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Abstract
The problem of uniformly placing N points onto a sphere finds applications in many
areas. For example, points on the sphere correspond to unit quaternions as well as
to the group of rotations SO(3) and the online version of generating uniform rota-
tions (known as “incremental generation”) plays a crucial role in a large number of
engineering applications ranging from robotics and aeronautics to computer graph-
ics. An online version of this problem was recently studied with respect to the gap
ratio as a measure of uniformity. The first online algorithm of Chen et al. was upper-
bounded by 5.99 and later improved to 3.69, which is achieved by considering a
circumscribed dodecahedron followed by a recursive decomposition of each face. In
this paper we provide a more efficient tessellation technique based on the regular
icosahedron, which improves the upper-bound for the online version of this problem,
decreasing it to approximately 2.84. Moreover, we show that the lower bound for the
gap ratio of placing at least three points is (1 + √

5)/2 ≈ 1.618 and for at least four
points is no less than 1.726.
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1 Introduction

One of the central problems of classical discrepancy theory is to maximise the uni-
formity of distributing a set of n points into some metric space [7]. For example, this
includes questions about arranging points over a unit cube in a d-dimensional space, a
polyhedral region, a sphere, a torus or even over a hyperbolic plane, etc. Applications
of modern day discrepancy theory include those in viral morphology, crystallography,
molecular structure, electrostatics, computing quadrature formulas [17], 3D projection
reconstruction of Magnetic Resonance Images (MRI) [13], investigations of carbon
fullerenes (C60 and C70) [9], complexity theory [22], connections to quaternion rota-
tions [3], Ramsey theory, problems in numerical integration, financial calculations,
computer graphics, and computational physics [15]. The choice of discrepancy mea-
sure impacts the type of questions that can be studied. For example, a logarithmic
variant of the Coulomb potential allows one to define Smale’s 7th problem [20]; from
a list of 18 important questions for the 21st century.

In order to measure the discrepancy from uniformity, the gap ratio metric was
introduced by Teramoto et al. [23] for analysing dynamic discrepancy, i.e., the ratio
between the maximum and minimal gap, where the maximum gap is the diameter of
the largest empty circle on the sphere surface and the minimal gap is the minimum
pairwise distance on the sphere surface (orthodromic distance). A similar measure of
taking the radius of the largest empty circle over minimum pairwise distance is known
as the “mesh ratio” [5] or “mesh-separation ratio” [6, 10]. Onemight consider defining
uniformity just by measuring the closest two points, however this does not take into
account large undesirable gaps that may be present in the point set. Alternatively one
may use the standard measure from discrepancy theory; define some fixed geometric
shape R and count the number of inserted points that are contained in R, whilst
moving it all over some space. This measure has two main disadvantages—that of
computational hardness of calculating the discrepancy at each stage and also that we
must decide upon a given shape R, each of which may give different results [23].
Finally we mention the related “covering radius” for a given set of points which
denotes the minimal sized radius such that spheres centred at these points cover the
whole metric space (although we may note that such a discrepancy does not penalise
two points which are close together); see [11] for a good introduction.

Generating a set of uniformity distributed points in non-Euclidean space is even
more challenging and somewhat counterintuitive. For example, the problem of gen-
erating a point set on the 2-sphere which minimises criteria such as energy functions,
discrepancy, dispersion andmutual distances has been extensively studied in the offline
setting [12, 14, 17, 19, 21, 26, 27]. Some motivations and applications of this problem
when restricted to the 2-sphere stretch from the classical Thompson problem of deter-
mining a configuration of N electrons on the surface of a unit sphere that minimises
the electrostatic potential energy [16, 24], to search and rescue/exploration problems
as well as problems related to extremal energy, crystallography and computational
chemistry [17]. In the original offline version of the problem of distributing points
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over some space, the number of points is predetermined and the goal is to distribute
all points as uniformly as possible at the end of the process.

In contrast, the online optimisation problem requires that the points should be
dynamically inserted one at a time on the surface of a sphere without knowing the
total number of points in advance. Thus, the objective is to distribute the points as
uniformly as possible at every instance of inserting a point. Note that in this case once
a point has been placed it cannot be later moved. The points on the sphere correspond
to unit quaternions and the group of rotations SO(3) [3, 18], which have a large number
of engineering applications in the online setting (also known as “incremental genera-
tion”) and plays a crucial role in applications ranging from robotics and aeronautics
to computer graphics [27].

The online variant of distributing points in a given space has already been studied,
e.g. for inserting integral points on a line [1] or on a grid [28], inserting real points
over a unit cube [23] and also recently as a more complex version of inserting real
points on the surface of a sphere [8, 27, 29]. A good strategy for online distribution of
points on the plane has been found in [2, 23] based on the Voronoi insertion, where
the gap ratio is proved to be at most 2. For insertion on a two-dimensional grid,
algorithms with a maximal gap ratio 2

√
2 ≈ 2.828 were shown in [28]. The same

authors showed that the lower bound for the maximal gap ratio is 2.5 in this context.
The other important direction was to solve the problem for the one-dimensional line
and an insertion strategy with a uniformity of 2 has been found in [1]. An approach
of using generalised spiral points was discussed in [16, 17], which performs well for
minimizing extremal energy, but this approach is strictly offline (number of points N
known in advance).

Recently the problem of online distribution of points on the 2-sphere has been
proposed in [8] where a two phase point insertion algorithm with an overall upper
bound of 5.99 was designed. The first phase uses a circumscribed dodecahedron to
place the first twenty vertices, achieving a maximal gap ratio 2.618. After that, each
of the twelve pentagonal faces can be recursively divided. This procedure is efficient
and leads to a gap ratio of no more than 5.99. With more complex analysis, the bound
was recently decreased to at most 3.69 in [29].

One may consider whether such two phase algorithms may perform well for this
problem by either modifying the initial shape used in the first phase of the algo-
rithm (such as using initial points derived from other Platonic solids) or else whether
the recursive procedure used in phase two to tessellate each regular shape may be
improved. We may readily identify an advantage to choosing a Platonic solid for
which each face is a triangle (the tetrahedron, octahedron and icosahedron), since in
this case at least two procedures for tessellating each triangle immediately spring to
mind—namely to recursively place a new point at the centre of each edge, denoted
triangular dissection (creating four subtriangles, see Fig. 2), or else the Delaunay tes-
sellation, which is to place a new point at the circumcentre of each triangle (creating
three new triangles, see Fig. 1).

It can be readily seen that the Delaunay tessellation of each spherical triangle
rapidly gives a poor gap ratio, since points start to become dense around the centre of
edges of the initial tessellation. The second recursive tessellation strategy (Fig. 2), was
conjectured to give a poor ratio in [8]. This intuition seems reasonable, since as we
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Fig. 1 Delauney triangulation applied twice

Fig. 2 Recursive triangle dissection (twice)

Fig. 3 Deformation of triangles in projection

recursively decompose each spherical triangle by this strategy the gap ratio increases
as for such a triangle this decomposition deforms with each recursive step, as can
be seen in Fig. 3. It can also be seen that the gap ratio at each level of the triangular
dissection increases (see Lemma 4.4). Nevertheless, we show in this paper that as long
as the initial tessellation (stage 1) does not create too ‘large’ spherical triangles (with
high curvature), then the gap ratio of stage 2 has an upper limit, and performs much
better than the tessellation of the regular dodecahedron proposed in [8] and [29].

In this paper, we provide a new algorithm and utilise a circumscribed regular icosa-
hedron and the recursive triangular dissection procedure to reduce the bound of 3.69
derived in [29] to π/arccos(1/

√
5) ≈ 2.8376. Apart from a better upper bound, an

advantage of our triangular tessellation procedure is its generalisability and more effi-
cient tessellation aswe only need to compute the spherical median between two locally
introduced points at every step.

Another natural point insertion algorithm to consider is a greedy algorithm, where
points are iteratively added to the centre of the largest empty circle. However, the
decomposition of a 2-sphere according to the greedy approach leads to complex non-
regular local structures and it soon becomes intractable to determine the next point to
place [8, 29] (such points can in general even be difficult to describe in a computa-
tionally efficient way).
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A preliminary version of this paper appeared in [4]. The present paper provides full
details and diagrams for proofs, improves the lower bound of 1.618 to 1.726 in Theo-
rem 5.5, provides some experimental results and shows in Sect. 5.1 a counterexample
of a claimed lower bound of 1.78 from [29].

2 Notation

2.1 Spherical Trigonometry

Given a set P , we denote by 2P the power set of P (the set of all subsets). Let S
denote the 3-dimensional unit sphere (the 2-sphere). We will deal almost exclusively
with unit spheres, since for our purposes the gap ratio (introduced formally later) is not
affected by the spherical radius. Let u1, u2, u3 ∈ R

3 be three unit length vectors, then
T = 〈u1, u2, u3〉 denotes the spherical triangle onS with vertices u1, u2, and u3.Given
some set of points {u1, u2, u3}∪{v j | 1 ≤ j ≤ k}, a spherical triangle T = 〈u1, u2, u3〉
is called minimal over that set of points if no v j for 1 ≤ j ≤ k lies on the interior
or boundary of T . As an example, in Fig. 5, triangle 〈u1, u113, u112〉 is minimal, but
〈u1, u13, u12〉 is not, since points u113 and u112 lie on the boundary of that triangle.

The edges of a spherical triangle are arcs of great circles. A great circle is the
intersection of S with a central plane, i.e one which goes through the centre of S.
We denote the length of a path connecting two points u1, u2 on the unit sphere by
ζ (u1, u2) (the spherical length).

Given a non-degenerate spherical triangle (i.e., one with positive area, defined later)
with two edges e1 and e2 which intersect at a point P , then we say that the angle of
P is the angle of P measured when projected to the plane tangent at P . We constrain
all spherical triangles to have edge lengths strictly between 0 and π , which avoids
issues with antipodal triangles. Two points on the unit sphere are called antipodal if
the angle between them is π (i.e., they lie opposite to each other on the unit sphere)
and an antipodal triangle contains two antipodal points. Several results in spherical
trigonometry (and in this paper) are derived by projections of points/edges to planes
tangent to a point on the sphere; in all such cases the projection is from the centre of
the sphere.

The following results are all standard from spherical trigonometry, see [25] for
proofs and further details. The length of an arc belonging to a great circle corresponds
with the angle of the arc, see Fig. 4. Furthermore, given an arc between two points u1
and u2 on S, the length of the line connecting u1 and the projection of u2 to the plane
tangent to u1 is given by tan(ζ (u1, u2)), see Fig. 4.

Lemma 2.1 (spherical laws of sines and cosines) Given a spherical triangle with
sides a, b, c and angles A, B,C opposite to side a, b, c resp., then:

(i) cos c = cos a cos b + sin a sin b cosC;
(ii) cosC = − cos A cos B + sin A sin B cos c; and
(iii) sin a/sin A = sin b/sin B.
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tan α

secα1
α

α
u1

u2

α = (u1 , u2)

Fig. 4 Angular calculations in the plane intersecting the great circle containing (u1, u2)

The sum of angles within a spherical triangle is between π (as the area approaches
zero) and 3π (as the triangle fills the whole sphere). The spherical excess of a triangle
is the sum of its angles minus π radians.

Theorem 2.2 (Girard’s theorem) The area of a spherical triangle is equal to its spher-
ical excess.

2.2 Online Point Placing on the Unit Sphere

Our aim is to insert a sequence of ‘uniformly distributed’ points onto S in an online
manner. After placing a point, it cannot be moved in the future. Let pi be the i’th
point thus inserted and let Si = {p1, p2, . . . , pi } be the configuration after inserting
the i’th point. Teramoto et al. introduced the gap ratio [23], which defines a measure
of uniformity for point samples and we use this metric (similarly to [8]).

Let ρmin : 2S → R denote the minimal distance between a set of points Si , defined
by ρmin(Si ) = minp,q∈Si ,p 
=q ζ(p, q). Recall that notation 2S means the set of all
points lying on the 2-sphere S. Let ρS ′

max : 2S → R denote the maximal spherical
diameter of the largest empty circle centred at some point of S ′ ⊆ S not intersecting
the given set of points Si , defined by ρS ′

max(Si ) = maxp∈S ′ minq∈Si 2 · ζ(p, q). We
then define ρS ′

(Si ) = ρS ′
max(Si )/ρmin(Si ) to be the gap ratio of Si over S ′. When

S ′ = S (i.e., when points can be placed anywhere on the sphere), we define that
ρ(Si ) = ρS(Si ).

We denote an equilateral spherical triangle as one for which each side has the same
length. By Lemma 2.1 (the spherical law of cosines), having three equal length edges
implies that an equilateral spherical triangle has the same three angles. ByTheorem2.2
(Girard’s theorem), each such angle is greater than π/3 (for an equilateral triangle of
positive area). Let � ⊆ S denote the set of all spherical triangles on the unit sphere.

Consider a spherical triangle T ∈ �. We define a triangular dissection function
σ : � → 2� in the following way. If T ∈ � is defined by T = 〈u1, u2, u3〉, then
σ(T ) = {T1, T2, T3, T4} ⊂ �, where T1 = 〈u1, u12, u13〉, T2 = 〈u12, u2, u23〉,
T3 = 〈u3, u13, u23〉, and T4 = 〈u12, u13, u23〉, with ui j being the midpoints (on the
unit sphere) of the arc connecting ui and u j (see Fig. 5). Define σE (T ) as the set
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of nine induced edges: {(u1, u12), (u12, u2), (u2, u23), (u23, u3), (u3, u13), (u13, u1),
(u13, u23), (u23, u12), (u12, u13)}.

We extend the domain of σ to sets of spherical triangles: σ ({T1, T2, . . . , Tk}) =
{σ(T1), σ (T2), . . . , σ (Tk)}; thus σ : 2� → 2�. Given a spherical triangle T ∈ �,
we then define that σ 1(T ) = σ(T ) and σ k(T ) = σ(σ k−1(T )) for k > 1.
For notational convenience, we also define that σ 0(T ) = T (the identity tessel-
lation). We similarly extend σE (T ) to a set of triangles: σE ({T1, T2, . . . , Tk}) =
{σE (T1), σE (T2), . . . , σE (Tk)} and let σ k

E (T ) = σE (σ k(T1), σ k(T2), . . . , σ k(Tk)).
See Fig. 5 for an example showing the tessellation of T to depth 2 (e.g. σ 2(T )) and
the set of edges σ 2

E (T ).
Let μ : � → 2S be a function which, for an input spherical triangle, returns the

(unique) set of three points defining that triangle. For example, given a spherical trian-
gle T = 〈p1, p2, p3〉, thenμ(T ) = {p1, p2, p3}. Clearlyμmay be extended to sets of
triangles by defining that μ({T1, . . . , Tk}) = {μ(T1), . . . , μ(Tk)}; thus μ : 2� → 2S .
When there is no danger of confusion, by abuse of notation, we sometimes write T
rather than μ(T ). This allows us to write ρ(T ) (or ρ(σ k(T ))) for example, as the gap
ratio of the three points defining spherical triangle T (resp. the set of points in the
k-fold triangular dissection σ k(T )).

We will also require an ordering on the set of points generated by a tessellation
σ k(T ). Essentially, we wish to order the points as those of σ 0(T ) = T first (in any
order), then those of σ 1(T ) in any order but omitting the points of σ 0(T ) = T , then
the points of σ 2(T ), omitting points in triangles of σ 0(T ) or σ 1(T ), etc. To capture
this notion, we introduce a function τ : � × Z

+ → 2S defined thus:

τ(T , k) =
{

μ(σ k(T )) − μ(σ k−1(T )) if k ≥ 1,

μ(T ) if k = 0.

As an example, in Fig. 5, τ(T , 0) = {u1, u2, u3}, τ(T , 1) = {u12, u13, u23}, and
τ(T , 2) = {u112, u122, u232, u323, u133, u113, u1323, u1213, u1223}. By abuse of nota-
tion, we redefine σ k(T ) so that σ k(T ) = τ(T , 0) ∪ τ(T , 1) ∪ . . . ∪ τ(T , k) is an

u12

u23u13

u1

u2

u3

u113
u1213

u112

u133

u323

u1323

u232

u122

u1223

X

Y

Z

Fig. 5 σ tessellations
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ordered set, ordered by points τ(T , 0) first and τ(T , k) last (points within any τ(T , j)
for 1 ≤ j ≤ k are in any order).

3 Overview of Online Vertex Insertion Algorithm

Our algorithm is a two stage strategy. In stage one, we project the 12 vertices of
the regular icosahedron onto the unit sphere. The first two points inserted should be
opposite each other (antipodal points), but the remaining 10 points can be inserted in
any order, giving a stage one gap ratio of π/arccos(1/

√
5) ≈ 2.8376.

In the second stage, we treat each of the 20 equilateral spherical triangles of the
regular icosahedron in isolation. We show in Lemma 4.4 that the gap ratio for our
tessellation is ‘local’ and depends only on the local configuration of vertices around a
given point. This allows us to consider each triangle separately. During stage two, we
use the fact that these twenty spherical triangles are equilateral and apply Lemma 7
to independently tessellate each triangle recursively in order to derive an upper bound

of the gap ratio in stage two of 2(3 − √
5)/arcsin

(√
2 − 2/

√
5/2

)
≈ 2.760.

We note here that the radius of the sphere does not affect the gap ratio of the point
insertion problem, and thus we assume a unit sphere throughout.

The algorithmic procedure to generate an infinite set of points is shown in Algo-
rithm 1. To generate a set of k points {p1, p2, . . . , pk}, we choose the first k points
generated by the algorithm.

Algorithm 1 Placing infinitely many points on the unit sphere using our recursive
tessellation procedure on the regular icosahedron.
Stage one: Project 12 vertices of the icosahedron to the unit sphere:
Place two antipodal points on the unit sphere.
Place the remaining ten points in any order.
Arbitrarily label the 20 minimal spherical triangles T = {T1, . . . , T20}.
Stage two: Recursively tessellate minimal triangles
Let T ′ ← T
while TRUE do

for all minimal spherical triangles R ∈ T do
Let T ′ ← (T ′ ∪ σ(R)) − R

end for
Let T ← T ′

end while

4 Gap Ratio of Equilateral Spherical Triangles

We will require several lemmata regarding tessellations of spherical triangles. The
following lemma is trivial from the spherical sine rule and Girard’s theorem.

Lemma 4.1 Let T ∈ � be an equilateral triangle. Then the central triangle in the
tessellation σ(T ) is also equilateral.
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Proof Consider Fig. 5. The lemma claims that if 〈u1, u2, u3〉 is equilateral, then so
is 〈u12, u13, u23〉 (and therefore also 〈u1213, u1223, u1323〉). As a consequence of the
spherical cosine rule, an equilateral spherical triangle will have three equal interior
angles, each of which is larger than π/3 (otherwise, by Girard’s theorem, it has zero
area). Since the edge lengths of T are identical, then the central triangle of σ(T ) also
has equal length edges, again by the spherical cosine rule. ��

It is worth emphasising in Lemma 4.1 that the other three triangles in the triangular
dissection of an equilateral triangle are not equilateral, and have a strictly smaller area
than the central triangle. This deformation of the recursive triangular dissection makes
the analysis of the algorithm non-trivial. The following lemma equates the distance
from the centroid of an equilateral spherical triangle to a vertex of that triangle. Note
that the centroid and circumcentre coincide for an equilateral triangle and thus both
terms can be used interchangeably.

Lemma 4.2 Let T = 〈u1, u2, u3〉 ∈ � be an equilateral triangle with circumcentre
uc and edge length ζ (u1, u2) = α. Then ζ (u1, uc) = ζ (u2, uc) = ζ (u3, uc) =
arcsin(2 sin(α/2

√
3).

Proof Consider Fig. 7. The circumcentre of T is, as for standard triangles, the unique
point uc of T from which the (spherical) distance satisfies ζ (uc, u1) = ζ (uc, u2) =
ζ (uc, u3). Let then x = ζ (uc, u1). By the sine rule of spherical trigonometry:

sin x

sin(π/2)
= sin(α/2)

sin(2π/6)
,

and since sin(π/3) = √
3/2, then x = arcsin(2 sin(α/2)/

√
3). ��

Given an equilateral spherical triangle T , we will also need to determine the max-
imal and minimal edge lengths in σ k

E (T ) for k ≥ 1, which we now show.

Lemma 4.3 Let T = 〈u1, u2, u3〉 ∈ � be an equilateral triangle such that α =
ζ (u1, u2) ∈ (0, π/2] and k ≥ 1. Then the minimal length edge in σ k

E (T ) is given by
any edge lying on the boundary of T . The maximal length edge of σ k

E (T ) is any of the
edges of the central equilateral triangle of σ k(T ).

Proof Consider Fig. 5. The lemma states that in σ 2(T ) shown, the shortest length edge
ofσ 2

E (T ) is (u1, u113), or indeed any such edgeon the boundary of triangle 〈u1, u2, u3〉.
The lemma similarly states that the longest edge of σ 2

E (T ) is edge (u1213, u1223), or
indeed any edge of the central equilateral triangle 〈u1213, u1223, u1323〉.

Consider now Fig. 6 illustrating T = 〈u1, u2, u3〉. Point u12 (resp. u13) is at the
midpoint of spherical edge (u1, u2) (resp. (u1, u3)). Let α = ζ (u1, u2) = ζ (u2, u3) =
ζ (u1, u3) be the edge length. The intersection of spherical edges (u2, u13) and (u1, u3)
forms a spherical right angle at u13. We denote y = ζ (u13, u12), thus y is the edge
length of the central equilateral triangle of σ(T ) (and α/2 = ζ (u1, u13) is the edge
length of the minimal length edge of one of the non-central triangles in σ(T ); note
that this is the same for each such triangle).
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u12

αu13

u1
u2

u3

y

α
2

α
2

γ
2γ

2

y
2

X

Y

Z

γ

Fig. 6 Max and min lengths of σ tessellations of an equilateral triangle

By the spherical sine rule, sin(γ /2) = sin(α/2)/sin α, which is illustrated by
triangle 〈u2, u13, u3〉. Thus sin(γ /2) = sec(α/2)/2. Here we used the (standard
trigonometric) identity that sin(x/2)/sin x = sec(x/2)/2. Further, one can see by the
spherical sine rule that sin(y/2) = sin(α/2) · sin(γ /2) = sin(α/2)/(2 cos(α/2)) =
tan(α/2)/2. This implies ζ (u13, u12) = y = 2 arcsin(tan(α/2)/2) which is larger
than α/2 for α ∈ (0, π/2]. To prove this, let f (α) = 2 arcsin(tan(α/2)/2) then

d f

dα
= 2

cos2(α/2)
√
4 − tan2(α/2)

as is not difficult to prove. Noting that if α ∈ (0, π/2], then cos2(α/2) ∈ [1/2, 1]
and

√
4 − tan2(α/2) ∈ [2,√3], then d f /dα > 1/2 = d(α/2)/dα and thus since

f (α) = 0 = α/2 when α = 0, then y > α/2 for α ∈ (0, π/2].
For any depth-k tessellation σ k(T ), the maximal edge length of σ k

E (T ) will thus
be given by the length of the edges of the central equilateral triangle and the minimal
length edges will be located on the boundary of T as required. ��

Given an equilateral spherical triangle T = 〈u1, u2, u3〉, we now consider the gap
ratio implied by the restriction of points to those of T . The first part of this lemma
shows that the gap ratio of a depth-k tessellation is lower than the gap ratio of a depth-
(k + 1) tessellation (when restricted to points of T ), and the second part shows that in
the limit, the upper bound converges.

Lemma 4.4 Let T = 〈u1, u2, u3〉 be an equilateral spherical triangle with spherical
edge length α, then

ρT (μ(σ k(T ))) < ρT (μ(σ k+1(T ))); (i)

lim
k→∞ ρT (μ(σ k(T ))) = 4 sin(α/2)

α
√
3 − 4 sin2(α/2)

. (ii)

Proof Consider Fig. 7 and let α = ζ (u1, u2) = ζ (u2, u3) = ζ (u1, u3) be the edge
length of the equilateral triangle T = 〈u1, u2, u3〉. Calculate ρT (σ 0(T )) = ρT (T ).
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Fig. 7 Centroid calculations

Note by abuse of notation that we write ρT (T ) rather than the more formal ρT (μ(T )),
as explained previously. Recall then that ρT (T ) denotes the gap ratio of point setμ(T )

when the maximal gap ratio calculation is restricted to points of T .
We see that ρmin(T ) = α since all edge lengths of T are identical. Clearly

ρT
max(T ) = 2x ; in other words the maximal spherical diameter of the largest empty

circle centred inside T should be placed at the centroid (circumcenter)uc of T . This fol-
lows since if the circle is centered at any other point of T , then it will be closer to at least
one vertex of T and thereforeρT

max(T )would only decrease. ThusρT (σ 0(T )) = 2x/α.
By Lemma 4.1, triangle 〈u12, u23, u13〉 in the decomposition σ(T ) is also equilat-

eral. It is clear that β > α/2 in Fig. 7 by the spherical sine rule, since γ > π/3 (by
Girard’s theorem). This implies that the largest empty circle will again be centred at the
circumcentre of 〈u12, u23, u13〉, which is the same as the circumcentre of 〈u1, u2, u3〉.
Therefore, ρmin(σ

1(T )) = α/2, ρT
max(σ

1(T )) = 2β and thus ρT (σ 1(T )) = 4β/α.
We now show that 2x/α < 4β/α, which is true if x < 2β.

Let us consider the projection of equilateral spherical triangle 〈u1, u2, u3〉 from
the centre of the unit sphere to a tangent plane at the point uc. The point uc is the
circumcentre of spherical triangle 〈u1, u2, u3〉, as well its projection to the plane P ,
given by the planar triangle 〈u′

1, u
′
2, u

′
3〉.

Themedian of spherical triangle 〈u1, u2, u3〉 has length x+β. The range of x is from
β to 2β. This follows from the fact that in the maximal equilateral spherical triangle
case (i.e., when each angle is π and the triangle forms a half sphere) β = x = π/2 and
when the area of the spherical triangle converges to zero, the median of the spherical
triangle 〈u1, u2, u3〉 converges to the median of the triangle projection 〈u′

1, u
′
2, u

′
3〉,

and x converges to 2β as the centroid/circumcentre of an equilateral Euclidean triangle
divides each median in the ratio 2 : 1.

We thus see that the gap ratio of the (six) points of σ 1(T ) is greater than the gap
ratio of the (three) points of σ 0(T ), when restricted to points of T . Since the maximal
ratio is calculated by using a circle centred at the circumcentre of the triangle T ,
this argument applies recursively and for each tessellation σ k(T ), the maximal ratio is
given by twice the distance of the circumcentre to the vertices of the central equilateral
triangle of the tesselation by Lemma 4.3, and therefore the gap ratio increases at each
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depth of the tessellation, which proves statement one of the lemma. We will now
determine limk→∞ ρT (σ k(T )) to prove the second statement.

We may observe that ρmin(σ
k(T )) = α/2k , since the outer edges of triangle T

(with length α) are subdivided into two k times under σ k(T ) and all interior edges
have greater length. As explained above, the maximal diameter circle which may be
placed on a point of T which does not intersect points of σ k(T ) will be centred at the
circumcentre uc of T and have a diameter twice the distance from uc to a vertex of
that triangle.

Construct a plane Puc tangent to the point uc (the circumcentre of T ). In Fig. 7,
note that x = ζ (u1, uc) = arcsin(2 sin(α/2)/

√
3) by Lemma 4.2. The distance1 from

the circumcentre point to a vertex projected by points u1, u2, or u3 is given by tan x
(see Fig. 4 and Sect. 2.1), thus the edges of the projection of triangle T have length
y = √

3 tan x since the projection of an equilateral triangle about its circumcentre from
the origin to Puc is equilateral, with the same circumcentre (and the distance from the
centroid/circumcentre of an equilateral Euclidean triangle to any vertex is of course
given by e/

√
3, where e is the edge length of the triangle). The central tessellated

triangle thus has edges whose length starts to approximate (
√
3 tan x)/2k in the limit,

since as k → ∞, then this triangle lies on the plane tangent at uc (i.e., the difference
between the edge length of the spherical triangle and its projection decreases to zero).
This implies that the maximal spherical diameter of the largest empty circle centred
at uc is the distance from uc to one of these vertices, which approaches 2 tan x/2k in
the limit as k → ∞. Therefore,

lim
k→∞ ρT (σ k(T )) = lim

k→∞
ρT
max(σ

k(T ))

ρmin(σ k(T ))
= lim

k→∞
(2 tan x)/2k

α/2k

= 2 tan (arcsin(2 sin(α/2)/
√
3))

α
(1)

= 4 sin(α/2)

α
√
3 − 4 sin2(α/2)

. (2)

Moving from (1) to (2), we used the identity tan(arcsin x) = x/
√
1 − x2. ��

5 Regular Icosahedral Tessellation

As explained in Sect. 3 and Algorithm 1, our algorithm consists of two stages. Using
the lemmata of the previous section, we are now ready to show that the stage one gap
ratio is no more than π/arccos(1/

√
5) ≈ 2.8376 and the second stage gap ratio is no

more than

1 Note that here we refer to the Euclidean distance between the points, rather than the spherical distance,
since the projected points are not on the sphere
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2(3 − √
5)

arcsin
(√

2 − 2/
√
5
/
2
) ≈ 2.760.

Lemma 5.1 The gap ratio of stage one is no more than π/arccos(1/
√
5) ≈ 2.8376.

Proof The points of a regular icosahedron can be defined by taking circular permu-
tations of (0,±1,±φ), where φ = (1 + √

5)/2 is the golden ratio. Let V ′ be the
set of the twelve such vertices. Normalising each element of V ′ gives a set V . Note
that the area of each spherical triangle is given by π/5 since we have a unit sphere
and twenty identical spherical triangles forming a tessellation. By Girard’s theorem
(Theorem 2.2), this implies that 3γ − π = π/5, where γ is the interior angle of
the equilateral triangle and thus γ = 2π/5. By the second spherical law of cosines
(Lemma 2.1), this implies that the spherical distance between adjacent vertices, α, is
thus given by

cosα = cos(2π/5) + cos2(2π/5)

sin2(2π/5)
= (

√
5 − 1)/4 + 3/8 + √

5/8

5/8 + √
5/8

= (1 + √
5)/8

(5 + √
5)/8

= 1√
5

and therefore α ≈ 1.1071. The first two points are placed opposite to other, for
example u1 ≈ (0,−0.5257, 0.8507) and u2 ≈ (0, 0.5257,−0.8507). At this stage,
the gap ratio is 1, since the largest circle may be placed on the equator (with u1 and
u2 at the poles) with a diameter of π , whereas the spherical distance between u1 and
u2 is π . The remaining ten vertices of the normalised regular icosahedron are placed
in any order. The minimal distance between them is given by α above, and thus the
gap ratio during stage one is no more than π/arccos(1/

√
5) ≈ 2.8376, as required. ��

As explained in Sect. 3 and Algorithm 1, we start with the twenty equilateral
spherical triangles produced in stage one, denoted the depth-0 tessellation of S. We
apply σ to each such triangle to generate 20 ∗ 4 = 80 smaller triangles (note that not
all such triangles are equilateral, in fact only eight triangles at each depth tessellation
are equilateral). At this stage we have the depth-1 tessellation of S. We recursively
apply σ to each spherical triangle at depth-k to generate the depth-(k+1) tessellation,
which contains 20 ∗ 4k+1 spherical triangles.

Lemma 5.2 The gap ratio of stage two is no more than (12 − 4
√
5)/arccos(1/

√
5) ≈

2.760.

Proof At the start of stage two, we have 20 equilateral spherical triangles, T1, . . . , T20
which are identical (up to rotation). Note that moving from depth-k tessellation to
depth-(k + 1), each edge of σ k

E (Ti ) will be split at its midpoint, therefore applying
σ to any spherical triangle will only ‘locally’ change the gap ratio of at most two
adjacent triangles. Thus the order in which σ is applied to each triangle at depth k is
irrelevant.
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Assume that we have a (complete) depth-k tessellation with 20 ∗ 4k triangles.
Lemma 4.4 tell us that the gap ratio increases from the depth-k to the depth-(k + 1)
tessellations for all k ≥ 0 and in the limit, the gap ratio of the depth-k tessellation of
each Ti is given by

lim
k→∞ ρT (σ k(Ti )) = 4 sin(α/2)

α
√
3 − 4 sin2(α/2)

, (3)

where α is the length of the edges of Ti (i.e., the length of those triangles produced by
stage 1 via the icosahedron).Whenwe start to tessellate the depth-k spherical triangles,
until we have a complete depth-(k+1) tessellation, applying σ to each of the triangles
may decrease the minimal gap ratio at most by a factor up to 2 overall (since we split
each edge at its midpoint). The maximal gap ratio cannot increase, but decreases upon
completing the depth-(k+1) tessellation. Therefore, wemultiply the right hand side of
(3) by 2 to obtain an upper bound of the gap ratio for the entire sequence, not onlywhen
some depth-k tessellation is complete.We now compute the right hand side of (3), after
multiplying by 2, by substituting α = arccos(1/

√
5) ≈ 1.1071. This is laborious, but

by noting that sin(α/2) =
√

(5 − √
5)/10 and sin2(α/2) = (5 − √

5)/10, then

8 sin(α/2)

α
√
3 − 4 sin2(α/2)

= 8
√

(5 − √
5)/10

arccos(1/
√
5)

√
1 + 2/

√
5

= 12 − 4
√
5

arccos(1/
√
5)

≈ 2.760.

Therefore, the gap ratio during stage two is upper bounded by 2.76. ��
Theorem 5.3 The gap ratio of the icosahedral triangular dissection is equal to
π/arccos(1/

√
5) ≈ 2.8376.

Proof This is a corollary of Lemmas 5.1 and 5.2. Stage one of the algorithm has a
larger gap ratio than stage two in this case. ��

We can now prove the first non-trivial lower bound when we have only two or three
points on the sphere in this online version of the problem.

Theorem 5.4 The gap ratio for the online problem of placing the first three points on
the sphere cannot be less than (1 + √

5)/2 ≈ 1.6180.

Proof Let us first estimate the ratio with only two points when one point is located at
the north pole of the 2-sphere and the other is shifted by a distance x from the south
pole. The gap ratio in this case is (π + x)/(π − x), which increases from 1 to∞when
x ≥ 0.

Let us now consider the case with three points. If we place the third point on the
plane P defined by the centre of the sphere and the other two points, then the gap
ratio will be π/((π + x)/2) = 2π/(π + x) as in this case the maximal diameter of
an empty circle is π regardless of the position of the third point on P . Note that the
centre of the largest circle not intersecting points p1, p2, p3 will be orthogonal to
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Fig. 8 Optimal placement of first three points to minimise gap ratio

these three points (giving the diameter of the largest empty circle as at least π ) and
the minimal distance between two points can be maximised by positioning the third
point at the largest distance from the initial two points so that the closest two points
have a distance of (π + x)/2.

If the third point is not on the plane P then the ratio will be equal to some value
a/b that is larger than 2π/(π + x). This follows from the fact that the value a which
is the maximal gap would be greater than π and the minimal gap b would be less than
(π + x)/2. So the minimal gap ratio that can be achieved for the three points will be
represented by the expression 2π/(π + x). See Fig. 8.

By solving the equation where the left hand side represents the gap ratio in the
case of three points (a decreasing function) and the right hand side representing the
case with two points (an increasing function), we find a positive value of the one
unknown x : 2π/(π + x) = (π + x)/(π − x). The only positive value x satisfying
the above equation has the value π(

√
5− 2) and the gap ratio for this value x is equal

to (1 + √
5)/2. ��

We now show that by considering the first four points, we can do slightly better in
lower bounding the minimal gap ratio.

Theorem 5.5 The gap ratio for the online problem of placing four or more points on
the sphere is greater than 1.726.

Proof Consider Fig. 10. As in the previous proof, we begin by placing the first point
u1 at the north pole and the second point u2 at some distance x from the south pole
on the z = 0 plane, without loss of generality. We use an ansatz to estimate that for
four points, the gap ratio cannot be less than 1.726. In order that the gap ratio for the
first two points is not greater than 1.726, we have that

π + x

π − x
≤ 1.726 ⇒ x ≤ 0.726

2.726
.

Tominimise the gap ratio after placing the third and fourth points, u3 should be placed
on the great circle A lying equidistantly between u1 and u2. shown in Fig. 10. To see
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u ′
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u4
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max (u1 , u2 , u3)

π − x

A

P

u123

Fig. 9 Plane P intersecting u1, u2, u3 and optimal position for u4. A is the great circle equator of u1, u2

this, assume that u′
3 is not placed on A and consider the plane P which is determined

by points u1, u2, and u3 as shown in Fig. 9. Let u3 be the point lying on the intersection
between P and A in the same hemisphere as u′

3. The centre of the largest empty circle
of S after placing u1, u2, and u′

3 is the optimal position for point u4 since placing u4
at this point minimises the largest remaining empty circle and maximises the distance
to the closest existing point (shown by ρS

max(u1, u2, u3) in Fig. 9). The centre of the
largest empty circle after placing u1, u2, and u′

3 is either at the antipodal point of the
circumcentre of 〈u1, u2, u3〉 if u3 lies outside the circle on S containing u1, u2, or else
at the antipodal point of themidpoint of u1, u2 if u3 lieswithin this circle (i.e., if u3 is in
the top green segment of Fig. 9 where the plane P is then defined as intersecting u1, u2
and parallel to the tangent plane of the midpoint of u1 and u2). In the second case, the
position of u3 has no impact on the maximal empty circle and thus we may place u′

3
on the arc A without loss of generality. We therefore consider the first case when u′

3 is
not within the circle containing u1, u2 and denote by u4 the position of the centre of
the largest empty circle, at the antipodal point of the circumcentre of u1, u2, u3 as is
shown in Fig. 9. Note that this point is identical for either 〈u1, u2, u′

3〉 or 〈u1, u2, u3〉
since u′

3 and u3 lie on the same plane P and thus share the same circumcircle. The
spherical distance from u3 to the closest of u1 or u2 is clearly smaller than the distance
of u′

3 to either of u1 or u2 by the definition of A (again shown in Fig. 9) and thus the
gap ratio of sequence u1, u2, u3, u4 is no larger than the gap ratio of u1, u2, u′

3, u4.
We therefore assume that u3 lies on arc A and u4 is placed at the antipodal point of
the centre of the circumcircle of 〈u1, u2, u3〉. ��

Let us thus assume that x = 0.726/2.726 and fix u1 and u2. Consider again Fig. 10.
As z (the distance along the great arc A) increases from 0 (when u3 is at the midpoint
of u1 and u2) to π (at the antipodal point of the midpoint of u1 and u2), the gap ratio
of {u1, u2, u3} decreases, since the minimal distance between points only increases
and the size of the maximal empty circle (located either at the antipodal point of the
centre of the circumcircle of 〈u1, u2, u3〉 or else at the antipodal point of the midpoint
of u1, u2) monotonically decreases.
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Fig. 10 Optimal positions of u3 and u4 for fixed u1 and u2. Point u123 is the circumcentre of u1, u2, u3
and u12 is the midpoint of u1 and u2
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Fig. 11 Gap-3 and gap-4 ratios for various z when x = 0.726π/2.726

Let us denote by the gap-4 ratio the gap ratio of the four points u1, u2, u3, u4
ignoring the gap ratios of the subsequences u1, u2 and u1, u2, u3 (similarly for the
gap-3 ratio, which ignores the gap ratio of u1, u2). The gap-4 ratio of u1, u2, u3, u4
for z in the range [0, π ] can be split into four segments as can be seen in Fig. 11. We
will show that the optimal gap ratio occurs at the unique point where the gap-3 and
gap-4 ratios cross.

Since we have shown that the gap-3 ratio is monotonically decreasing, decreasing
z from the intersection point of gap-3 and gap-4 ratios only only increases the overall
gap ratio (which is the maximum of the two). At the intersection point, we have the
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following four points:

u1 =
⎛
⎝0
1
0

⎞
⎠ , u2 =

⎛
⎝ 0.742

−0.670
0

⎞
⎠ , u3 =

⎛
⎝−0.841

−0.374
0.392

⎞
⎠ , u4 =

⎛
⎝−0.259

−0.115
−0.959

⎞
⎠ .

As z increases from this intersection point, the gap-4 ratio increases which we
now prove. Consider again Fig. 9. As z increases, the plane P moves downwards
towards the origin since the circumcircle of 〈u1, u2, u3〉 has an increasing diam-
eter. Once ρS

max(u1, u2, u3) = 2ζ(u4, u1) < 2π/3, then the largest empty circle
of {u1, u2, u3, u4} is located at the antipodal point of u4, i.e., the centre of the
circumcircle of 〈u1, u2, u3〉, which we denote u123 in Fig. 9. Note that by the def-
inition of circumcircle ζ (u1, u123) = ζ (u2, u123) = ζ (u3, u123) and note also that
ζ (u1, u123) + ζ (u1, u4) = π , as is clear from the Fig. 9.

The closest two points of {u1, u2, u3} is given by ζ (u1, u3) = ζ (u2, u3). This
follows since ζ (u1, u2) > 2π/3 and thus for any z ∈ [0, π ] then ζ (u1, u3) =
ζ (u2, u3) < ζ (u1, u2). Since u4 is at the antipodal point of the circumcentre of
〈u1, u2, u3〉, then ζ (u1, u4) = ζ (u2, u4) = ζ (u3, u4). Thus, once ζ (u4, u1) <

ζ (u3, u1) then we know that

ζ (u4, u1) = ζ (u4, u2) = ζ (u4, u2) < ζ (u1, u3) = ζ (u2, u3) < ζ (u1, u2)

For u1, u2, u3, u4 given above, the closest two points are therefore given by
ζ (u1, u4) = 1.686 < 2π/3 since ζ (u1, u4) < ζ (u1, u3) = 1.954 < ζ (u1, u2) =
2.305. The largest empty circle of {u1, u2, u3, u4} is thus given by w123. Finally, con-
sulting Fig. 9 once more, since increasing z moves the plane P towards the origin,
we decrease ζ (u1, u4) and increase the maximum empty circle diameter given by
ζ (u1, u123) and thus the gap-4 ratio necessarily increases. Therefore, the optimal gap
ratio for fixed u1 and u2 and for z ∈ [0, π ] is at this intersection point, corresponding
to points u1, u2, u3, u4 given above.

The gap ratios of {u1, u2, u3, u4} can be calculated as follows: ρ(u1, u2) = 1.726,
ρ(u1, u2, u3) = 1.7261 and ρ(u1, u2, u3, u4) = 1.7261. Note that u3 is placed
on the arc A equidistant from u1 and u2 (since ζ (u1, u3) = ζ (u2, u3) = 1.9538)
as required, and that u4 is in the opposite hemisphere from u3 with ζ (u1, u4) =
ζ (u2, u4) = ζ (u3, u4) = 1.686. Now, since the gap ratios of points {u1, u2, u3} and
{u1, u2, u3, u4} are equal to 1.7261, and as pointed out earlier, as z increases the gap
ratio of {u1, u2, u3, u4} increases, and as z decreases the gap ratio of {u1, u2, u3}
increases, then for fixed u1 and u2, these points u3 and u4 are optimal.

It remains to reason about out choice of x (the spherical distance from u1 to u2).
We know that x ≤ 0.726π/2.726, otherwise the gap ratio of the first two points is
already above the bound of 1.726 and we have now analysed the case where we have
equality.

Consider Fig. 10. For any x ′ ∈ [0, 0.726π/2.726], there exists some choice of z2
such that ζ (u3, u1) = ζ (u3, u4). This is clear from the intermediate value theorem.
The centre of the largest empty circle for u1, u2, u3 is at the antipodal point of the
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circumcentre of u1, u2, u3, denoted u4. Since ζ (u3, u1) = ζ (u3, u4), then

ζ (u2, u3) = ζ (u1, u3) = ζ (u3, u4) = ζ (u1, u4) = ζ (u2, u4).

The first equality is due to u3 being placed on arc A and the latter two equalities
are due to u4 being at the antipodal point of the circumcentre of u1, u2, u3. Since
ζ (u3, u4) = ζ (u1, u3), then the gap ratio is given by 2ζ(u3, u4)/ζ (u3, u1) = 2. The
numerator is derived since u4 is the centre of the largest empty circle for u1, u2, u3 and
the denominator denotes the closest two points. For larger values of z, the maximal
empty circle diameter of the first three points decreases and the centre of the largest
empty circle is located at the circumcentre of the first three points (u123 in Figs. 9
and 10). For any choice of x ≤ 0.726π/2.726, if the gap ratio is to be less than 2 we
may thus assume that z is chosen so that any increase in z increases ζ (u1, u3) and the
centre of the largest empty circle is located at u123, the circumcentre of 〈u1, u2, u3〉.

Consider Fig. 9 and assume the figure corresponds to the optimal choice of z for
x = 0.726π/2.726. As x decreases, the distance between points u1 and u2 increases
and the distance from point u3 to u1 and u2, for the same z value, will decrease. In
order that the gap-3 ratio of the first three points does not increase, the plane P needs
to move towards the origin, since the distance ζ (u1, u3) has decreased as x decreased.
Now consider the gap-4 ratio. Since P has moved towards the origin, the minimal
distance between points can only decrease. The centre of the maximal empty circle
after placing u1, u2, u3, u4 is located at the circumcentre u123 of 〈u1, u2, u3〉 and the
diameter of this circumcircle increases as P moves towards the origin. This implies
that as x decreases the gap ratio must increase and thus x = 0.726π/2.726 is optimal.

5.1 Counterexample of Lower Bound 1.78

[29, Thm. 2] claims a lower bound of 1.78 for the gap ratio of online insertion of points
onto the 2-sphere. The result is based on [29, Lem. 1] which derives the lower bound
by considering three points and claiming that 1.78 is optimal. This contradicts the
(constructive) proof in the present paper of Lemma 5.4 which shows how to generate
three points whose gap ratio is (1 + √

5)/2 exactly.2

The issue with Theorem 2 of [29] appears to be in the final line of reasoning of
the proof. The authors derive that 0.719π ≤ β ≤ 0.764π , where β = ζ (u1, u2)
and calculate that γ = πβ/(2π − β) with γ = ζ (u2, u3). It is then claimed “...the
gap ratio is a decreasing function w.r.t. β” which appears incorrect. In order that
the gap-2 and gap-3 ratios are identical, the authors derive that γ = πβ/(2π − β).
Now, β = 0.719π gives γ = 1.763 and thus a gap ratio of 1.78. However this
is not optimal given that u1, u2, u3, O lie on the same plane and thus ζ (u1, u3) =
2π − β − γ = 2.261 > ζ (u2, u3) = γ . When placing u3 on the plane containing
O, u1, u2, the optimal position lies equidistant to u1 and u2, since that maximises the
minimum distance between points, with the maximal empty circle unaffected (and of

2 Indeed, the three points can be calculated as u1 = (0, 1, 0), u2 = (−0.725,−0.688, 0), and u3 =
(−0.395,−0.919, 0), where ζ (u1, u2) = 2.3299 and ζ (u2, u3) = ζ (u1, u3) = 1.9766.
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Table 1 The gap ratio of the depth-k tessellation of the regular icosahedron when isolated to an equilateral
spherical triangle T

Depth of ρT
min(σ

k (T )) ρT
max(σ

k (T )) ρT (σ k (T )) 2 · ρT (σ k (T ))

Tessellation

0 1.1071 1.3047 1.1784 2.3568

1 0.5536 0.7297 1.3182 2.6364

2 0.2768 0.3774 1.3636 2.7272

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

7 0.0086 0.0119 1.3800 2.7600

Table 2 The gap ratio of stage one and two of various regular Platonic solids

Tetrahedron Octahedron Dodecahedron Icosahedron

Stage 1 2.289 2.0 2.618 2.8376

Stage 2 5.921 3.601 5.995 2.760

Italic elements show which value defines the overall gap ratio in each case

diameter π ). Placing u3 at this position would thus decrease the claimed lower bound
of the gap ratio for three points.

6 Conclusion

In order to illustrate the rate of convergence of the gap ratio for various depths of
tessellations starting from a single equilateral triangle of the regular icosahedron T ,
we wrote a program to perform recursive triangular dissection and to measure the
minimum and maximum ratios. The results are shown in Table 1.

The table shows that starting from T , the gap ratio of the complete depth-k tessel-
lation of T quickly approaches 1.38. The next point inserted after reaching a complete
depth-k tessellation (with 12 ∗ 4k minimal triangles), requires us to split one of the
edges in half according to Algorithm 1. This decreases the minimum gap ratio by a
factor of 1/2 which increases the gap ratio by a factor of 2. Therefore 2 · ρT (σ k(T ))

shows the maximal gap ratio at any point, not only restricted to complete depth-k
tessellations.

To evaluate the most appropriate initial shape for our algorithm, we derived (both
theoretically and with a computational simulation) the gap ratios of the stage 1 and
stage 2 tessellations of various Platonic solids, shown in Table 2. The results for the
dodecahedron are from [8] using a different tessellation (the dodecahedron has non-
triangular faces). An illustration of the first stage of the octahedral and icosahedral
spherical tessellations is shown in Figs. 12 and 13 respectively.

The results match our intuition, that a finer grained initial tessellation such as that
from an icosahedron performs much better in stage 2 than a more coarse grained ini-
tial tessellation such as that from a tetrahedron. This is illustrated by Fig. 3 which
shows that for a large initial equilateral spherical triangle, the recursive triangu-
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Fig. 12 Octahedral spherical tessellation
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Fig. 13 Icosahedral spherical tessellation

lar dissection procedure deforms the four triangle by a larger margin. The regular
icosahedron thus has the essential criteria that we require; it has a low stage 1 and
stage 2 gap ratio, and it is a regular tessellation into equilateral spherical triangles. It
would be interesting to consider modifications of the stage 2 procedure which may
allow the octahedron to be utilised, given its low stage 1 gap ratio. This may require
some a modification of Lemma 4.4 which works also with non-equilateral spherical
triangles.

It would also be beneficial to tighten the lower bound. In Theorem 5.4 we derive
the lower bound of 1.618 by considering the first three points and in Theorem 5.5 we
consider the first four points to derive a lower bound of 1.726. Our proof technique
shows that considering the first three or four points gives one or two degrees of freedom
respectively. Even with two degrees of freedom the reasoning becomes significantly
more challenging and therefore a different approach may be necessary in order to
derive a reasonable increase in the lower bound.

A further avenue for future research would be to study relations to spherical t-
designs. We thank one of the reviewers for pointing out this possible direction and we
plan to look into this in a future paper.
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