuhl Seminar Proceedings, 2009.
34. J. M. Such, A. Espinosa, A. Garćıa-Fornes, and V. Botti. Partial Identities as a Foundation

for Trust and Reputation. Engineering Applications of Artificial Intelligence, 24(7):1128–
1136, 2011.

	Introduction
	Related Work
	The Magentix2 Agent Platform
	Norm Reasoning Services
	Evaluation
	Conclusion
	Acknowledgments

