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Abstract Background and aims: While low-density lipoprotein cholesterol (LDL-C) is a good
predictor of atherosclerotic cardiovascular disease, apolipoprotein B (ApoB) is superior when
the two markers are discordant. We aimed to determine the impact of adiposity, diet and inflam-
mation upon ApoB and LDL-C discordance.
Methods and results: Machine learning (ML) and structural equation models (SEMs) were applied
to the National Health and Nutrition Examination Survey to investigate cardiometabolic and di-
etary factors when LDL-C and ApoB are concordant/discordant. Mendelian randomisation (MR)
determined whether adiposity and inflammation exposures were causal of elevated/decreased
LDL-C and/or ApoB. ML showed body mass index (BMI), dietary saturated fatty acids (SFA), die-
tary fibre, serum C-reactive protein (CRP) and uric acid were the most strongly associated vari-
ables (R2 Z 0.70) in those with low LDL-C and high ApoB. SEMs revealed that fibre (b Z �0.42,
p Z 0.001) and SFA (b Z 0.28, p Z 0.014) had a significant association with our outcome (joined
effect of ApoB and LDL-C). BMI (b Z 0.65, p Z 0.001), fibre (b Z �0.24, p Z 0.014) and SFA
(b Z 0.26, p Z 0.032) had significant associations with CRP. MR analysis showed genetically
higher body fat percentage had a significant causal effect on ApoB (Inverse variance weighted
(IVW) Z Beta: 0.172, p Z 0.0001) but not LDL-C (IVW Z Beta: 0.006, p Z 0.845).
ion models; MR, Mendelian randomisation; SFA, saturated fatty acid; CRP, C-reactive protein; IVW,
herosclerotic cardiovascular disease; NHANES, National Health and Nutrition Examination Survey;
istics; AMPM, United States Department of Agriculture Automated Multiple-Pass Method; WC, waist
cose; HOMA-IR, homeostatic model assessment of insulin resistance; HbA1c, glycated haemoglobin;
orest; CFI, comparative fit index; TLI, TuckereLewis index; RMSEA, root mean square error of
association studies; GLGC, Global Lipid Genetics Consortium; LD, linkage disequilibrium; WM,

t strength independent of direct effect; MR-PRESSO, MR pleiotropy residual sum and outlier; RAPS,
P, systolic blood pressure; DBP, diastolic blood pressure.
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Conclusion: Our data show increased discordance between ApoB and LDL-C is associated with
cardiometabolic, clinical and dietary abnormalities and that body fat percentage is causal of
elevated ApoB.
ª 2021 The Italian Diabetes Society, the Italian Society for the Study of Atherosclerosis, the Italian
Society of Human Nutrition and the Department of Clinical Medicine and Surgery, Federico II
University. Published by Elsevier B.V. All rights reserved.
1. Introduction

Low-density lipoprotein cholesterol (LDL-C) is a good
predictor of atherosclerotic cardiovascular disease ASCVD,
and the main target for pharmacological therapy [1].
However, there remains a residual cardiovascular risk,
even after controlling for LDL-C in patients with metabolic
syndrome and inflammation [1e5]. A common feature of
all atherogenic lipoproteins is that they carry one molecule
of apolipoprotein B (ApoB); an attribute which allows the
molecule to be used as a measure of the amount of these
particles [6]. Compared to LDL-C, elevated ApoB is a su-
perior predictor of ASCVD risk when there is discordance
between the two markers [7].

Recent studies have investigated ApoB with Mendelian
randomisation (MR), which is a powerful method of
inferring causality within an observational epidemiological
context by using genetic variants as natural experiments
[8,9]. Moreover, MR benefits from being less susceptible to
confounding and reverse causation [9]. When applying MR,
ApoB containing particles are the main causal trait
responsible for the aetiology of ASCVD [8,10].

Discordantly high ApoB compared to LDL-C pre-
dominates in pro-inflammatory states, such as obesity and
metabolic syndrome [11,12]. Of note, pharmacotherapy for
inflammation shows conflicting outcomes, due to different
targeted pathways [13e15]. Combined with the degree of
discordance between LDL-C and ApoB, this suggests that
lowering LDL-C and inflammation are not always appro-
priate for addressing ASCVD, unless there is a concomitant
reduction in ApoB. While weight loss studies show ApoB to
be more closely related to improvements in adiposity [16],
the causal links between body fat and ApoB have not been
elucidated. Furthermore, there are no studies regarding
the influence of lifestyle factors upon the degree of
discordance of LDL-C with ApoB, despite nutritional factors
strongly modulating lipoproteins and ASCVD risk [17e20].

Despite considerable evidence demonstrating the role
of nutrition in ASCVD risk, contemporary analytical ap-
proaches can be applied to yield novel insights. For
example, machine learning (ML) has recently gained
attention due to its ability to elucidate unique relation-
ships within large datasets [21]. In part, this is due to
traditional regression techniques failing to coherently
explain relationships between predictors and outcomes as
these datasets often contain complex non-linear data with
many predictors [22]. Methods to establish the magnitude
of associations found within the data, such as structural
equation models (SEMs), which assess complex and
et al., The role of adiposity, diet
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multivariable relationships that benefit from multi-
collinearity, and the ability to elucidate complex networks,
have recently been incorporated into cardiometabolic
research [23,24].

The current study employed two novel approaches to
investigate the effects of obesity, inflammation, and di-
etary factors on ApoB and LDL-C and their discordance.
First, MR was employed to investigate whether adiposity
and sub-clinical inflammation exposures were causally
linked to LDL-C and/or ApoB. Second, categories of LDL-C/
ApoB discordance were created to determine the influence
of adiposity, inflammation and diet data from the large-
scale US National Health and Nutrition Examination Sur-
vey (NHANES). Specifically, ML and SEMs were combined
to highlight unique predictors of interest and their
magnitude of contribution.

2. Methods

2.1. Study population

This was a cross-sectional study (summarised in Fig. 1)
using data derived from the US National Health and
Nutrition Examination Survey (NHANES). The National
Center for Health Statistics (NCHS) Research Ethics Review
Board approved the underlying protocol. Written informed
consent was obtained from all participants and the study
complied with the 1975 Declaration of Helsinki for medical
research involving human subjects. The current study was
based on the analysis of data for two 2-year NHANES
survey cycles between 2005 and 2012, restricted to par-
ticipants aged �18 years. Details on NHANES Laboratory/
Medical Technologists Procedures and Anthropometry
Procedures are described elsewhere [25]. A blood sample
was drawn from the participant’ antecubital vein. Details
on laboratory-test details are available in the NHANES
Laboratory/Medical Technologists Procedures Manual [25].

Details on recording dietary intake have been previ-
ously described [26]. Briefly, dietary intake was assessed
via 24 h recall obtained by a trained interviewer, with the
use of a computer-assisted dietary interview system with
standardised probes using the United States Department of
Agriculture Automated Multiple-Pass Method (AMPM)
[26]. The AMPM is designed to enhance complete and
accurate data collectionwhile reducing respondent burden
[26,27]. The United States Department of Agriculture
(USDA) Food and Nutrient Database for Dietary Studies
was used to determine the nutrient content of food during
the NHANES survey [28].
and inflammation on the discordance between LDL-C and apoli-
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Figure 1 Overview of study design outlining the principle methods
used.
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2.2. Statistical analysis

High/low levels of LDL-C and ApoB were defined by cut-off
values of 160 mg/dL and 130 mg/dL respectively [2], which
resulted in four concordant/discordant categories. Further
analyses were conducted according to the guidelines of the
Centers for Disease Control and Prevention for analysis of
the NHANES dataset, accounting for masked variance and
Please cite this article as: Webb RJ et al., The role of adiposity, diet
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using their suggested weighting methodology [29].
Continuous and categorical demographic variables were
compared across the four groups using analysis of variance
(ANOVA) and Chi-square tests respectively.

2.3. Machine learning

We used ML to assess which features [(body mass index
(BMI), waist circumference (WC), fasting blood glucose
(FBG), plasma insulin, homeostatic model assessment of
insulin resistance (HOMA-IR), glycated haemoglobin
(HbA1c), alanine aminotransferase, aspartate aminotrans-
ferase, gamma glutamyl transferase, total fat, mono-
unsaturated fatty acids (MUFA), polyunsaturated fatty
acids (PUFA), saturated fatty acids (SFA), protein, carbo-
hydrate, fibre, total sugar, serum uric acid (SUA), serum C-
reactive protein (CRP) and total bilirubin)] influence LDL-C
and ApoB discordance. We hypothesised that each inde-
pendent factor may have a variable effect on the level of
LDL-C and ApoB. Therefore, we implemented our model
for each of the four groups separately to reveal predictors
of our outcome (i.e. a joint effect of both ApoB and LDL-C
was produced by dimension reduction method, principal
component analysis, will be referred to herein as the
‘joined effect’). A random forest (RF) model was applied
with cross validation. This method fits many classification
trees to a data set, then combines the predictions from all
trees to present a final predictive model that ranks vari-
ables by their predictive power. However, this model does
not provide mechanistic insight and may mask variable
interaction and nonlinearity. For the evaluation of our
models we have used R2 and Q2 (an estimate of the pre-
dictive ability of the model calculated by cross-validation).
A negative Q2 means the model is not at all predictive.

2.4. Structural equation modeling (SEM)

We used structural equation modeling (SEM) to test the
overall model fit and relationships between sets of vari-
ables which were selected from machine learning to un-
derstand the underlying relationship of the combined LDL-
C/ApoB joined effect category (for each group separately).
SEMs are able to test the fit of the defined model based on
the observed covariance between the variables. We fitted
our model under a maximum likelihood framework using
covariance matrices [30]. All continuous variables were
standardised by rank-normal transformed (mean 0, SD 1)
by age and sex (and by medication history). Relative model
fit was assessed using the comparative fit index (CFI) and
the TuckereLewis index (TLI), with values ranging from
0 (no fit) to 1 (perfect fit); a model with a ‘good’ fit typically
requires both indices to exceed 0.95. Absolute fit was
assessed using the root mean square error of approxima-
tion (RMSEA). This ranges from 0 to 1, with 0 indicating a
perfect fit [30]. A poorly fitting model is typically defined
by RMSEA > 0.06 [31]. CFI, TLI and RMSEAwere not used to
formally determine adequacy of fit, as their use in this
context is controversial and there is limited consensus on
appropriate cut-off values because each index is affected
and inflammation on the discordance between LDL-C and apoli-
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differently by degrees of freedom, model complexity and
sample size; however, it is standard practice to report these
along with the c2. To overcome this, we formally tested the
model fit by comparing the c2 of the tested model with c2

values obtained from variable-randomised null models
with identical structures (in other words, the variables
were randomly assigned to other nodes in the same
structural equation model definition) and applied to the
respective covariance matrix used for the tested model.
This process was iterated 10,000 times and we reported the
mean of c2 values for the real model and null model. A
two-sided p < 0.05 was used to characterise significant
results. Statistical analysis for the SEMS was performed in
the ‘Lavaan’ package for the R environment for statistical
computing v 3.5.1 (R Foundation for Statistical Computing,
Vienna, Austria. https://www.R-project.org/).

2.5. Mendelian randomisation

We employed MR to determine whether the relationships
in our SEM are causal. We have chosen body fat percentage
and CRP as they were affecting the outcome in most of the
models. Furthermore, we had data to run the MR for the
body fat percentage and CRP. Both are modifiable risk
factors which can be used for clinical advice and to inform
future randomised control trials targeting the modification
of both LDL-C and ApoB. We had single nucleotide poly-
morphism (SNP) instruments for both body fat percentage
and CRP.

2.5.1. Genetic predictors
Genetic associations for body fat percentage and CRP were
obtained from UK Biobank data and other genome-wide
association studies (GWAS). More details can be found
elsewhere [32,33]. Genetic associations with fasting ApoB
(quantified by nuclear magnetic resonance) were obtained
from the largest available extensively genotyped study
(among 24,925 adults). Again, more details can be found
elsewhere [34]. We retrieved summary data for the asso-
ciation between SNPs and circulating fasting LDL-C from the
Global Lipid Genetics Consortium (GLGC) (188,577 adult
samples of European ancestry). They included rigorous
quality control, imputation to the 1000 Genomes Project
panel and adjustments for age and population structure.
Persons of European ancestry from 47 studies genotyped
with different genome-wide association study arrays
(nZ 94,595) or on the Metabochip array (nZ 93,982) with
imputation to the 1000 Genomes Project reference were
studied. In most included studies, blood lipid concentra-
tions had been measured after >8 h of fasting. Participants
on lipid lowering medications were excluded. Traits were
adjusted for age, age-squared, sex and principal compo-
nents, as well as quantile-normalized within each cohort.
For genetic association analysis by linear regression, lipid
levels were inverse normal-transformed and cohort-wise
results combined in fixed effect meta-analysis.

If a SNP was unavailable for the outcome GWAS sum-
mary statistics, we identified proxy SNPs with a minimum
linkage disequilibrium (LD) R2 Z 0.8. To minimize bias in
Please cite this article as: Webb RJ et al., The role of adiposity, diet
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effect estimates induced by correlation between SNPs, we
restricted our genetic instrument to independent SNPs not
in linkage disequilibrium (p Z 0.0001). We refer to a set of
SNPs as “genetic instruments.”

2.5.2. Mendelian randomisation statistics
We combined the effect of instruments using the inverse
variance weighted (IVW) method. Heterogeneity was
assessed using Q value for IVW. To address the potential
effect of pleiotropic variants on the final effect estimate,
we performed sensitivity analysis including weighted
median (WM) and MR-Egger. Sensitivity analysis was
conducted using the leave-one-out method to identify
instruments that might drive the MR results. The WM
estimate provides correct estimates if SNPs accounting for
�50% of the weight are valid instruments. Inverse variance
is used to weight the variants and bootstrapping is applied
to estimate the CIs [35]. MR-Egger can make estimates
even under the assumption that all SNPs are invalid in-
struments, as long as the assumption of instrument
strength independent of direct effect (InSIDE) is satisfied
[35]; however, the InSIDE assumption cannot be easily
verified. Average directional pleiotropy across genetic
variants was assessed from the p value of the intercept
term from MR-Egger [35]. Causal estimates in MR-Egger
are less precise than those obtained by using IVW MR
[36]. Analysis using MR-Egger has a lower false-positive
rate, but a higher false-negative rate, than IVW i.e., it has
a lower statistical power [36].

Heterogeneity between individual genetic variant esti-
mates was assessed using the Q0 heterogeneity statistic
[37]. The Q0 statistic uses modified 2nd order weights that
are a derivation of a Taylor series expansion, considering
the uncertainty in both numerator and denominator of the
instrumental variable ratio [37].

2.5.3. Sensitivity analysis
As sensitivity analysis, we used MR-Egger and MR pleiot-
ropy residual sum and outlier (MR-PRESSO) test [38]. MR-
Egger and MR-PRESSO may provide correct estimates as
long as the instrument strength independent of direct effect
assumption is satisfied [38]. MR-Egger can be imprecise,
particularly if the associations for SNPs on exposure are
similar, or the number of genetic instruments is low [38]. A
non-null MR-Egger intercept suggests that the IVW esti-
mate is invalid. MR-Egger does not explicitly identify out-
liers. MR-PRESSO detects, and if necessary, corrects for
potentially pleiotropic outliers [38]. The MR-PRESSO
framework detects effect estimates that are outliers and
removes them from the analysis by regressing the variant-
outcome associations on variant-exposure associations. A
global heterogeneity test is then implemented to compare
the observed distance between residual sums of squares of
all variants to the regression line with the distance expected
under the null hypothesis of no pleiotropy [39]. Further-
more, MR-Robust Adjusted Profile Score (RAPS) was
applied, which can correct for pleiotropy using robust
adjusted profile scores. We considered causal estimates that
agreed in direction and magnitude across MR methods,
and inflammation on the discordance between LDL-C and apoli-
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https://www.r-project.org/


LDL-C/ApoB discordance, adiposity, inflammation, and diet 5
passed nominal significance in IVW MR, and did not show
evidence of bias from horizontal pleiotropy using hetero-
geneity tests. Statistical analysis was for MR performed in
the ‘TwoSampleMR’ package for the R environment for
statistical computing v 3.5.1 (R Foundation for Statistical
Computing, Vienna, Austria. https://www.R-project.org/).

3. Results

3.1. Demographics and clinical characteristics

Table 1 shows the demographic and clinical characteristics
of the study population based on LDL-C and ApoB
concordant/discordant categories. Group 1 (Low LDL-C,
Low ApoB) had the highest population (n Z 12,384),
Table 1 Demographic and clinical characteristics of the total population

Characteristics Group
(Low
Low A
(n Z

Age (Years) 48.8 �
Sex (%) Male 49.4

Female 50.6
Anthropometric Parameters BMI (kg/m2) 28.3 �

WC (cm) 97 � 0
Insulin and Glucose Parameters Fasting blood glucose (mg/

dL)
101 �

Plasma insulin (mU/mL) 13.05
HOMA-IR 3.42 �
HbA1c (%) 5.67 �

Liver Parameters Alanine aminotransferase
(U/L)

25 � 1

Aspartate
Aminotransferase (U/L)

26 � 1

Gamma glutamyl
transferase (U/L)

28 � 1

Macronutrients Fat (g/day) 79 � 1
MUFA (g/day) 29 � 0
PUFA (g/day) 17 � 0
SFA (g/day) 25 � 0
Protein (g/day) 79 � 1
Carbohydrate (g/day) 251 �
Fibre (g/day) 16 � 0
Total sugar (g/day) 114 �
Energy (kcal/day) 2070

Serum uric acid (mg/dL) 5.5 �
Serum CRP (mg/dL) 0.4 �
Total bilirubin (mg/dL) 0.82 �
SBP (mmHg) 122 �
DBP (mmHg) 68 � 0
Total cholesterol (mg/dL) 185 �
HDL-C (mg/DL) 54 � 0
LDL-C (mg/dL) 105 �
ApoB (mg/dL) 87 � 1
Triglycerides (mg/dL) 116 �
TG/HDL ratio 2 � 0
LDL-C/ApoB ratio 1 � 0
Non-HDL-C 131 �
Value expressed as a mean and SEM or percent.
Abbreviations: ApoB, apolipoprotein B; BMI, body mass index; CRP, C-rea
globin; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, Homeosta
protein cholesterol, MUFA, monounsaturated fatty acids; PUFA, polyunsa
acids; WC, waist circumference.

Please cite this article as: Webb RJ et al., The role of adiposity, diet
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followed by group 4 (n Z 885), group 2 (n Z 711) and
group 3 (n Z 285). Of the participants 48.7% were male.
The mean age was 47.6 years overall, 47.8 years in men and
47.3 years in women (p Z 0.098). Overall mean body mass
index (BMI) and waist circumference (WC) were 28.7 kg/
m2 and 99 cm respectively. Descriptive variables cat-
egorised by high/low LDL-C and ApoB are shown in Table 1.
Significant differences were apparent for all continuous
and categorical demographic variables across the four
groups (all p < 0.001). For instance, subjects in the third
group (Low LDL-C, High ApoB) had significantly higher
levels of adiposity, BMI (30.9 � 0.9 kg/m2) and WC
(106 � 2 cm) compared to the other groups (both
p < 0.001). With regard to insulin and glucose parameters,
fasting blood glucose (FBG) (118 � 10 mg/dL), insulin
based on the LDL and ApoB categories.

1
LDL-C,
poB)
12,384)

Group 2
(High LDL,
Low ApoB)
(n Z 711)

Group 3
(Low LDL-C,
High ApoB)
(n Z 285)

Group 4
(High LDL-C,
High ApoB)
(n Z 885)

p-value

1.2 51.1 � 1.9 55.6 � 1.4 56.1 � 1.6 <0.0001
52.3 51.4 44.9 <0.0001
47.7 49.6 55.1

0.1 28.1 � 0.5 30.9 � 0.9 30.1 � 0.6 <0.0001
97 � 1 106 � 2 103 � 1 <0.0001

1 99 � 2 118 � 10 113 � 4 <0.0001

� 0.26 11.21 � 0.64 16.77 � 1.68 13.13 � 0.88 <0.0001
0.08 2.76 � 0.16 5.21 � 0.86 3.64 � 0.28 <0.0001
0.01 5.68 � 0.08 6.18 � 0.30 6.20 � 0.13 <0.0001

27 � 2 28 � 2 30 � 2 <0.0001

27 � 2 27 � 2 27 � 1 <0.0001

37 � 6 44 � 7 44 � 5 <0.0001

75 � 4 79 � 6 69 � 3 <0.0001
29 � 2 31 � 3 26 � 1 <0.0001
15 � 1 16 � 1 15 � 1 <0.0001
25 � 1 25 � 2 22 � 1 <0.0001
78 � 4 76 � 6 70 � 3 <0.0001

3 238 � 11 257 � 14 223 � 9 <0.0001
13 � 1 14 � 1 14 � 1 <0.0001

2 112 � 7 126 � 10 103 � 6 <0.0001
� 21 1992 � 88 2048 � 116 1823 � 69 <0.0001
0.0 5.7 � 0.1 6.0 � 0.2 5.8 � 0.1 <0.0001
0.0 0.3 � 0.0 0.5 � 0.1 0.5 � 0.1 <0.0001
0.00 0.82 � 0.02 0.80 � 0.04 0.78 � 0.02 <0.0001
0 127 � 2 132 � 3 130 � 2 <0.0001

70 � 1 71 � 2 73 � 1 <0.0001
1 251 � 2 239 � 3 281 � 3 <0.0001

56 � 1 43 � 2 51 � 1 <0.0001
1 170 � 1 144 � 3 192 � 2 <0.0001

119 � 1 138 � 1 146 � 1 <0.0001
1 117 � 5 233 � 13 177 � 5 <0.0001

2 � 0 6 � 0 4 � 0 <0.0001
1 � 0 1 � 0 1 � 0 <0.0001

1 194 � 1 197 � 3 230 � 2 <0.0001

ctive protein; DPB, diastolic blood pressure; HbA1c, glycated haemo-
tic Model Assessment of Insulin Resistance, LDL-C, low-density lipo-
turated fatty acids; SBP, systolic blood pressure; SFA, saturated fatty

and inflammation on the discordance between LDL-C and apoli-
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(16.77 � 1.68 mU/mL) and HOMA-IR (5.21 � 0.86), the third
group (Low LDL-C, High ApoB) had the highest cardio-
metabolic risk profile when compared to the other
groups (all p < 0.001, Table 1).

3.2. Machine learning

Our analysis revealed that BMI, FBG, dietary fat and serum
uric acid were the most strongly associated variables
(R2 Z 0.64) in the first group (Low LDL-C, Low ApoB). For
the second group (High LDL-C, Low ApoB) WC, FBG,
gamma glutamyl transferase, dietary SFA, dietary PUFA,
dietary fibre, total serum bilirubin and serum CRP were
the most strongly associated predictors (R2 Z 0.72) for
our outcome (joined effect of ApoB and LDL-C). With
respect to the third group (Low LDL-C, High ApoB), BMI,
dietary SFA, dietary fibre, serum CRP and serum uric acid
revealed the strongest relationships (R2 Z 0.70). Finally,
within the last group (High LDL-C, High ApoB) BMI, di-
etary fat, dietary carbohydrate, total serum bilirubin and
serum uric acid were the most important associated var-
iables (R2 Z 0.61).

3.3. Structural equation models

To determine the effect magnitude for each of the pre-
dictors resulting from our ML analysis of the four LDL-C
and ApoB concordant/discordant categories we imple-
mented a structural equation model (SEM) for each group
(Supplemental Tables S1eS4).

The SEM applied to the first group (Low LDL-C, Low
ApoB) showed that SUA was the only variable which had
an interdependent significant association (b Z �0.15,
p Z 0.043) with our outcome (joined effect of ApoB and
LDL-C). Additionally, both SUA (b Z �0.28, p Z 0.001) and
BMI (b Z 0.18, p Z 0.012) had a significant association
with FBG (Supplemental Table S1). Regarding the second
group (High LDL-C, Low ApoB), our SEM showed that CRP
(b Z 0.96, p Z 0.001) and fibre intake (b Z �0.21,
p Z 0.042) both had a significant independent association
with our outcome. Furthermore, fibre intake (b Z �0.31,
p Z 0.025), SFA intake (b Z 0.56, p Z 0.001) and WC
(b Z 0.96, p Z 0.001) had a significant relationship with
CRP (Supplemental Table S2). The SEM revealed that fibre
intake (b Z �0.42, p Z 0.001) and SFA intake (b Z 0.28,
p Z 0.014) had a significant association with our outcome
in the third group (Low LDL-C, High ApoB). The effect es-
timates are presented in Fig. 2. Furthermore, BMI
(b Z 0.65, p Z 0.001), fibre intake (b Z �0.24, p Z 0.014)
and SFA intake (b Z 0.26, p Z 0.032) also had a significant
association with CRP (Supplemental Table S3). With
respect to the fourth group (High LDL-C, High ApoB), our
SEM revealed that SUA (b Z 0.23, p Z 0.001) and BMI
(b Z 0.26, p Z 0.001) both had a significant relationship
with our outcome. Furthermore, BMI was also significantly
associated with bilirubin (b Z �0.19, p Z 0.001) and SUA
(b Z 0.55, p Z 0.001) (Supplemental Table S4). All the
models demonstrated a good fit (Chi-square: 14.1, CFI:
0.995, RMSEA: 0.050, TLI: 0.958).
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3.4. Mendelian randomisation

The instruments have F-statistics ranging from 326 to 425,
making significant bias from the use of weak instruments
unlikely. The results, expressed as beta-coefficients per 1
standard deviation (SD) increase in outcomes, are pre-
sented in Table 2.

Genetically higher body fat percentage had a significant
effect on ApoB (IVW Z Beta: 0.172, p Z 0.0001, Table 2,
Supplemental Fig. S1) but not LDL-C levels (IVW Z Beta:
�0.006, p Z 0.845, Table 2, Supplemental Fig. S2). Higher
CRP levels had no significant effect on ApoB (IVW Z Beta:
0.032, p Z 0.502, Table 2, Supplemental Fig. S3) or LDL-C
levels (IVW Z Beta: �0.046, p Z 0.247, Table 2,
Supplemental Fig. S4).

Heterogeneity results and pleiotropy bias are also
shown in Table 2. Estimation is based on both MR Egger
and IVW indicted chance of heterogeneity for all of our
predictions (all IVW p < 0.0023, all MR Egger p < 0.0020).
We performed MR-PRESSO (to detect outlier SNPs and
estimate corrected effects) which revealed the effect of
body fat percentage on ApoB (Beta: 0.190, p Z 0.0003,
Table 2) and LDL-C (Beta: �0.001, p Z 0.971, Table 2) and
the further impact of CRP on ApoB (Beta: �0.023,
p Z 0.392, Table 2) and LDL-C (Beta: �0.019, p Z 0.347,
Table 2). The horizontal pleiotropy test, with very negli-
gible Egger regression intercept, also indicated a low
likelihood of pleiotropy for all our estimations (all
p > 0.111). The results of the MR-RAPS were identical with
the IVW estimates, highlighting again a low likelihood of
pleiotropy. The results of the leave-one-out method
demonstrated that the links were not driven by single
SNPs.

4. Discussion

In this study, we aimed to investigate the role of car-
diometabolic and dietary factors in relation to LDL-C/ApoB
discordance. We found that those belonging to the third
group (Low LDL-C, High ApoB) had the worst profile of
cardiometabolic risk markers when compared to the other
groups. Our novel approach with ML and SEM revealed for
the first time that predictors of the combined measure of
LDL-C and ApoB are different for each group. These dif-
ferences were implicated by markers of inflammation,
adiposity, and dietary intake of fibre and SFA of varying
magnitudes and significance within each group. Indeed,
the use of ML followed by SEM revealed a significant
relationship of fibre and SFA intake within the Low LDL-C/
High ApoB group, whereas the High LDL-C/Low ApoB
group showed both CRP and fibre intake had a significant
independent association with the joined effect of ApoB
and LDL-C.

Analysis using MR revealed that body fat percentage
was causal of ApoB but not LDL-C and the inflammatory
marker, CRP, had no causal relationship with neither
ApoB nor LDL-C. This is the first study where a causal role
between adiposity and ApoB has been demonstrated.
Relationships found by others regarding body fat, BMI,
and inflammation on the discordance between LDL-C and apoli-
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Figure 2 Structural equation model (SEM) to determine the underlying mechanism of the joined effect of ApoB and LDL-C in Group 3 (i.e. High
ApoB/Low LDL-C). The diagram illustrates the SEM created to determine the underlying mechanism of joined effect of ApoB and LDL-C. The squares
represent manifest nodes and arrows indicate regression coefficients which point towards an outcome of regression (standardised beta value
mentioned on each arrows only for significant associations).
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WC and other measures of adiposity with ApoB, together
with convincing mechanistic evidence, further support
our findings [16,40,41]. It has long been established that
adiposity, especially visceral adipose tissue and insulin
resistance, lead to excess secretion of fatty acids (FA) via
the suppression of hormone sensitive lipase [42]. This
causes FA to accumulate in the liver, resulting in the
synthesis of ApoB100 and large VLDL [42]. Furthermore,
the clearance of ApoB in obesity is compromised due to
the underproduction of lipoprotein lipase, leading to
Table 2 Results of the Mendelian Randomisation (MR) analysis for perce

Exposures MR H

Method Beta SE p M

% of body fat LDL-C MR Egger �0.288 0.123 0.018 M
WM �0.057 0.042 0.183
IVW �0.006 0.034 0.845 IV
RAPS 0.016 0.035 0.643
MR-PRESSO �0.001 0.031 0.971

ApoB MR Egger 0.223 0.197 0.256 M
WM 0.221 0.074 0.002
IVW 0.172 0.054 0.001 IV
RAPS 0.203 0.054 0.0001
MR-PRESSO 0.190 0.053 0.0003

CRP LDL-C MR Egger �0.097 0.093 0.308 M
WM �0.020 0.015 0.178
IVW �0.046 0.040 0.247 IV
RAPS �0.035 0.009 0.0001
MR-PRESSO �0.019 0.019 0.347

ApoB MR Egger �0.108 0.096 0.270 M
WM �0.046 0.028 0.111
IVW 0.032 0.048 0.502 IV
RAPS 0.008 0.041 0.827
MR-PRESSO �0.023 0.026 0.392

Abbreviations: ApoB, Apolipoprotein B; beta, beta-coefficients; CRP, C-re
lipoprotein cholesterol; MR, Mendelian randomisation; SE, standard error
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impaired hydrolysis of VLDL and increased plasma resi-
dence time [43].

With regards to LDL-C and ApoB discordance, the pre-
sent study revealed distinct categories based upon the
levels of these markers which reflect the heterogeneous
variance found in the population. These discordant cate-
gories represented substantially less than the w20%
prevalence cited by other studies; however, previous
research has employed different ApoB and LDL-C cut-offs,
or analysed at risk populations (e.g. T2D, metabolic
ntage body fat and CRP with LDL-C and ApoB.

eterogeneity Pleiotropy

ethod Q P-value Intercept SE p

R-Egger 378.971 2.453887e-13 0.004 0.001 0.161

W 390.232 2.185660e-14

R-Egger 313.226 0.0020 �0.0007 0.003 0.799

W 313.202 0.0023

R-Egger 429.232 3.633e-79 0.006 0.011 0.551

W 437.226 3.249e-80

R-Egger 89.625 1.097e-10 0.018 0.012 0.111

W 101.232 1.569e-12

active protein, IVW, Inverse variance weighted; LDL-C, Low-density
; WM, Weighted median.

and inflammation on the discordance between LDL-C and apoli-
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syndrome) [44e46]. We applied cut offs of 130 mg/dL and
160 mg/dL for ApoB and LDL-C respectively, levels agreed
upon by expert consensus [2], in an otherwise healthy
population from the NHANES database. Despite these
more stringent cut offs, discordance between LDL-C and
ApoB remained and differences between the four groups
were revealed which aligned with those previously re-
ported [47]. Supporting our finding of the causal role of
body fat percentage on ApoB, we demonstrated significant
differences with BMI and WC between groups (Table 1).
Indeed, BMI reaching obesity was observed in the high
ApoB groups, and levels were practically identical between
these two groups. However, WC was highest in Group 3
(Low LDL-C, High ApoB), suggesting higher visceral obesity
and supporting previous literature as the group with the
most disrupted metabolism, and therefore highest car-
diometabolic risk [48,49]. Other markers in Group 3 which
corroborate this include higher insulin resistance, systolic
blood pressure, lower HDL-C, and higher triglycerides.

It is known that CRP and SUA are intimately associated
with inflammatory processes, which are predictive of
ASCVD risk [50,51]. This inflammation is thought to partly
result from LDL particles stimulating endothelial cells
which increase the production of CRP, which in turn
stimulates the release of lectin-like oxidized LDL receptor
1 from macrophages [52]. This further increases the up-
take of LDL, creating a vicious cycle [52]. Furthermore, SUA
has also been shown to directly regulate proinflammatory
pathways in vascular smooth muscle cells, further
contributing towards the nefarious progression of ASCVD
[53]. Our results are in agreement with significant re-
lationships revealed between both CRP and SUA and ApoB/
LDL-C within Groups 2 and 4 (High LDL-C, Low ApoB and
High LDL-C, High ApoB respectively). Moreover, a negative
association between SUA in Group 1 (Low LDL-C, Low
ApoB) was also shown, further emphasising the potential
prognostic value of these markers in ASCVD.

The influence of dietary factors showed small but sig-
nificant differences for total fat, SFA, PUFA, and MUFA, but
these were not clinically significant and were largely
within recommended guidelines (Table 1) [54]. Only total
carbohydrate and total sugar intake were significantly
higher in Group 3 (Low LDL-C, High ApoB). This is sup-
ported by literature showing carbohydrate, especially
refined carbohydrate, increases plasma TG and small dense
LDL, lowers HDL-C, and negatively impacts markers of
glucose metabolism and inflammation [55]. The signifi-
cantly lower LDL-C/ApoB and higher TG/HDL-C ratios in
this group is suggestive of a ‘Pattern B profile’, which is
predominant in insulin resistance and low-grade inflam-
matory states and correlated with SUA [56]. Krauss et al.
[55] and others have shown a consistent improvement of
this pattern with a lower carbohydrate approach [57,58].
Larger scale studies, such as the PURE study, have also
demonstrated that a lower carbohydrate diet results in a
more favourable overall blood lipid profile compared to
that of a high carbohydrate and low-fat diet [59]. However,
one of the main criticisms of this strategy is an overall
increase in LDL-C and debate continues regarding the
Please cite this article as: Webb RJ et al., The role of adiposity, diet
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promotion of such diets [60,61]. The few lower carbohy-
drate studies that investigated atherogenic lipoproteins
(including ApoB) show a high degree of variance, with or
without weight loss, suggesting dietary factors such as
saturated fat might influence ApoB [57,62]. Findings from
Furtado et al. demonstrate this by showing that dietary
patterns which are high in saturated fat are associated
with higher levels of ApoB than those which emphasise
carbohydrates, unsaturated fat or protein [63]. This was
partially supported by our data, showing a weak but sig-
nificant correlation with SFA and ApoB/LDL-C in Group 3
(Low LDL-C, High ApoB) but not in Group 4 (High LDL-C,
High ApoB). Indeed, Group 4 had significantly lower total
and SFA intake, incongruent with the diet-heart hypothe-
sis [64], suggesting other factors such as various SNPs may
contribute [65].

Despite the differences between groups being small and
all groups consuming less than recommendations, there
was a highly significant and moderate negative correlation
with dietary fibre and ApoB and LDL-C in Group 3 (Low
LDL-C, High ApoB). Furthermore, the high intake of overall
carbohydrate and low intake of fibre in this group may
suggest that intake may be comprised predominantly of
refined carbohydrate. These findings are in alignment with
limited human randomised controlled trials, which have
shown that in individuals with dyslipidaemia the con-
sumption of soluble fibre results in decreased levels of
ApoB via the reduced reabsorption of bile acids and
increased excretion of cholesterol [16].

4.1. Limitations

Our study has some limitations. Firstly, while we consider
using consensus cut-off points for LDL-C and ApoB, other
studies use median values which may reveal further dif-
ferences between groups. Second, MR should ideally be
performed in different ethnicities to ensure validity of the
findings. Third, it would have been preferential to have
GWAS data for the discordant groups, but this was not
possible as no database exists which contains this data.
Fourth, the authors did not have clinical endpoint data
available for the participants, such as CVD event or mor-
tality, as the NHANES database does not contain a large
enough sample. Fifth, although the predictive value of the
ratio of ApoB to anti-atherogenic apolipoprotein A1
(ApoA1) and its strong relationship with body fat distri-
bution is well-documented, NHANES did not measure
ApoA1 making its ratio with ApoB impossible to calculate
and utilise in our study [66]. Finally, there are inherent and
well-documented limitations with 24-h recall dietary
assessment data, including recall bias which may lead to
under and/or over reporting [67].

4.2. Conclusions

In conclusion, our findings reveal several novel findings of
significant importance for ASCVD risk that should guide
future recommendations. First, we show a causal relation-
ship between body fat percentage and ApoB suggesting
and inflammation on the discordance between LDL-C and apoli-
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weight management as a powerful strategy to reduce
ASCVD risk. Second, we reveal that the subgroup pertaining
to discordantly high ApoB in relation to LDL-C is associated
with several cardiometabolic, clinical, and anthropometric
abnormalities and poor dietary intake. Finally, our data
supports the use of ApoB as a lifestyle therapeutic and
target for recommendations rather than LDL-C per se,
especially when the two measures are discordant.
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