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Abstract—Random Telegraph Noise (RTN) adversely impacts 

circuit performance and this impact increases for smaller devices 

and lower operation voltage. To optimize circuit design, many 

efforts have been made to model RTN. RTN is highly stochastic, 

with significant device-to-device variations. Early works often 

characterize individual traps first and then group them together 

to extract their statistical distributions. This bottom-up approach 

suffers from limitations in the number of traps it is possible to 

measure, especially for the capture and emission time constants, 

calling the reliability of extracted distributions into question. 

Several compact models have been proposed, but their ability to 

predict long term RTN is not verified. Many early works measured 

RTN only for tens of seconds, although a longer time window 

increases RTN by capturing slower traps. The aim of this work is 

to propose an integral methodology for modelling RTN and, for 

the first time, to verify its capability of predicting the long term 

RTN. Instead of characterizing properties of individual 

traps/devices, the RTN of multiple devices were integrated to form 

one dataset for extracting their statistical properties. This allows 

using the concept of effective charged traps (ECT) and transforms 

the need for time constant distribution to obtaining the kinetics of 

ECT, making long term RTN prediction similar to predicting 

ageing. The proposed methodology opens the way for assessing 

RTN impact within a window of 10 years by efficiently evaluating 

the probability of a device parameter at a given level. 

 
Index Terms— Noise, Random telegraph noise (RTN), Jitters, 

Yield, Fluctuation, Device Variations, Time-dependent Variations. 

I. INTRODUCTION 

OISE in MOSFETs adversely affects the performance of 

circuits [1-12]. IoT edge units are particularly vulnerable 

to it because the requirement of low power drives the operation 

voltage towards threshold level and reduces noise toleration 

[11],[12].  

To optimize the circuit design, many efforts were made to 

model noise [1-12]. When devices are relatively large, there are 

many traps, and they collectively form 1/f noise. The impact of 

a single trap typically cannot be clearly observed and the 

modelling was mainly in the frequency domain [6]. As the 

device size shrinks to nano-meter scale, there are only a few 

traps in a device. The impact of a single trap increases and can 

be observed as Random Telegraph Noise (RTN) [1-12], where 

drain current exhibits step-like changes. The stochastic nature 

of trap distribution results in a large device-to-device variation 
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(DDV) of RTN [1]-[5]. When compared with the time-

independent DDV from other sources, such as discrete random 

dopants and line edge roughness [1], whose outliers can be 

screened out by pre-shipping tests of chips, the time-dependent 

DDV by RTN is difficult to screen out, as trapping may not 

occur within the limited test time window.   

It has been reported that capturing one charge carrier by a 

trap can induce a shift of threshold voltage of tens of millivolts 

[3] and a fluctuation of current up to 10% [13]. This level of 

instability is comparable with that typically used to define the 

ageing-induced device lifetime [14]. They adversely impact 

circuit performance by causing, for example, jitters and 

malfunction of SRAM [4]. For future quantum computing at 

low temperature, this fluctuation can reach 50% [15]. 

 To tackle these RTN-induced challenges, many recent efforts 

have been made to model RTN in the time domain [4],[5],[16]-

[21]. To assess the impact of RTN on a circuit, a circuit designer 

needs the probability for device parameters at a given level 

within a time window. This can be accomplished through 

simulation, if one knows the number of traps in a device, their 

capture/emission times, and the shift induced by each trap 

[4],[5],[17]-[21]. 

To determine the statistical distributions of these parameters, 

a bottom-up approach was often followed: characterizing 

individual traps first and then grouping them together to fit an 

assumed cumulative distribution function (CDF) [3],[4],[19]-

[21]. Most attentions have been paid to the CDF of RTN 

amplitude and the proposed CDFs include Exponential 

[3],[4],[10], Log-normal [4],[5],[8], and Generalized Extreme 

Value (GEV) [19]. These early efforts laid the foundation for 

current work.   

For the average capture/emission times of a trap, the 

proposed CDFs include log-normal [9],[21] and log-uniform 

[5],[11],[22]. When compared with the amplitude, there is less 

data available on the capture /emission times [20],[21]. The 

number of capture/emission times obtained by the bottom-up 

approach is often less than 100 [20],[21], which is not large 

enough to reliably determine the CDFs. Without the CDFs of 

time constants, one could not predict RTN for different time 

windows. Some early works [13],[20] measured RTN with a 

time window of tens of seconds, whilst it is well known that 

RTN-induced fluctuation increases for longer time window. A 

number of compact models [16]-[18] were proposed by 

assuming that RTN magnitude and time constants follow 
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certain statistical distributions. It is not verified, however, that 

these models can be used to predict long term RTN. 

The aim of this work is two-fold: to develop an integral 

methodology for extracting the CDF of RTN and, for the first 

time, to verify that the extracted model can predict long term 

RTN. This will be achieved through: 

• Characterizing the impact of all traps on a device 

collectively, rather than individually. This removes the need of 

some early works of selecting devices with analyzable 

individual traps [13],[20]; 

• Integrating the RTN of multiple devices into one dataset 

to enable statistical analysis; 

• Introducing the concept of “effective charged traps 

(ECT)”, which removes the formidable burden of determining 

the capture and emission time constants of individual traps; 

• Replacing the fixed number of traps per device, used by 

early works, with the time-dependent number of ECT. This 

mimics the modelling of ageing, where trap number increases 

with stress time through generation [14]. It transforms the 

distribution of time constants into the kinetics of ECT, 

simplifying the prediction of long term RTN; 

• Introducing acceptor-like and donor-like traps to enable 

modeling both positive and negative parameter shift, which is 

widely observed experimentally but rarely modelled.      

II. INTEGRAL METHODOLOGY  

A. Raw data 

Drain current, Id, was measured against time under a gate 

bias, Vg, of 0.5 V and drain bias, Vd, of 0.1 V, as reported in 

[11], and one example is given in Fig. 1(a). The Vg was chosen 

to be close to the threshold voltage, Vth, of 0.45 V for low 

power applications. The devices used are nMOSFETs with a 

channel length of 27 nm and channel width of 90 nm, fabricated 

by a 28 nm commercial CMOS technology. To catch fast traps, 

a sampling rate of 1 MSamples/sec was used and all tests were 

carried out at 125 ºC.  

The reference Id, Iref, for each device was obtained from the 

average value of the first 10 measurement points. The relative 

shift of Id was evaluated from ∆Id/Id=(Iref-Id)/Iref, so that a 

reduction of Id magnitude gives a positive ∆Id/Id. The 

corresponding threshold voltage shift is estimated from 

∆Vth=∆Id/gm, where gm is transconductance and measured for 

each device from the slope of a pulse (3 μs) Id-Vg at Vg=0.5 V 

[23], which was taken before the RTN test. It should be pointed 

out that the error in ∆Vth evaluated from ∆Id/gm can be 

substantial if ∆Id and gm were measured at Vg well above Vth 

[23]. In this work, they were measured at Vg=0.5 V, which is 

close to the Vth=0.45 V and the error is insignificant.   

Based on the Id versus time measurement, early works 

[13],[20] often selected the devices that have analyzable RTN 

signals for extracting the amplitude and time constants of 

individual traps and discarded the devices where the fluctuation 

is too complex for such analysis. In this work, however, we 

focus on the collective impact of all traps on Id and do not 

decompose the Id fluctuation into contributions of individual 

traps experimentally. This removes the need for device 

selection and increases test efficiency. 

The test in Fig. 1(a) was repeated on 402 devices and their 

∆Vth at a given time was integrated into one dataset for 

statistical analysis, as shown in Fig. 1(b). As time increases, the 

amplitude of fluctuation rises in Fig. 1(a), so that the |∆Vth| at 

a fixed CDF become larger in Fig. 1(b). Knowing this 

distribution will allow one to determine the probability of Vth 

at a specified level and in turn assess its impact on circuits. The 

challenge is how to model this distribution and how to predict 

it for longer times where test data are not available. 

  

Fig. 1. (a) An example of measured data on one device, where ΔId>0 represents 

a reduction of Id from its reference value. The black lines are the ΔId/Id values, 
which can be either positive or negative. The red lines represent the upper and 

lower envelopes of the fluctuation. (b) The CDF of ∆Vth=∆Id/gm at different 

time taken from 402 devices. For each device at a given time, the ΔId value was 
taken from a measurement like the one in (a). The distribution is not symmetric 

in ΔVth>0 and ΔVth<0.  

B. The Concept of Effective Charged Traps (ECT)  

The probability for a trap to be charged depends on the ratio 

of its average emission and capture time [2]. The statistical 

distribution of time constants is difficult to determine 

experimentally. To simplify tests, attempts were made to focus 

on either capture [11],[24] or emission [3].  

Fig. 1(a) shows how to extract the envelope of the 

fluctuation, which is reached when multiple traps were 

simultaneously charged. Fig. 2 shows the average of the 

envelopes, which can be used to estimate the number of active 

traps for a given time window. As different devices hit their 

envelopes at different times, Fig. 2 shows that the average of 

measured ∆Vth is substantially smaller than their average 

envelopes. In Section III.B, we will estimate the percentage of 

traps that are charged. 

 
Fig. 2. A comparison of the average ΔVth>0 and ΔVth<0 of 402 devices (blue 

lines) with their average Upper and Lower envelopes (UE and LE). Using the 

envelopes will overestimate the impact of RTN. 

The envelopes have been used to estimate the worst impact 

of RTN [11],[24],[25]. To optimize circuit design, however, 

one needs to model the probability of ∆Vth at any level between 
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the two envelopes, which is the objective of this work. 

To effectively take emission into account without evaluating 

the emission time of individual traps, we propose the concept 

of ‘effective charged traps (ECT)’. The inspiration for this 

concept comes from the use of effective trap density for 

assessing the impact of ageing on devices [14],[26]. To evaluate 

trap density, one need knowing their spatial distribution in gate 

dielectric. This spatial distribution, however, is difficult to 

determine. To overcome this difficulty, one can assume all traps 

being at the interface so long as they produce the same ∆Vth. 

The equivalent density of traps at the interface is referred to as 

effective trap density [26]. 

Similarly, to simulate the impact of RTN on devices and 

circuits, what is needed is the CDF in Fig. 1(b), rather than the 

detailed physical processes that this CDF originates from. For a 

given RTN-induced ∆Vth at a time in Fig. 1(b), one can assume 

that it originates from a set of traps that are always charged. 

These ‘effective charged traps (ECT)’ ignore emission, but will 

produce the same CDF as, i.e. statistically equivalent to, that 

measured experimentally where emission occurs. By using the 

collective impact of a set of ECT to model CDF, as detailed in 

Section II.D, this integral approach does not require 

characterizing the capture and emission time of individual traps, 

greatly reducing modelling and testing time.     

C. Acceptor-like and Donor-like Traps  

Fig. 1(a) shows that ∆Id=(Iref-Id) can be either positive or 

negative, resulting in the corresponding positive and negative 

∆Vth in Fig. 1(b). Early works [3],[4],[8],[10] typically only 

modelled ∆Vth>0, since the popular Exponential and Log-

normal distributions require ∆Vth>0. Fig. 3 shows that the 

distribution of ∆Vth in both ∆Vth>0 and ∆Vth<0 is 

considerable and there is little correlation between them, so that 

we must model the fluctuation in both directions, as we cannot 

infer one from the other. 

 

 

Fig. 3. The lower-envelope is plotted against the upper-envelope at 10 sec for 
402 devices. There is little correlation between these two.  

 

The shift in positive direction, i.e. ΔVth>0, for nMOSFETs 

is widely interpreted as traps capturing electrons from the 

conduction channel. Such traps can be either neutral or 

negatively charged and will be referred to as acceptor-like traps 

[26]. There can be different explanations for ΔVth<0. One of 

them is that some traps were pre-filled with electrons when Iref 

was measured. These pre-filled electrons could be emitted 

during measurement, resulting in ΔVth<0. Another is that there 

are donor-like traps, which can be either neutral or positive [26], 

and positive charges can result in ΔVth<0.   

The measured data in this work cannot determine which 

explanation is correct and such determination is not required for 

achieving the aim of this work: proposing an integral method 

for predicting the long term RTN. For the convenience of 

presentation, we will use the acceptor-like traps for ΔVth>0 and 

donor-like traps for ΔVth<0, hereafter [26]. This allows ∆Vth 

being modelled in both directions through, 

 

∆𝑉𝑡ℎ = ∆𝑉𝑡ℎ𝐴 + ∆𝑉𝑡ℎ𝐷 ,   (1) 

 

where ∆VthA>0 and ∆VthD<0 represent the contribution from 

acceptor-like and donor-like traps, respectively.   

D. Modelling Procedure at a given time 

To model the RTN-induced CDF in Fig. 1(b) by a set of ECTs 

at a given time, one needs to determine the number of traps per 

device, n, and the statistical distribution of threshold voltage shift 

caused by one trap, δVth. It should be noted that δVth is the shift 

per trap, which is different from the shift per device, ∆Vth.  

Statistically, it is well accepted that n follows a Poisson’s 

distribution [4],[10]. The agreement on the distribution of δVth has 

not been reached and the popular assumptions include Exponential 

[3],[4],[10] and Log-normal [4],[5],[8]. In addition, Generalized 

Extreme Value (GEV) distribution has been proposed recently 

[19]. All three will be used in this work. 

For a given δVth probability distribution function (pdf), the pdf 

of nA number of acceptor-like traps can be evaluated from: 

 

𝑝𝑑𝑓𝐴(∆𝑉𝑡ℎ𝐴)

= 𝐶𝑜𝑛𝑣[𝑝𝑑𝑓(𝛿𝑉𝑡ℎ1), 𝑝𝑑𝑓(𝛿𝑉𝑡ℎ2) … 𝑝𝑑𝑓(𝛿𝑉𝑡ℎ𝑛𝐴
)],   (2)  

 

where ∆VthA is the combined shift caused by nA acceptor-like 

traps. When an analytic formula is not available, the Convolution 

(Conv) in Eq.(2) can be carried out numerically trap-by-trap: first 

between pdf(δVth1) and pdf(δVth2), the result is then convoluted 

with pdf(δVth3). This continues until pdf(δVth𝑛𝐴
) is convoluted.   

To overcome the difficulty that Exponential and Log-normal 

pdf requires δVth>0, we evaluate the magnitude of δVth for nD 

donor-like traps by, 

 

𝑝𝑑𝑓𝐷(|∆𝑉𝑡ℎ𝐷|)
= 𝐶𝑜𝑛𝑣[𝑝𝑑𝑓(|𝛿𝑉𝑡ℎ1|), 𝑝𝑑𝑓(|𝛿𝑉𝑡ℎ2|) … 𝑝𝑑𝑓(|𝛿𝑉𝑡ℎ𝑛𝐷

|)].   (3) 

   

The pdf[∆Vth=∆VthA-|∆VthD|] can be evaluated from: 

 
𝑝𝑑𝑓[∆𝑉𝑡ℎ(𝑛𝐴, 𝑛𝐷)] =  

∫ 𝑝𝑑𝑓𝐴[∆𝑉𝑡ℎ(𝑛𝐴, 𝑛𝐷) + 𝑥]𝑝𝑑𝑓𝐷(𝑥)𝑑𝑥.   (4)

∞

−∞

 

 

The pdf[∆Vth(nA,nD)]) in eq.(4) is the probability for a device to 

have a ∆Vth, if every device has nA acceptor-like and nD donor-like 

traps. After taking into account that both acceptor-like and donor-

like traps follow Poisson distributions, the pdf(∆Vth) becomes: 
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𝑝𝑑𝑓(∆𝑉𝑡ℎ)      

= ∑ ∑
𝑒𝑁𝐴𝑁𝐴

𝑛𝐴

𝑛𝐴!

𝑒𝑁𝐷𝑁𝐷
𝑛𝐷

𝑛𝐷!
𝑝𝑑𝑓[∆𝑉𝑡ℎ(𝑛𝐴, 𝑛𝐷)]

∞

𝑛𝐷=0

∞

𝑛𝐴=0

,   (5) 

 

where NA and ND are the average number of effective acceptor-like 

and donor-like traps per device, respectively.  
 

Finally, the measured ∆Vth contains both RTN and thermal 

noise, which follows a Normal distribution. The thermal noise is 

taken into account by using: 

 
𝑝𝑑𝑓(∆𝑉𝑡ℎ) = 𝐶𝑜𝑛𝑣[𝑝𝑑𝑓(∆𝑉𝑡ℎ𝑅𝑇𝑁), 𝑝𝑑𝑓(∆𝑉𝑡ℎ𝑇ℎ𝑒𝑟𝑚𝑎𝑙)]. (6) 

 

III. RESULTS AND DISCUSSIONS 

A. Extracting model parameters  

Based on the equations (1)-(6), the model parameters are 

extracted by the Maximum Likelihood Estimation (MLE) [19]. 

They include the statistical distribution parameters of δVth in 

Table I, the average number of acceptor-like and donor-like traps 

per device, NA and ND, and the standard deviation of thermal noise. 

As an example, Fig. 4(a) shows that the fitted CDFs with test 

data at 10 sec by assuming Exponential, Log-normal and GEV 

distributions, respectively. To quantify the discrepancy 

between the data and the fitted CDF, Fig. 4(b) gives the sum of 

square error (SSE) per device. The SSE reduces in the order of 

Exponential, Log-normal, and GEV. 

 

   
 
Fig. 4. (a) The CDF fitted based on the effective charged traps at 10 sec. The 

symbols are test data and the lines are fitted. (b) compares the sum of squared 

errors (SSE) per device for the three statistical distributions.   

 
Table I. The pdf formula and their average parameter values extracted between 

10-4 and 10 sec. The parameters η, α, β, and σ have the unit of mV. 

 PDF of δVth Acceptor Donor 

Exponential 1

𝜂
𝑒

−
𝛿𝑉𝑡ℎ

𝜂  
𝜂 = 0.56 

 

𝜂 = 0.48 

Lognormal 1

𝛿𝑉𝑡ℎθ√2𝜋
𝑒

(−
(ln(𝛿𝑉𝑡ℎ)−𝜖)2

2θ2 )
 

𝜖 =  −0.43 

θ = 0.12 

 

𝜖 =  −0.71 

θ =  0.16 

GEV 1

𝛽
(𝑘)𝜉+1 𝑒−𝑘 

𝑘 =  (1 + 𝜉 (
𝛿𝑉𝑡ℎ − 𝛼

𝛽
))

−
1
𝜉

 

𝜉 = 0.35 

𝛼 = 0.43 

𝛽 = 0.34 

 

𝜉 =  0.42 

𝛼 =  0.59 

𝛽 =  0.19 

Thermal 1

𝜎√2𝜋
𝑒−

1
2

(
∆𝑉𝑡ℎ

𝜎
)

2

 
𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙, 𝜎 = 0.11 

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙, 𝜎 = 0.13 

𝐺𝐸𝑉, 𝜎 = 0.13 

 

Similar to Fig. 4 at 10 sec, the test data at other times are also 

fitted. Figs. 5(a) and 5(b) show the extracted average number of 

acceptor-like (NA) and donor-like (ND) traps per device against 

time, respectively. As expected, they increase with time, as 

longer time activates slower traps. There are more acceptor-like 

traps than donor-like traps, resulting from the skewed 

distribution towards positive ∆Vth in Fig. 1(b). GEV gives the 

highest numbers, while Exponential has the lowest ones. At 10 

sec, GEV has NA =2.3 and ND=2. 

The extracted average δVth induced by one trap, µ, is given 

in Figs. 5(c) and 5(d) for acceptor-like and donor-like traps, 

respectively. In agreement with early work [20],[25], µ is 

independent of the time. The acceptor-like traps have larger µ 

than the donor-like traps. GEV gives the largest µ and 

Exponential gives the lowest. It should be noted that the average 

µ is in a range of 0.5 ⁓ 0.8 mV, indicating that there are small 

δVth that can be difficult to measure directly. 

The other parameters for δVth distributions are insensitive to 

time, either, since δVth is the shift per trap. Their values are 

given in Table I.       

B.  Prediction of effective charged traps 

Using the concept of ECT for modelling RTN converts the 

distribution of traps’ time constants into a time dependent 

number of ECT, as shown in Figs. 5(a) and 5(b). This 

transforms the prediction of long term RTN to finding the 

kinetics of ECT, similar to predicting device ageing [14]. For 

ageing, power law is the well-known kinetics [14]. For the time 

constant distribution of RTN, two distributions were proposed: 

a uniform distribution against logarithmic time (Log-uniform) 

[5],[11] and a scaled Log-normal distribution [9],[21]. These 

three kinetics will be tested against the experimental data next. 

 

 
 

Fig. 5. The extracted average number of acceptor-like (a) and donor-like (b) 

traps per device at different time, based on different δVth distributions. The 
lines in (a) and (b) are the fitted kinetics. The extracted average δVth per trap, 

μ, is given in (c) for acceptor-like traps and in (d) for donor-like traps. The lines 

in (c) and (d) are the mean values. 

 

All three kinetics can fit test data reasonably well over five 

orders of magnitude in time between 10-4 and 10 sec with the 
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relative Root-Mean-Square-Error (RSME) of a few percent. As 

a result, good fitting with test data is not sufficient to justify a 

model. If a model is correct, it should be able to not only fit test 

data, but also predict the long term RTN where test data is not 

used for fitting.  

To further verify these kinetics, the RTN tests were extended 

from 10 to 6×104 sec. In Fig. 6, the symbols are extracted from 

test data. The data scattering beyond 10 sec is larger, since 402 

devices were used between 10-4 and 10 sec and only 51 devices 

were used for the time-consuming tests of 6×104 sec.    

The solid lines in Fig. 6 were the kinetics fitted with data 

between 10-4 and 10 sec and the data beyond 10 sec were not 

used for the fitting. These fitted kinetics were then extrapolated 

from 10 to 6×104 sec, as represented by the dashed lines. 

Although the differences between the fitted solid lines appear 

small, they become substantial for the extrapolated dashed lines 

as time increases. The sum of squared errors is summarized in 

Figs. 7(a) and 7(b) and discussed next.    

For the Exponential δVth distribution, the Log-normal 

kinetics gives the lowest error for NA in Figs. 6(a) and 7(a), but 

ND agrees better with the power law, as shown in Fig. 6(d) and 

7(b). It should be noted, however, even though the power law 

gives the lowest error for ND with Exponential δVth, i.e. the 

first blue bar on the left in Fig. 7(b), this blue bar is higher than 

the errors of Lognormal and GEV δVth.       

 

 

Fig. 6. Predicting the average number of acceptor-like traps, NA, in the top row 

(a, b, c) and donor-like traps, ND, in the bottom row (d, e, f). Symbols are 
extracted by fitting with the δVth distribution of Exponential in the left column 

(a, d), Log-normal in the middle column (b, e), and GEV in the right column (c, 

f). The solid lines were fitted with symbols between 10-4 and 10 sec for different 
kinetics. The dashed lines were extrapolated to 6×104 sec. The symbols beyond 

10 sec were not used for fitting.   

For NA with Log-normal δVth distribution, Fig. 7(a) shows 

that power law has the highest error and errors are similar for 

Log-normal and Log-uniform kinetics. For ND, Figs. 6(e) and 

7(b) show that Log-normal kinetics has the lowest error. For 

GEV δVth distribution. Figs. 6(c), 6(f), 7(a) and 7(b) show that 

Log-uniform has the lowest error for both NA and ND.   

The CDF of Log-normal kinetics should lead to an eventual 

saturation of NA and ND as time increases [11]. It, however, can 

fit the test data within the measurement window without 

approaching its saturation. As a result, we cannot rule it out 

based on current data. 

Based on Figs. 6 and 7, the power law gives poor prediction 

of RTN overall. The RTN and ageing follows different kinetics, 

therefore. RTN interacts with device ageing. On one hand, the 

traps responsible for the RTN can also contribute to the charge 

build-up during ageing tests, such as bias temperature 

instability (BTI) [27],[28]. On the other hand, it has been 

reported that, after stress, some RTN signal can disappear for 

some time and then reappear [27]. One may speculate that stress 

releases some hydrogenous species, which interact with the 

RTN trap through temporary bonding, deactivates the RTN, and 

then migrate away [14],[27]. The detailed physical process is 

beyond the scope of this work.    

 

  
 

Fig. 7. The sum of squared errors for the prediction in Fig. 6 for acceptor-like 

(a) and donor-like (b) average number of traps per device. The lowest errors 

were obtained for Log-uniform kinetics with GEV δVth distribution.  

We now estimate the percentage of ECTs against the active 

traps available for a given time window.  The average number 

of active acceptor-like (NEA) and donor-like (NED) traps per 

device can be estimated from the Upper- and Lower-Envelopes 

in Fig. 2 by dividing their average δVth per trap, i.e. µ, given in 

Figs. 5(c) and 5(d), respectively. Fig. 8 gives the ratio of ECT, 

i.e. NA and ND extracted for the GEV distribution in Figs. 6(c) 

and 6(f), against NEA and NED, respectively. This ratio 

represents the average occupancy of traps. The time in Fig. 8 is 

the time window for measuring RTN. At short time window, 

over 50% traps are effectively charged. The occupancy 

decreases for longer time window and settles around 1/3. As 

longer time window allows capturing slower traps, this 

indicates that slower traps have lower occupancy than faster 

traps.  

 

 
 

Fig. 8. The ratio of Effective Charged Traps, NA and ND, against the active traps 

available estimated from the Upper-envelope, NEA, and Lower-Envelope, NED, 
respectively. 
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Figs. 2 and 6 show that the number of traps is time window 

dependent. In some early works, the number of traps in a device 

is specified without clearly giving a time window. In our 

opinion, this specification is incomplete. For example, when 

measured with a limited time window, a device may have zero 

trap. It, however, does not rule out that there are slower traps in 

this device. As a result, a time window should be given when 

specifying the number of traps in a device.  If the time constant 

of traps follows a Log-uniform distribution, one cannot 

determine the total number of traps in a device in principle, 

although some devices can have a limited number of traps 

statistically. 

C. The CDF Prediction of long-term RTN 

As discussed in the introduction, the probability distribution 

function is what a designer needs for assessing the impact of 

RTN within a given time window. The question is how well one 

can predict the long-term CDF of RTN, based on the parameters 

extracted over a short time. For the first time, we attempt to 

predict the CDF of RTN at 6×104 sec by the model extracted 

from the data between 10-4 and 10 sec. 

For each δVth distribution, the number of acceptor-like and 

donor-like traps at 6×104 sec is predicted by the kinetics of the 

lowest errors, as given in Table II. The statistical parameters of 

δVth distribution and thermal noise are assumed to be 

independent of time and their values given in Table I were used. 

With these parameters, the probability for one device to have a 

given ∆Vth can be calculated directly, making the RTN 

simulation more efficient than the Monte Carlo simulation. 

Figs. 9(a) and 9(b) compare the measured and predicted CDF at 

6×104 sec for the Exponential, Log-normal and GEV δVth 

distributions. For the Exponential, the kinetics used is Log-

normal for acceptor-like traps and power law for donor-like 

traps. For the Log-normal δVth distribution, Log-normal 

kinetics were used for both acceptor-like and donor-like traps. 

For the GEV, Log-uniform kinetics were used for both 

acceptor-like and donor-like traps. Fig. 9(c) shows that the 

errors reduce in the order of Exponential, Log-normal, and 

GEV. A reasonable agreement is obtained with test data, as 

shown in Figs. 9(a) and 9(b). This verifies the integral 

methodology proposed and its ability to predict the RTN at 

6×104 sec based on data measured between 10-4 and 10 sec, a 

factor of 6×103 ahead. If one uses the data between 10-4 and 

6×104 sec to make the prediction, it is reasonable to expect that 

one can predict a factor of 6×103 ahead, again. This will take 

the time to 3.6×108 sec, which is beyond 10 years.  
 

Table II. The kinetics fitted with data between 10-4 and 10 sec. 

δVth distribution ECT Kinetics 

Exponential 𝑁𝐴 
12.8 ∗ [

1

2
𝑒𝑟𝑓𝑐 (−

ln(𝑡) − 21.5

19.1√2
)] 

𝑁𝐷 1.2152 ∗ 𝑡0.0716 

Lognormal 𝑁𝐴 
13.1 ∗ [

1

2
𝑒𝑟𝑓𝑐 (−

ln(𝑡) − 24.8

22.5√2
)] 

𝑁𝐷 
13.3 ∗ [

1

2
𝑒𝑟𝑓𝑐 (−

ln(𝑡) − 29.04

24.2√2
)]  

GEV 𝑁𝐴 0.091 ∗ ln(𝑡) + 2.1 

𝑁𝐷 0.076 ∗ ln(𝑡) + 1.83 

IV. CONCLUSIONS 

The capability to predict the long term RTN by the models 

developed in early works has not been verified and this work 

proposes an integral methodology and verifies its capability to 

make this prediction. Instead of characterizing the contribution 

of individual traps to RTN, the impact of traps in a device was 

measured collectively and there is no need for selecting devices. 

Through integrating RTN measured on multiple devices into 

one dataset and using the concept of effective charged traps 

(ECT), the statistical distribution of device parameters at a 

given time is modelled, removing the formidable burden of 

characterizing the time constants of individual traps. This 

transforms the distribution of time constants to the kinetics of 

ECT, making the prediction of long term RTN similar to 

predicting ageing. The accuracy of RTN amplitude distribution 

per trap proposed by early works was assessed, including 

Exponential, Log-normal, and Generalized Extreme Value 

(GEV). The three kinetics examined are power law, Log-

normal, and Log-uniform. The power law gives poor prediction 

and RTN follows different kinetics from ageing. Fluctuations 

in both positive and negative directions are modelled through 

using acceptor-like and donor-like traps. The work shows that 

this integral methodology can predict RTN by a factor of 6×103 

ahead, opening the way for predicting RTN to 10 years based 

on measurements in a time window of one day.  

 

 
 
Fig. 9. Predicting the CDF of RTN at 6×104 sec based on the models extracted from 
the data between 10-4 and 10 sec. The symbols were measured data and the lines were 

the predicted CDF by using the NA and ND predicted in Fig. 6 and the average μ in 

Figs. 5(c) and 5(d). The CDF is plotted linearly in (a) and in Z-score in (b). The lines 
in (a) and (b) are the CDF fitted with different δVth distributions. (c) shows that 

the minimum error was obtained with GEV δVth distribution and Log-uniform 

kinetics. 
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