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Abstract 
 

80% of accidents that occur in the maritime sector are due to human error. These errors could 

be the result of seafarer training coupled with a high mental workload due to the addition of 

various working conditions. 

The aim of this study is to evaluate the effect of various stressors on human performance on 

engine room operations. To achieve this aim, a simulator study was conducted to investigate 

the influence of training and working conditions on human performance for the purposes of 

fault detection and correction in a maritime engine room.  

20 participants were recruited for each investigation of performance shaping factors (PSF); for 

the first test, half received practical training with the engine room software interface, while the 

other half were provided with paper-based instructions. The remaining tests were conducted 

with all participants equally practically trained. The participants interacted with a TRANSAS 

technological simulator series 5000. This is a 1:1 simulation of a ship engine room. The 

participants took part in a 30-minute scenario where they had to detect and correct a fault with 

the ballasting system. During this interaction, half of the participants experienced simulated, 

adverse performance shaping factors, which were distraction, fatigue and an increased 

workload. The other half were given a standard task.  

Functional near-infrared spectroscopy (fNIRS) was utilised to measure neurophysiological 

activation from the dorsolateral prefrontal cortex (DLPFC).   

The results indicated increased activation of lateral regions of the DLPFC during fault 

correction, this trend was enhanced due to PSF’s and training, i.e. participants who received 

paper-based instructions showed greater activation when conducting the standard task and had 

an exponential increase in activation when dealing with the addition of an adverse PSF. The 

results are discussed with respect to the neural efficiency of the operator during high mental 

workload. From the results of this study a scientific human error model was developed and can 

be used by the maritime industry to better evaluate and understand human error causation and 

the effect of PSF on seafarers.  

The impact of this study could reduce the frequency of occurrence of human error, reduce the 

financial impact that human error has on the maritime sector and reduce injuries and fatalities. 
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Chapter 1. Introduction 

 

1.1 Introductory remarks 

This chapter presented herein strives to serve as an outline, aimed at offering the reader a 

concise context into the research tasks conducted for the successful completion of this PhD 

study. The following section, background research (1.2), will include a summarised review of 

the current risks and error statistics involved in maritime operations, followed by a succinct 

overview of advanced neuroimaging methods and analysis equipment available to tackle the 

problem. Additionally, a brief description of the current human reliability assessment methods 

and the practical application of neuroimaging techniques in other studies is presented. 

Described subsequently is the actual problem that this thesis aims to tackle; and lastly, an 

elucidation as to the physical composition of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

 

1.2 Research Background 

Figure 1.1 is an illustration of the process flow for this section of the introduction chapter. 

The square boxes depict the sub sections involved in the background research conducted to 

better understand the scope of this study. Each square box has a brief description of the 

information contained within the subsections for the reader’s ease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80% of all maritime incidents reported are directly or indirectly a result of human error [1] [2] 

[3]. Compared to other sectors, maritime incidents have some of the highest financial 

significance [1] [4].  It has been reported that human error alone costs the marine sector millions 

of pounds annually [5] [6]. These statistics show that there is a research gap for current 

maritime human factor studies. Therefore, there is a research gap that needs to be filled between 

human error and the maritime industry by reviewing the current literature and evaluating its 

weakness. Thus, this project provides an in-depth investigation into the duties, training methods 

1.2 – Research Background 

Background information detailing 

aspects of the research and 

equipment used 

Maritime Error 

The current situation 

with respect to error in 

the maritime sector. 

 

Error Causation 

Some potential 

causes of 

maritime error 

Neuroimaging 

Answers the questions: 

What is neuroimaging? 

What has it been used 

for? 

Neuro-ergonomics 

How can neuro-ergonomics 

be used to improve this 

research investigation. 

fNIRS 

What is fNIRS? 

What can fNIRS do? 

Engine room Simulator 

Describes the engine 

room simulator used in 

this study 

Current HRA techniques 

The current techniques used in 

the maritime sector to 

investigate human reliability 

Neuroimaging techniques 

The techniques used to 

apply neuroimaging in 

other HRA studies 

Figure 1.1 – Background research process flow diagram 
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and performance shaping factors (PSF) that adversely affect seafarers within the engine room 

of a ship. This will be done using a neuroimaging technique called functional near-infrared 

spectroscopy (FNIRS). FNIRS allows us to see the mental workload of human beings whilst 

conducting their duties. Past studies have used various human reliability analysis (HRA) 

methods to analyse human error in the maritime sector [7] [8] [9]. HRA is a scientific approach 

used to identify potential risk of human failure events, and to comprehensively estimate the 

human error probability (HEP) using experimental data, modelling or expert judgement [10].  

1.2.1 Maritime Error 

In the maritime shipping industry there are 3 main types of errors that occur; mechanical failure, 

electrical and human [4]. Of the 80% of accidents resulting from human errors, it is said that 

45% of those stem from inefficiently or incorrectly dealing with a fault in the engine room [4] 

[11] [12] [13]. Another factor is that the majority of HRA studies are conducted with focus on 

bridge operations from navigational perspectives [14] leaving engine room errors unaddressed. 

These statistics warrant a full investigation into human error within the engine room. An 

evaluation of the maritime databases [1] [4] [5] [11] [15] [16] was conducted in order to obtain 

the most common errors within the engine room. The most common types of human error are 

influenced by adverse working conditions [17], environmental factors [18] and individual 

operator issues [19].  

1.2.2 Error Causation 

There is multiple hypothesis in relation to the cause of human error within the engine room. 

Interviews with experts in the marine sector conducted by the author, advised that engine room 

operators are all trained to different levels [20], experienced operators complete tasks more 

efficiently [21], and experienced operators can cope better with work place factors (for 

example, distraction) compared to inexperienced operators [22]. For clarity, experts defined 

experience with relation to the time working at a particular position (1 or 10 years at sea for 

example). However, experts did acknowledge that some experienced operators as susceptible 

to ‘cutting corners’ which can lead to error but on average, it was said that experienced 

operators still outperform inexperienced operators. Various marine accident databases were 

analysed, to show accidents caused due to human error within the engine room only. The 

accident reports were then analysed to see if there were any specific duties where human error 

reoccurred and any PSFs reported as a contributing factor towards the human errors. 

Reoccurring issues reported from the statistical analysis were; distraction 11%, multitasking 

20%, fatigue 10%, engine room temperature 16%, noise and vibration 6%, and time pressure 
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16%. The tasks that showed to be the most consistent with human error from my own statistical 

analysis were: ballasting, oil transfer, machine maintenance, fuel system and sea water 

treatment system.  

1.2.2.1 Human error 

To provide a more balanced perspective with regards to human error, there are two main 

definitions taken into account in this thesis. The first is ‘sharp end’ human error, this 

corresponds to an active error. For example, a blunt end error is interpreted as a personal error 

(a surgeon that removes the wrong limb) [23]. The second is referred to as a ‘blunt end’ human 

error. This error-type is classed as a latent error. For example, an error due to workplace factors 

(fatigue due to excessive working hours) [24]. 

1.2.3 Neuroimaging 

Neuroimaging is a modern and novel tool for the investigation of human performance [25]. 

Neuroimaging is used to evaluate operators’ functional state (OFS) whilst performing tasks 

(experimental or daily duties) [26]. Neuroimaging can be used to look at specific areas of the 

cerebrum that correspond to various human executive functions, for example hand-eye co-

ordination and working memory [27]. It does this by either directly or indirectly imaging the 

cerebral structure, function or physiology [28]. Neuroimaging has been used in previous studies 

in the maritime sector, more specifically for bridge operations, as a HRA technique to evaluate 

human error [3] [14]. One of the neuroimaging techniques used is called functional near-

infrared spectroscopy (fNIRS). 

1.2.4 Neuro-ergonomics 

The branch of neuro-ergonomics considered in this study focuses on human limitations and 

capabilities, both physical and cognitive [29]. Understanding human limitations allows 

engineers to develop technologies and work environments so that they are safer, more efficient, 

and designed with the human operator in mind [30]. 

The main theory behind neuro-ergonomics is that human factors research and practice 

considers the results and theories rooted in neuroscience [31]. Modern neuroimaging 

techniques have the potential to identify maritime operational risks, and measure covert 

changes in neurophysiology, which may not be apparent in the measurement of performance 

[32] [33]. Due to the increasing growth of neuro-science, theories of human performance are 

extended or constrained when considering the results of modern neuroscience [34]. Neuro-

ergonomics has potential application for research intended for improving work efficiency, 
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without compromising the unseen wellbeing and mental workload of seafarers within the 

engine room [30]. 

The techniques used in this project include; fNIRS which is a non-invasive, user-friendly 

neuroimaging technique [35]. FNIRS allows for modelling, coupled with machine learning 

algorithms and interlinked brain-computer interface (BCI) techniques, to provide a means for 

decoding brain activity [28]. Integration of the above method advances the science of human 

performance [18], and exploits a potential for addressing questions concerning brain function 

within a ship engine room environment [36]. 

The human factors psychologist Peter Hancock conducted a behaviourist analysis of Neuro-

ergonomics as a concept. Hancock began his study by looking at neuro-ergonomics critically, 

with a view from radical behaviourism. He stated that “I am optimistic of punctate successes 

here, along this line of development in the near future. More understanding in this domain will 

also help us distinguish between simple, quantifiable processing capacities, and what the 

human brain actually achieves.” [37]. Hancock concluded his investigation by stating, “neuro-

ergonomic designs have proven to epitomize the marriage of pure science and application in 

the real-world. A greater level of insight into the symphonic productions of the neural orchestra 

could provide exceptional opportunities to advance human-technology interaction.” Hancock 

also looked at the use of new techniques for providing neuro-ergonomic signals [37]. 

A world leader in the field of neuro-ergonomics Raja Parasuraman [37], argues for studying 

neuroscience in an applied context and developing models of human performance that are 

grounded in neuroscientific models [36]. He also addresses the fact that sustained attention 

would very likely result in mental fatigue [30]. The engine room features BCIs that present 

complex and dynamic visual information such as: monitoring ballast tank volume whilst 

figuring out flow rates on ballasting tasks [38]. Parasuramen’s research looks into the effects 

of changing workplace and environmental factors on human performance, and then using 

neuroimaging and behavioural data to back up his theories. [30] 

1.2.5 Functional near-infrared spectroscopy 

There is a relative transparency of human tissue which surrounds the skull [33], this falls into 

the infra-red range [39] and haemoglobin absorbs infra-red light [19]. This allows us to infer 

relative change in oxygenated and deoxygenated haemoglobin [40]. It is therefore possible to 

continuously, non-continuously, and non-invasively monitor the concentration of oxygenated 



20 
 

and de-oxygenated haemoglobin volumes within the human cerebrum [41]. Figure 1.2 shows 

the ‘banana shaped’ detection range of the infrared light. 

 

 

Figure 1.2 - fNIRS infra-red detection range [18] 

Neurophysiological activation results in an increase in cerebral haemoglobin volume due to 

neurovascular coupling [34]. This coupling leads to a change in localised oxygenated and 

deoxygenated haemoglobin volume [41]. These changes in haemoglobin can be shown using 

the fNIRS system’s infra-red emitters and detectors [42], which relay the information back to 

the NIRx software via a desktop computer. It is evident that the higher the oxygenated 

haemoglobin, the higher the mental workload of the participant [43]. This indicates the areas 

of the task and the PSF that have the most significant effect on mental workload. Thus, higher 

the mental workload is associated with increased probability of lower human performance. 

Therefore, it is assumed throughout this thesis that the higher the mental workload of the 

participant the more potential there is of human error occurring [44]. 

For this study, participants will be connected to the fNIRS system via a skullcap containing 

infra-red light emitters and detectors. Together, the emitters and detectors create a channel. 

1.2.6 Engine Room Simulator 

A Transas ERS 5000 TechSim engine room simulator will be used to conduct the investigation. 

The simulator is located on the ground floor of the Liverpool John Moores University (LJMU) 

Byrom street campus. It closely mimics a real tanker ship engine room. Utilising a high degree 

of realism allows real-time, real-life exercises to be implemented exactly how they would be 

in the engine room of a real vessel [38]. Shown in Figure 1.3 is an image of the engine room 

simulator. 
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Figure 1.3 - Engine room simulator 

The investigation will focus on the ‘highest risk’ tasks. The ‘highest risk tasks’ will be 

determined by accessing the marine accident databases to see which tasks have the highest 

frequency of occurrence (with respect to human error [See chapter 3]) and the most significant 

consequences due to the error. Once these tasks have been identified, an exercise will be 

designed and implemented on the simulator where candidates will participate in the task, 

(identified using most significance with regards human error within the ship accident 

databases) under the evaluation of the simulator controller (further information in chapter 4). 

The controller will see the PSF and areas of the tasks where participants experienced significant 

mental workload outputs from fNIRS. 

Candidates participating in the simulated tasks will be connected to fNIRS as stated earlier. 

This provides the cornerstone of the project’s novelty (to incorporate fNIRS with a marine 

simulator to investigate human error in ship operations). Due to the weakness in current HRA 

methods within the maritime sector and the relative success of the aviation sector’s use of 

fNIRS [45], it could be said that there is an urgency to implement fNIRS in maritime human 

error studies. As stated earlier fNIRS shows the haemoglobin volume within different areas of 

the cerebrum, this happens via infra-red sensors and detectors strategically placed onto a skull 

cap worn by the participant performing the task [41]. Monitoring these visualisations allows us 

to see mental workload of each participant throughout the task [19]. Testing of participants on 

a simulated scenario will then allow us to implement a scientific human error model of the 

relationship between operator functional state (OFS) and adverse PSF’s [14].  
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1.2.7 Current human reliability analysis techniques 

A few examples of commonly used HRA techniques are; nuclear action reliability assessment 

(NARA) [10], cognitive reliability and error analysis method (CREAM) [46] and a technique 

for human event analysis (ATHENA) [47]. These techniques are all similar in approach as they 

work based on defining the study scope, defining the problematic, defining the PSFs and then 

calculating the human error probability (HEP) [10]. It will be difficult to use these techniques 

in a human factors study as fNIRS data has too many complexities to calculate an accurate 

HEP (for example, 1/1000 chance of human error cannot be determined as the HEP will differ 

between participants). 

The next examples are HRA techniques that have been used in previous studies in conjunction 

with simulators. Probabilistic cognitive simulator (PROCOS) [48], Information, decision and 

action in crew context (IDAC) [49] and standardized plant analysis of risk-human reliability 

analysis (SPAR-H) [39]. These techniques are simulation-based approaches that look at a 

scenario in normal working conditions before applying human factors. They take into account 

the interaction of the operator with other crew members and their decisions based on external 

factors. These techniques are appealing however, they do not incorporate fNIRS. Furthermore, 

they use HEP to try to predict the root cause of the error which can be heavily scrutinised.  

The addition of fNIRS coupled with human factors and psychology techniques accentuates the 

research gap with current HRA techniques used in maritime engineering and technology. The 

majority of the current HRA techniques aim to provide a nominal HEP value [47]. Due to the 

complexities of human performance against various human factors it is no possible to obtain 

an accurate nominal HEP value [50]. This prevents the use of current maritime HRA techniques 

without major improvements. 

1.2.8 Neuroimaging techniques used in the studies 

Many academics such as Dehais et al [45] and Vierdiere et al [51] have found human error to 

be an interesting field for research. Such research has focused primarily on an analysis of 

various aircraft operations [52], air traffic control duties [33] and the impact of new flight 

regulations affecting the safety of personnel [6]. These aforementioned studies used fNIRS to 

gauge mental workload of pilots at various stages of the tasks. Later, they modelled their 

findings using a performance classification model in order to deduce the pilot’s ability and how 

each task influences the risk of human error.  
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Fan et al [3] [14] has conducted human error studies using fNIRS and a ship simulator. These 

studies used fNIRS again to gauge the mental workload of seafarers on the bridge whilst 

conducting standard ship operations. In these studies tasks and conditions were manipulated in 

order to investigate the effect of various performance shaping factors (PSF). The data was then 

evaluated using a connectivity matrix to analyse the relationship between functional 

connectivity and seafarer behaviour.  

These aforementioned investigations have been conducted on aircraft or solely on ship bridge 

operations with little consideration of engine room operations. However, it has been 

documented that engine room operations have a significant impact on the 80% of maritime 

accidents that result from human error [11] as previously mentioned. Additionally, academics 

have explored maritime human error incidents with the limitations of expert opinion resulting 

in speculative data [53]. There have been very few published papers to date investigating ship 

engine room operators using fNIRS technology. There have been no maritime studies to date 

that have successfully modelled the relationship between seafarer performance and PSFs as 

Fan,S et al study only provides stressor-based inter-cerebral interaction without any human 

error or seafarer performance models. Also, Fan et al’s study used a connectivity matrix based 

solely on the dorsal lateral pre-frontal cortex (DLPFC) which does not take into account the 

interaction between frontal, temporal, parietal and occipital regions.  
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1.3 Research questions and scope 

The scope of this study is to investigate the effect of stressors on human performance, 

potentially leading to human errors to occur within a ship engine room. More specifically, the 

PSFs that cause such errors. Once the PSFs that result in human error have been identified, the 

effect of each PSF needs to be evaluated. Post evaluation will show the effect of each PSF and 

OSF and in turn human performance. Given the effect level of each PSF on human 

performance, a classification performance model of said PSFs will be conducted to show 

predicted human error probability. 

To meet the above scope, the following research questions should be addressed. The research 

questions below relate to the background work needed in the literature review section (chapter 

2 & 3): 

1 What are the engine room PSFs and tasks that are associated with the highest levels of 

human error? 

- What tasks show up the most relating to human error in a ship engine room on 

maritime accident databases? 

- What are the most common PSFs on the accident reports associated with human 

error in a ship engine room? 

 

2 How to develop an experimental but realistic scenario on a simulator, incorporating 

PSFs and fNIRS? 

- Conduct a neuro-ergonomic examination of engine room problem scenarios. 

- What task design methods are used on previous BCI-fNIRS studies? 

- What are the rules and regulations set by maritime governing bodies involved in 

engine room tasks? 

 

3 What techniques are used to investigate the effect of PSFs on OFS using fNIRS and 

simulators (BCI-fNIRS) in previous studies? 

- What areas of the brain to look at? 

- fNIRS system settings and software used? 

- How have tasks been manipulated to investigate PSFs and in what format? 

- How to statistically analyse fNIRS and the software used? 
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4 What methods have been used to model human error using fNIRS and simulators (BCI-

fNIRS) in previous studies? 

- - What are the current HRA techniques in maritime engineering and technology and 

how can they be improved? 

- What is the research gap with current HRA techniques in the maritime sector? 

- What modelling techniques have been used in BCI-fNIRS studies?  

- What is the accuracy of each model compared to one another? 

- How can the model be changed to suit this research? 

- How can the model be validated? 

 

5 How to accurately obtain a classification performance of each PSF? 

- What are the optimum features to use? 

- Should PSFs be classified against one another or against a standard test? 

- What techniques improve classification percentage? 
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1.4 Research Aims and Objectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 depicts the primary aim of this research is to investigate the cause of human error 

and the human errors associated with ship engine room operations. More specifically, to 

evaluate the engine room tasks and the performance shaping factors most associated with 

human error within a ship engine room. 

The novelty of this study is to use fNIRS to investigate PSFs in the maritime industry, more 

specifically in marine engine room scenarios with operators experiencing an increased 

workload, a distraction or whilst they are fatigued.  

Given the primary aim and novelty of the study outlined above, to achieve this research aim 

the following objectives are briefly described in Figure 1.4 detailed below. The objectives 

described below differ from the research questions in the sense that the objectives primary 

focus is on the empirical work (chapters 5-8) as apposed to the background research done in 

the literature review stage found in chapters 2 & 3:  

1 Analyse the ship accident reports from maritime accident databases to obtain primary 

data representing the tasks and PSFs most associated with human error in a ship engine 

room. 

Primary Goal 

Investigate human error 

within a ship engine room 

1-Analysis of maritime 

accident databases.  
2-Develop engine room 

scenario 

3-Use neuroimaging 

to measure OFS 

4-Develop scientific 

human error model 

5-Obtain classification 

performance  

Figure 1.4 - Primary aim and objectives diagram 
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2 To develop a simulated scenario and incorporate PSFs into the simulated scenario based 

on the findings from the maritime accident databases. 

3 Use fNIRS to measure the influence of PSFs on operator function state (OFS). 

4 Develop a novel scientific human error model to evaluate the relationship between OFS 

and performance under different PSFs. 

5 From the model, obtain classification performance of each PSF. 

From a human factors perspective in maritime engine room operations, this study aims at 

investigating how different performance shaping factors generate an impact on different types 

of human-related ship engine room incidents. Taking into account the problems arising from 

traditional HRA studies on human errors, it proposed a novel evaluation of performance 

shaping factors contributing towards ship engine room incidents. From maritime accident 

databases, reports of maritime accident investigations and a data-driven neuro-ergonomic 

assessment of ship engine room operations are taken to form a primary database for this study.  

From the performance shaping factors obtained from the above-mentioned maritime accident 

databases and various literature, the PSFs reported as associated with the incidents contain 

insufficient or non-existent data allowing for the study of the individual effect of each PSF. 

This research aims to fill that research gap and obtain evidence of the PSFs that induce the 

highest levels of neurophysiological activation resulting in the increased mental workload of 

seafarers to support the hypothesis of this study. Therefore, this study will investigate how ship 

engine room operations with the addition of PSFs will influence the mental workload of 

seafarers and evaluate the difference between experienced and inexperienced seafarers.  

To gain a full understanding of the neurophysiological activation of the cerebrum and its 

relationship to human performance, an experimental study is created and implemented for 

mental workload research. The resultant data supports that fNIRS is a viable neuroimaging 

technique, which can be used in realistic simulated scenarios and define the role of the DLPFC 

for seafarers conducting engine room operations and the analysis of their mental workload. 

FNIRS examines oxygenated and deoxygenated haemoglobin in the DLPFC of ship engine 

room operators allowing for the understanding of the relationship between PSFs and human 

performance, which in turn generates insights into risk control options, training and 

certification.  
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1.5 Research Methodology and thesis composition 

The work propounded in this document is composed of 10 chapters. The following is a concise 

description of the contents of each chapter followed by a depiction of the process in Figure 1.5: 

• Chapter 1 Introduction: this chapter offers an outline of the thesis, including a brief 

summary of each aspect of the research background, the research gap, and the problem 

to be tackled. The thesis also defines specific aim and objectives, underlining the 

novelty and expected outcomes. 

 

• Chapter 2 Literature review: this chapter involves a comprehensive review of the 

literature available, both with specific regards to the issues presented and more 

specifically, to assist with achieving objectives 3-8 described above in section 1.4. 

 

• Chapter 3 The significant factors contributing to human error within a ship engine 

room: this chapter depicts the research conducted into the maritime accident databases 

and accident reports to obtain the engine room operation and PSFs associated with 

human error. Furthermore, this tackles objectives 1 and 2 as described above in section 

1.4. 

 

• Chapter 4 Methodology for investigating PSFs: this chapter describes the processes 

used to investigate PSFs effect on OFS, as well as a description of each stage of the 

chosen scenario used for testing participants. It also defines how the raw fNIRS data 

will be filtered, processed, analysed and modelled.  

 

• Chapter 5 The effect of distraction on marine engineers whilst conducting ballast water 

operations: the first part of this chapter is used to test the experimental design and 

methods described in chapter 4. Based on the outcome of the initial study, a second 

study is conducted to accurately investigate the PSF ‘distraction’, and its effect on OFS 

using Statistical Package for the Social Sciences (SPSS).  

 

• Chapter 6 The effect of fatigue on marine engineers whilst conducting ballast water 

operations: this chapter is a continuation of the techniques used above in chapter 5, 
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except the scenario is adapted to investigate the PSF ‘fatigue’, and its effect of OFS, 

again using SPSS. 

 

• Chapter 7 The effect of increased workload on marine engineers whilst conducting 

ballast water operations: this chapter is a further continuation of the techniques used in 

chapters 5 and 6 with the scenario manipulated further to investigate the PSF ‘Increased 

workload’ and its effect on OFS. Again, SPSS is used. 

 

• Chapter 8 A comparison of the PSFs; Distraction, Fatigue and increased workload: this 

chapter uses the FNIRS data gathered from chapters 5,6 and 7 combined with SPSS to 

investigate the PSFs against one another. This follows on from the investigations 

conducted in chapters 5,6, and 7, which investigated PSF against a standard scenario.  

 

• Chapter 9 The development and implementation of a scientific human error model: this 

chapter describes how the fNIRS data was processed, features extracted and cross-

validated to develop a classification performance model. Also included in this chapter 

is the classification performance results for each PSF giving clarification of their level 

of risk to human performance and human error probability compared to one another. 

 

• Chapter 10 Final conclusion: this chapter defines the research limitations with critical 

analysis, how the project’s objectives where achieved, contributions to knowledge and 

how this project could be used for future research. 

 

 

 

 

 

 

 

 

 



30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gather Primary Data (Chapter 3) 

• Review Maritime accident databases 

• Review accident reports 

Data Analysis (Chapters 4, 5, 6, 7, & 8) 

• NIRx data filtration 

• SPSS analysis of fNIRS data 

• Evaluation of significant effect for PSFs on operator performance 

 

Literature Review (Chapter 2) 

• How to incorporate PSFs into the simulated scenario 

• How to use fNIRS to measure OFS 

• How to analyse fNIRS data 

• Simulation systems combined with the use of fNIRS modelling techniques 

Experimentation (Chapters 4, 5, 6, 7) 

• Acquire Participants 

• Develop Scenario 

• Incorporate PSFs into scenario 

Modelling (Chapter 9) 

• Development of scientific human error model 

• Feature extraction 

• Data Processing 

• Validation 

Figure 1.5 - research methodology process flow 
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1.6 Novelty of the study 

The novelty of this study is to use fNIRS to investigate PSFs in the maritime industry, more 

specifically in marine engine room scenarios with operators experiencing an increased 

workload, a distraction or whilst they are fatigued. A number of studies have been performed 

using fNIRS in other sectors. For example; aerospace, psychology, national rail and 

automotive. However, in the maritime sector there are very few studies that use fNIRS to 

investigate human error and the few that do can be scrutinized due to the inaccuracies of the 

virtual reality equipment used. Furthermore, there are no known studies to date that model 

human error using fNIRS coupled with a ship simulator. Fan et al. 2020 [52] investigate 

stressors using a bridge simulator and fNIRS but do not model human error, instead functional 

connectivity is used to see cerebral interaction in increased mental workload tasks. Although 

the studies mentioned above show some appeal, such studies reveal some complacency with 

regards to maritime human error from a practical applications perspective as there are zero 

studies to date that investigate error within a ship engine room.  
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1.7 Concluding remarks 

The following are the most consequential remarks comprised in this chapter, and emphasised 

as bullet points for the reader’s ease: 

• The primary aim of this study is to investigate the cause of human error and the human 

errors associated with ship engine room operations due to the effect of stressors on 

human performance. More specifically, to evaluate the engine room tasks and the 

performance shaping factors most associated with human error within a ship engine 

room. 

 

• The use of fNIRS coupled with ship simulators could serve as a useful tool to bridge 

the research gap in the maritime sector by better understanding human performance 

against various human factors commonly experienced during ‘day to day’ ship engine 

room operations. This could then lead to the reduction in human error 

 

• The neuroimaging technique fNIRS is a novel technique to the maritime engineering 

and technology sector and provides this project’s novelty. The use of fNIRS can tackle 

the research gap of high human error levels as a result of inaccuracies in data collection 

methods, thus a less accurate data analysis, a neglect of a human factors approach to 

current HRA practices and negligible investigation of a ship engine room department 

in the maritime sector. 
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Chapter 2. Literature Review 
 

2.1 Introductory remarks 
The chapter that follows will comprise of three main sections. The first section will be looking 

at ways in which PSFs have been incorporated into simulated scenarios as this will assist with 

objective 3. This section will compartmentalise the engineering sectors for the reader’s ease 

and to show the prospective literature for each sector. The second section will be to determine 

the most proficient techniques for using fNIRS to measure OFS, this will assist with objective 

4 and 5. The third and final section will be looking at the modelling techniques used, 

specifically with fNIRS data and simulated scenarios as this will help to achieve objectives 6, 

7 and 8. Each section will contain a critical review of the various techniques, additionally with 

the primary objective of how the current literature can contribute to the existing maritime 

engineering knowledge.   
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2.2 Investigation into the incorporation of PSFs into simulated scenarios 
Figure 2.1 is an illustration depicting the primary aim of this section. Each aspect reviewed to 

achieve the primary aim is depicted and briefly summarized in the blue boxes for the ease of 

the reader. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1 Criteria for the literature search 

Before beginning the literature search, a scope of the review has to be defined. The research 

objective three states, “Incorporate PSFs into the simulated scenario based on the findings from 

the maritime accident databases.” This will allow for the understanding of how best to 

manipulate maritime engine room operations to incorporate PSFs. Moreover, to allow for 

fNIRS to detect OFS whilst experiencing said PSFs further down the line. Therefore, the focus 

of this section of the literature review will be investigations testing the ability of train drivers, 

aircraft pilots, automobile drivers and ship captains. It is already known that the engineering 

sectors previously mentioned conduct academic and workplace studies for research purposes 

and to test the ability of their employees. These aforementioned studies have been performed 

using simulators but there aren’t any in the maritime sector to date that use fNIRS as an analysis 

tool. Some simply witness the participant either passing or failing a task. However, the 

aerospace sector is the sector that most commonly uses fNIRS in conjunction with aircraft 

simulators, so the literature search will start in that sector. Peer reviewed journals, conference 

articles and technical papers are used to conduct this literature review. 

Section 2.2 primary aim 

How can PSFs be applied 

to simulated scenarios. 

Analysis of previous 

studies BCI-fNIRS 

studies with respect 

to PSF 

How have the PSFs 

been applied? 

What techniques have 

been used to 

incorporate the PSFs? 

What is learnt from 

previous studies? 

Figure 2.1 - Mind map depicting the 
literature scope to achieve the primary aim. 
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The literature search keywords and phrases are: aircraft, aircraft pilot, national rail, train 

driver, ship captain, bridge operations, automobile driver, simulator, fNIRS, stressor, 

PSF and human error.   

2.2.2 The aerospace sector. 

 Gateau et al [54] investigate the pilot’s functional state on a flight simulator versus a real 

aircraft. In this study the pilots are given working memory tasks consisting in repeating series 

of pre-recorded air traffic control instructions, easy versus hard. From a PSF perspective these 

tasks could be interpreted as workload or distraction. Dehais et al also conducted another study 

[55] again, investigating a pilot’s inflight working memory using air traffic control commands. 

This study again used an aircraft simulator in conjunction with fNIRS. In this study Dehais and 

his team tested pilots by relaying verbal codes with varying difficulty (letter and numbers, from 

4 -10 consecutive letters/numbers) and the pilots would be required to relay these alphanumeric 

codes at a later part of the flight. This study tests pilots’ working memory and is also a 

distraction. In this study Dehais et al did not expect the pilots to be able to memorise the more 

difficult codes, so wanted to understand their functional state at their working limit. Vierdiere 

et al [45] investigates automatic pilot against manual landings on an aircraft simulator using 

fNIRS to evaluate OFS. This study is an evaluation of increased workload as an auto-pilot 

landing has significantly fewer tasks than a manual landing. Simply increasing the pilot’s 

landing tasks induces a study of a workload volume PSF. Roy et al [56] monitor a pilot’s 

cognitive performance in naturalistic environments, again, using a flight simulator and a light 

aircraft. In this study EEG combined with fNIRS is used to monitor OFS. This investigation 

uses simulated traffic patterns followed by an auditory task with varying degrees of difficulty.  

2.2.2.1 Discussion of the techniques used in the aerospace sector 

The above studies in the aerospace sector show how fNIRS can be used in conjunction with a 

simulator system. The first study investigated OFS of working memory tasks using a simulator 

against a real flight scenario. The results of this study showed that the pilots in real flight 

conditions committed more errors and had a higher anterior pre-frontal cortex activation when 

compared to those in the flight simulator when completing the working memory tasks [54]. A 

real versus simulated scenario would be difficult to investigate for this study as an engine room 

simulator is readily available however, a real ship engine room is not. It could be predicted that 

the activation of operators would be higher in a ‘real life’ scenario compared to a simulated 

environment due to a simulated environment always being an impoverished version of the ‘real 

thing’. A positive to take from this study is the investigation of working memory. They asked 
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pilots to repeat air traffic control instructions of varying difficulty whilst in simulated and real 

flight. This technique could be incorporated into our study by distracting participants 

temporarily, requiring them to then remember where they were up to in the task to fully 

complete the task. A hypothesis would be that under harder distraction tasks the participants 

would forget where they are up to in the task resulting in either missed sub-tasks or errors.  

In Verdiere et al study [45] an investigation was conducted into the differences in activation 

between a manual versus automated landing scenario on a flight simulator. This is a fairly 

straightforward test of workload. This study showed the difference in cerebral activation, by 

way of oxygenation and connectivity features, between the differing landing scenarios. The 

results of this study were promising due to showing classification performance percentages 

way above change. This technique is difficult to replicate for our study due to an engine room 

environment being much less dynamic than a landing scenario. For example, an automated 

scenario in the engine room would involve participants simply monitoring screens. However, 

workload investigations could still be incorporated into our study. An example of this would 

be to increase the number of sub-tasks a participant would need to complete  the overall task. 

The other three studies [33] [55] [56] are similar investigations of a pilot’s working memory. 

These studies incorporate air traffic control messages (ATC) into a flight scenario. The results 

of these studies all show that the majority of errors occurred when the pilots were relaying the 

high difficulty messages. This could have been predicted prior to the investigation but what 

could not have been predicted is the level of effect on cerebral activation the varying difficultly 

of ATC would have. This technique could be incorporated into a maritime engine room study 

in a similar way as mentioned in the two paragraphs above. The techniques in this study could 

also be used in our study to investigate a number of PSFs. For example, easy or hard working 

memory sub-tasks repeated a large number of times could induce fatigue [57] or investigate 

increased workload [19]. 

In summary, the aerospace sector has the most literature with regards to fNIRS coupled with 

simulator systems. However, the techniques seen in this sector are somewhat different to ones 

that could be used in a ship engine room due to the dynamic nature of an in-flight scenario. 

Plus, the majority of investigations in the aerospace sector investigate simulator PSFs. The 

difficulty of an engine room investigation of PSFs on a simulator would be showing a physical 

consequence of an error or action. Whereas, on a flight simulator the participant could 

experience a visual and physical effect of error. For example, the plane crashing. 
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2.2.3 National Rail sector 

Kojima et al [58] investigated human error using fNIRS combined with a train driving 

simulator with the goal of developing driving support systems. The authors of this article 

hypothesize that due to the monotony of train driving the train driver’s low concentration levels 

may be a cause of human error. The task involved stopping at three stations along a 2.3km 

railway line. The stopping time at each station was fifty seconds in order to measure changes 

in blood flow during a stop. This study can be scrutinised due to; the study involved only 2 

participants, neither of the 2 participants had any experience driving trains, the tasks lasted for 

only 6 minutes, it could be argued that 6 minutes is not long enough to lessen concentration 

[59]. However, the hypothesis and results of this study have some relevance to ours as it was 

found predictably that activation occurs during a station stop. Less predictable was the fact that 

activation lessens whilst driving the train without stops. In national rail operations the station 

stops are scarcer which could result in lower driver arousal levels [32].  

Concentration levels could have been investigated in a better way by increasing the time 

between stops. This could also be incorporated into an engine room scenario as many of the 

engine room systems are automated and there are tasks involving long periods of monitoring 

[60]. 

In summary, limited articles in the sector involving simulators and fNIRS could be found. The 

additional literature are revisions of the paper discussed above from the same authors with a 

similar outcome. 

2.2.4 The automotive sector 

Huve et al [61] investigated human error using fNIRS coupled with a driving simulator. Their 

paper looks at the mental state of the car driver whilst undergoing PSFs such as; weather 

condition, type of road and auto-piloted vehicles vs manual driving. The weather conditions 

and road type PSFs were incorporated into the brain-computer interface (BCI) using simulator 

programming. For example, weather conditions like rain would reduce visibility and tyre 

traction. Road type would test the drivers at differing speeds with varying potential hazards. 

These PSFs would be difficult to incorporate into an engine room scenario as there is no option 

to change weather conditions within the engine room simulator programming. However, noise, 

vibration and temperature could be incorporated into our study by using external hardware and 

equipment. For example, a portable heater to replicate the adverse temperatures experienced 

within the engine room [7]. An easier PSF to investigate in the engine room simulator would 
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be automated vs manual operations. In a ‘real life’ scenario the majority of engine room 

systems are automated [62]. Therefore, requiring participants to simply monitor screens, whilst 

automated systems are engaged against those operating the systems manually, could be done. 

Huve et al found that participants in their study had reduced activation whilst the simulator was 

in ‘auto-pilot’ mode. They hypothesised that this could cause human error if a driver had to 

quickly react to an incident due to losing concentration because of long periods of auto-pilot. 

However, when investigating this hypothesis Huve et al did use long periods of automation. 

Instead, they looked at the levels of neurophysiological activation of auto-pilot vs manual 

operation, the results of which could be predicted prior to the study. Investigating this using an 

engine room simulator could be done better by requiring the participants to have a long 

monitoring of automated system screens task followed by a fault with a system. This could 

allow for the investigation of concentration levels and mental fatigue. 

Yamamoto et al [63] used fNIRS and a driving simulator to investigate a driver’s cerebral 

activation and behaviour on sighting a road/message sign. For example, change of car’s 

velocity and acceleration/deceleration and the resulting neurophysiological activation induced 

by such behaviours. This was evaluated by programming various road signs into the BCI. The 

results of the study showed higher levels of pre-frontal cortex activation for drivers that reacted 

physically to the road signs. This could be predicted as a physical reaction to a message would 

result in a neurophysiological activation of the pre-frontal cortex [18]. Interesting is that some 

drivers had no reaction or activation to road signs. This was not a human error study so it is 

difficult to determine which driver had the highest risk of error (the driver with an increased 

mental workload due to a reaction, or the drivers that had lower levels of activation by not 

reacting to the signs). These techniques could be translated into our study by distracting 

participants with questions or messages in the middle of their task. This could show the effect 

of working memory and executive functions of the participant whilst conducting an engine 

room task. This would allow us to better understand how a distraction effects cerebral 

activation. 

Tanveer et al [64] investigated the effect of driver-based drowsiness using fNIRS. In the 

investigation deep neural networks (DNN) were used to classify the drowsy and alert states of 

participants. The drowsy state was obtained depriving the participants of sleep. The method 

used to sleep-deprive the participants is not stated. This study shows that fNIRS is a valid 

method for detecting fatigue and drowsiness, given that the result showed higher levels of 

activation in sleep deprived participants. The technique of sleep depriving participants could 
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be used in our study to investigate the effect of fatigue and drowsiness. However, the paper by 

Tanveer et al [64] leave the reader with the question – How were the participants specifically 

deprived of sleep? Whilst their technique is proved to be valid by the classification accuracy 

of 99.3% from the convolutional neural network, it will still require further research in order 

to specifically define ‘sleep deprived’ participants. 

In summary, a lot of the techniques applied to automotive studies can be incorporated into a 

maritime study. Similar to the other sectors discussed above there is a dynamic element to 

driving simulator tasks which is not the case for the engine room simulator. A visual 

environmental change as a consequence of an action is found in driving simulators were as, the 

engine room simulator could incorporate an auditory and visual alarm [38] to incorporate a 

dynamic BCI response to a participant’s actions. 

2.2.5 The maritime sector 

Fan et al [14] investigated the effect of human factor concepts (mental workload, attention and 

fatigue) using fNIRS and a bridge simulator BCI. Similar to the techniques used in other 

sectors, S Fan et al manipulated the simulation system to induce fatigue by using a long 

watching task with a large amount of fog surrounding the ship. The workload stressor was 

induced by having each participant complete read-outs of navigational information via the 

bridge radio system. These techniques have been made valid by previous literature in other 

sectors but this paper fails to quantify the results from the PSFs. Therefore, it is difficult to see 

an accurate effect of said PSFs. However, the paper does show that neurophysiological 

activation did occur for participants involved in workload and fatigue studies. These techniques 

could be replicated on a bridge simulator as there are many systems within the engineering 

room that would require readouts of information at various parts of a task [38] [65]. Also, 

similar to the officer of the watch task used in the Fan et al paper, engineering staff would have 

a variety of automated systems that would require long monitoring tasks [21] potentially 

inducing fatigue.  

Fan et al [3] investigated the effect of a seafarer’s emotion whilst completing complex and 

demanding bridge operations. In this study a bridge simulator coupled with an 

electrocardiogram (EEG) was used. The use of EEG can be scrutinised as studies have shown 

that EEG induces many anomalies and artifacts due to noise, vibration and movement of the 

participants [18]. Given that the participants are being tested on a bridge simulator, noise, 

movement and potentially vibration would be a colossal factor [66]. The emotional response 
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of participants was induced using sound clips of the international effective digitalised sounds 

(LADS). This result of this study from EEG features were 77.55% using speculative data by 

participants and a support vector machine classifier (SVM). A result of 77.55% is low however, 

this may be down to the use of SVM as a classifier. It is difficult to use a SVM classifier due 

to the parameter settings and choice of functions. To achieve a satisfactory result, a large 

amount of experimentation is needed to obtain the correct parameter and function settings [67]. 

Also, speculative data gathering can lead to inaccuracies due to the participant believing they 

did better or worse in a task than they actually did. A study of the effect of varying emotions 

could be valid for our study but it is hard to define an emotional effect from sound clips without 

using a very large number of participants [6]. 

Fan et al [68] investigated the difference in seafarer experience level during a watchkeeping 

task using fNIRS. The task involved a 20-minute period of sustained attention to locate a large 

vessel in the distance and a 10-minute decision making period (whether to manoeuvre the ship 

away from collision or not). Seafarer experience levels was defined by completing an officer- 

of-the-watch course using a bridge simulator. The results of this study showed varying levels 

of activation between experienced and inexperienced participants. It would have been good to 

see quantification of the results by way of a classifier instead of a connectivity study as 

connectivity simply shows the areas of the brain that are activated at the same time [52]. 

Another criticism would be that only the pre-frontal cortex was used in the study. Therefore, 

the results could have been easily predicted as the connectivity of the pre-frontal cortex during 

a task involving executive functions is already known [41].  

In summary, there is very little literature of fNIRS being using within the maritime sector and 

all the current literature focuses solely on the bridge. This leaves a research gap as the engine 

room has not yet been explored.  
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2.3 Analysis of the use of fNIRS on simulator systems to measure OFS 
Figure 2.2 shows the primary goal and the research needed to achieve the goal (blue boxes). 

Each box contains a question needing to be answered by the literature being reviewed. This 

gives the reader a guide as to how this section of the chapter will be conducted. 

 

 

 

 

 

 

 

 

 

  

 

 

2.3.1 Criteria for the literature search 

Before beginning the literature search, a scope of the study had to be defined. Objective three, 

“Use fNIRS to measure the influence of PSFs on operator function state (OFS)” Therefore, the 

topics used in this literature search will be; fNIRS to measure OFS using simulators, fNIRS 

filters and settings to collect accurate data. The main focus of this section of the review being: 

how fNIRS can be correctly combined with simulator software, fNIRS configuration and 

settings used and the best methods to filter and format the raw data. Reviewing these topics 

will answer the question four, “how have fNIRS and simulators been used to investigate the 

effect of PSFs on OFS in previous studies?” 

The literature search keywords are: human error, simulator, mental workload, OFS and 

fNIRS showed a significant number of papers in the fields of aviation, national rail network 

and automotive sectors. Peer reviewed journals, conference articles and technical papers are 

used to conduct this literature review. 

 

Section 2.3 primary goal 

How is fNIRS best applied 

to BCI studies. 

What are the 

neuroimaging 

system set-ups and 

settings? 

The neuroimaging 

system configuration to 

the simulator system? 

The area of the 

cerebrum to 

investigate? 

What is the 

optimum 

Investigation task 

design format? 

Techniques that 

influence mental 

workload? 
Figure 2.2 - Depiction of the 
primary goal and the topics 
reviewed to achieve said goal. 
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2.3.2 The techniques used in previous fNIRS and BCI studies. 

The pre-frontal cortex was monitored throughout previous studies using a continuous wave 

fNIRS system and simulator in the following sectors; Automotive [28], Rail [58] and aviation 

[31] [45] [69]. Monitoring of the pre-frontal cortex in the aforementioned studies can be further 

substantiated given that the pre-frontal cortex is the area of the brain that governs executive 

functions like working memory [44].  Therefore using 7 emitters and 7 detectors all together, 

creating 15 channels, we can fully evaluate pre-frontal cortex (more specifically the dorsal 

lateral pre-frontal cortex [DLPFC]) This montage is shown in Figure 2.3. 

 

Figure 2.3 - Skull cap montage of optodes 

Candidates can then participate in a task (coupled with PSF’s) on the engine room simulator, 

allowing us to evaluate the cause of any increases in mental workload. This is shown by the 

level of neurophysiological activation [51] (the activation will be higher when the participant 

is under a higher mental workload [45]). The aforementioned techniques have worked well in 

past studies. However, to better achieve our first objective it has been shown to be more 

beneficial to focus on the left side 5 and right side 5 channels and have less focus on the middle 

DLPFC region [18]. The middle region of the DLPFC is less utilised in practical or working 
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memory tasks [70]. This has been shown in previous studies to cause anomalies in oxygenated 

haemoglobin data [19] [71].  

In the aforementioned studies, participants performed a visual identity task, a standard working 

memory and attention task with varying levels of difficulty. Visual identifying, working 

memory and attention tasks used in the previously mentioned studies using fNIRS with a 

simulator are all similar in approach. Therefore, these techniques can be replicated using our 

TRANSAS engine room simulator. To critique this approach, it could be said that there is no 

adverse dynamic element when a participant makes a mistake or performs poorly. In the case 

of a flight simulator, the adverse dynamic element of a poor performance in the worst case 

would be a simulated crash but this is not the case with simulated engine room tasks. 

 

Papers reviewed outline a similar system, where simulation software is used to conduct an 

experiment on a participant undergoing real life scenarios in the aviation [45], automotive [42] 

and Rail [58] Sectors. In each case fNIRS is applied in order to break down the specific periods 

within each task that show the highest mental workload [41]. The sensitivity of fNIRS is a 

criticism and acclamation. Previous studies show that a lot of time needs to be spent on pre-

processing of fNIRS settlings and post-processing of fNIRS data [55].  

 

Shewokis et al [72],  compare EEG to fNIRS and conclude that EEG has many excellent 

qualities for monitoring mental workload [73], including superior temporal resolution but is 

limited in its capacity for spatial resolution [54]. In addition, EEG has a long set-up time and 

susceptibility to motion artifacts are an issue [33]. EEG has a substandard spatial localization 

when compared to fNIRS [51]. Recent studies have found that the use of EEG with simulator 

hardware has an accuracy output of below 60% [18] [74] [75] therefore, the use of EEG with 

simulators is now deemed inadmissible [76]. This validates the use of fNIRS over EEG. One 

aspect that EEG does have over fNIRS is the ability to detect cerebral change instantly 

whereas, fNIRS takes approximately 8 seconds [40] but this issue can easily be overcome by 

analysing data 8 seconds ahead of the task time. 

 

Aviation studies looked at the difference in mental workload focusing on the oxygenation 

features; average, peak, skewness, variance, slope, kurtosis and area under the curve and 

connectivity features; Covariance, Pearson’s and Spearman’s correlation, Wavelet coherence 

and spectral coherence [45]. Connectivity is using neuroimaging in order to measure and 
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understand functional networks across different areas of the brain [57]. By plotting a scatter 

graph of two data sets from different areas of the brain against one another, one can see if 

the two corresponding areas have a positive or negative coherence [19]. A positive coherence 

will show a connection between the two parts of the brain (for example, when one specific 

part of the brain is used the other specific part is also activated) [57]. The paper concluded 

that the best connectivity method to use was wavelet coherence [35]. However, the 

aforementioned studies looked at the connectivity between the occipital and frontal lobes of 

the cerebrum [55]. A further benefit would be to look at the connectivity between left and 

right sides of the DLPFC [14].  

 

Further literature showed that an advantage of a connectivity study is that predictions can be 

made as to the phase of the task the participant is up to in the workflow [19] and show areas 

of the brain that interlink in different tasks [57]. Connectivity would be a good tool to use if 

the objective study was to create a predictive model that shows operator’s workflow stage in 

order to obtain when the participant is likely to be under a high mental workload [55]. This 

study will be evaluating the effect of PSF on operator performance in order to obtain HEP 

via classification performance. The only benefit to our project would be to use connectivity 

features but a connectivity study takes a lot of time and the difference between connectivity 

features and oxygenation features from previous studies is minimal [45].  

 

Oxygenation features can provide us with quantifiable oxygenated haemoglobin volumes 

[45]. These quantifiable volumes can be put towards a nominal value of PSF effect which in 

turn can allow us to accurately evaluate HEP [10]. For example, high oxygenation volumes 

indicate high mental workload [18]. High mental workload indicates a higher likelihood of 

error [69]. The PSF can then be compared on this basis indicating the PSF with the highest 

likelihood to contribute towards human error. Given the knowledge of the PSF, we can then 

ascertain HEP using frequency of occurrence and consequence [53] in terms of mental 

workload.  

 

In previous studies two NIRSport systems were used in tandem in order to increase the 

number of sensors [19] [45]. Each NIRSport system had eight sources and eight detectors. 

An advantage of using two systems, enables the instructors to look at the frontal and occipital 

areas of the brain (each covered by 8 sources and 8 detectors resulting in 32 channels) in 

order to see the connectivity between the two areas simultaneously. The downside to this is 
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the amount of equipment needed and additional weight. There is also the issue of hair density 

on the back of the participant’s head having the potential for reduced optode efficiency [18]. 

This could also be done on a multimodal fNIRS system instead of having two separate 

systems running on the same participant [19]. For our project there is no value in looking at 

frontal and occipital areas of the brain unless a connectivity study is being conducted given 

the findings above. 

 

In many of the studies reviewed, mental workload manipulation was done by varying the 

degree of difficulty levels of each task [19] [18] [76]. An example of this is Gateau, Ayaz 

and Dehais tested 28 pilots undertaking a task using a simulator vs a real aircraft. The group 

was split evenly into groups of 14. One group on a real aircraft and one in the simulator. The 

tasks consisted of two different instructions from air traffic control. The first was considered 

the easy difficulty level and was loading up flight parameters to the flight console. For the 

easy level the parameters all had the first 2 digits the same (for example speed 140, heading 

140, altitude 1400, vertical speed 1400). The hard level consisted of different flight parameter 

values (for example speed 172, heading 258, altitude 6401, vertical speed -2801). 

 

The task consisted of 20 trials all together with 10 repetitions of each difficulty level. The 

order of the task difficulty was randomly distributed with two constraints: 

 

• The first 10 trials had five hard and five easy difficulty levels. 

• The difficulty level would not be the same for two consecutive trials. [54] 

 

The simulation process provides useful insights into the development of our simulation, 

however the trials and the groupings will need to be optimised to better reflect on how a 

simulation based fNIRs assessment should be conducted in a systematic way, including the 

task selection and trial definitions in order to achieve the project objectives. Varying the 

difficulty can be done by applying a multitasking aspect similar to that used in (National 

Aeronautics and Space Administration Task Load Index) NASA TLX tests [77]. To criticize, 

another aspect to explore would have been environmental changes as this has been shown to 

be a relevant factor in other sectors [78] [79]. For example, the effect of adverse weather when 

landing an aircraft.  
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The varying difficulty levels has been shown in the studies mentioned above to be a good 

evaluation of operator performance. This can be done similar to Dehais et al (figure 2.4), using 

a workflow task where the difficulty increases gradually. An engine room fault could consist 

of visually acknowledging the occurrence of a fault (easy), detecting what caused the fault 

(medium) and finally solving the problem (hard) [60]. This contributes towards objective 2. 

In papers by Ayaz et al [72] and Verdiere et al [45], fNIRS was used to record 

haemodynamics of the prefrontal cortex. For the pre-frontal cortex the device was equipped 

with 16 optodes (8 emitters & 8 detectors). The optode separation was approximately 25mm 

and two different wavelengths were used (730 & 850 nm) as these specific wavelengths were 

shown to be the optimum wavelengths for recording de-oxygenated and oxygenated blood 

flow [18] [33] [54]. Each optode was set to record oxygenation variation levels at a frequency 

of 2Hz. The disadvantage of using 2Hz as a sample rate is that less data is recorded per frame 

[19]. Therefore, a better rate to use for our project would be 7.8Hz in order to fully show the 

cerebral fluctuations [80]. This again, helps with the first objective as it gives a guide to 

fNIRS system settings used and the optode configuration. 

 

Synchronization markers are used in order to indicate when each participant had periods of 

rest and when certain tasks were undertaken. The advantage of this is the markers clearly 

show the point at which the participant is in the task, the mental workload of each task and 

how long each sub-task took to complete [57].  

 

Oxygenation changes for each optode is calculated using the modified Beer Lambert law 

[51] as stated in 1.2.3 A consistent theme in all literature is that a modified version of the 

Beer Lambert law is used to calculate changes in concentration of oxygenated and de-

oxygenated hemoglobin levels relative to a baseline [45] [54] [73].  

 

In the aforementioned literature the average change in oxygenation is taken as the depended 

measure. A model was then developed for each participant based on the fNIRS data measured 

during the tasks. The linear models on the papers mentioned above showed the oxygenation 

polynomials at points of the tasks and at rest in order to correctly define mental workload at 

specific points throughout the exercise [39]. The advantage of this is that various sections of 

data can be separately analysed to different levels of complexity (for example, HRA 
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techniques such as a Bayesian network can be implemented to look at the reasons behind 

oxygenation spikes at different parts of a workflow) [81].  

 

The consensus is that a ‘workflow style’ framework and task design is used [54] [57][71]. 

An example of this type of framework is used below (Figure 2.4): 

 

 
Figure 2.4 - Example framework [45] 

 

An advantage of using this type of framework is that it gives a good structure to the order of 

the analysis stage. If an error is made, then it is easy to go back to the section prior as opposed 

to re-starting from the beginning. A disadvantage of the pipeline in Figure 2.2 is that it was 

developed to test pilots in flight. Therefore, 42 channels, 12 features and 6 regions of interest 

is more than what is needed for this study. Our study is solely looking to achieve an accurate 

classification performance to obtain PSF and HEP values. 

 

The evaluation of fNIRS data based on a general liner model is often made more onerous by 

high inter-subject variability of the haemodynamic response, serial correlations and the 

presence of motion artifacts [82]. For this reason, a Moving Average Convergence 

Divergence (MACD) filter is used to remove all the low and high frequency components 

from the raw fNIRS data [45]. The low order filter has a quasi-linear phase in its bandwidth 

and is particularly suited for real-time applications [41]. This is another good guide for our 
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objective 1 as it validates the use of a low order filter as opposed to a high or band pass filter. 

Baker et al, for their raw data analysis, used NIRx filtering of Δ(HbO2) and Δ(hHb) on all 

individual optodes [19] and this worked well. The data can then be used to show the mental 

demand of the participants whilst performing said tasks [57]. This is done again as stated in 

section 1.1.1 using the difference in oxygenation values.  

 

2.3.3 Discussion 

There is a difference between the maritime engineering PSF and most other sectors. The main 

differences being that on board a ship, PSF changes will happen regularly, for example, rough 

sea, a noisy engine room, a cold engine room or a hot engine room etc. In the aviation sector 

the PSFs have the most similarities. For example, the number of aircraft to navigate [73] (this 

is similar to multiple ships in port), the difference between tasks with varying difficulty levels 

[54], memory based tasks [43] or attention monitoring tasks [32] and the environment itself 

(weather, temperature, vibration etc). However, it would have been good to see what scenarios 

forced the pilots to use autopilot or manual functions in Verdiere et al’s study (for example, 

low visibility, high winds, technical problems) as it would have been good to see what PSF 

condition caused the highest mental workload for pilots.  

 

The analysis of the fNIRS data was done in most other studies via the use of third-party 

software [19] [32] [33] for example MatLab and homer2 software. This can be used for our 

project however, the fNIRS system that our school of engineering has invested in comes with 

its own data analysis and filtration software. It would have been good to see how Verdiere 

et al would have used NIRx but at that time the latest version of NIRx wasn’t available to 

them.  

 

The framework that is used in Dehais et al’s study can be used in a similar way to that on our 

project. The framework is done in a very similar way to that of a workflow (see figure 2.4). 

This could be translated into a process framework to go towards objective two and three. 

However, the framework would have to be changed to suit the engine room. For example, 

the participants used in Dehais et al’s paper are already fully trained and qualified pilots 

therefore a training element would have to be included in our study. Another factor is the 

engine room tasks involve a significantly larger number of sub tasks [60] when compared to 

the task used in Dehais et al’s paper. Therefore, the number of epochs and their lengths would 
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have to be changed. Given the previous differences described, the PSFs in our study would 

have to be incorporated at differing stages of our task or throughout the whole task. 

Furthermore, it can be assumed that the PSFs of an engine room investigating will differ in 

nature to those found in flight. For example, an in-flight distraction could be dynamic 

elements like; weather, air traffic, changes in velocity/groundspeed and other visual obstacles 

from the environment [33]. Whereas, engine room simulator operators will not have any 

view of the outside environment or consequences or an invalid action [83]. An example of 

this is ship listing. Given the previous differences, describing this framework could be 

doctored and be coupled with the integration PSFs to understand the relationship between 

OFS and operator performance by changing the elements described above. These techniques 

could be implemented to most engine room scenarios.  

 

A main feature of the Dehais et al [54] and Verdiere et al [56] papers is the connectivity 

aspect. Their studies used 42 channels, connectivity features and the region of interest (ROI) 

covering the majority of the cerebrum. However, the most relevant ROI for our study would 

be the pre-frontal cortex as this is the area of the cerebrum that involves working memory, 

executive functions and motor skills [34] associated with engine room tasks [65]. A 

connectivity study could still be implemented using the prefrontal cortex and 15 channels 

alone but this would be looking at the right side and left side DLPFC as opposed to multiple 

regions. However, looking at the PFC alone in a connectivity study could be scrutinized as 

the resulting connectivity matrix could be predicted due the obvious interaction already 

known between the left side and the right side PFC [26]. 

 

Much of the literature reviewed utilizes a workflow style task design [40] [54] [73]. This 

could be translated to our project to address the existing human error problems in the 

maritime industry, by using a workflow to compartmentalize sub-tasks and work through 

each investigation in a consistent, uniform manner. An example taken from a study by Roy 

et al [45] is shown below in Figure 2.5. There are four time-windows in place whilst there is 

an instruction. This task design consists of; a baseline, a question, response and a rest by 

each candidate. The response windows will obviously all be different for our project given 

the comparative nature of each study. Utilizing a similar workflow task design will enable 

us to implement an engine simulator-based human error investigation of OFS incorporating 

fNIRS. For example, a baseline will be needed for each participant due to the physiology of 

each human in most cases differing [18]. Then sub-task windows would be needed similar 
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to the ATC message, response and rest windows used in Roy et al’s study but for our study 

it could be used to compartmentalize the whole task to better understand the areas of interest 

[68]. 

 

 
Figure 2.5 - Workflow style task design example [73] 

To summarize, there are many drawbacks from the literature reviewed in this section. The 

research gaps in maritime human reliability assessments are primarily the lack of an accurate 

and quantifiable way of collecting human data. The majority of current HRA studies rely 

vastly on speculative data and expert opinion. Therefore, fNIRS will provide a novel and 

accurate way of providing human error data collection [84].  

 

2.3.4 Comparison of Techniques 

The TRANSAS engine room simulator is somewhat different to other simulators in the sense 

that there is a relatively low visual output of dynamic change due to an incorrect operator 

action. That being said, the task design and use of fNIRS technology coupled with a simulator 

can be replicated in a similar way to the less dynamic tasks associated with the work done 

by Baker et al [19].  

 

The techniques used in each study are somewhat similar in the way that fNIRS technology 

is implemented however, there was one subtle difference when measuring a baseline. Some 

studies used a baseline condition of “n-back” tests in order to establish the utility of fNIRS 

to measure changes in mental workload [73]. This is mainly to test the validity of their 

methods coupled with the use of fNIRS technology. This differs from the other studies which 

mainly used a ‘relaxed state’ or resting baseline [45] [54].  

 

Most studies measured the pre-frontal cortex of the brain [28] but it has been determined that 

not all parts of the brain involved with certain scenarios could be monitored [73]. This refers 

to voice commands which would require monitoring of the auditory and parietal cortex. This 
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brings about the conclusion that the experiments for our project need to have visual, written 

instruction or are given prior to the start of testing.  

 

Comparing the techniques used for gathering and filtering the data is still relevant even 

though the system for our study has its own fully automated software used for the raw data 

filtering. Mayers waves and noise filters will still have to be applied to reduce the artefacts 

from gathered data [84]. The various studies reviewed in this section clarified that mayer 

waves due to blood pressure and heart rate can be controlled via a band pass filter [51]. More 

specifically, with a lower band of 0.01Hz [43]. The most efficient upper band pass filter from 

the studies reviewed showed to be 0.2Hz in order to remove the noise artefacts from various 

equipment and ambient sounds within the simulator [52]. Rarely, there can also be spikes 

throughout the data sets due to low nodal contact [85]. These spikes can be removed via 

interpolation of the data before and after the spike to ‘best fit’ the missing data removed with 

the spike [86]. Other techniques from the studies reviewed that can be replicated is the way 

in which Verdiere et al formatted the task in epochs [54] via mechatronic code written in 

MatLab or R-Studio, the algorithms used by Aghajani et al, to correct signal correlation 

anomalies [18], the way the data was formatted by Gateau et al [54], for ease of analysing 

such large data sets and Gevin’s theory for experimentation on human participants with 

respect to differing human physiology between participants [34].  
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2.4 Current HRA and modelling techniques. 
The illustration below shows the primary goal of this section of the chapter. The surrounding 

boxes contain the information needed to be known in order to achieve the primary goal. This 

depiction gives the reader an overview of what to expect from this section. 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.1 Criteria for the literature search 

Prior to the literature search, a scope of the study needs to be defined. Objectives three and four 

state,  “Develop a novel scientific human error model to evaluate the relationship between OFS 

and performance under different PSFs. From the model, obtain classification performance of 

each PSF”. Therefore, the topics at the forefront of this literature search will be; the latest HRA 

techniques used in maritime engineering and techniques used in other fNIRS and simulator 

studies to model and classify PSFs. These techniques will then be discussed to see how they 

could be improved and used in our study. This will answer the research questions three, five 

and six; “What are the current HRA techniques in maritime engineering and technology and 

how can they be improved? What methods have been used to model human error using fNIRS 

and simulation software in previous studies? What techniques can be used and have been used 

in previous studies to statistically analyse the effect of each PSF on human performance?”. 

The literature search keywords used are: Human reliability analysis (HRA), Maritime.: fNIRS, 

Simulators, Modelling techniques. Peer reviewed journals, conference articles and technical 

papers are used to conduct this literature review. 

Section 2.4 primary goal 

Which modelling 

technique is best for this 

research? 

What are the current 

HRA techniques used in 

the maritime sector? 

What are the modelling 

techniques used in BCI-

fNIRS studies? 

The pros and cons of 

each technique? How have the techniques 

been used and applied? Figure 2.6 - Diagram of the primary 
goal and how this will be achieved. 
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2.4.2 HRA techniques used in the Maritime sector. 

Generally speaking, HRA techniques are used in the maritime sector aim to analyse PSFs with 

the goal of achieving a nominal human error probability (HEP) [87]. Over the years HRA in 

the maritime sector has gone through a series of generational changes [88]. In the 1990’s first 

generation models such as THERP, SPAR-H and ASEP were criticized due to the claim that 

these models lacked a cognitive aspect capable of dealing with the human factors associated 

with human reliability [89]. As a result of those criticisms a number of new methods emerged; 

ATHENA, INTEROPS, OMAR and CREAM [88]. These later models represent a more 

complex BCI methodology taking into account human cognition [90]. These later models have 

again been scrutinized due to their lack of measurable PSFs, hard to accurately quantify, lack 

of validated empirical data and relies on speculative data [84]. Therefore, current HRA 

techniques were either revised, hybridized or developed to incorporate simulation of ‘real life’ 

scenarios [91]. For these simulator-based techniques the focus shifted to empirical data 

validation in order to try to reduce the uncertainties [8].  

The latest HRA techniques to be used in the maritime sector coupled with simulators are human 

error assessment and reduction technique (HEART) [92], A hybridized version of cognitive 

reliability and error analysis method (CREAM) [46], A revised version of a technique for 

human event analysis (ATHEANA) [93], probabilistic cognitive simulator (PROCOS) [48], 

Information, decision and action (IDAC) [94] and Bayesian networks (BN) [3]. These 

techniques would be difficult to apply to fNIRS data. To better describe the reasons for this a 

brief description of each technique is needed. 

Evan et al’s [92] paper states that the heart technique allows tasks to be compared relative to 

each other and assesses each individual sub-task in turn. Firstly, the generic nature of the task 

is specified. Then error producing conditions (EPC) are identified. For example, unfamiliarity 

or low signal to noise ratio. Next, the effect of each EPC is assigned a nominal value between 

0 and 1. Finally the human error probability is calculated given the EPC nominal value. 

CREAM and ATHEANA are similar in approach according to Yang et al [46] and Dsouza et 

al [93] papers, as they work again, based on defining the scenario, defining the scope of the 

study, defining the problem tasks, defining the PSFs and then calculating HEP.  

The papers by Truccio et al [48] and Chang et al [94] describe how PROCOS has been 

developed, and more recently how IDAC has hybridized to incorporate the use of simulators 

to better identify how human factors effect operators’ decisions. In the aforementioned 
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literature the techniques were used to look at a scenario in normal working conditions before 

applying PSF. More specifically, PROCOS used two different flow charts. One reproduces the 

operator’s behavior in normal working conditions and the other looks at their behaviour in an 

emergency or recovery conditions. Both flow charts are based on the model SHELL-PIPE 

(SHELL – interaction between equipment, software and operators. PIPE – an evaluation of the 

operator). There are two possible outcomes ‘yes or no’ based on a Bernoulli’s distribution of 

0-1 values of PSF and their influence on each decision block. HEP is obtained based on a 

success likelihood of each task, defined by the SLI formula (the total number of good events 

divided by the total number of valid events). 

A Bayesian network is a useful technique to analyse an event that has occurred and predicting 

the likelihood that any one of several possible known causes was the contributing factor [95]. 

For example, a Bayesian network could represent the probabilistic relationships between a 

failure event and actions leading up to the failure [96]. 

2.4.3 Modelling techniques used with fNIRS and simulators. 

The literature search in this section will focus on modelling techniques used primarily in human 

factors studies. Our study involves using fNIRS data extracted from participants engaging with 

a BCI. Therefore, for this section of the literature search the specific focus will be on models 

used for BCI studies using fNIRS. The classifier accuracy deemed acceptable for BCI is 70% 

[85]. Consequently, a brief overview of a number of studies will be conducted, moreover, 

looking specifically at the performance classification accuracy. 

Linear discriminant analysis (LDA) has been used as a performance classifier for fNIRS data 

on the following BCI studies; [97], [98], [99], [100], [101], [102]. This performance 

classification modelling technique obtained accuracy levels between 75.6%-90% for fNIRS-

based studies using BCI’s. For the studies above this classification technique worked well for 

a variety of feature types. For example, oxygenation and connectivity features. LDA is widely 

used as a performance classifier of fNIRS-BCI data. From the literature referenced above the 

classification performance accuracy was consistently above the acceptable accuracy of 70%. 

LDA also has the flexibility of allowing for a shrinkage parameter chosen based on cross-

validation [103]. Shrinkage can be used in situations where the number of input variables 

greatly exceeds the number of samples, which would be the case for our study, results in the 

covariance matrix being poorly estimated [104]. Shrinkage would regulate the estimated 

parameters by putting a restriction in place to ensure that individual covariance matrices shrink 
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toward a common data pooled covariance matrix [104]. LDA as a classifier does have its 

disadvantages. If the data regularly falls far outside of the means of the classes, then LDA will 

not work well [103]. LDA is also sensitive to over fit [104],and validation can be problematic 

which is why the k-fold cross validation method was developed for a small number of 

samples/features [105].  

Support vector machine (SVM) has been used for fNIRS-BCI analysis as a performance 

classifier in the following studies; [106], [107], [108], [86], [109], [110]. The SVM 

classification technique obtained accuracy levels between 61.8%-84.9% for BCI studies using 

fNIRS data. SVM is a good technique to use where the data set contains more features than the 

number of rows of data [111]. Our study will involve 15 channels and oxygenation features 

only, which means the number of features will be under 10 [112]. SVM can be used for both 

regression and classification [113]. This will help with our study as it is both linear regression 

and a classification problem. The downsides of SVM include: SVM aims to find the largest 

margin boundary in order to classify the data [114] however, fNIRS data in aerospace sector 

investigations (which are similar in approach to ours) show the classes to be complex/non-

linear and to have minimal boundaries which could result in a low prediction 

accuracy/performance classification [112]. SVM can convert non-linear, complex data into 

linear using higher dimensions [111] however, the implementation of this feature is done using 

kernel functions [113]. In short, the kernel function takes low dimensional input space and 

transforms it into separable space classes [112]. This is where SVM becomes difficult to use 

in our study as there are many kernel functions (Linear, Nonlinear, Polynomial, Radial Basis 

function (RBF) and Sigmoid) and to choose the optimal kernel function takes a lot of time, trial 

and error and can be challenging [111]. Also, SVM on large data sets takes a lot of training 

time [114] and the fNIRS data sets in our study will be extremely large. Moreover, SVM is not 

a probabilistic model so it cannot be used to explain performance classification in terms of 

probability [113]. 

K Nearest Neighbour (KNN) has been used as a performance classifier for various fNIRS-BCI 

studies. These studies include; [102], [115], [116], [117], [118], [119]. The accuracy obtained 

by KNN for the above studies ranged between 50.7%-90.54. KNN is a model widely used due 

to its simplicity and easiness to interpret. It does not make any assumptions so can be used in 

non-linear data sets with conversion [120]. In the above referenced studies KNN has been 

shown to work well with multiple classes and this model can work on both classification and 

regression data sets. However, KNN has many disadvantages when used in a study similar to 
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ours as it becomes very time consuming due to the efficiency of the algorithm, as the number 

of data points increases due to the model needing to store all data points [121], as the data set 

grows the accuracy of the algorithm declines [122] and as stated earlier our study will contain 

vast data sets with many participants. The main disadvantage of using KNN in our study is its 

sensitivity to outliers [122]. It can be assumed from previous fNIRS studies [120] [122] that 

our data set will contain multiple outliers resulting in a reduced performance classification 

accuracy. Also, KNN in the studies referenced above proved to have a great variation in 

performance classification accuracy with some studies falling below 70% (the percentage 

defined as acceptable with respect to accuracy [120]. 

Artificial neural network (ANN) is used on a variety of studies as a classifier of performance. 

ANN has been reviewed in the following fNIRS-BCI studies; [61], [85], [106], [86], [123], 

[124]. The ANN classification technique obtained an accuracy percentage in the following 

range 63%-89.35%. Neural networks are used in modern day to advance robotics into 

simulating the human brain. It does this by recognising correct decisions made in certain 

scenarios [125]. However, ANN can be used as a classifier for non-linear data sets [126]. There 

are many advantages of ANN which include: neural networks are flexible in that they can be 

used for both regression and classification problems [127], works well with numeric data only 

[128], once trained the prediction are fast [128], ANN can be trained with a varying number of 

layers and inputs and ANN works best with more data points [126]. Given the above 

advantages, ANN would be a good fit for our study. However, ANN has the following 

disadvantages: it is impossible to define how each variable is influencing the dependant 

variables [127], ANN requires high performance computational equipment which can be very 

expensive otherwise it would be extremely time consuming with CPUs available for our project 

and ANN is very dependent on the training data sets which can result in over-fitting and 

generalization [125]. The application of Neural networks is very much in its infancy with 

respect to fNIRS-BCI performance classification models as there is limited literature available 

compared to the other models discussed. This could be a classifier to explore in future studies 

but currently ANN has a major problem when training. The ANN training algorithms often get 

stuck in local minima [125]  (The point at which the function takes the minimum value is not 

the actual minimum value (global minima) whereas the global minima is the optimal solution).  

After a brief review of the above models, we learn that LDA is best fit for our study due to the 

model consistently showing accuracy scores above what is deemed acceptable for fNIRS-BCI 

studies and techniques have been developed to overcome the disadvantages. For example, the 
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K-fold validation method [102] and using the shrinkage method [104]. Therefore, for the 

remainder of this section, a more in-depth review of LDA and how it has been used in BCI-

fNIRS studies will be conducted. 

The paper by Verdiere et al [45] used the technique linear discriminant analysis (LDA) to 

classify performance based on extracted oxygenation features. In the study, the data is sorted 

in 12 x 10 second epochs over the 120s task period. LDA is then used to classify the operator’s 

performance for each individual epoch as a resulting percentage against the oxygenation 

features. This works well as the resultant table from the study showed a comparison of 

participants (table y axis) against oxygenation features (x axis). This allows the reader to 

compare each participant and oxygenation feature. However, it would have been good to see 

how each participant performed with respect to time instead of against one another. For 

example, time in the x-axis and participants in the y-axis with a resultant classification 

percentage being of all of the oxygenation features combined. This would show the reader the 

specific areas of the task with the highest levels of activation. On the other hand, the authors 

may argue that the areas of the task with the highest levels of activation are predictable and 

that the task was used to test LDA’s evaluation of stressors as opposed to the task itself.  

The result obtained from oxygenation features used in LDA was 74.7%. This is a good 

classification performance score, it is well above chance (56%) and is above the accuracy level 

defined as acceptable for BCI studies (70%) [61]. This technique is therefore an option for our 

study, however, it would have to be changed slightly due to the assumption that for our study 

the times to complete the task will all be different. This will also result in participants being up 

to a differing part of the task or epoch when compared to one another. Applying LDA to our 

study could still be done as the paper by Verdiere et al shows us that LDA can classify 

performance of operators participating in a task but could also be used in the same way to 

classify PSFs based on operator’s performance in a standard task against a task where a PSF is 

applied. The resultant classification performance would give us the effect of the PSF. 

 The study by Dehais et al [129] used LDA for inter subject classification in an accident study 

using EEG on a real flight. The participants were required to respond to auditory alarms to 

explore the phenomenon known as inattentional deafness. The features used were frequency 

features (due to the use of EEG as opposed to fNIRS) extracted at 3 second epochs. The authors 

of the study used a 5-fold cross validation procedure (10 times). LDA was used in this study to 

differentiate participants who acknowledged alarms and participants who missed the alarms. 
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36% of alarms were missed therefore an equal number of acknowledged alarms were used (700 

missed, 700 hit) to avoid dependency of the classification technique to a specific 

training/testing test. The classification performance results obtained by LDA was 60.6%. These 

results showed to be above chance and the authors stated that the “results open promising 

perspectives” but the overall classification scores are low (70% accuracy is defined as sufficient 

accuracy for BCI) [93]. This can be explained partly due to the use of EEG. EEG is sensitive 

to noise and vibrations found in real flight. Therefore, it can be assumed that the data is less 

accurate due to real-flight conditions.  

The LDA model worked well to classify inter subject performance. The two aspects adversely 

affecting this study have proven to be EEG [18] and the Inter subject approach [88]. Therefore, 

it would be wise to change these aspects and use fNIRS and instead of focusing on inter-subject, 

to change the focus to classifying PSFs. This approach should reduce inaccuracies found by 

the variable differences in human physiology from person to person by instead averaging 

oxygenation data across all participants in a study of PSFs against a standard test. 
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2.5 Concluding remarks 
The following remarks are the most significant remarks comprised in this chapter. They are 

emphasised as bullet points for the reader’s ease: 

• The literature showed that the best and most strategic analysis of a task is to use a 

workflow style task design. The workflow allows for the ease to follow, 

compartmentalization of tasks and sub tasks. A workflow style task design has been 

used successfully in many previous fNIRS-BCI studies. This helps towards objective 

two. 

• The dorsal lateral pre-frontal cortex has been shown to be the optimum area of the 

cerebrum to collect fNIRS data due to that region being the region involved in working 

memory, decision making and executive functions relevant to the tasks in this study. 

This helps towards objective three. 

• The best software to use to filter the raw fNIRS data is NIRStar version 16.1 as this has 

been used in previous studies and is the software that comes ready calibrated to the 

NIRx system used in this study. Furthermore, to process the data into epochs for ease 

of analysis R-studio software is used. R studio has also proven on previous studies to 

analyse and evaluate fNIRS data using mechatronic code. Therefore, R-studio will also 

be used to model the data collected. This helps towards objective three. 

• Current HRA techniques used in maritime engineering are unable to accurately quantify 

data from fNIRS-BCI studies. This is due to their unambiguous nature and approach to 

experimental data. Whereas, fNIRS data collected from human participants has many 

uncertainties. Therefore, human factors classification techniques must be used to 

quantify the fNIRS-BCI data.  

• LDA is the classifier that will be used in this study. LDA has been used in previous 

studies to great success and has shown to consistently provide performance accuracy 

percentages above 70% which is deemed the minimum accepted percentage for BCI 

studies. The disadvantages of LDA are primarily overfitting therefore, the shrinkage 

technique will be used to overcome this problem resulting in a higher performance 

classification accuracy. The LDA with shrinkage technique will be performed using R-

studio software described above. This helps towards objective four and five. 
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Chapter 3. The Significant Factors that Contribute to the Increase in 

Human Error within a Ship Engine Room. 
 

3.1 Introductory remarks 
This chapter investigates the performance shaping factors reported as a cause or contributing 

factor towards human error within a ship engine room. The first section of this chapter will be 

outlining the criteria for the accident database search. The following section will define the 

databases used to gather primary data relating to human error within a ship engine room. The 

third section will contain the primary data gathered in tabular format for the reader’s ease. The 

data tables will include; a list of accident reports used, the source of the report, the accident 

report code and the PSFs associated with the incident. The final section will then discuss the 

PSFs with a final summary. The aspects listed will allow us to achieve objective one – Analyse 

the ship accident reports from maritime accident data bases to obtain primary data 

representing the tasks and PSFs most associated with human error in a ship engine room. This 

will also allow us to answer the research question – What are the PSFs associated with the 

highest levels of human error within the engine room of a ship? 
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3.2 Criteria for the database search 
Before beginning a search through the various ship accident databases, a scope of the search 

must be defined. Objective one states - Analyse the ship accident reports from maritime 

accident databases to obtain primary data representing the tasks and PSFs most associated with 

human error in a ship engine room. This objective is also linked to the research question - What 

are the PSFs most associated with the highest levels of human error within the engine room of 

a ship? Therefore, the most relevant feature of the accident report search is the PSFs reported. 

The task being conducted at the time the incident occurred is not relevant due to this thesis 

being an investigation into PSFs and not the tasks. However, if a specific task is shown to have 

a significant effect with respect to human error, then that task will be simulated and PSFs 

incorporated. Another important factor is the date the incident occurred. This is important as  

the older accidents may include vessels with inferior technology compared to recent years.  In 

order to locate the relevant reports, the filters: engine room, human error, date of incident and 

human reliability will be key features to carry out the search.  

The keywords used in the accident report search are as follows: engine room, human error, 

human reliability, 2012-2018 (accident date time frame). 

The illustration below for the ease of the reader, shows the process flow as to how this chapter 

was conducted. The boxes to the left indicate the sub-section goals, while the boxes to the right 

depict specifics to achieve the section goals.  
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3.3 Analysis of ship accident databases 
 

Maritime accident databases and accidents reports describe the operator duties and factors 

associated with human error that cause significant incidents. The ship accident databases 

contain all the latest accidents from all around the world. The sources used include 

Transportation Safety Board (TSB), The Marine Accident Investigation Branch UK 

(MAIB),The European Maritime Safety Agency (EMSA) and The Nautical Institute MARS 

database (Mariners’Alerting and Reporting Scheme) involving human error within the engine 

room.  This search will be conducted between the years 2012-2018 as it was deemed more 

relevant to use the latest incidents and 6 years gave a large enough investigative dataset of 

2000+ incidents. 

 

The above databases are searched manually using the filters and keywords discussed in 

section 3.2. The relevant reports are extracted and analysed, recording incident number or 

report code and PSFs reported as a cause of the incident. Many papers focus on navigation 

issues relating to ship bridge. This focus in some human error incidents proved to be the 

incorrect approach as it was later revealed that the cause was in fact engine room related. On 

the one hand it shows the novelty of this study and on the other hand, it makes limited 

contribution to the identification of significant factors from marine engineering perspectives. 

 

The MAIB accident database is accessed through the UK gov website. Using the first search 

filter of accidents between years 2012-2018 provided 988 reports. A further filter was applied 

using the words ‘engine room’. This narrowed the search to 174 incidents. Further words 

were added to the search filter (engine room human error). However, the search filter did not 

perform as required when the additional words are added. Therefore, 174 reports were 

analysed manually to find engine room incidents relating to human error. 37 incidents were 

found to be relevant. 

 

The TSB accident database is through the Transportation Safety Board website. The first 

search filter (2012-2018) was applied and 523 reports were provided. A second search filter 

of ‘engine room’ was applied. This provided 36 reports. A final search filter of human error 

was applied providing 7 reports. The 7 reports were analysed and 6 of the 7 were relevant to 

our study. 
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The MARS accident database is accessed through The Nautical Institute website. This 

database proved to be the easiest to use when searching for relevant incidents as a summary 

with incident cause and date is displayed without having to download or access the accident 

report. This allows for quicker manual filtering for relevant reports. Therefore, a date search 

filter was not used but any accidents prior to 2000 are discarded. There are 853 reports 

available using the search words ‘engineer error’. Of those reports, 244 occurred between 

2012-2018. 244 accidents were analysed using the incident cause description and 46 were 

found to be relevant to our study. 

 

The EMSA Europe accident database can be accessed through the EMSA website portal. The 

first and second search filters of accidents between 2012-2018, and only completed 

investigations were applied. This provided 1,110 reports. A third filter ‘engine room’ was 

applied narrowing the search to 71 reports. Of the 71 reports 19 were relevant to our study. 

 

The accident databases combined provided 109 accident reports specific to human error 

within the engine room. Each of the reports was individually analysed with the goal of 

locating the PSFs reported as a cause of the accident. For example, if an engine room fire or 

explosion was reported then the report analysis section usually provided information as to 

the number of engineering staff on duty and the task being conducted at the time. If the 

accident report stated that the engineers on duty failed to see the fire early enough due to 

reporting or conducting separate tasks then this would be defined as ‘distraction’. If the report 

stated that the engineer failed to correctly apply the correct procedure due to having to 

complete a number of other tasks simultaneously then this would be defined as ‘workload’. 

Specifically, the search was done looking for engine room incidents which had a human error 

reported as a catalyst or directly contributing to the incident. Some interpretation and 

extrapolation had to be applied when categorising the error sections. Fortunately, the same 

error types were reoccurring and could easily be grouped into fatigue/tiredness, distraction 

(needing to stop a task to do something else, then go back to the task) and workload (an 

increase in routine task at once). The other PSFs (fatigue, temperature, time sensitive, 

visibility, weather, noise, vibration, loss of concentration due to automation) reported are in 

most cases not left open for interpretation but instead reported unambiguously. 

 

The tasks that have the highest significance in order are: ballasting, bunkering, fuel line 

management, seawater treatment, system maintenance and repairing faulty electrical 
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systems. However, there was very little difference in frequency of occurrence between the 

tasks listed. Therefore, the tasks being conducted when the error occurred seemed random 

and of no relevance to the error that occurred.  

 

Workload was found to be the highest risk PSF due to a frequency of 31% across the four 

databases. The second is fatigue with 19.4% closely followed by distraction at 14.3%. The 

remainder of the PSFs reported are low in comparison to the top three and appeared quite 

randomly. This is depicted in Appendix E.  
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3.4 The data table 

The table (Appendix E) shows references (accident databases and incident number) against the 

PSF reported as a potential cause of an incident for example, fatigue, distraction, temperature 

etc. The references are taken from the accident report documents with respect to incident 

number. The numbers correlate to the number of times a specific PSF has been reported in an 

accident investigation.  

The table shows the PSFs that occur the most frequently, in order are: workload, fatigue, 

distraction, time dependency, incorrect procedure, noise, temperature, communication, 

weather, vibration, loss of concentration due to the monotony of automation, visibility and pre-

existing injury as shown in the table in Appendix E. 
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3.5 Performance shaping factors 
The consequence of human error within a ship engine room was found to have an average 

cost of 6.9 million euros annually [5]. 93% of incidents that occurred due to human error 

within the engine room were reported to be due to an adverse PSFs and not the task. PSF is 

therefore the most significant factor to investigate. 

 

The main PSFs that contribute to human error are said to be PSFs that increase mental workload 

[33]. An increase in mental workload increases the probability of human error [44]. The marine 

accident databases will validate this hypothesis by showing the specific PSFs that appear the 

most frequently on the accident reports.  

The three PSFs that appear the most frequently on the marine accident databases in no 

particular order are: distraction, workload and fatigue. Khan et al [130] collected speculative 

data in relation to PSFs that affected 235 experienced seafarers, all of whom work on engine 

and maintenance departments. The data was collected via a questionnaire. The significant PSFs 

reported by the 235 seafarers are: fatigue, workload, ship motion (roll and pitch), timescale and 

stress thus validating the findings from the accident databases. There was no mention of 

distraction. However, distraction was not an option on the questionnaire and could have been 

interpreted by the seafarers as other PSFs. For example, pitch and roll could be distracting. 

There is also the mutual exclusivity issue as some reports had fatigue (no breaks given 

throughout a shift) in conjunction with an increase in workload (a standard, routine task with 

additional duties, for example doing the work of another operator as well as your own on a 

specific exercise (looking after 6 ballast tanks in ballasting/deballasting operations as opposed 

to 1 or 2). Each PSF would be investigated individually without overlap and modelled at a later 

stage to evaluate the combined effect. 

Fatigue is an important factor relating to human error [59]. Fatigue is defined by reports of 

tiredness, working over shift, working too many shifts, not taking a break resulting in a human 

error. Mental and physical fatigue is a factor that appears frequently on the accident databases 

and is mentioned in human factors journals as a technique used for inducing a high mental 

workload [40] [57]. As stated above fatigue is mainly brought about due to: monotonous 

monitoring tasks [29], sleep deprivation [57], long, high workload shifts [66], and monotonous 

duties [131]. Manipulating increased fatigue would involve a long monitoring task [40]. For 

example, a long baseline where the candidate will be monitoring a screen. Another way to 

manipulate fatigue would be to test participants at inconvenient hours making them sleep 
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deprived [57]. Experimenting at inconvenient hours involves difficulties logistically and has 

ethical issues, therefore a long monitoring exercise before the task begins will be an easier 

approach to increase the mental fatigue of the candidates.  

Distraction is another important factor relating to human error [132]. Distraction is a cause or 

part cause of many incidents [14]. Literature shows that the main causes of seafarers becoming 

distracted within the engine room are due to: Questions from colleagues [133], Human 

Interactions [83], Behavioural/Individual factors (discipline, mind-set, vigilance and 

sensitivity) [134], On-board Environment (ship motion, weather, noise and vibration) [49]. 

Tech sim 5000’s instructor console provides control over distractions experienced by the 

participants. The instructor can send various ‘on screen’ messages to the participant whilst they 

are performing a task. These messages would include; prompts to read out information from 

the liquid cargo screen or working out volumetric flow rate (commonly done on a ballasting 

task). Sent routinely throughout the task, these messages would cause a distraction similar to 

what a seafarer would experience in a real-life scenario [60]. 

Workload proved to be a significant factor in previous studies investigating neurophysiological 

activation [18] [19] [130]. Studies have shown that the more tasks involved, and the higher the 

difficulty level, the higher the mental workload [36] [54]. Studies show that there is always a 

point where a human reaches their limits with respect to workload [44]. Increased workload 

appeared frequently on the accident databases and therefore commonly features in studies as a 

technique to manipulate increased neurophysiological activation [51]. The literature and 

databases substantiate increased workload as being an important PSF to investigate when 

looking at human error causation [54]. The difficulty with the investigation of workload, is the 

realism of increasing an operator’s workload. Methods for increasing operator workload in an 

engine room include sounding multiple alarms, additional ballast tanks to fill or a separate 

console where the candidate must routinely press certain keys at a set time (NASA-TLX) [60]. 

The increased workload scenario needs to be distinctly different from the distraction scenario 

in order to avoid replication.  

Noise, vibration and temperature are environmental factors that also appeared on the accident 

databases as adverse PSFs. These factors are the main contributor towards discomfort in the 

engine room [20].  Noise, vibration and temperature have been reported as a main influence of 

a rushed task within the engine room [21] thus contributing towards an incomplete or badly 

performed duty [22]. Investigating noise and vibration is going to be difficult in an engine room 
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simulator. Additional equipment running alongside the simulator, or a hydraulic simulator 

would be needed in order to investigate noise and vibration [51]. A hydraulic simulator is not 

available and it would be difficult to induce noise and vibration into a task any other way. 

Therefore, it is not viable for us to investigate noise and vibration as a PSF. 

Time sensitive tasks have appeared on the accident databases as a contributor towards an 

accident in a ship engine room. Performing a task under time constraints, or in an emergency, 

has proved in previous studies to cause an increased mental workload [66]. This would validate 

an investigation into time sensitive tasks in an emergency, system fault or failure situation 

where an alarm would be raised. Emergency tasks that require time dependant action contribute 

to human error due to a rushed task. For example, a ship listing due to incorrect weight 

management via ballasting/de-ballasting. Therefore, it would be relevant to the study to include 

a time dependency for investigation into human error causation [83]. Creating a system fault 

that has to be dealt with in a time dependent manner would be a way to investigate human error 

due to time dependency [83]. By indicating to the participants that the risk of error probability 

goes up with time could influence a participant to increase speed. A criticism of this approach 

would be the question whether an increased probability of human error will be enough of an 

incentive to make the candidate rush the task. Another way would be a visual display of a ship 

listing with time (this would happen in a real scenario if the incorrect ballast tanks continue to 

fill or empty). The addition of a visual display would be a very impoverished approach to a 

dynamic outcome of an incorrect action. In a real scenario an operator would have no visual 

display of the ship listing but would instead feel the movement of the ship. Therefore, it has 

been decided to use the time dependent fault correction approach. 

Automation is a potential cause of human error [6]. Automated systems reduce human 

interaction considerably and can take over during a system malfunction [135]. When automated 

systems malfunction, the repairs occur mainly in port [136]. The aid of an automated system is 

validated as a safety feature [45] as automated systems aid with a variety of tasks within a ship 

engine room [36]. The use of computer aids takes away the competency of the learnt skills 

from the seafarer’s training [45]. A problem tends to arise when an automated system fails, as 

a seafarer may not be equipped to repair an automated system at sea [6]. This results in the 

seafarers having to perform the task of the automated system manually. This is a PSF that is 

hard to replicate, as a study of automation against a manual task will result in a monitoring task 

vs a working task. In this study participants will be trained on the day of the experiment, 

resulting in not enough time passing to allow candidates to forget learnt skills. It could also be 
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said that the results of an automated vs manual investigation could easily be predicted. 

Therefore, automation will not be investigated. 

Ship motion due to the weather (pitch and roll) is another factor that appeared on the accident 

databases as a contributing factor towards human error. This aspect in a ‘real life’ scenario 

would put a stop to the majority of tasks within the engine room until the weather subsides 

[60]. Another factor would be the difficulty of replicating pitch and roll within the engine room 

simulator. Therefore, it is unfeasible to investigate pitch and roll as a PSF in this investigation. 

Moreover, weather had a low frequency of occurrence from the accident databases. 

Engine room temperature is a PSF reported to increase the probability of human error [20] [21] 

[22] due to the heat causing a rushed task [21]. It is important to add that ships do also travel 

to cold environments but due to safety, a seafarer can wear additional clothing but not remove 

safety clothing [4]. Therefore, a study on the effects of a cold temperature will be less relevant. 

Increasing the temperature of a participant’s workstation could be done by external electric 

heaters positioned to heat up the workspace of the participant. However, maintaining a set 

temperature and monitoring the temperature throughout the workstation would be difficult and 

scrutinised. The potential temperature fluctuations and inability to accurately monitor the 

temperature would result in an inaccurate investigation. Therefore, temperature as a PSF will 

not be investigated. 

Visibility, incorrect procedure, injury, complacency and communication also appeared on the 

accident databases. These PSFs appeared less frequently and would be hard to manipulate on 

a simulator. Visibility appeared as a PSF either due to an electrical lighting fault or when 

maintaining certain equipment in low lighting areas. Lack of knowledge was also reported. 

This was mainly due to differences in training, using new or unfamiliar equipment and 

experiencing uncommon problems. Communication was reported fairly regularly. The main 

issues were the language barrier, differences in training, forgetting to communicate and 

misinterpretation. 
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3.6 Concluding remarks 

The following remarks are the most significant remarks contained in this chapter. They are 

emphasised as bullet points for the reader’s ease: 

• The data table shows that there are certain tasks that appear more regularly than others 

on the accident databases (Appendix E). However, the tasks being carried out when an 

accident occurs are fairly random in nature. Ballasting appeared the most on the 

accident databases but there are a multitude of other tasks that are very close behind. 

When compared to PSF, a case can be made that the PSFs are far more significant with 

respect to human error than the task itself.  

 

• The data table shows that the most relevant PSFs to investigate are workload, 

distraction and fatigue. These PSFs can all be manipulated into a simulated scenario as 

described in section 3.5. A time dependent study can also be incorporated into each 

investigation by initiating a system fault. This will prevent participants from taking too 

much time to complete the task and would replicate a ‘real life’ scenario more 

accurately.  

• The above two bullet points complete objective one - Analyse the ship accident reports 

from maritime accident databases to obtain primary data representing the tasks and 

PSFs most associated with human error in a ship engine room and answers the research 

question - What are the PSFs most associated with the highest levels of human error 

within the engine room of a ship? 
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Chapter 4. A proposed methodology for a BCI-fNIRS analysis of human 

error 
 

4.1 Introductory remarks 
The following chapter details a proposed methodology for an investigation of PSFs in a ship 

engine room. Specifically, this chapter outlines how the BCI incorporating fNIRS will be used 

to investigate OFS. Following this, an assessment methodology will be defined, outlining the 

workflow stages of the task. The penultimate section will define how the raw fNIRS data will 

be filtered, sorted, analysed and evaluated. The final section will depict the research 

frameworks developed for this study. Moreover, a summary will be included describing each 

phase of the frameworks. 
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4.2 BCI-fNIRS assessment methodology 
Based on the findings from Chapter 3, the PSFs that will be investigated are: distraction, 

workload and fatigue, with the addition of time sensitivity due to a system fault being applied. 

Time sensitivity is applied by timing the exercise and advising the participants that time is a 

factor whilst performing an emergency repair/solution to a fault. If this scenario where to occur 

during ballasting operations in a ‘real life’ situation then this would be deemed as time 

sensitive.  

This investigation was designed with reference to similar work conducted in other transport 

sectors by Ayaz [73], Verdiere [45], Baker [19], and Durantin [33] with the aim to use a 

workflow style task design to investigate changes in neurophysiological activation, via tasks 

containing low and high workload, long monitoring and reporting tasks. This study was 

conducted using a TRANSAS engine room simulator as described earlier in section 1.2.6. A 

fault will occur during a ballasting task and the cause of the fault will need to be identified and 

solved by the participant. Ballasting will be used as the scenario for testing due to it being a 

task that occurred frequently on the ship accident reports analysed in section 3.3. The task 

specifics will be discussed and defined in more detail at the bottom of this section.  

The dorsal lateral pre-frontal cortex (DLPFC) is the specific area of the cerebrum analysed for 

this investigation. The reason for this is that this area of the brain governs higher cognitive 

functions, such as switching attention, working memory, maintaining abstract rules, and 

inhibiting inappropriate responses [137]. The DLPFC was the area of the brain used in similar, 

successful investigations by Solovey [28], Ayaz [73], Tsunashima [42], and Dehais [33] in 

other engineering sectors. 

This investigation is designed with the aim of testing the neurophysiological activation of the 

prefrontal cortex of each participant, at each stage of the task, using BCI-fNIRS. This approach 

will allow us to identify the specific parts of the workflow and PSF that induces the most 

neurophysiological activation. Thus, allowing us to analyse the extent of the effect of each PSF 

in comparison to one another and against a standard test. The reason for this is that it has been 

documented on similar investigations by Aghajani [18], Bu [35], Chiarelli [40], and Hlotova 

[78] that the level of neurophysiological activation has a relationship with the probability of 

human error. 

The workflow task design was based on the duties that would be carried out by a 2nd engineer 

[65] whilst detecting and correcting a steam pump fault on a ballasting scenario. A 2nd 
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engineer’s duties were chosen over the duties of a chief or 4th engineer as a chief engineer’s 

role is a managerial role overseeing the duties completed by the 2nd engineer [62]. The 4th 

engineer (not every ship has one) is there as a trainee or assistant to a 2nd engineer [60]. The 

participants will be trained prior to starting the task to differing levels to replicate seafarer 

experience. A brief summary of the task stages is given below but participant training and each 

stage of the task will be discussed in detail in section 5.1.  

Each candidate would be required to complete five stages of the workflow. These stages 

include:  

• Baseline 

• Fault occurrence  

• Fault detection  

• Fault solution   

• 2nd baseline 

The first baseline will be used as a datum for each participant. Each participant will have a 

slightly different baseline output of HBO. Therefore, a five-minute baseline will be taken from 

the participant monitoring system screens. This will allow for an analysis of the increase in 

activation with respect to the individual participant, as opposed to the group. 

The second task stage is the fault occurrence stage. Unknown to the participants, after the five-

minute baseline is taken a fault will occur. This will be shown by a visual alarm. The 

participants will be tested on the time taken and their ability to navigate to the correct system 

screens to acknowledge the alarm. 

The third stage of the task is the fault detection stage. This part of the task requires the 

participants to navigate to the correct system screens to; make a note of the alarm codes, and, 

based on the alarm codes, locate the fault and the cause of the fault via various system checks 

again prompted by the alarm codes.  

The fourth stage of the task requires the participants to solve the problem. The participants will 

be required to navigate through various system screens, re-routing the water line, opening and 

closing valves, switching on and off ballast pumps and completing various system checks along 

the way. 
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The fifth and final stage is the 2nd baseline. A second baseline will be taken from each 

participant to see how their neurophysiological activation has changed compared to the first 

baseline. 
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4.3 Data analysis strategy 

To quantify the data provided by fNIRS, a modified version of the Beer-Lambert law is used 

[57] as the Beer-Lambert law alone can only be used on non-scattering data [28]. Therefore, it 

cannot be applied to biological tissue without modifying the law to allow for light scattering 

[43]. This is done by the NIRx software as described above in section 2.3. The raw data is 

filtered using NIRx and exported into R-studio, as a large numerical table of time in frames 

against oxygenated and de-oxygenated haemoglobin volumes.  The first 15 columns are 

oxygenated haemoglobin results from all 15 channels, the next 15 columns are the de-

oxygenated haemoglobin results from all 15 channels. Then a correction-based signal 

improvement algorithm is applied to the data as described below. 

4.3.1 Correction based signal improvement (CBSI) 

CBSI is a technique used to improve the fNIRS signal based on negative correlation between 

oxygenated and deoxygenated haemoglobin dynamics. Improving signal quality and reducing 

noise, especially noise induced by head motion, is challenging, particularly for real time 

applications. In a study done of the properties of head motion induced noise, it was found that 

motion noise causes the measured oxygenated and deoxygenated haemoglobin signals, which 

are typically strongly negatively correlated, to become more positively correlated [138]. 

Therefore, the CBSI method was developed to reduce noise based on the principle that the 

concentration changes of oxygenated and deoxygenated haemoglobin should be negatively 

correlated [19]. 

This is done by using the equation; 

(1) 

For example the equation for the first row on channel 1 would read; 

       (2) 

HBO = Oxygenated Haemoglobin, HBB = Deoxygenated Haemoglobin,  

The CBSI data from each participant was separated into three sets. Channel 1 to 5 took 

haemoglobin readings from the left side of the dorsal lateral pre-frontal cortex, channels 6 to 

10 from the middle and channels 11 to 15 from the right. This is for ease of analysis and allows 

the observation of the specific parts of the brain in use whilst participating in the task. This is 

 𝐶𝐵𝑆𝐼𝑛 =
𝐻𝐵𝑂𝑛

2
−

𝛿𝐻𝐵𝑂𝑛

𝛿𝐻𝐵𝐵𝑛
∗  𝐻𝐵𝐵𝑛 . δ representing standard deviation. [41] 

 𝐶𝐵𝑆𝐼𝐶ℎ1 𝑟𝑜𝑤  1 = 0.5 ∗  𝐶ℎ1 𝑟𝑜𝑤 1 𝐻𝐵𝑂 −
𝛿  𝐻𝐵𝑂   𝐶𝑜𝑙𝑢𝑚𝑛  1 

𝛿  𝐻𝐵𝐵   𝑐𝑜𝑙𝑢𝑚𝑛  1 
∗ (𝐶ℎ1 𝑟𝑜𝑤 1 𝐻𝐵𝐵). 
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also useful due to the differing functions of the right and left sides of the dorsal lateral prefrontal 

cortex [139]. The left side is associated with verbal commands/receiving auditory input, word 

reading, processing information, linear and logical thinking [137]. The right side is associated 

with visualisation, spatial reasoning, and interpreting information [43].  

Using the separated data, the average haemoglobin volumes for each participant were 

calculated for each stage of the workflow and put into a data table. A second table displays 

each candidate’s time taken to complete each stage of the workflow. This data was exported to 

a statistical analysis software package. 

4.4.2 Statistical package for the social sciences (SPSS) 

SPSS is a software package that can read data files from many different formats (for example, 

R-studio, Excel and MatLab). SPSS then allows the researcher to perform a running inferential 

statistical analysis such as analysis of variance (ANOVA) with pairwise comparisons. 

Alternative software packages are available. For example, sequent and STIM but all are closely 

related and the analyst had previous experience with SBSS hence, this was the software 

package used. 

4.3.3 ANOVA analysis 

ANOVA is used to figure out how much of the total variance comes from the variance between 

the groups of candidates, and how much from the variance within the groups of candidates. 

This is done by the ratio: 

         (3) 

If a null hypothesis is true, then the F value will be close to 1.0. A large F ratio indicates that 

the variation among the group means there is more than you would expect to see by chance 

[121]. This calculation is done with respect to the degrees of freedom. For example: 

     (4) 

Where; b is the degree of freedom for variance between groups and w is the degree of freedom 

for variance within groups. Calculated as follows; b = number of groups – 1, w = total number 

of observations – the number of groups. 

The ratio F is based on a significance value P. The value P represents a percentage of potential 

error in the resulting F value. For example, in psychology any P values of less than 0.05 are 

𝐹 =
𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑝𝑠

𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝𝑠
 

𝐹(𝑏, 𝑤) 
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deemed acceptable and less than 0.01 are ideal. Therefore, if the P value is less than 0.05 then 

the analyst can be confident in the results.    

In summary, if most of the variation is between groups, then there is probably a significant 

effect. If most of the variation is within the groups, then there is probably not a significant 

effect. [80] 

SPSS can go on to compute sums and means over columns or rows of data, create tables and 

charts containing summary statistics for a large group of participants and conduct pairwise 

comparisons of each stage of a workflow to see if any relate to one another [140]. Pairwise 

comparisons will be a useful analysis for this study as we have a 5-stage workflow.  

The data will then be exported from SPSS back to R-studio for further processing as described 

below. 

4.3.4 R-Studio 

The R-studio software package is used to write and implement the relevant code (see Appendix 

B). The software will be used to sort the data sets into task epochs. The reason for this is that 

this will enable us to see the effect of PSF and workflow at very specific areas of the task. 

Then, when modelling the relationship between OFS and PSF using linear discriminant 

analysis (LDA) we can predict HEP using operator performance classification based on 

oxygenated haemoglobin volumes provided by fNIRS [45]. 

4.3.5 Linear Discriminant Analysis 

LDA is used as an operator performance classification model. LDA is a viable option as it is 

proficient at handling cases where the within class outputs are unequal and where performance 

data is generated randomly [33]. This method will maximize the ratio of variance between 

classes to variance within classes in any given data set, hence guaranteeing optimal separability 

[18]. Similar models (for example principal component analysis) change the shape and the 

location of the original data set when transformed to a different space whereas LDA does not 

alter the location but tries to provide greater amounts of class separation and draw an accurate 

decision region between the various classes [70]. LDA also provides a better understanding of 

the distribution of feature data. 
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4.4 Thesis Frameworks 
Below are two frameworks developed specifically for this thesis. The first depicts the specific 

stages of the project analysis. The second depicts the BCI-fNIRS framework. Moreover, it 

shows how fNIRS was used in conjunction with the maritime simulator. The image used in 

section 4.4.2 is a generic image taken from one task. This would change slightly depending on 

the PSF under investigation. 

A short summary is included below each framework to re-iterate each stage in more detail. 

4.4.1 Analysis Framework 
 

 

Figure 4.1 - Analysis Framework 

The first stage of the framework is the goal. This is the stage were the scope of the study, aims 

and objectives are defined. This is defined in the introductory stage of the thesis (section 1.2 
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&1.3). Having this stage in mind throughout the study is an important factor for the framework, 

as each stage that follows is developed with respect to the research goal. 

The second stage of the framework is the task. More specifically, which scenarios and PSFs 

are the most relevant to investigate for the study. This stage is completed by analysis of the 

maritime accident databases. More specifically, for this study the analysis was done with 

respect to human error in the engine room. This is specifically defined in chapter three. It is 

also important that literature reviews are conducted for this second ‘task’ stage as knowledge, 

of how the PSFs and scenarios found are incorporated into a fNIRS based BCI, is needed. This 

literature review is conducted in sections 2.2 and 2.3. 

The third stage of the framework is focusing on the participants. The participants for the study 

will have to meet certain criteria. For example, specifically for this thesis participants had to 

have maritime engineering qualifications and knowledge in order to complete the task. Training 

was given to the participants however, due to time restrictions, prior maritime engineering 

knowledge was needed. Participant recruitment was done via department specific internal 

email advertisements and posters. The participant training and required criteria are defined in 

detail in section 5.1.2 & 5.1.3. 

The fourth stage of the framework is the experiment stage. The experiment stage is the stage 

where data is gathered. The experiments are conducted on the chosen participants in a ship 

engine room simulator (1.2.6). The experimental stage is where the PSFs and scenarios found 

are investigated in a practical test using the BCI-fNIRS framework described below in 4.4.2. 

The specific stages of the experiment, the scenario and experimental design are outlined in 

chapter 5, section 5.1.4. 

The fifth stage of the framework is the data analysis stage. The fNIRS kit used in this study 

comes with its own ‘raw data filtration’ software called NIRx. NIRx is used to remove 

anomalies, artifacts and sort the data into specific, time-related, participant-specific sub-tasks. 

R-studio is used to write the required mechatronic code to sort the data into epochs and apply 

CBSI. This is defined in sections 4.4.1 & 4.4.4. Post R-studio analysis, the data needs to be 

evaluated for any significant effects of the chosen PSFs. This is done by SPSS (4.4.2).  

The final stage in the analysis framework is the modelling section. The modelling section of 

the framework is used to gain a classification performance of the model when applied to PSF 

data against a standard test. This allows for the understanding of the most significant PSF. The 
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modelling technique used was chosen based on the literature reviewed in section 2.4. The 

specific chosen model (LDA) is defined in section 4.4.5. 

The specific steps for the framework depicted in Figure 4.1 are as follows: 

1. The first step is to define and keep in mind the overall goal of the research. This is done 

by defining the scope of the study (section 1.3), aims and objectives (section 1.4). 

2. The second step is to define the relevant scenario to use and PSFs to investigate. This 

is done by searching through the ship accident databases looking for the PSFs that show 

up most consistently within human error within the engine room (chapter 3). These 

findings can then be validated by interviewing experts (experienced seafarers that have 

previously worked in a ship engine room). 

3. Step three is to recruit relevant participants to take part in the experiment. This is done 

via internal emails and posters. 

4. The fourth step is to conduct the experiment. The experiments are done on the 

TRANSAS simulator whilst participants are connected to the fNIRS system in order to 

obtain OFS. The experiment is conducted based on, and with reference to, the reviewed 

literature in section 2.3. However, the experiment design and methods are detailed in 

section 5.1. 

5. The fifth step is to filter, sort and analyse the fNIRS data obtained from the previous 

experimentation step. This is done using NIRx, R-studio and SPSS software (section 

5.2, 5.5-distraction, section 6.2 – increased workload, section 7.2 – fatigue and section 

8.1, 8.2, 8.3 – combined PSFs). The software used is summarized in section 4.3 and 

used in the sections listed above. 

6. Step six is to model the PSFs against a standard test and against one another from the 

fNIRS data, in order to achieve a classification performance percentage. The 

classification performance percentage will then be used to rank the PSF with the highest 

likelihood to contribute towards human error, down to the lowest.  
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4.4.2 BCI-fNIRS Framework 

 

Figure 4.2 - Simulator and Neuroimaging-based HRA framework 
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The above BCI-fNIRS framework depicts the stages and techniques used to incorporate fNIRS 

with the TRANSAS engine room simulator to investigate PSFs. This framework was used to 

test the experiment in order to gather provisional data that could be used to amend the 

experimental design and then be applied to the ‘real’ tests.  

There are five boxes within this framework; task description, task workflow, operator module, 

fNIRS module and output:  

• The task description box is a box matrix of workflow stage against sub-task. This 

specific image is taken from a distraction test and would change slightly depending on 

the PSF being investigated.  

• The task workflow box is an event tree or fault tree analysis of the sub-tasks with respect 

to the workflow (baseline, fault occurrence, fault detection, fault solution and 2nd 

baseline). This shows the potential route through the task and the consequences of an 

invalid action. 

• The operator module depicts the potential error types with respect to the cognitive flow 

of each participant. More specifically, the operator module is the part of the BCI-fNIRS 

framework used to list the error types with respect to the participant’s executive 

functions shown in the cognitive flow chart.  

• The error types specific to the participant’s executive functions at a specific task time 

allows for a visual of OFS including artifacts. This is used as a guide towards HEP 

calibration or classification performance.  

• The fNIRS module is used to assess the error types and sub-tasks against the 

participant’s oxygenated haemoglobin. This allows for a better understanding of the 

sub-tasks and error types to pay closer attention to in the ‘real test’.  

• The final box is the output. This contains the information that is desired to be extracted 

from the provisional tests.  

These five boxes are all connected. The connections indicate the specific information coming 

from one part of testing and applied to another. For example, the task description box allows 

for a visual of error made by participants. These errors are then listed in the operator module 

and further evaluated within the fNIRS module against oxygenated haemoglobin.  

Figure 4.2 is a framework of the BCI-fNIRS aspect from the perspective of the instructor. This 

allows the instructor to optimise a neuro-ergonomic task design for the ‘real’ tests. The specific 

steps for the experiment depicted in Figure 4.2 are as follows: 
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1. Once the experiment has begun the task description module acts as a prompt for the 

instructor to apply certain PSFs at set stages of the workflow. For example, the task 

description module in Figure 4.2 is an example specific to the distraction PSF. The 

distraction questions will be asked as indicated in this module.  

2. The operator module is the second step of the framework. This is where the error types 

are recorded with respect to the PSF applied to the task. The instructor will apply a 

marker on each stage of the task where the participant makes an error. This marker is 

applied via a ‘clicker’ button attached to the fNIRS hardware. The error types and times 

are recorded by the same ‘clicker’ method to ensure that the error type can be associated 

with the corresponding fNIRS activation signals. This allows for ease of HEP 

(classification performance percentage). 

3. Step three follows on directly from the operator module as the oxygenated haemoglobin 

values and corresponding error type and sub-task are added to this fNIRS module. 

4. These errors and the corresponding mental workload values (from fNIRS haemoglobin 

values) are then applied to an event tree task workflow module. This enables the 

instructor to know the potential variables for participants before the sub-task is started. 

Thus, allowing the instructor to make adjustments to the final scenario to ensure the 

task is optimised when investigating the specific PSFs. 
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4.5 Concluding remarks 
The most significant PSFs from the ship accident databases proved to be: distraction, fatigue 

and increased workload. Therefore, these factors will be investigated in this study.  

The scenario used to investigate the three PSFs will be ballasting. Ballasting showed up 

consistently on the accident databases and involves a wide range of different systems and sub-

tasks to allow for an easier incorporation of said PSFs.  

The data analysis strategy will be to use the following software: 

• NIRx – this software comes with the fNIRS kit and is fully calibrated to be used with 

the specific kit used in this study. NIRx is used to remove various artefacts, filter and 

‘clean’ data to allow for a more accurate and clearer analysis. 

• SPSS – this software platform is used to perform an ANOVA study on the data gathered 

by the fNIRS system. This provides a statistical output of the significant effect from 

PSFs and workflow stage on each participant. 

• R Studio – this programming software is used to write the code to sort the data in epochs 

and perform the chosen classification model. 

LDA was selected as the classification model to be used to evaluate the data. This model has 

been used in previous studies of a similar nature and consistently provides an accurate 

classification performance percentage above what is deemed as acceptable in BCI studies.  
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Chapter 5. The effect of distraction on marine engineers whilst 

conducting ballast water operations using fNIRs. 
 

5.1 Introductory remarks 
The following chapter details the investigation into the PSF distraction. This chapter contains 

two experiments. The first is a 50/50% split of practically trained and passively trained 

participants. This is followed by a test where all participants are practically trained. 

The first part of the chapter details the experimental design, the participants involved, how the 

participants are trained and the experiment itself. This is followed by the results from the first 

test and a discussion. The second part of this chapter contains results and a discussion for the 

second test. 
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5.2 Method 

5.2.1 Experiment Design 

10 of the 20 candidates participated in a study where they were distracted, the other ten had a 

standard undistracted test. The candidates in the ‘distracted’ and ‘undistracted’ groups 

consisted of an equal share of 10 practically trained and 10 passively trained participants (5 

practically trained and distracted, 5 practically trained undistracted, 5 passively trained 

distracted, and 5 passively trained undistracted). Both distracted and undistracted participants 

performed the same tasks. The difference was that the distracted candidates had to read out 

information from the ‘Liquid Cargo Screen’ (Figure 5.1) on 5 different occasions at set 

milestones within the task. This replicates what would be done in real operations [60]. The 

readouts consist of: ballast tank volume percentage, flow rates, max tank volume and tank 

volumes in m^3.  

5.2.2 Experiment Participants 

20 candidates were used for this study. All 20 had qualifications to the level of a BEng or higher 

in marine engineering. 10 of the twenty participants had experience of working at sea in a ship 

engine room. 4 of the participants were marine engineering PhD students. 3 were ex-navy 

engineering officers. The average age of the distracted group was 28 and the undistracted 24. 

18 were male and 2 were female. The rest were a mixture of post graduate MEng marine 

engineering students and undergraduate marine students in their masters year. 

5.2.3 Participant Training 

Candidates were split into 2 even groups of 10. The 10 candidates who had received practical 

training were put into the ‘experienced group’. The remaining 10 candidates who had received 

passive training were put into the ‘inexperienced’ group. All candidates had no prior experience 

of a ship engine room (simulator or sea time).  

The following training methods were conducted based on the engine room regulations set by 

the International Maritime Organisation [141]. The training course was developed with the 

assistance of experienced and qualified trainers [20] [21] [22]. 

The passively trained group of candidates were given a 2-hour training session following a 

customised TRANSAS simulator trainee manual (please see appendix A to see the trainee 

manual). The training session covered theoretical study of the following areas: 

• The liquid cargo handling screen (LCS) 

• The alarm system 
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• The ballast system 

• The cargo control room ballast pumps 

• The cargo control room ballast system mimic panel 

The practically trained group of candidates were given the same 2-hour training session as 

detailed above, and an hour of practical ballasting tutorials. The tutorials consisted of questions 

to answer and tasks to complete relating to the areas listed above (please see appendix C for 

details of the questions and when they were asked). The candidates would be required to 

navigate the simulator screens answering the tutorial questions and completing the tasks aided 

by the trainee manual and their training notes. This method was chosen based on the work by 

Christophe Faisey [142] stating that participants with practical knowledge when compared to 

participants with solely theoretical knowledge (book learning), usually show a better working 

memory of the task at hand due to having applied the learned theory practically. 

All candidates were authorised to have their own notes taken in the training sessions, coupled 

with the customised TRANSAS simulator manual whilst participating in the ballasting task. 

This was decided as engineers would have access to engine room manuals whilst at sea carrying 

out their duties [143]. 

5.2.4 The Experiment 

5.2.4.1 Baseline 

For the first baseline the participants would be expected to monitor the LCS whilst ballasting 

from pump number two as shown in Figure 5.1 below (ballasting from pump two was set up 

by the instructor before the task started). The participants would have no active input for the 

monitoring stage to allow for a five-minute (300s) baseline to be taken. 
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Figure 5.1 - The liquid cargo monitoring screen showing ballast tank readings (e.g. tank volume) 

5.2.4.2 Fault Occurrence 

This stage of the task took participants between 31 and 46 seconds to complete. For the fault 

occurrence stage of the workflow, pump number two will fail. The participant must:  

a) Orientate to the alarm as shown in Figure 5.2 below. The alarm is solely a visual alarm with 

no audio. 

 

Figure 5.2 - The ship alarm 

(b) navigate to the alarm summary screen (see Figure 5.3 below) to record the details of the 

alarm. 
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Figure 5.3 - Alarm summary screen 

(c) check the ship’s log noting any previous faults or maintenance work. 

5.2.4.3 Fault Detection 

During the fault detection stage, participants must localise the presence of a fault with ballast 

pump number one. This is achieved by: 

(a) navigating back to the LCS screen to check flow rate (Figure 5.1) 

(b) navigate to the ballast system screen to check the water line as shown below in Figure 5.4. 

The participant will be looking to see if there is or isn’t an active water flow (the active flow is 

shown by the illuminated green piping line). If there is an active water flow then this indicates 

that there is no blockage or leak in the water line indicating that the problem is a fault with the 

ballast pump. 
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Figure 5.4 - Ballast system screen showing water flow through pump 2 

(c)  access the cargo control room ballast pumps screen (Figure 5.5) to check the pump pressure 

gauge (as prompted by the alarm summary screen in Figure 5.3). 

 

Figure 5.5 - Ballast water pump control panel 
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5.2.4.4 Fault Solution 

The next stage of the workflow requires the participants to determine a solution to correct for 

the fault. To correct this fault, participants must: (a) navigate to the cargo control room ballast 

pump screen (Figure 5.4) and switch off pump number two, (b) access the ballast system mimic 

panel (Figure 5.6 below), (c) open valves BA538F, BA547F and BA544F and close valves 

BA537F, BA546F and BA543F in order to re-route the water line to ballast pump number one. 

 

Figure 5.6 - Ballast system mimic panel 

(c) access the screen for engine room three (ER3) to power on pump number 2 (the additional 

task of synchronisation to an additional power generator was performed by the instructor prior 

to starting the test due to the complexity and the amount of additional time that would be 

required). 

(d) navigate back to the cargo control room ballast pumps screen (Figure 5.5) to check that 

pump number 2 has power, and switch the pump on. 

(e) re-access to the ballast system screen to check that there is a water flow through the new 

pump as shown in Figure 5.7 below. 
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Figure 5.7 - Ballast system showing water flow through pump 1 

(f) return to the LCS to identify the new flow rate as shown in Figure 5.1 above. 

5.2.4.5 2nd Baseline 

The last stage of the workflow requires the participants to continue to monitor the LCS until 

the tank has filled to the required volume set by the instructor before the task. 
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5.3 Results 

The findings are obtained in a numerical form in this section (5.2) and their implications and 

practical contributions are given in Section 5.3. It has been decided for the results section to 

combine workflow stage 2 (Fault occurrence) with stage 3 (Fault detection) for ease of analysis 

due to the large difference in phase ‘size’. The combined phase will be called ‘Fault Detection’. 

The ANOVA method allowed us to investigate the left, middle and right side of the dorsal 

lateral pre-frontal cortex, using mean HbO as the dependant variable with a model of 2 differing 

training groups, a distracted and undistracted group against a 5-stage workflow task.  

 

Figure 5.8 - Left (channels 1-5), medial (channels 6-10) and right (channels 11-15) sides of DLPFC 

The data from the study were analysed via ANOVA procedures using SPSS v.26. Outliers were 

identified as any value that deviated more than 3 standard deviations from the cell mean and 

were omitted from ANOVA testing. 

A significant effect was found between distracted and undistracted participants [F(1,16) = 

58.601, P<0.01]. The mean times for participants in the distracted group were significantly 

slower during fault occurrence, fault detection and fault solution, when compared to those 

undistracted as shown in Table 5.1 below. 

 

Table 5.1 - Mean time taken for workflow stages with respect to distraction 

 

 



94 
 

A significant effect was found between passively trained and practically trained participants 

[F(1,16) = 57.373, P<0.01. Passively trained participants were significantly slower during fault 

occurrence, fault detection and fault solution stages of the workflow as shown below in Table 

5.2. 

Table 5.2 - mean time taken for workflow stages with respect to training level 

 
 

5.3.1 HBO Data - Workflow (left side DLPFC) 

A significant effect was found for the workflow stages [F(4,13) = 23.88, P < 0.01, Partial  - 

𝜇2 = 0.878]. 

Pairwise comparisons to a 95% confidence (P<0.05) found significant differences between the 

workflow stage 4 (fault solution) and all other stages (for example fault solution (FS) and 

baseline1 P<0.00, FS and fault occurrence P<0.003, FS and fault detection P<0.042, FS and 

baseline 2 P<0.00). Shown in figure 5.9 below is the mean HBO with respect to the stage of 

the workflow. 

 

Figure 5.9 - HBO against workflow stages for the left side DLPFC 
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5.3.2 Practically and Passively trained participants (left side) 

There was a significant effect found between practically and passively trained participants: [F 

(1,16) = 13.98, P < 0.01, Partial - 𝜇2 = 0.651].  
 

Figure 5.10 shows the significant difference found between passively trained participants’, 

against practically trained participants’ HBO levels for the workflow task. 

 

Figure 5.10 - HBO for level of Trainingl 

A significant effect can be shown for distraction [F(1,16)=5.12, P < 0.05, Partial - 𝜇2 = 0.529]. 

A significant difference can be seen throughout all workflow stages. Figure 5.11 shows 

distracted compared to undistracted participants. 
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Figure 5.11 - Distracted vs not distracted participants average HBO 

5.3.3 Workflow (right side DLPFC) 

A significant effect was found for workflow [F(4,13)=14.301, P < 0.01, Partial - 𝜇2 = 0.815]. 

Pairwise comparisons found with a 95% confidence (p<0.05), significant differences between 

workflow stage 4 (fault solution) and all other stages (for example FS and Baseline 1 P<0.001, 

FS and FO P<0.014, FS and FD P<0.001, FS and Baseline 2 P<0.001). Shown in Figure 5.12 

is the HBO with respect to the stage of the workflow. 

0

0.002

0.004

0.006

0.008

0.01

0.012

Distracted Not Distracted

LE
V

EL
 O

F 
O

X
Y

G
EN

A
TE

D
 H

A
EM

O
G

LO
B

IN
 (

M
IC

R
O

M
O

LA
R

)

INDEPENDANT VARIABLES

HBO against Distraction (Left side 
DLPFC)



97 
 

 

Figure 5.12 - Average HBO against workflow stages for right side DLPFC 

5.3.4 Practically and passively trained participants (right side DLPFC) 

There were significant effects found for participant training format [F (4,13)=12.440, P < 0.05, 

Partial - 𝜇2 = 0.538]. 

In figure 5.13 the significant difference in HBO between passively and practically trained 

participants for the right side DLPFC. 

 

Figure 5.13 - Practically and passively trained participants HBO for the right side DLPFC 
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5.3.5 Distracted and Undistracted Participants (right side DLPFC) 

There were no significant effects found for participant distraction [F (4,13)=0.042, P < 0.05, 

Partial - 𝜇2 = 0.597]. 

Figure 5.14 shows the difference in HBO between distracted and undistracted participants for 

the right side DLPFC. 

 

Figure 5.14 - HBO against level of distraction for right side DLPFC 
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5.4 Discussion 

5.4.1 Explanation of findings 

5.4.1.1 Workflow 

The SPSS software showed that the stage of the workflow had a significant effect on HBO 

volume. For both, left and right sides of the DLPFC the fault solution stage (workflow stage 4) 

had by far the most significant effect. This is also shown in figures 5.8, 5.9, 5.10,5.11 and 5.12. 

This was as expected due to the fault solution stage having the most ‘sub-tasks’ for each 

participant to perform and would take the longest time to complete. This is consistent with the 

work done by Mehler et al [70],  Aghajani [18] and Akyuz [133] as they also showed a greater 

level of significance for the longer more ‘sub-task’ driven activities. Participants showed 

predicted activation levels for stage 2, 3 and 4 of the workflow. Stage 2 being the fault 

occurrence stage where an alarm would indicate a fault. Stage 3 being the fault detection stage 

where the participant would be required to detect where and what type of fault had occurred. 

The increase in HBO volume for workflow stages 1 to 2, 3 to 4 then back down to the second 

baseline (stage 5) as shown in Figures 5.11 and 5.9, gives confidence in the task design for this 

study. This trend is consistent with the work done by Baker et al [19] and Bauernfiend et al 

[74] who also showed the same increase as the time and workload increases. The only 

difference being the effect size (8.9) and (4.1) compared to our 23.8 (left side) and 14 (right 

side), which could be explained by a difference in task design, training level and participant 

background. 

5.4.1.2 Candidate training 

Participants in the passively trained group showed much higher HBO volume when completing 

the task stages of the workflow (stages 2, 3 & 4) as shown in Figures 5.10 and 5.12. This 

confirms the original hypothesis in chapter 2, that practically trained participants cope better 

under a higher mental and physical workload. This is consistent with the work done by Fan et 

al [3], who also showed a significant difference in HBO volumes between novice and 

experienced participants on a ship’s bridge simulator. Passively trained participants also took 

longer to complete each task compared to the experienced candidates. Again, confirming what 

was hypothesised in chapter 2.2 that experienced seafarers are more efficient.  

5.4.1.3 Distracted Candidates 

Distracted participants took longer to complete each task as shown in Table 5.1. This was 

expected as distracted participants had additional tasks to complete at the same time as the 

standard workflow tasks. However, distraction caused a higher average HBO across all 
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candidates (practically and passively trained) when participating in the workflow tasks as 

shown in the Table 5.1, and Figures 5.11 and 5.13. This was expected and hypothesised in 

chapter 2. A possible cause for this is that participants had to re-orientate their attention from 

the task in hand to the reporting task and then re-orientate back to the original task. Figure 5.13 

shows that cumulatively, distraction resulted in the second highest average HBO behind 

passively trained participants. Therefore, distracted participants are showing an increased 

mental workload when compared to undistracted participants, which is expected. However, the 

difference between undistracted and distracted average HBO is large therefore, it can be said 

that efforts (Risk control options) should be implemented to reduce distraction whilst seafarers 

are participating in an engine room task to reduce the risk of human error. Distraction was also 

investigated as an adverse human factor by Fan et al [14] and E.T.Solovey [28]. Distraction 

was shown to have a significant effect for the aforementioned studies but contrary to that, no 

significant effect for distraction was found in our study. This may have been due to the 

distraction in our study being a factor coupled with training level. Training level had such a 

large effect (F=14) that this could have overshadowed the effect of distraction. 

5.4.1.4 Comparison of combined human factors against workflow 

Figure 5.13 shows that passively trained participants had a higher HBO volume than distracted 

participants. This indicates that passively trained participants on average found the engineering 

task more challenging than distracted participants [142]. This shows that there is more of a 

significant effect from ‘passive type’ training than there is from distraction. This is consistent 

with the work done by Fan,S [14], where like our study, the effect size was greater for training 

(F=11.9) than the distraction (F=5). This finding confirms the hypothesis from chapter 2, 

stating that experienced candidates cope better with workplace factors. Also, from an interview 

with maritime professionals it was stated in section 1.2.2, “in reality, engine room operators 

are all trained to different levels depending where they were trained” [21]. Based on that 

statement and the findings from this study, it can be said that there is a significant link to the 

way in which seafarers are trained and the occurrence of human error.  

The significant outcome from Figure 5.14 is that passively trained but undistracted participants 

have a higher HBO volume, thus mental workload, than those that are practically trained but 

distracted. As stated above, this indicates that there is a risk that lack of correct training could 

be a factor contributing towards human error within a ship engine room.  
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5.4.2 Limitations and modifications 

5.4.2.1 The engine room simulator 

The engine room simulator is limited in its capabilities as it is easy to simulate all seafarers’ 

duties within the engine room but the only consequence to an incorrect action is an engine 

room alarm. The alarm is enough to neuro-physiologically activate each participant but in a 

‘real-life’ scenario, an incorrect action could cause a physical problem [144]. For example; fire, 

flood, electric shock, the ship to list, the ship to sink, injury or death. The consequences listed 

would presumably cause an increased amount of neurophysiological activation, which is not 

shown on this study. 

5.4.2.2 The fNIRS system 

Due to the sensitivity of the infrared sensors and detectors, a desktop version of the engine 

room simulator was used. In reality, seafarers would be moving around whilst completing the 

workflow tasks used for this study but this would have caused great interference and anomalous 

data. For future experiments, an investigation into how it could be possible to modify the fNIRS 

system, so it can be used with a portable backpack would give a slightly more realistic 

investigation. 

5.4.2.3 Candidate training 

Obtaining 20 candidates with ship engine room experience to different levels, coupled with 

experience of using the TRANSAS software was very difficult. Therefore, in-house training 

had to be done for each candidate as stated in 5.1.3. The only way to differentiate experienced 

and inexperienced was to train the inexperienced candidates passively. Candidates were tested 

on passive training compared to practical training. It would have been preferable to test 10 

participants with 10 years+ ship engine room experience and 10 participants with a few weeks 

ship engine room experience, all 20 of which trained the same way.  
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5.5 Suggestions for Second scenario (chapter 6). 

It would be beneficial to study in a similar way, the effects of an increased workload. A 

comparison could be made of distraction against increased workload to see the effect on 

neurophysiological activity, indicating the higher probability of the two, to contribute towards 

human error. 

It was found that the different training formats (passive and practical) are unrealistic as there 

was too much of a gap in knowledge between passively trained and practically trained 

participants. Passively trained participants found the task very difficult, resulting in their need 

to consult the user manual considerably more regularly than the practically trained candidates, 

which could result in an increased number of artefacts and anomalous results due to additional 

head movement. 

It has been decided for the ‘increased workload’ experiment (chapter 6 below) to train every 

participant actively. This way all participants should be able to complete the task without 

referencing the manual or prompting by the instructor. Therefore, an additional test was 

conducted on another 10 candidates. All were practically trained with 5 distracted and 5 not 

distracted (10 practically trained and distracted, 10 practically trained but not distracted). This 

enabled us to see the effects of distraction on practically trained participants. The results of this 

additional test are below in 5.5. 

The above study is a test of the validity of the experiment and analysis. The amount of data and 

aspects to consider for this study are extremely large therefore, analysis results are 

compartmentalised (for example, right side, left side DLPFC, training level, distraction level 

etc) purposely to further understand the parts of the analysis with the most relevance. The 

findings are purposely reported in the style above to understand the interactions between the 

participant, the simulator and the fNIRS equipment. This will allow for a more concise future 

analysis, omitting the less relevant findings from the first test above. The studies that follow 

will be reported differently using human factors methods. 
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5.6 Results – Test 2. All candidates given practical training 

The data from the study were analysed via ANOVA procedures using SPSS v.26. Outliers were 

identified as any value that deviated more than 3 standard deviations from the cell mean and 

were omitted from ANOVA testing. 

 

5.6.1 Times to complete workflow phases 

The time taken to complete each workflow phase was subjected to a 2 (standard/distracted) x 

3 (fault occurrence/fault detection/fault solution) ANOVA. As expected, this model revealed a 

significant main effect for workflow phase [F(2,17) = 12544.14, P<0.01, eta^2 = 0.99], The 

fault solution phase (M=364.9, s.e = 2.89) took significantly longer than fault detection 

(M=51.4, s.e=0.59) and the fault occurrence phases (M=36.3, s.e = 0.44). There were also 

significant main effects for distraction [F(2,17) = 95.982, P<0.01, eta^2 = 0.919, distraction 

resulted in higher times (M=527.6, s.e 4.19) compared to a standard test (M=452.4, s.e.=3.39). 

The ANOVA also revealed a significant interaction between factors [F(2,17) = 210.06, p<.01, 

eta^2 = 0.99]. Post-hoc t-tests revealed that the time to complete the fault solution phase was 

significantly longer for distracted participants compared to standard test participants [t(17) = 

11.97, p<.01] as depicted in figure 5.15; however, there was no effect of distraction on time 

during the fault occurrence and fault detection phases.  

 

 

Figure 5.15 - Distraction against a standard test with respect to workflow stage 
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5.6.2 Analysis of fNIRS data 

Average levels of oxygenated haemoglobin (HbO) were estimated using fNIRS for fault 

occurrence, fault detection and fault solution phases of the workflow. Data from all channels 

were averaged into three Regions of interest (ROI) corresponding to left, medial, and right 

regions of the dorsal lateral pre-frontal cortex. All HbO data were subsequently baselined using 

data gathered during the first phase of the workflow that lasted for 300s, i.e., baselined HbO = 

HbO during task phase minus HbO during 300s baseline period, hence positive HbO values 

indicate an increase above the baseline levels.  

Activation of the pre-frontal cortex during the fault occurrence and fault detection phases was 

explored via a 2(Distraction/Standard) x 3 (left, medial and right ROI) ANOVA. The analysis 

revealed no significant effects for distraction or ROI and no significant interaction. 

 

Activation of the pre-frontal cortex during the fault solution phase was explored again via a 2 

(distraction/standard) x 3 (left, medial and right ROI) ANOVA. This analysis revealed 

significant main effects for distraction [F(1,18) = 94.7, p<.01, eta^2=0.95] and ROI [F(1,18) = 

37.19, p<.01, eta^2= 0.774]. The ANOVA also revealed a significant interaction between 

factors [F(1,18) = 69.17, p<0.1, eta^2=0.95]. The main effect for distraction indicated that the 

mean HbO was significantly higher during the distraction stressor (M = 0.029, s.e. = .002) 

compared to a standard test (M = .009, s.e = .002). For ROI, the main effect revealed that mean 

HbO at medial ROI2 (M = .0014, s.e. = .002) was significantly lower than either left lateral 

ROI1 (M = .019, s.e. = .002) or the right lateral ROI3 (M = .027, s.e. = .003) (p<.01) – See 

figure 5.16.  

 

Figure 5.16 - Distraction vs standard test with respect to ROI 
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In order to explore the interaction, a number of post-hoc t-tests were conducted. These tests 

revealed that the mean HbO was significantly greater during a distracted test compared to a 

standard test at left lateral ROI1 [t(18) = 5.03, p<.01] and right lateral ROI3 [t(18) = 8.15, 

p<.01]. There was no significant effect for distraction at medial ROI2. 
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5.7 Discussion 

5.7.1 Workflow 

5.7.1.1 Time 

The ANOVA showed a significant effect for workflow with respect to time when comparing 

the fault solution workflow stage with other workflow stages. This can be explained due to the 

larger number of sub-tasks within the fault solution stage. Table 5.3 shows the differences 

between the workflow stages. 

 

Table 5.3 - Average time for workflow stages 

  Number of Participants Mean Time (seconds) Standard Deviation 

Fault Occurrence 20 32.4 1.8 

Fault Detection 20 53.2 5.72 

Fasult Solution 20 366.8 27.74 

 

 

5.7.1.2 fNIRS data 

The ANOVA showed a significant effect for workflow with respect to HBO. Tests of within- 

subjects effects also showed significance. This can be explained due to the fault solution stage 

having more sub-tasks and therefore more navigation through the simulator screens. 

Navigation from screen to screen completing sub-tasks will activate working memory in order 

to keep up to date with what has been done and what needs to be done. An argument could be 

made that due to what has been previously stated the fault solution stage of the workflow will 

be harder to complete, resulting in higher levels of activation. This shows consistency with 

other studies [17] [18] [35] [66]. The workflow phases involving multiple sub-tasks and longer 

time scales on average trend towards higher HBO volumes and significant effects, which is to 

be expected. However, there was a slight difference between our study and the studies 

referenced above. The sub-tasks in our study are all different whereas, for the other studies 

there is repetition of sub-tasks multiple times. It can be shown in other studies that repetition 

of the same tasks results in reduced overall activation compared to differing tasks [76]. 

 

5.7.2 Stressor 

5.7.2.1 Time 

The ANOVA showed a significant interaction for multivariate tests and within-subjects effects 

between workflow and distraction with respect to time. The mean times for participants in the 
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distracted group were significantly slower during fault occurrence, fault detection and fault 

solution, when compared to those not distracted as shown in Table 5.4. 

 

Table 5.4 - Average time for workflow stages with respect to Distraction 

 

This can be explained as the technique used to manipulate distraction involves the participant 

navigating to the liquid cargo screen and reading out the desired output. This takes 

approximately 10-15 seconds for each question. 

 

5.7.2.2 fNIRS data 

The ANOVA showed a significant interaction for workflow and distraction with respect to 

HBO. This is what was expected as shown in figure 5.17, the mean HBO for participants in the 

distracted group is higher on average during fault occurrence, fault detection and fault solution 

workflow stages compared to participants who were not distracted. Again, as previously 

mentioned above, distracted participants had more tasks to complete. Also, the examiner noted 

that distracted participants attempted to rush when asked the ‘distraction question’ which 

would indicate stress [14]. 

 

  Stressor 
Number of 
Participants 

Mean Time 
(Seconds) 

Standard 
Deviation 

Fault 
Occurrence Distracted 10 33.2 1.05 

  Standard Test 10 31.6 2.06 

Fault 
Detection Distracted 10 58.6 1.42 

  Standard Test 10 47.8 1.49 

Fault 
Solution Distracted 10 392.4 10 

  Standard Test 10 341.2 8.18 
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Figure 5.17 - Comparison of HBO for workflow stages with respect to distraction. 

 

5.7.2.3 Region of Interest 

The fNIRS equipment showed that the left and right sides DLPFC have a greater sensitivity 

when detecting oxygenated haemoglobin compared to the middle region for our experiments. 

This is consistent with other neuroimaging investigations using fNIRS [18] [52] [54] where the 

left and right sides of the PFC showed fewer anomalies and more usable data for further 

analysis. This is due to the participants needing the use of the specific functions of the left and 

right side DLPFC regions when undertaking the tasks, compared to that of the middle region 

[139]. This justified the omission of the middle region DLPFC from our results.  

The ANOVA showed no significant effect for ROI, no significant interaction between ROI and 

distraction and no significant interaction between ROI, workflow and distraction. This can be 

explained again due to the small measurements found within left, right and middle HBO 

volume. However, there is a trend in every test that shows left and right sides of the DLPFC to 

have a higher (but similar) output of HBO when compared to the middle region.  

A significant interaction was found between ROI and workflow. This can be explained due to 

the large difference in HBO between workflow stages (more specifically the fault solution 

stage) accentuating the middle region’s low sensitivity to our task type. 

 

5.7.3 Validity check 

The data gathered via fNIRS and ANOVA analysis was validated within the limits available. 

It is always preferable to validate work based on what has already been proven. However, due 
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to the novelty of this project it is impossible to test the findings from fNIRS on a simulated 

environment against real life events at sea. Therefore, validity has been achieved via: 

• 10 fold cross validation of fNIRS datasets from all 15 channels. 

• Data was separated in epochs for cross validation to prevent ‘double-dipping’. 

• Outcomes are checked against R-studio, MatLab and Python software platforms. 

• A manual ‘step by step’ linear regression with ANOVA was applied using excel to 

check the validity of each workflow stage against PSF. 
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5.8 Further suggestions for the second study (chapter 6). 

Having all candidates actively trained helped considerably reduce artefacts and anomalous 

results brought about by passively trained candidates constantly needing to move their head 

down to refer to the simulator manual.  

The time taken to analyse the results was greatly reduced by setting up the fNIRS equipment 

filters prior to testing in such a way that they ran throughout the test. Therefore, there was no 

need to add additional filtering and data processing post experiment apart from our custom 

filter mentioned in 4.3. 
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5.9 Concluding remarks 
The effect of training type had too large an effect on participants and is deemed an unrealistic 

level of training to simulate ‘real-life’ scenarios. Therefore, passive training will no longer be 

used in further tests. Moreover, a second distraction study was conducted with all participants 

trained using practical methods. 

When compared to a standard test, from the ANOVA, distracted participants showed higher 

levels of activation. Distraction was shown to also have a significant effect on time taken, 

resulting in distracted participants taking longer to complete each task.  

The workflow was also shown to have a significant effect with respect to time taken to complete 

each phase. The fault solution stage took participants significantly longer to complete. The 

fault solution phase also induced higher levels of neurophysiological activation in the DLPFC. 
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Chapter 6. The effect of increased workload on marine engineers 

whilst conducting ballast water operations using fNIRS. 
 

6.1 Introductory remarks 
This chapter uses a similar task and workflow as described in the previous chapter, the 

difference being that this chapter looks at the PSF workload. The workload stressor is 

manipulated in a different way to the distraction stressor. However, the same workflow stages 

and ballasting scenario are used.  

The first section of the chapter defines the changes needed to the experimental design in order 

to investigate the workload stressor from the distraction stressor. Moreover, the participants 

used, participant training and the experiment is also defined. Followed, is the results of the 

experiment for time and HBO. The final section is a discussion of the findings from the 

workload study. The chapter concludes with a brief suggestions paragraph, detailing 

suggestions for the next test in the following chapter. These suggestions are based on aspects 

that could have been improved in the previous chapter. 
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6.2 Method 

6.2.1 Experiment Design 

The design of this experiment very closely replicated that of the distraction test. The difference 

being that all twenty candidates were given an increased workload with ten of the twenty given 

a distracted test in addition to an increased workload. Another difference being that every 

participant was actively trained as mentioned in 5.4. All twenty participants performed the 

same tasks and were distracted in the same way as previously mentioned in 5.1.1. The 

difference being, all participants with an increased workload test had to fill additional ballast 

tanks simultaneously. This replicates what would be done in real operations [60].  

6.2.2 Experiment Participants 

20 candidates were used for this study. All 20 had qualifications to the level of a BEng or higher 

in marine engineering. 15 of the 20 participants had experience of working at sea or in a ship 

engine room. 2 of the participants were marine engineering PhD students. 2 were ex-navy 

engineers. The average age of the increased workload group was 34 and the remaining 

participants was 27. All 20 participants were male. The rest were a mixture of post graduate 

MEng marine engineering students and undergraduate marine students in their masters year. 

6.2.3 Participant Training 

All candidates were trained using the same methods as previously mentioned in 5.1.3. The 

difference being that all 20 participants were trained actively for this study. 

6.2.4 The Experiment 

This experiment replicated stages mentioned above in 5.1.4.1 (1st baseline) to 5.1.4.4 (fault 

solution). The difference being that the ‘increased workload’, participants would have to 

monitor multiple tanks (6 in total) for the 1st baseline stage. This is the same for the 2nd baseline 

stage. The main differences are found within the fault solution stage of the workflow described 

below. 

6.2.5 Fault Solution 

All 20 participants had to determine a solution to correct the fault by: (a) navigating to the 

cargo control room ballast pump screen (Figure 5.3) and switch off steam pump (number 2 

pump), (b) access the ballast system mimic panel (Figure 6.1). 
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Figure 6.1 - Ballast system mimic panel 

 (c) calculate the new waterline needed through the electric pump (number one pump), (d) open 

valves BA538F, BA547F, BA533F, BA511F, BA510F, BA507F, BA506F, BA502F and 

BA544F and close valves BA537F, BA546F and BA543F in order to re-route the water line to 

ballast pump number 1, (e) navigate back to the cargo control room ballast pump screen (Figure 

5.3) and switch on the electric pump, (f) navigate back to the ballast system screen to ensure 

the fault is solved and the system is ballasting into the correct tanks as shown in Figure 6.2. 
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Figure 6.2 - Ballast system screen 

Then, (g) navigate back to the liquid cargo screen to monitor the tanks to the required fill 

volume as depicted below in Figure 6.3. 

 

Figure 6.3 - Liquid cargo screen 
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6.3 Results 

The data from the study were analysed via ANOVA procedures using SPSS v.26.  Outliers 

were identified as any value that deviated more than 3 standard deviations from the cell mean 

and were omitted from ANOVA testing. 

 

6.3.1 Times to complete workflow phases 

The time taken to complete each phase of the workflow was subjected to a 2 (standard/high 

workload) x 2 (fault detection/fault solution) ANOVA.  This model revealed significant main 

effects for workload [F(1,18) = 301.40, p<.01, eta2=0.94] with high workload resulting in 

higher times (M = 269.8s, s.e. = 2.61) compared to standard workload (M = 210.30s, s.e. = 

2.43).  There was also a significant main effect for workflow phase [F(1,18) = 9808.98, p<.01, 

eta2=0.99], which was unsurprising as Fault Solution took significantly longer (M = 401.81s, 

s.e. = 3.23) than fault detection (M = 78.32s, s.e. = 0.63).  The ANOVA also revealed a 

significant interaction between both factors [F(1,18) = 356.19, p<.01, eta2=0.95].  Post-hoc t-

tests revealed that the time to complete the fault solution phase was significantly longer during 

high workload compared to standard workload [t(18) = -18.42, p<.01]; however, there was no 

effect of workload on time during the fault detection phase – see Figure 6.4 for illustration. 
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Figure 6.4 - Average times to complete each phase of the workflow for standard and high 

workload (N=20). 

6.3.2 Analyses of fNIRS data 

Average levels of oxygenated haemoglobin (HbO) were estimated using fNIRS for fault 

detection and fault solution phases of the workload flow.  Data from all channels were averaged 

into three Regions of Interest corresponding to left, medial and right regions of the prefrontal 

cortex.  All HbO data were subsequently baselined using data gathered during the first phase 

of the workload that lasted for 300s, i.e., baselined HbO = Hbo during task phase minus HbO 

during 300s baseline period, hence positive HbO values indicates an increase above the 

baseline levels.   

 

Activation of the prefrontal cortex during the fault detection phase was explored via a 2 

(standard/high workload) x 3 (left, medial and right ROI) ANOVA.  This analysis revealed no 

significant effect for workload [F(1,18) = 2.02, p=0.17] or ROI [F(1,18) = 1.05, p=0.33], and 

no significant interaction.   

 

Activation of the pre-frontal cortex during the fault solution phase was explored via a 2 

(standard/High workload) x 3 (left, medial and right ROI) ANOVA. This analysis revealed 
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significant main effects for workload [F(1,18) = 152.1, p<0.1, eta2=0.894] and ROI [F(1,18) = 

40.46, p<0.01, eta2=0.692]. The ANOVA also revealed a significant interaction between both 

factors [F(1,18) = 82.19, p<0.01, eta2 = 0.906].  The main effect for workload indicated that 

mean HbO was significantly greater during the high workload condition (M = .052, s.e. = .002) 

compared to the low workload condition (M = .009, s.e. = .002).  For ROI, the main effect 

revealed that mean HbO at medial ROI2 (M = .006, s.e. = .002) was significantly lower than 

either left lateral ROI1 (M = .038, s.e. = .005) or the right lateral ROI3 (M = .047, s.e. = .002) 

(p<.01) – see Figure 6.5. 

 

In order to explore the interaction, a number of post-hoc t-tests were conducted.  These tests 

revealed that mean HbO was significantly greater during high workload compared to low 

workload at left lateral ROI1 [t(18) = -6.53, p<.01] and right lateral ROI3 [t(18) = -15.54, 

p<.01], but there was no significant effect of workload at medial ROI2, see Figure 6.5 for 

descriptive statistics. 

 

 

Figure 6.5 - Average HBO for each ROI with respect to standard (blue) and high workload (red). 
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6.4 Discussion 

 

6.4.1 Time 

The significant effect found was expected as participants in the increased workload group had 

additional tasks to perform resulting in a longer time taken. The mean times for the increased 

workload group was higher in only the fault solution stage. This was due to the additional tasks 

being only in the fault solution stage of the workflow. However, it was predicted that 

participants would take longer for every stage of the workflow as additional checks are needed 

in stages 2, 3 & 4. These checks are all on the same simulator screen as the standard workload 

checks. This could result in similar mean times for the fault detection workflow stage. 

 

Post-hoc t-test showed significant differences between all workflow stages. This is expected as 

the t-tests solely compared the differences in time between workflow stages. There was a 

difference in time between all workflow stages due to the different activities contained within 

each stage. As predicted the size of the effects from t-tests showed that the largest effect is 

always between fault solution and other workflow phases. This is due to the largest mean time 

difference being for the fault solution stage of the increased workload group. 

 

6.4.2 fNIRS data 

A significant effect was found for increased against standard workload participants. This is to 

be expected as the increased workload participants had significantly more tasks with a greater 

level of difficulty. Again, like above, the fault solution stage is the workflow stage that contains 

the greatest difference in task volume in comparison to a standard workload. This explains the 

significant effect found only in the fault solution workflow stage. Unpredicted was the level of 

increase between standard and increased workload participants for the fault solution stage of 

the workflow as shown on the bar chart (Figure 6.4). This shows that the participants in the 

increased workload group were experiencing a much higher mental workload from the 

additional tasks. This shows consistencies with Verdiere et al and Dehais et al neuroimaging 

studies involving an increased workload element [45], [54]. Verdiere’s investigation, similar 

to our study, found that participants undertaking a task with an increased workload (manual 

landing as opposed to automated) showed a significant effect when compared to that of a 

standard test (automated landing). Dehais’ investigation used a number of air traffic control 

instructions in order to evaluate working memory whilst in flight using a simulator. Similar to 
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our study, Dehais showed that increased workload resulted in an adverse effect on operator 

performance and in his case, flight safety. 

 

The tasks in the increased workload group would closely resemble those done by a marine 

engineer in a ‘real-world’ situation [62].  

 

Maulchy’s test of sphericity showed a significant effect. Therefore, a test of within-subjects 

effects was done showing a large effect size (F=152.1, t=14). This is to be expected as the 

individuals go from a mundane monitoring task to a complex sea water line re-routing task. 

When compared to other studies [3], [42]this effect size found in our study is considerably 

greater. Fan’s [14] investigation of increased workloads shows an effect size of 4.1 and 

Kojima’s [58] investigation showed an effect size of 7. This could be expected as our 

investigation of increased workload involved five more ballast tanks when compared to a 

standard test. Whereas Fan, S used additional verbal reporting as opposed to a practical 

approach to increasing workload, which could be said is a less intense workload increase than 

in our study. Kojima et al used a more similar approach to that in our study as he used additional 

train signalling, traffic and manoeuvring hence why his effect size is closer to ours. The issue 

with Kojima’s study is that the operator experience was not stated. Due to their effect size of 

11 against ours (14), one can only predict that the difference may have been due to operator 

experience as the participants for our study had a limited time of training (3 hours) whereas the 

participants in Kojima’s study could have had months or years. 

 

Post-hoc t-test between increased and standard workload showed a significant effect. This is to 

be expected given the significance found in the fault solution workflow stage. The size of the 

effect will be greater if the comparison was made using the fault solution stage instead of the 

mean from all workflow stages. This is again due to the fault solution stage being the only stage 

with a significant increase in mental workload for the increased workload group. 

 

A significant interaction was found between workload and workflow. This interaction is again, 

due to the fault solution stage of the workflow as detailed above.  
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6.4.3 Region of Interest (ROI) 

A significant effect was found for ROI. The left and right regions of the DLPFC were shown 

to have a much higher mean HBO when compared to the middle region. The reason for this is 

that the left region of the DLPFC controls remembering goals and any instructions you need to 

accomplish those goals, speech, comprehension, arithmetic, writing and positive feelings. The 

right region controls creativity, planning, maintaining focus, spatial ability, artistic, music skills 

and negative feeling [145]. Whereas the middle region is involved mainly in body regulation, 

attuned communication, emotional balance, empathy, self-awareness and fear modulation [72].  

Therefore, it is to be expected that the middle region would have a lower mean HBO. 

Interesting is the right region showed a higher mean HBO. This could be due to the participants 

being new to the simulator system and thus taking a pessimistic approach. This tells us that on 

average, participants are focusing on creativity and planning rather than working memory. This 

is consistent with the work done by Fairclough et al [52] where they also found the left and 

right side DLPFC to have the most significance when undertaking a task associated with 

executive function, working memory and selective attention.  

Pairwise comparisons showed a significant effect for ROI. The most significance was found 

between left – middle and right – middle. This is to be expected when taking into account what 

has been previously mentioned above. Interesting is that for t-tests the largest effect size was 

shown for left against the middle region when the bar chart (Figure 6.5) shows that the mean 

HBO was higher for the right region of the DLPFC. This makes sense as our task involves a 

large amount of working memory, controlled by the left region. 

A significant interaction was found for ROI with respect to workflow. This is predicted as the 

fault solution stage required a larger number of the right and left region functions when 

compared to the middle region.  

A significant interaction was found for ROI*workflow*distraction. This can be explained as 

there is a large effect for ROI and workflow individually resulting in a combined significant 

effect. This is expected due to the left and right regions’ interaction with the fault solution stage 

being larger and exponentially greater for distracted participants. The reason for this could have 

been due to the left and right regions’ functions being needed for our task compared to the 

middle region as mentioned above. This coupled with the fault solution stage being the most 

onerous and having more levels of distraction. 

A significant effect was found for ROI* increased workload against standard workload. This 

is to be expected as the mean HBO will be higher for an increased workload for the same task. 

Interesting is that for a standard workload the right region of the DLPFC showed a higher mean 
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HBO but for increased workload the left region of the DLPFC showed a significantly higher 

mean HBO. The reason for this could be that the increased workload task involved 5 additional 

ballast tanks. This would require participants to remember the tanks being filled, the fill levels 

and the previous water line used. Working memory being one of the main functions of the left 

region DLPFC. 

 

Post-hoc t-test showed a significant effect for increased workload for the left and right regions 

of the DLPFC. The region with the largest effect for the increased workload task was the left 

region. Again, this can be explained as previously mentioned above and further substantiates 

the premise that working memory is a prevalent function needed for this task. 

 

6.4.4 Validity check 

The data gathered via fNIRS and ANOVA analysis was validated within the limits available. 

It is always preferable to validate work based on what has already been proven. However, due 

to the novelty of this project it is impossible to test the findings from fNIRS on a simulated 

environment against real life events at sea. Therefore, validity has been achieved via: 

• 10 fold cross validation of fNIRS datasets from all 15 channels. 

• Data was separated in epochs for cross validation to prevent ‘double-dipping’. 

• Outcomes are checked against R-studio, MatLab and Python software platforms. 

• A manual ‘step by step’ linear regression with ANOVA was applied using excel to 

check the validity of each workflow stage against PSF. 
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6.5 Suggestions for third scenario 

A trial study was done using participants with no engineering background. The results showed 

that due to the training given to each participant, the difference between those who have prior 

engineering experience and those who don’t is negligible. Therefore, the researcher could 

extend the recruitment search for participants to include those with and without marine 

engineering experience.  
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6.6 Concluding remarks 
The experiment for this study was changed to include 6 ballast tanks as opposed to a single 

tank in the previous chapter. This change required participants to perform additional tasks when 

re-routing the water line and checking the ballast system and LCS resulting in an increased 

workload. 

When compared to a standard test, from the ANOVA, increased workload participants showed 

higher levels of neurophysiological activation in the DLPFC. This resulted in a significant 

effect shown for increased workload participants with respect to time taken and HBO. A 

significant effect was also found for workflow with respect to time and HBO. The fault solution 

workflow phase induced the highest levels of activation and longest times taken to complete 

the stage. 

The ROIs with the most significance were the left and right (channels 1-5 & channels 11-15) 

sides of the DLPFC. The middle region (channels 6-10) showed varying levels of sensitivity, 

anomalies and outliers which had to be omitted due to tolerance. Therefore, the middle region 

data was deemed invalid/less accurate. 
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Chapter 7. The effect of fatigue on marine engineers’ whilst 

conducting ballast water operations using fNIRs. 
 

7.1 Introductory remarks 

This chapter investigates the effect of fatigue on OFS whilst conducting a fault detection and 

correction ballasting task. The first section of the chapter defines the differences in experiment 

design, the participants used, the participant training and the experiment to investigate fatigue 

compared to distraction and increased workload on the previous two chapters. This is followed 

by the results of the investigation. The results outline significant effects of time, the fatigue 

stressor and workflow on OFS using an ANOVA study. The results are then discussed in the 

final section of the chapter outlining the relevant findings from the investigation. 
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7.2 Method 

7.2.1 Experiment Design 

The design of this experiment very closely replicated that of the workload and distraction tests. 

The difference being that all 20 candidates were given a fatigue test with 10 of the 20 given an 

increased workload in addition to being fatigued. Again, every participant was actively trained 

as mentioned in the previous study. The 10 participants in the increased workload group 

performed the same tasks as stated in 6.1.4. The difference being, all participants with a fatigue 

test had to sit through an extended monitoring task. This replicates what would be done in real 

engine room operations [60].  

7.2.2 Experiment Participants 

20 candidates were used for this study. All 20 had qualifications to the level of a BEng or higher 

in marine engineering. 18 of the 20 participants had experience of working at sea or in a ship 

engine room. 2 of the participants are marine engineering business owners also qualified to 

degree level in marine engineering. The average age of the fatigued group is 23. All 20 

participants were male.  

7.2.3 Participant Training 

All candidates were trained using the same methods as previously mentioned in 5.1.3. All 20 

participants were trained actively. 

7.2.4 The Experiment 

This experiment replicated stages mentioned above in 6.1.4 (fault occurrence) to (2nd Baseline). 

The difference being that all fatigue participants would have a 35-minute (2100s) monitoring 

task instead of the normal 5 minutes (300s) for the 1st baseline stage of the workflow. The 

participants in the fatigue group will have the above mentioned 35-minute (2100s) monitoring 

task for the 1st baseline stage but followed by a standard task involving a single ballast tank as 

previously mentioned in section 5.1.4, instead of the six tanks for the increased workload 

group. 
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7.3 Results 

The data from the study were analysed via ANOVA procedures using SPSS v.26.  Outliers 

were identified as any value that deviated more than 3 standard deviations from the cell mean 

and were omitted from ANOVA testing. 

 

7.3.1 Times to complete workflow stages 

The time taken to complete each phase of the workflow was subjected to a 2 (standard/fatigued) 

x 2 (fault detection/fault solution) ANOVA. This model revealed significant main effects for 

fatigue [F(1,18) = 71.41, p<.01, eta^2 = 0.99] with fatigue resulting in higher times (M = 

236.4s, s.e = 2.41) compared to a standard test (M = 210.3s, s.e = 2.43). There was also a 

significant main effect for workflow phase [F(1,18) = 7185.51, p<.01, eta^2 = 0.95], which 

could have been predicted as the fault solution stage took significantly longer (M = 249.6, s.e 

= 2.47) to complete compared to the fault detection stage (M = 48.1, s.e = 0.49). The ANOVA 

also revealed a significant interaction between both factors [F(1,18) = 95.8, p<.01, eta^2 = 

0.93]. Post-hoc t-tests revealed that the time to complete the fault solution stage was 

significantly longer whilst fatigued compared to a standard test [t(18) = 9.15, p<.01]; However, 

there was no effect of fatigue on time during the fault detection workflow phase – see 

illustration in Figure 7.1. 

 

 

Figure 7.1 - Time taken to complete each workflow stage with respect to fatigue stressor. 
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7.3.2 Analysis of fnirs data 

Average levels of oxygenated haemoglobin (HbO) were estimated using fNIRS for fault 

detection and fault solution workflow phases. Data from all channels were averaged into three 

regions of interest corresponding to left, medial and right regions of the prefrontal cortex. All 

HbO data were subsequently baselined using data gathered during the first phase of the 

workflow that lasted for 300s, i.e., baselined HbO = HbO during the task phase minus HbO 

during the 300s baselined period, hence positive HbO values indicates an increase above 

baseline levels.  

 

Activation of the prefrontal cortex during the fault detection phase was explored via a 2 

(fatigue/standard) x 3 (left, medial and right ROI) ANOVA. This analysis revealed no 

significant effect for fatigue [F(1,18) = 1.97, p=.241] or ROI [F(1,18) = 0.93, p=.45], and no 

significant interaction. 

 

Activation of the prefrontal cortex during the fault solution stage was explored via a 2 

(fatigue/standard) x 3 (left, medial and right ROI) ANOVA. The analysis revealed significant 

main effects for fatigue [F(1,18) = 61.7, p<.01, eta^2 = 0.913] and ROI [F(1,18) = 31.7, p<.01, 

eta^2 = 0.741]. The ANOVA also revealed a significant interaction between both factors 

[F(1,18) = 36.92, p<.01, eta^2 = 0.95]. The main effect for fatigue indicated that the mean HbO 

was significantly greater during the fatigue group (M = .019, s.e = .005) compared to the 

standard group (M = .009, s.e = .002). For ROI, the main effect revealed that the mean HbO at 

the medial ROI2 (M = .0008, s.e = .002) was significantly lower than either the left lateral 

ROI1 (M = 0.016, s.e = .002) or right lateral (M = 0.021, s.e = .002) (p<.01) – see Figure 7.2.  

 

In order to explore the interaction, a number of post-hoc t-test were conducted. These tests 

revealed that the mean HbO was significantly greater with the fatigue group compared to that 

of a standard test as left lateral ROI1 [t(18) = 3.91, p<.01] and right lateral ROI3 [t(18) = 6.39, 

p<.01], but there was no significant effect of fatigue at the medial ROI2 region, see Figure 7.2 

for descriptive statistics. 
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Figure 7.2 - Average HBO for ROI with respect to fatigue stressor. 
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7.4 Discussion 

 

7.4.1 Time 

A significant effect was found for fatigued candidates against those who were not fatigued. 

Fatigued participants on average took longer to complete each workflow stage. This shows that 

fatigue has an adverse effect on the time taken for participants to complete the task. This could 

be predicted as previous studies show that fatigue affects reaction and cognition [34]. 

Interesting is the size of the effect that fatigue has on time (F = 71.41). This is a fairly large 

effect. A large effect size again proves the proposed hypothesis that fatigue is a PSF that could 

have an adverse effect on human error. Post-hoc t-tests showed significant effects for all 

workflow stages. This would be explained by the hypothesis that fatigued participants on 

average take longer to complete each task. The most significant interaction for fatigued 

participants from t-tests for the workflow stages are found for the fault solution phase (t = 9.15).  

 

A significant interaction was shown between fatigued candidates and specific workflow stage. 

This could be explained as fatigued participants are on average slower than those who 

participated in a standard test and the fault solution stage has more sub-tasks compared to other 

workflow stages. Post-hoc t-tests showed significant effects for all workflow stages. T-tests 

show that these effects get exponentially larger with time, for both those fatigued and standard 

groups.  

 

Our results show that fatigue has a greater effect on the fault solution workflow stage. This 

could be explained due to the fault solution stage being larger and thus taking longer for the 

participant to complete. This has a ‘knock on’ effect when fatigue is added due to the 

participant having to perform more sub-tasks and thus for a longer time whilst in a fatigued 

state.  

 

Many aspects of this study alone could be predicted. The relevance of this study comes when 

comparing PSF against one another in the following chapter. For example, it can easily be 

predicted that the fatigued candidates would take longer to complete each workflow stage but 

what cannot be predicted is how these candidates will compare to those who are distracted or 

have an increased workload. 
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7.4.2 fNIRS data 

No significant effect was found for fatigue with respect to the fault detection workflow phase. 

This was not as predicted as the average of all fatigued participants showed a higher HBO 

overall. The reason no significant effect was found could have been due to the units of 

measurement being small or that not all fatigued participants had a higher HBO for the fault 

detection workflow stage when compared to the participants taking part in a standard test for 

the same workflow phase. However, a significant effect was found for the fault solution 

workflow phase. This suggests that fatigued participants only started to struggle compared to 

the standard test group when the sub-tasks became longer and involved more system 

navigation. This outcome goes against the findings of Bu et al [57] where fatigued participants 

showed higher levels of activation from the beginning of the task. The main difference being 

that in Bu et al study, the majority of the participants were elderly. Therefore, the age difference 

would have been a factor towards earlier higher HBO volumes due to fatigue. The fatigue 

investigation for our project was maritime based (done on a ship simulator) whereas, the other 

fatigue investigations were done across other sectors (aerospace [45] [51] [54], automotive [42] 

[70], National Rail Networks (NRN) [39] [58] and video Gaming [81]). However, due to the 

other studies also being ‘hands-on’ tasks conducted on a simulator they share many similarities 

with our investigation. Manipulation of the human factor – fatigue was done in a similar way 

to other studies in other sectors, where a monotonous visual of a readout is monitored by the 

participant for a long period of time (35 minutes for our study, between 20 minutes to 1 hour 

for others). The results from the 2 national rail network (NRN) studies showed that fatigue 

similarly to our study didn’t show any significance until the latter stage of the test. However, 

the aerospace and automotive studies also showed fatigue to have a significant effect on 

operator performance from the start. This may be due to the impoverished nature of the 

simulation hardware for our study and NRN studies, in which no real consequences are shown 

when a task is failed. Whereas an A300 and A320 aircraft simulator (the hardware used in 

aerospace studies) and an automotive simulator with their hydraulic movements, has a very 

realistic feel and consequence to failure from the beginning of the test. Another explanation as 

previously mentioned could have been due to the units of measurement. However, the same 

units and software were used by Dehais [51] and Verdiere [54] for their study and fatigue was 

shown to have a significant effect.  

 

Fatigued participants for our study had a higher HBO volume on average, specifically for the 

fault solution stage. It is shown in the results in section 7.2 that the fault solution stage had a 
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significant difference when compared to the other stages. This resulted in showing fatigued 

participants to have an inflated average HBO for the whole task. In actual fact, the HBO 

volumes for all other workflow stages are similar for fatigued and standard test participants. 

By doing a Critical analysis of the workflow for this task it could be said that if the Fault 

detection stage were longer, then the fatigue element of the task would have been more 

prevalent. This is shown by the large difference in HBO volume between fatigued and standard 

test participants for the longer, fault solution stage. Similarly, this is also shown in the work 

done by Besikci et al, where fatigue was shown to be more prevalent in the longer tasks even 

if they were deemed to be easier [59]. Besikci concluded by stating that the fatigue element of 

their study was manipulated via a combination of verbal reasoning tasks over a long period of 

time (2 hours). There was then a short break (3-5 minutes) before starting their task. All 

participants showed similar results for the first 10-12 minutes of the task then differences 

occurred. By the end of the task (25 minutes) all participants had a significantly higher HBO 

volume when compared to those who had a standard test.  

 

7.4.3 ROI 

A significant effect was found for ROI. Similar to that of the 2 previous experiments in chapter 

5 & 6 the left and right sides of the DLPFC showed significantly more HBO when compared 

to the middle region. The reasons for this are again the same as those in 6.3.3.  

 

7.4.4 Validity check 

The data gathered via fNIRS and ANOVA analysis was validated within the limits available. 

It is always preferable to validate work based on what has already been proven. However, due 

to the novelty of this project it is impossible to test the findings from fNIRS on a simulated 

environment against real life events at sea. Therefore, validity has been achieved via: 

• 10 fold cross validation of fNIRS datasets from all 15 channels. 

• Data was separated in epochs for cross validation to prevent ‘double-dipping’. 

• Outcomes are checked against R-studio, MatLab and Python software platforms. 

• A manual ‘step by step’ linear regression with ANOVA was applied using excel to 

check the validity of each workflow stage against PSF. 
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7.5 Concluding remarks 

The experiment was changed to incorporate a 2100s first baseline compared to a 300s baseline 

in previous tests. This was done to induce a fatigue stressor. The remaining workflow stages 

involved tasks identical to a standard test. 

From the ANOVA, a significant effect was found for fatigue with respect to time taken and 

HBO. This resulted from higher levels of neurophysiological activation of the DLPFC for 

fatigued participants. A significant effect was also found for workflow stage with respect to 

time taken and HBO. Higher levels of neurophysiological activation and time taken were found 

for the fault solution workflow phase when compared to all other phases.  

The ROIs with the most significance were shown to be the left and right (channels 1-5 & 11-

15) sides of the DLPFC compared to the middle region (channels 6-10).  
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Chapter 8. Comparison of 3 main PSFs; Fatigue, Workload & 

Distraction and Combined PSFs. 
 

8.1 Introductory remarks 

This chapter is a continuation of the previous three chapters. Furthermore, this chapter will 

look at the PSFs in an ANOVA study against one another as opposed to against a standard test.  

No significant effects were found from an investigation of fatigue x distraction stressors. 

Therefore, the results of that study are omitted and instead workload x fatigue and workload x 

distraction are investigated. 

This chapter is broken up into two main sections; workload x fatigue and workload x 

distraction. Both sections contain time and HBO results followed by a discussion of findings. 

The final section is a conclusion based on the findings from both ANOVA studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

8.2 The Effect of Workload x Fatigue. 

The data from the study were analysed via ANOVA procedures using SPSS v.26.  Outliers 

were identified as any value that deviated more than 3 standard deviations from the cell mean 

and were omitted from ANOVA testing. 

 

8.2.1 Times to complete workflow phases 

8.2.1.1 Fault Detection Phase 

The time taken to complete each phase of the workflow was subjected to a 2 (high fatigue/low 

fatigue) x 2 (high workload/low workload) x 2 (fault detection/fault solution) ANOVA. This 

model revealed no significant interaction between both stressors workload*fatigue [F(3,34) = 

2.674, p=.111, eta^2 = .069] or significant main effects for workload [F(1,36) = 1.423, p=.241, 

eta^2 = .038] but revealed significant main effects for fatigue [F(1,36) = 42.962, p<.01, eta^2 

= .544] with respect to the fault detection workflow phase. Fatigued participants (M=83.205s, 

s.e.=.528) had higher times for the fault detection workflow phase when compared to high 

workload (M=80.315s, s.e.=.528). 

 

8.2.1.2 Fault Solution Phase 

This model revealed significant main effects for workload [F(1,36) = 1251.85, p<.01, eta^2 = 

.972] and fatigue [F(1,36) = 43.197, p<.01, eta^2 = .545] but no significant interactions were 

found for workload*fatigue [F(3,34) = .169, p = .683] with respect to the fault solution 

workflow phase. High workload (M=474.5, s.e =2.45) resulted in higher times for the fault 

solution workflow stage when compared with fatigued participants (M=424.585, s.e.=2.45). 
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Figure 8.1 - Time taken to complete each workflow phase with respect to fatigue and workload stressors. 

8.2.2 Analysis of fNIRS data 

Average levels of oxygenated haemoglobin (HbO) were estimated using fNIRS for fault 

detection and fault solution workflow phases. Data from all channels were averaged into three 

regions of interest corresponding to left, medial and right regions of the prefrontal cortex. All 

HbO data were subsequently baselined using data gathered during the first phase of the 

workflow that lasted for 300s, i.e., baselined HbO = HbO during the task phase minus HbO 

during the 300s baselined period, hence positive HbO values indicate an increase above 

baseline levels.  

 

Activation of the prefrontal cortex during the Fault Detection phase was explored via a 2 (high 

fatigue/low fatigue) x 2 (high workload/low workload) x 3 (Left, medial and right ROI) 

ANOVA. The analysis revealed a significant effect for workload [F(3,34) = 2.47, p=.08, eta^2 

= .179] but no significant effect for fatigue [F(3,34) = .610, p=.613] or any significant 

interaction between both factors workload*fatigue [F3,34) = .628, p=.602]. The main effect for 

workload indicated that mean HbO was significantly greater during the high workload 

condition (M=.005, s.e.=.001) when compared to fatigue (M=0.0037, s.e.=.001). 

 

Activation of the prefrontal cortex during the fault solution phase was explored via a 2 (low 

fatigue/high fatigue) x 2 (low workload/high workload) x 3 (left, medial and right ROI) 

ANOVA. This analysis revealed significant main effects for workload [F(3,34) = 228.251, 
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p<.01, eta^2 = .953] but no significant main effects were found for fatigue [F(3,34) = 1.730, 

p=.179]. [M=0.035, s.e.=.002 (averaged for all ROI)]. 

 

A number of post-hoc t-tests were conducted. These tests revealed that the mean HbO was 

significantly greater during high workload compared to low workload at left lateral ROI1 [t(36) 

= 6.56, p<.01], medial ROI2 [t(36) = 3, p=.005] and right lateral ROI3 [t(36) = 25.67] as shown 

in Figure 8.2. 

 

 

Figure 8.2 - Average HBO of stressors with respect to ROI. 
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8.3 Discussion 

 

8.3.1 Time 

8.3.1.1 The Fault Detection Phase 

The study found no significant interaction between increased workflow and fatigue or 

significant main effects for workload. However, a significant main effect was found for fatigue. 

This can be explained as the fault detection stage for the increased workload group involved 

additional ballast tanks to monitor, but it was noted by the examiner that the participants treated 

the monitoring and detection stages similar to that of the standard workload group. For 

example, the participants in the increased workload group didn’t complete the additional 

checks as they should have. Instead, they simply followed the procedure for the standard 

workload group (1 ballast tank). This resulted in this workflow stage showing little increase in 

time.  

 

8.3.1.2 The Fault Solution Phase 

The analysis found significant main effects for fatigue and workload. This can be explained as 

the fault solution stage for the increased workload group involved significantly more sub-tasks 

compared to a standard workload test. The fault solution stage is also a much longer workflow 

phase. This results in already fatigued participants becoming more fatigued due to the extended 

task time. Again, no significant interaction was found. This is because the low fatigue group 

are faster to complete the task when compared to the high fatigue group despite the level of 

workload.  

 

8.3.2 fNIRS data 

8.3.2.1 The fault Detection phase 

The analysis found no significant interaction between fatigue and workload or significant main 

effects for fatigue. However, significant main effects were found for workload for the fault 

detection workflow phase. This tells us that even though no main effect was found for workload 

with respect to time, the participants were still experiencing increased levels of activation due 

to the additional ballast tanks. Fatigue was the opposite to this as a significant main effect was 

found with respect to time but not for level of activation. This tells us that fatigue affects time 

more than mental workload for the fault detection workflow stage. 
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8.3.2.2 The Fault Solution Phase 

The fault solution workflow stage showed no significant interaction between fatigue and 

workload or significant main effects for fatigue. However, a significant main effect was found 

for workload. No significant interaction can be explained as, for the left and right side of the 

PFC low fatigue participants consistently had lower levels of activation despite the level of 

workload. The significant main effect found for workload and not for fatigue tells us that 

participants had an increased mental workload for an increased workload task but not for a 

fatigued test. This can be interpreted as, participants found increased workload more difficult 

than high levels of fatigue. 

 

8.3.3 ROI 

Region of interest showed some interesting results for this study as there was no significant 

interaction shown for the left and right regions but a very slight significant interaction was 

found for the medial region. Higher levels of activation were found for the high fatigue group 

for low workload and the low fatigue group for an increased workload. This can only be 

explained by stating that the medial region of the PFC consistently showed anomalous results 

and lower levels of HBO detection throughout the study. Therefore, it has been decided to omit 

any findings from the medial region due to inaccuracies in the analysis data. 
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8.4 The effect of Workload X Distraction 

The data from the study were analysed via ANOVA procedures using SPSS v.26.  Outliers 

were identified as any value that deviated more than 3 standard deviations from the cell mean 

and were omitted from ANOVA testing. 

 

8.4.1 Times to complete workflow phases 

8.4.1.1 Fault Detection Phase 

The time taken to complete each phase of the workflow was subjected to a 2 (distraction/no 

distraction) x 2 (high workload/low workload) x 2 (fault detection/fault solution) ANOVA. 

This model revealed no significant interaction between both stressors workload & distraction 

or significant main effects for workload but revealed significant main effects for distraction 

[F(1,36) = 86.142, p<.01, eta^2 = .750] with respect to the fault detection workflow phase. 

Distracted participants (M=87.205s, s.e.=.568) had higher times for the fault detection 

workflow phase when compared to high workload (M=80.315s, s.e.=.528) as shown in figure 

8.3. 

 

8.4.1.2 Fault Solution Phase 

This model revealed significant main effects for workload [F(1,36) = 1251.85, p<.01, eta^2 = 

.972] and distraction [F(1,36) = 298.197, p<.01, eta^2 = .945] but no significant interactions 

were found for workload*distraction with respect to the fault solution workflow phase. High 

workload (M=474.5, s.e =2.45) resulted in higher times for the fault solution workflow stage 

when compared with distracted participants (M=446.915, s.e.=2.45) as shown in figure 8.3. 
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Figure 8.3 - Time taken to complete each workflow phase with respect to distraction and workload stressors. 

 

8.4.2 Analysis of fNIRS data 

Average levels of oxygenated haemoglobin (HbO) were estimated using fNIRS for fault 

detection and fault solution workflow phases. Data from all channels were averaged into three 

regions of interest corresponding to left, medial and right regions of the prefrontal cortex. All 

HbO data were subsequently baselined using data gathered during the first phase of the 

workflow that lasted for 300s, i.e., baselined HbO = HbO during the task phase minus HbO 

during the 300s baselined period, hence positive HbO values indicates an increase above 

baseline levels.  

 

Activation of the prefrontal cortex during the fault detection phase was explored via a 2 

(distraction/no distraction) x 2 (high workload/low workload) x 3 (left, medial and right ROI) 

ANOVA. The analysis revealed a significant main effect for workload [F(3,34) = 2.47, p=.08, 

eta^2 = .179] and for distraction [F(3,34) = 26.0, p=.013, eta2=.744]. No significant interaction 

was found between both factors workload*distraction [F3,34) = 1.281, p=.322]. The main 

effect for workload indicated that mean HbO was significantly greater during the high 

workload condition (M=.005, s.e.=.001) when compared to low workload (M=0.0017, 

s.e.=.001). The main effect for distraction indicates that HBO was significantly greater during 

the distracted condition (M=.031, s.e = .002) when compared to not distracted (M=0.0017, s.e 

= .001). 
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Activation of the prefrontal cortex during the fault solution phase was explored via a 2 

(distracted/not distracted) x 2 (low workload/high workload) x 3 (left, medial and right ROI) 

ANOVA. This analysis revealed significant main effects for workload [F(3,34) = 228.251, 

p<.01, eta^2 = .953] and significant main effects were found for distraction [F(3,34) = 104.831, 

p<.01, eta^2=.910]. The significant main effect for workload indicated that the mean HbO was 

significantly greater during the high workload condition (M=0.064, s.e.=.002) and distracted 

condition [(M = 0.041, s.e.=.002) (averaged for all ROI)] when compared to the low workload 

condition [(M=0.035, s.e.=.002) (averaged for all ROI)] and not distracted condition (M=0.035, 

s.e.=.002). 

 

A number of post-hoc t-tests were conducted. These tests revealed that the mean HbO was 

significantly greater during high workload compared to low workload at left lateral ROI1 [t(36) 

= 6.56, p<.01], medial ROI2 [t(36) = 3, p=.005] and right lateral ROI3 [t(36) = 25.67] and 

significantly greater during distraction compared to not distracted for the left lateral ROI1 

[t(36) = 3.96] and right lateral ROI3 [t(36) = 14.18] as shown in Figure 8.4. 

 

 

Figure 8.4 - Average HBO of stressors with respect to ROI. 
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8.5 Discussion 

8.5.1 Time 

8.5.1.1 The Fault Detection Phase 

The study found no significant interaction between increased workflow and distraction or 

significant main effects for workload. However, a significant main effect was found for 

distraction. This can be explained as the fault detection stage for the distracted group involved 

distraction questions which takes additional time to complete.  

 

8.5.1.2 The Fault Solution Phase 

The analysis found significant main effects for distraction and workload. This can be explained 

as the fault solution stage for the distracted group again, involved distraction questions 

compared to a not distracted test which contained no questions. Again, no significant 

interaction was found. This is because the undistracted group are faster to complete the task 

when compare to the distracted group despite the level of workload.  

 

8.5.2 fNIRS data 

8.5.2.1 The Fault Detection Phase 

The analysis found no significant interaction between distraction and workload. However, 

significant main effects were found for workload and distraction. This tells us that participants 

were still experiencing increased levels of activation due to the addition of distraction 

questions.  

 

8.5.2.2 The Fault Solution Phase 

The fault solution workflow stage showed no significant interaction between fatigue and 

workload. Significant main effect was found for workload and distraction. No significant 

interaction can be explained as, for the left, medial and right side of the PFC for not distracted 

participants consistently had lower levels of activation despite the level of workload. The 

significant main effect found for distraction tells us that participants had an increased mental 

workload for a distracted task when compared to no distraction. 
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8.6 Conclusion 

The investigations showed that the average mental workload for participants in order from 

highest to lowest are as follows: 

1. Distracted with an Increased workload 

2. Fatigued with an Increased workload 

3. Increased workload 

4. Distracted 

5. Fatigued 

This tells us that the group with the greatest risk of human error is the distracted with an 

increased workload group.  

The distraction aspect of the exercise was manipulated by asking the participants questions 

routinely throughout the workflow as stated above in chapter 5. This would be part of the daily 

duties of an engineer in a real-life scenario. This required participants to stop what they were 

doing, navigate to the liquid cargo screen, give the answer to the question and then continue 

with what they were previously doing. This distraction would result in the participants taking 

extra time on each task and having to remember what they were doing as soon as they had 

answered the distraction question. This extra time and additional mental workload required to 

remember the workflow position that the participants were up to before the distraction, would 

explain why distraction was significant in these tests.  

The increased workload element of the study was manipulated by increasing the number of 

ballast tanks to be filled from 1 tank to 6 tanks. This would be part of the duties of an engineer 

within a ship engine room in a real-life scenario. This resulted in the participants spending a 

lot more time on the fault solution workflow stage than for all other PSF. This also required 

participants to spend more time and thought on the re-routing of the sea water line through the 

working ballast pump and then into the additional ballast water tanks. This increased time and 

mental workload would explain why the increased workload group had the highest risk of 

human error. Increased time and mental workload have been found to increase the risk of 

human error [18]. 

The fatigue aspect of the exercise was manipulated by increasing the first baseline monitoring 

exercise to 35 minutes (2100s) instead of 5 minutes (300s). Long monitoring tasks would be a 

standard daily duty of a seafarer working in a ship engine room. This resulted in the attention 

of the participants moving from the monitoring task, to looking around the simulator room and 
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to checking other system screens. The effects of fatigue were only seen when the participant 

was working on the fault solution stage of the workflow. This would suggest that fatigue affects 

participants undertaking longer, and more difficult tasks compared to the shorter, easier tasks. 

Comparing fatigued participants to those taking on a standard test showed us that fatigued 

participants have an increased risk of human error. 
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8.7 Concluding remarks 

The workload x fatigue study showed significant main effects for fatigue and workload for the 

fault solution workflow phase but no significant interaction was found with respect to time. 

The ANOVA showed a significant effect for workload but no effect for fatigue with respect to 

HBO for the fault detection workflow stage. The ANOVA again showed significant main 

effects for workload but not for fatigue for the fault solution workflow stage with respect to 

HBO. This reveals that the main effect for workload was significantly greater during the high 

workload condition when compared to the fatigue condition. 

The workload x distraction study showed significant main effects for workload and distraction 

with respect to time for the fault solution workflow phase. Significant main effects were found 

for workload and distraction for all workflow phases with respect to HBO. 
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Chapter 9. The Development and Implementation of a Scientific 

Human Error Model 
9.1 Introductory remarks 

This chapter is used to describe the development and implementation of a scientific human 

error model.  It is used to model the resulting data produced in experimental chapters; 5, 6, 7 

and 8. 

The first section defines how the fNIRS data is pre-processed, oxygenation features extracted, 

how classification and cross-validation is performed and how the data is statistically evaluated.  

The following section is the result section. This shows the classification performance of each 

individual PSF against a standard test and against other PSFs with respect to the oxygenation 

features.  

The final section is a discussion of the findings from the results section.  
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9.2 Data Classification  

9.2.1 Data pre-processing 

NIRS-analysis aids in converting the raw fNIRS data to optical densities. In this process, the 

NIRS Star software was used to remove artefacts and apply a band pass filter to the raw data. 

MatLab was used to implement a wavelet interpolation method for artefact correction as this 

method showed the greatest signal to noise ratio compared to other artefact removal methods 

available [54]. A high pass filter (cutoff 0.01Hz – order 3) and a low pass filter (cutoff: 0.5 Hz 

– order 5) was applied for the band pass filtering stage.  

The artefact-free, filtered data was then converted into oxygenated [HbO] and de-oxygenated 

[HbR] haemoglobin concentrations and extracted into an Excel spreadsheet. The CBSI formula 

was then applied to the data as described in 4.3.1.  

The processed FNIRS data was the extracted from Excel to R studio. R studio was used to write 

the code needed to separate the data into epochs. The HBO data for the entire workflow for 1 

participant consisted of an average of 82,000 frames (~546s). As the task duration (~484s + or 

– 15, ~546 + or – 33s, ~445 + or – 6.5 for distracted, increased workload and fatigue 

respectively) slightly differed for each participant with respect to their group, the HBO data 

was divided into epochs. The fixed number of extracted epochs was based on the shortest task 

duration, resulting in 52 (~8s) epochs for fatigued and distracted groups and 57 (~9.5s) epochs 

for the increased workload group. Each epoch was processed independently as this enabled us 

to show the exact parts of the workflow that had the highest levels of activation.  

9.2.1.1 Oxygenation measures 

Oxygenation measures were computed using oxygenated [HbO] haemoglobin signals on each 

epoch. The value x represents the oxygenated haemoglobin [HbO] signal for one epoch (52-57 

samples) and one optode. The Six oxygenation measures computed are as follows: Average, 

Variance, Area Under the Curve, Skewness, Slope and Kurtosis.  

The Average, Variance, Skewness and Kurtosis were calculated using the following formula: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑥 = 𝐸 𝑥         𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  𝑥 = 𝐸[ 𝑥 − 𝐸 𝑥  2]                                       (5) 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠  𝑥 =
𝐸[(𝑥−𝐸 𝑥 )

3
]

 𝐸[(𝑥−𝐸 𝑥 )
2
]

3
2

     𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠  𝑥 =
𝐸[(𝑥−𝐸 𝑥 )

4
]

 𝐸[(𝑥−𝐸 𝑥 )
2
]
2
 
                           (6) 

The Area Under the Curve (AUC) was calculated using the sum of the absolute values of the 

signal: 
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𝐴𝑟𝑒𝑎 𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝐶𝑢𝑟𝑣𝑒 = ⅀|𝑥|                                                                (7) 

The slope was calculated using the least-squared linear regression with the polyfit MatLAb 

function. 

9.2.2 Feature Extraction  

9.2.2.1 Region of interest 

To reduce the amount of data, the 15 channels were condensed to 3 regions of interest (ROI); 

The left side of the dorsal lateral pre-frontal cortex (DLPFC), the middle DLPFC and the right 

side DLPFC. The oxygenation features were extracted by averaging all the oxygenation 

features from the 15 channels included in the 3 regions. This gave us 6 measures for each 

oxygenation feature per subject and per epoch.  

9.2.3 Classification and Cross-Validation 

For this study a Linear Discriminant Analysis (LDA) with regularization of the empirical 

covariance matrix by shrinkage (the shrinkage method) was used as this method has proved to 

be robust for use with Brain-computer interfaces (BCI) and passive BCI (pBCI) application 

[45] [73] and also with fNIRS [51] [72].  

 

The Shrinkage Method 

The shrinkage method is used to penalize the inclusion of less informative predictors resulting 

in increased classification accuracy. Based on the prediction equation below in 9.2.3.1, 

shrinkage finds coefficients �̂� that minimize the sum of squared residuals (RSS) with the goal 

of finding coefficients that make predictions as close as possible to the observed responses 

(make residuals as low as possible). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒                  𝑹𝑺𝑺 = ∑  𝑦𝑖 − �̂�𝑖 2
𝑛

𝑖=1
 𝑊ℎ𝑒𝑟𝑒  𝑦𝑖 − �̂�𝑖 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙                (8) 

 

Each workplace factor was separated via an intra-subject binary classification (I.E distraction 

1, standard test 0). Each participant had to perform 1 of the 6 different workflow tasks 

(standard, distracted, increased workload, increased workload * distraction, fatigued, fatigued 

* increased workload). Data was processed to obtain 52 x 8s-9.5s epochs per task for each 

participant. There were 10 participants for each of the 6 different workflow tasks (10 x 52s 

epochs = 520 samples per workflow, 3120 samples in total). The prediction of performance for 
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this model was assessed by using a stratified cross validation. As this is deemed a good trade-

off between variance estimation and bias [45]. The classifier was trained using 8 of the 10 

participants (52 x 8 = 416 samples) and tried to predict the last 2 participants (one of each 

workplace factor, i.e. 2 x 52 = 104 samples). This method was applied for each of the 3 

workplace factors (distraction, increased workload and fatigue) using the same intra-subject 

binary classification (distraction, increased workload, fatigue [1] ~ standard test [0]) and the 

average performance was kept. The same method replicated using combinations of workplace 

factors (distraction*increased workload, fatigue*increased workload [1] ~ standard test [0] and 

again, the average performance was kept. Regarding the features, 2 different types of 

comparisons were done. The first was evaluating each of the 6 features separately. Secondly, 

features were combined to evaluate their potential. They were merged into couples (2 x 2) and 

the classification performance of each couple was evaluated [54].  

9.2.3.1 Further Validation 

The R studio and MatLab LDA was further validated by manually inputting code step by step 

into Excel. This was done on 10 randomly selected participants out of 60, throughout all 3,120 

samples. This was done as follows: 

• Firstly, the data analysis software tool was installed onto Excel.  

• 52 x 8s epochs are manually grouped into the binary categories (workplace factor 

[distraction, fatigue, increased workload] 1, standard test 0).  

• A regression analysis is run using the analysis tool. Input y is the binary group and input 

x is the HbO values from all 15 channels. 

• Using the coefficients output from the regression analysis a ‘normalised prediction’ can 

be made. This is done by the sum of the average HbO from each epoch from each 

channel multiplied by the coefficient of the corresponding channel. 

 

�̂�𝑖 = �̂�𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + �̂�1𝑥1 + �̂�2𝑥2 …… .+�̂�15𝑥15                                                   (9)  

𝑤ℎ𝑒𝑟𝑒 �̂�𝑖 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, �̂� = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, 𝑥 = 𝐻𝑏𝑂 𝑜𝑢𝑡𝑝𝑢𝑡 

• The normalised predictions are averaged for binary group 1 and 0. 

• A ‘cut-off’ value can then be obtained by multiplying the number of samples in binary 

group 0 with the normalised prediction of group 0, the same for group 1, then dividing 

the sum of the 2 multiplications by the total number of samples in group 0 and 1. 
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𝐶𝑢𝑡𝑡 − 𝑂𝑓𝑓 =
( 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑜𝑓 0∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 0)+ 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑜𝑓  1∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 0+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1
                        (10) 

𝑊ℎ𝑒𝑟𝑒 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑟𝑜𝑤 

 

• If the normalised prediction is smaller than the cut-off then group 0 is used, otherwise 

group 1. 

• If the Group value given from the bullet point above matches the binary group of the 

sample, then we have a correct prediction. 

9.2.4 Statistical Assessment  

9.2.4.1 Subjective workload comparison  

Paired sample t-tests were performed in order to compare the average mental workload 

obtained in HbO for the workplace factors, workflow stage and region of interest amongst 

participants. 

9.2.4.2 Classification performance significance  

For a problem like ours involving 2-classes, the theoretical chance level for classification is 

100/2=50%. However, this is only correct for an infinite sample size. To assess our classifier’s 

significance (decoding error). The classification error was modelled using a binomial 

cumulative distribution, as this has shown significance on other studies [43]. The binomial 

cumulative distribution was calculated as follows: 

P Z = ∑ (𝑛
𝑘
)x  

1

𝑐
 𝑖  ×  

𝑛

𝑖=𝑧

𝑐−1

𝑐
 𝑛−1                                                   (11) 

Where P is the is the probability that the correct class is predicted by at least Z times. N is the 

sample number. C is the number of classes.  

The performance classification was assessed by repeating the stratified cross validation for all 

workplace combinations and then averaging. As previously stated, our classifier was trained 

using 8/10 participants (416 samples) and tested on the last 104 samples. Using the cumulative 

binomial distribution, it sets the 5% significance classification threshold at 56.02% chance. 

9.2.4.3 Classification performance comparison  

In order to compare the classification performance for each feature, a repeated measure 

ANOVA was used considering FEATURES (or COMBINED FEATURES) within factors. 
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9.3 Results 

The data used to conduct the LDA was taken from the fault solution workflow stage. This was 

done due to the fault solution stage having the most significance as outlined by the ANOVA 

results above in chapter 5,6,7 and 8. The stressors are first analysed individually against a 

standard test, they are then analysed against one another. 

9.3.1 Classification of Individual Performance shaping Factors and Individual Features with 

respect to Chromophore. 

9.3.1.1 Distracted participants 

Figure 9.1 depicts the classification performance of distracted participants for each of the 6 

features using HBO signals. So that we can compare the classification performance with 

features, a repeated measure ANOVA study was performed. A significant effect was found for 

feature type on the classification performance for distracted participants [F(5,234) = 6.96, p < 

0.01]. Pairwise comparisons showed significant differences between features for the HBO 

signal. Specifically, Area Under the Curve and Variance had a significantly better performance 

than Kurtosis, Slope, Skewness and Average. There was no significant effect shown between 

Kurtosis, Average, Skewness and Slope. Pairwise comparisons also showed a significant effect 

for Area Under the Curve (78.25%) and Variance (77.38%) when compared to all other features 

(=<76.4%).  

Every oxygenation feature resulted in an average classification performance above change 

(>56.09%). Moreover, the minimum classification performance is kurtosis (72.8%) which 

equates to 16.7% greater than the chance level. 

 

Figure 9.1 - Classification Performance model of distracted participants. 



153 
 

Table 9.1 below shows the classification performance for each feature for each participant (S1-

20). This allows us to see specifically how each participant performed (classification 

performance) with respect to oxygenation features thus, how human performance is affected 

[45] as a result of distraction. There is a trend shown; AUC, shows the highest classification 

performance percentage on average for all participants.  

Table 9.1 – Distracted versus a standard test classification performance for each epoch with 

respect to feature type. 

 

 

9.3.1.2 Fatigued Participants 

Figure 9.2 shows the classification performance of fatigued participants for each of the 6 

features, using HBO signals. In order to compare the classification performance with features, 

a repeated measure ANOVA study was performed. A significant effect was found for feature 

type on the classification performance for fatigued participants [F(5, 234) = 8.11, p < 0.01]. 

Pairwise comparisons showed significant differences between features for the HBO signal. 

Specifically, Area Under the Curve (77.29%) had a slightly better performance than Variance 

(76.26%) and a significantly better performance than Kurtosis (70.45%), Slope (71.94%), 

Skewness (74%) and Average (71.9%).  

Participants Average Variance AUC Skewness Slope Kurtosis

S1 75 77 80 76 74 73

S2 73 75 80 77 75 74

S3 77 75 79 77 76 73

S4 74 77 80 76 73 75

S5 76 76 77 75 73 72

S6 75 77 78 77 74 72

S7 74 79 78 76 76 72

S8 77 75 80 77 75 74

S9 76 75 79 75 74 75

S10 75 75 80 77 73 74

S11 78 77 79 76 73 73

S12 74 78 79 75 72 73

S13 74 77 79 77 74 77

S14 74 79 77 75 74 75

S15 75 76 78 75 75 73

S16 75 75 79 76 75 74

S17 78 77 80 75 73 72

S18 74 78 79 75 73 72

S19 75 76 80 77 74 73

S20 75 77 78 74 73 72

Distraction vs Standard
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Every oxygenation feature resulted in an average classification performance above chance 

(>56.09%). 

 

Figure 9.2 - Classification performance of Fatigued participants 

Table 9.2 shows the classification performance of each feature for each participant. This allows 

us to see the influence of fatigue against a standard test by the resultant classification 

performance. This shows the oxygenation features and their corresponding classification 

performance. The higher the classification performance, the greater the influence of fatigue 

[45]. Again, there is a trend between classification performance and the oxygenation feature 

AUC. 
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Table 9.2 – Fatigued versus a standard test classification performance for each epoch with 

respect to feature type. 

 

 

9.3.1.3 Increased Workload Participants 

Figure 9.3 depicts the classification performance of the increased workload participants for 

each of 6 oxygenation features. In order to compare the classification performance with 

features, a repeated measure ANOVA study was performed. A significant effect was found for 

feature type on classification performance for Increased Workload participants [F(5,234) = 

4.17, p<0.01]. Pairwise comparisons showed significant differences between oxygenation 

features. Area Under the Curve (85.15%) and Variance (83.96%) had the best performance 

compared to Kurtosis (79.02%), Slope (80%), Skewness (82.9%) and Average (80.1%). 

All oxygenation features had a significantly higher classification performance than the chance 

value (56.09%). Additionally, the lowest classification performance is Kurtosis (79.2%), which 

is 23.11% above the chance value. 

Participants Average Variance AUC Skewness Slope Kurtosis

S1 74 76 77 74 73 70

S2 75 77 75 73 72 71

S3 73 77 74 75 72 70

S4 73 76 77 75 72 71

S5 73 78 77 76 73 70

S6 75 76 78 74 74 69

S7 74 75 79 74 73 71

S8 74 76 77 74 72 72

S9 73 76 76 75 73 72

S10 73 76 79 76 74 72

S11 74 77 78 76 72 70

S12 73 77 78 75 71 70

S13 75 75 77 74 72 71

S14 74 78 78 75 72 71

S15 74 76 76 73 72 72

S16 74 75 79 73 73 69

S17 73 74 78 72 74 69

S18 73 77 78 73 74 71

S19 73 78 77 72 73 71

S20 74 77 77 73 74 70

Fatique vs Standard
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Figure 9.3 - Classification performance of Increased workload participants. 

Table 9.3 shows the classification performance of the 6 oxygenation features for each 

participant throughout the task. Again, the classification performance features tell us the 

influence of increased workload against those participating in a standard test.  [45]. 
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Table 9.3 – Increased workload vs standard workload classification performance for each 

epoch with respect to feature type. 

 

 

9.3.2 Classification Performance of PSF against PSF with respect to individual oxygenation 

features and chromophore. 

 9.3.2.1 Distraction against Fatigue 

Figure 9.4 shows the classification performance of distraction against fatigue with respect to 

individual oxygenation features. As seen below the only classification performance value 

above chance was AUC (57.9%). Therefore, it can be said that there are no significant findings 

when testing distraction against fatigue. 

Participants Average Variance AUC Skewness Slope Kurtosis

S1 81 85 84 83 81 79

S2 80 84 86 82 80 79

S3 80 85 87 83 81 79

S4 81 84 85 84 80 80

S5 80 84 87 83 80 80

S6 82 83 84 82 82 79

S7 82 84 86 84 81 80

S8 80 85 83 84 82 81

S9 80 85 87 83 80 81

S10 79 84 85 85 81 80

S11 80 85 86 83 82 79

S12 78 83 87 82 82 80

S13 80 85 86 82 81 79

S14 82 86 85 83 80 80

S15 81 83 85 85 80 81

S16 81 83 85 82 80 80

S17 81 84 87 82 81 79

S18 80 82 86 83 80 80

S19 82 83 88 84 81 81

S20 80 84 84 83 80 79

Increased Workload vs Standard
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Figure 9.4 - Classification performance of distraction against fatigue with respect to individual 

oxygenation features. 

9.3.2.2 Increased Workload against Distraction 

Figure 9.5 shows the classification performance values of increased workload against 

distraction with respect to oxygenation features. All oxygenation features have a classification 

performance above chance (56.09%). Kurtosis has the lowest performance percentage of 

62.4%, which is 6.3% higher than chance. The highest classification performance came from 

AUC (68.5%).  

 

 

Figure 9.5 - Classification performance of Increased workload against distraction with respect 

to oxygenation features. 
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Table 9.4 shows the classification performance values for each participant with respect to 

oxygenation features. Again, there is a trend that AUC shows the highest performance values 

throughout the study. 

Table 9.4 - Classification performance of individual participants with respect to oxygenation 

features. 

 

 

9.3.2.3 Increased workload against Fatigue 

Figure 9.6 shows the classification performance percentages with respect to oxygenation 

features. All oxygenation features show performance percentages above chance (56.09%). The 

lowest performance shown came from kurtosis (67.4%) which is 11.31% above chance. The 

highest performance value came from AUC (71.5%). 

Participants Average Variance AUC Skewness Slope Kurtosis

S1 66 68 70 66 63 62

S2 67 67 69 65 64 63

S3 66 68 69 66 65 64

S4 68 69 69 66 64 63

S5 67 67 60 64 66 63

S6 65 65 67 65 65 64

S7 67 66 69 67 64 65

S8 68 66 69 65 63 62

S9 65 67 68 64 64 64

S10 64 65 67 65 63 64

S11 65 64 68 66 63 63

S12 64 68 68 65 64 61

S13 64 69 69 64 64 61

S14 67 69 70 63 63 62

S15 65 68 69 64 64 63

S16 65 67 70 65 64 62

S17 64 68 67 67 63 63

S18 65 69 68 65 65 64

S19 66 69 68 64 63 63

S20 64 69 67 64 64 62

Increased Workload vs Distraction
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Figure 9.6 - Classification performance of increased workload against fatigue with respect to 

oxygenation features. 

Table 9.5 below shows the classification performance values for individual participants with 

respect to oxygenation features. AUC and variance showed to have the highest performance 

percentages throughout the study. 

Table 9.5 - Classification performance of individual participants with respect to oxygenation 

features. 

 

 

 

 

Participants Average Variance AUC Skewness Slope Kurtosis

S1 70 71 72 69 70 67

S2 71 71 73 68 71 66

S3 70 70 72 70 70 68

S4 70 69 71 71 69 68

S5 71 68 72 69 68 67

S6 69 71 73 68 69 66

S7 69 72 71 69 68 65

S8 68 71 70 72 69 68

S9 72 72 71 72 68 69

S10 71 69 73 71 67 69

S11 71 73 72 70 69 68

S12 70 72 71 69 68 67

S13 70 73 70 68 69 68

S14 72 73 71 69 70 68

S15 71 72 72 70 68 69

S16 70 73 71 70 68 67

S17 69 72 71 71 69 67

S18 69 72 72 71 69 68

S19 71 71 70 70 68 66

S20 70 71 71 69 69 68

Increased Workload vs Fatigue
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9.4 Discussion  

The main motivation behind this study was to use fNIRS to develop a scientific error model 

that could be used to assess seafarer performance whilst dealing with adverse PSFs commonly 

experienced on board a ship. Our subjective measures confirmed that a normal workplace 

environment is heavily contrasted to that of adverse workplace factors as workplace factors led 

to significantly higher average oxygenated haemoglobin levels when compared to a standard 

test. 

The overall classification results confirmed that each workplace factor could be discriminated 

in an engine room simulator. This is substantiated by previous neuro-ergonomics studies 

showing that fNIRS is well suited for operator mental state monitoring in ecological situations 

[18] [45] [70] [81]. 

The best classification accuracy reached 85.15%, taken from AUC oxygenation feature for the 

increased workload against a standard test study. This result compares favourably with recent 

studies. For instance, Kevin Verdiere et al [45] obtained a classification performance of 66.9% 

on 11 subjects using oxygenation features, connectivity features and chromophore 

concentration. Studies by Hong et al [146], Holper and Wolf [147], Naseer et al [148] obtained 

classification performance of 75.6% on 10 subjects, 81.3% on 12 subjects and 93% on 7 

subjects respectively. On first glance these results compare similarly with ours however, these 

studies did not consider a continuous but multiple set sub-tasks assessment of specific cognitive 

activity contrarily to our engine room simulator task which involved different executive and 

attentional skills. Similar to our study Khan and Hong 2015 [149] also showed that oxygenation 

features could yield a high accuracy (84.9%) using a driving simulator to monitor 

fatigue/drowsiness.  

The comparison of oxygenation features classification performance revealed that AUC and 

Variance resulted in significantly higher classification accuracies for all workplace factors 

(Distraction, Fatigue, Increased Workload). This is similar to the study conducted by Vierdiere 

et al [45] where AUC was found to be the oxygenation feature with the most significance.  

It is interesting to note that features present complementary advantages. All oxygenation 

features are an uncomplicated and low-cost computational measurement to effectuate. This is 

of considerable advantage as long as passive Brain-Computer Interfaces are concerned. 

Moreover, the oxygenation features computed in our study can take into account both time and 

chromophore. Oxygenation features from fNIRS data have been used for some years to 
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evaluate operator performance in the aerospace sector, but up until now haven’t been used in 

the maritime sector to evaluate engine room operators. Therefore, it is difficult to compare 

results from other maritime studies. Based on the comparisons to other studies above, 

undertaken using oxygenation features as a classifier we can say that our study had a successful 

outcome. Our study provides some novel methodological guidance for the implementation of 

fNIRS based BCI metrics in the maritime industry. To the best of our knowledge, to date, this 

study is unique, to be the first to benchmark different fNIRS oxygenation metrics and to use 

them for classification purposes in ecological settings for the benefit of human error 

assessments. It paves the way forward towards operator mental state estimation in an ecological 

maritime environment, but some challenges still remain. 

Evaluating Fatigue against Distraction showed that most classification performance values 

were below chance (54-57.9%). This means that LDA could not differentiate between the levels 

of activation for participants undergoing a fatigued and distracted test. This makes sense as 

distraction and fatigue had a similar significance when analysed against a standard test.  

When comparing PSFs against one another the only significance found was between increased 

workload against fatigue or distraction. Increased workload against fatigue showed 

classification performance values of 67.4 - 71.5% and against distraction 62.4 – 68.5%. This 

shows that increased workload is the PSF that induced a significantly higher activation than 

other PSFs. On the contrary to the test of fatigue against distraction, the performance values 

shown from analysis of increased workload against PSFs indicate that distraction has a greater 

effect on participants. This is shown due to LDA being less able to distinguish (on average) 

increased workload against distraction (68.5%) compared to fatigue (71.5%). The 3 percentage 

points is a subtle difference but would further substantiate the larger effect sizes for distraction 

found in the ANOVA studies in chapter 5 and 6.  
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9.5 Concluding remarks 
The classification performance percentages for PSF against a standard test showed that 

workload had the highest prediction scores, indicating that workload has the highest 

significance with respect to human error in a ship engine room. This is followed by distraction 

and then fatigue with the lowest prediction scores. 

The area under the curve oxygenation feature provided the highest average classification 

percentage scores. Combined features or feature couples were not used due to no significant 

increase in classification percentages.  

The classification performance percentages of PSF against PSF showed that workload was 

again the most significant PSF, as fatigue against distraction tests provided low classification 

percentage scores, most of which were below chance.  
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Chapter 10. Final Conclusion 

 

10.1 Introductory remarks 

This is the final chapter of the thesis defining; how the objectives have been achieved, the 

limitations and critique of the study, contributions to existing knowledge and potential future 

research. 
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10.2 Reflections 
In chapter 3 the ship accident databases were analysed to find the most significant PSF with 

relation to human error incidents within a ship engine room. The relevant PSFs were 

determined by consequence and frequency of occurrence defined in the individual incident 

reports. These reports allowed for a tabulated formatting of PSFs reported. Once tabulated, the 

individual PSFs’ occurrence frequency could be tallied and the most frequent investigated. 

Therefore, objective one has been achieved. 

Due to the multi-disciplinary nature of this research, a multitude of differing literature topics 

were reviewed. This literature was reviewed in chapter 2. The information needed from the 

literature reviewed varied between maritime HRA, psychology techniques, human factors 

techniques, neuroscience, neuro-ergonomics, Neuro-imaging and simulation studies. There are 

many differing techniques and settings for the equipment used in BCI-fNIRS studies. 

Therefore, concise summaries were used detailing the techniques. This chapter provided the 

foundation knowledge to later achieve objectives two, three and four. 

Each participant was connected to fNIRS whilst undergoing a ballasting task. The data 

provided gave many novel outcomes discussed throughout the thesis. Therefore, the use of 

fNIRS, as a method to measure operator functional state was a successful approach. This 

approach was conducted in chapters five, six, seven and eight where objective three was 

achieved. To reflect on this approach, it could have been beneficial to gather data from 

additional regions of the cerebrum in order to look at a connectivity matrix.  

A ship engine room simulator was used to develop a novel risk-based simulation system to 

support engine room operations. The tasks performed by the participants would exactly 

replicate the tasks performed in ‘real-world’ operations. Using a ballasting scenario, a number 

of risk-based assessments could be made for monitoring, fault detection, problem solving, 

working memory and decision making. The TRANSAS system also allowed the examiner to 

closely watch and record each participant as they navigated through each sub-task. Therefore, 

the second project objective was successfully achieved.  

PSFs were defined using ship accident databases as outlined above in chapter three. These PSFs 

were implemented into the ballasting scenario and tested against a standard task and against 

other PSFs. This allowed for the accurate analysis of PSF influence on OFS and in turn human 

error. Given the results obtained, the influence of PSF on OFS is clearly shown. Therefore, this 

further substantiates that objective three was successfully achieved. 
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In chapters five, six, seven and eight, ANOVA is used to evaluate the significant effect of 

stressors and the workflow used. In chapter nine LDA is used to model the relationship between 

OFS and PSF to obtain HEP (classification performance-based error probability). Given the 

results we can clearly see the significant effects and differences in classification performance 

percentages. Therefore, the model has successfully shown the PSFs most likely to contribute 

to human error. It also shows that the change of error is greater for certain PSFs when compared 

to others. Therefore, objectives four and five have been attained.  
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10.3 Limitations and critical analysis of the research project 
Expanding our study to use connectivity measure could be done in the future. This could be of 

benefit due to the results shown in [45] [51] where connectivity measures resulted in a slightly 

more accurate classification performance when compared to oxygenation features. An 

explanation for this would be that the evaluation of workflow-related concentrations (e.g. 

haemodynamic response) is based on the time-locked event. In the past it has been suggested 

that these workflow related responses cause a minute increase (<5%) in neural energy depletion 

when compared to general brain energy consumption [75]. Therefore, by solely focusing on a 

localized DLPFC haemodynamic response, some of the neural activity is disregarded. There is 

an argument that states, cognition relies on the activation of multiple cerebral areas as opposed 

to single site processing units [139], [150], [151],. Therefore, the evaluation of the interaction 

between cerebral networks could provide a more accurate classification performance coupled 

with more information on neural dynamics. Especially when attempting to understand the risks 

associated with real-life engine room factors [152], [153], [154]. Furthermore, some relevant 

investigations stated that amplitude or frequency correlations amongst low frequency 

oscillations (<=0.1Hz) are closely associated to cortical processes [155], [156], [157]. 

Therefore, when a baseline reading is taken from each participant, connectivity features based 

on frequency or amplitude coupling could give an outlook on the cognitive process with respect 

to continuous monitoring of neural activity. 

The engine room simulator is limited to its capabilities as it is easy to simulate seafarer duties 

within the engine room but the only consequence to an incorrect action is an engine room alarm. 

The alarm is enough to neuro physiologically activate each participant but in a real-life 

scenario, an incorrect action could cause a physical or visual problem. For example, fire, flood, 

electric shock, ship listing, the ship sinking, injury and even death. The consequences listed 

would presumably cause an increased neurophysiological activation, which is not shown on 

this study. 

Due to the sensitivity of the infrared sensors and detectors, a desktop version of the engine 

room simulator was used. In reality, seafarers would be moving around whilst completing the 

workflow used for this study, but this would have caused great interference, an increased 

number of artefacts and anomalous data. For future experiments, an investigation into how it 

could be possible to modify the fNIRS system, so it can be used with a portable backpack 

would give a more realistic investigation. 
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A sizable limitation is concerning the fNIRS signal evaluation. The fNIRS signal is the 

consequence of a global integrant affected by skin blood flow and a particular neuronal 

component. If our study did not contain the analysis of separate epochs then some algorithms 

based on spatial filtering and principal component analysis such as the one used by Zhang et al 

[158] could have been used. Additionally, fNIRS signals can be influenced by several other 

physiological factors such as blood pressure, respiration, heartbeats and perspiration. It could 

have been beneficial to record those factors in order to evaluate the way in which they 

contribute to level of engagement.  

Due to the limitations involving the paradigm settings it was not possible to make any 

conclusion regarding the underlying neurophysiological processes. However, our classification 

performances were high and satisfactory. 

Obtaining candidates with ship engine room experience to different levels, coupled with 

experience of using the TRANSAS software was very difficult. Therefore, in-house training 

had to be done for each candidate as stated in chapter 3.1.1. The only way to differentiate 

experienced and inexperienced was to train the inexperienced candidates passively. Candidates 

were tested on passive training compared to practical training. It would have been preferable 

to test participants with 10 years+ ship engine room experience and participants with a few 

weeks ship engine room experience, all trained the same way. Also, each of the four 

experiments involved ten participants that performed an equal share of two conditions (one 

condition each). This is a limited number of trials due to the difficulty in obtaining a larger 

number of candidates with the required credentials and the time constraints for training and 

experimentation. 

Candidates taking part in the fatigue study would be required to wear the cap for a long period 

of time (>45 minutes). Therefore, they would experience discomfort and some mild pain from 

the nodes. 

The choice of the four workplace conditions (Fatigue, Increased Workload and Distraction 

versus A standard test) could have potential confounds such as motor responses that could have 

an influence on our analysis. However, motor areas were not specifically targeted therefore the 

influence of such areas is low.  

The motivation for our project is to monitor the brain activity of engine room operators when 

facing realistic workplace factors. The manipulation of such factors in controlled, ecological 

environments such as on an engine room simulator remains challenging. The first experiment 
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was a datum study but was also used as a way to set the path to more refined protocols to 

characterize different workplace factors with the view to perform more efficient participant 

training and monitoring as achieved by Toppi et al [71].  

Finally, in critical engine room emergency systems the rate of false negatives (>20%) could 

not be afforded due to the risk of fatality. Therefore, the performance classification could be 

improved by combining bimodal EEG and fNIRS pBCI’s [159] but it is very unlikely that a 

classification performance of 100% will ever be reached. 
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10.4 Contributions to knowledge 
This project has contributed considerably towards the knowledge of HRA within the maritime 

sector. This project is the first to date within the maritime sector to model PSFs against OFS 

using fNIRS combined with an engine room simulator.  

This project is the first within the Maritime sector to obtain a classification performance of 

PSFs by combining the use of fNIRS and an Engine room simulator.  

The use of fNIRS allows for a non-speculative data set of OFS whilst undertaking real engine 

room tasks. Showing the exact areas of the workflow and sub-tasks that induce higher levels 

of activation. The result of this gives the maritime sector the knowledge of the problematic 

areas of engine room tasks allowing for RCOs to be implemented. 

The techniques developed in this study can be used in future HRA studies in order to obtain a 

more accurate outcome. 

This study contributes to the current knowledge of the relationship between distraction, fatigue 

and workload with respect to operator performance via fNIRS providing a detailed outlook on 

OFS whilst experiencing the PSF listed above. Showing the PSF out of the three most likely 

associated with mental workload based human error.  
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10.5 Future Research 

Our developed human error framework using neuroimaging and BCI techniques detailed above 

could be used in various safety critical systems (for example Container shipping, LNG shipping 

or the holistic approach to the transportation of goods [port terminals, lorries, trains and 

shipping]) to gauge operator performance, crew/team performance, operator mental state, the 

root cause of error, to develop a human error framework or performance classification model 

specific to each system and a much greater level of human error probability (HEP) accuracy.  

Our framework could also be taken a step further. Given that the tasks are separated into 

epochs, an investigation could be performed on the specific problem areas detailed by the 

higher LDA prediction or the higher levels of HBO for each individual or group of epochs. 

From there, the specific problem sub-task and the root cause of the error could be identified. 

This can be done in 2 ways: 

1. There are a number of different ways to complete a sub-task/task. By looking at 

operator functional state after completing the problem task we can compare the 

different routes through the task against HBO or LDA outputs in order to see which 

route shows the highest levels of activation. 

2. To analyse the data from specific parts of the sub-task (as opposed to epoch group 

average) where the participants experience the highest levels of activation, indicating 

the problem area to an accuracy of a single second.  

It would be beneficial to study in a similar way, the effects of performance shaping factors 

(PSF) using a hydraulic simulator to enable us to mimic real environmental conditions (e.g. 

noise and vibration and adverse weather conditions [pitch and roll]).  A comparison could then 

be made of the performance shaping factors individually and when combined, to see which 

PSF or combination of PSF’s has the most significant effect on neurophysiological activation, 

indicating the highest likelihood to contribute towards human error. 

A ballasting workflow task was used for this study, but it would be beneficial to study other 

engine room scenarios. (e.g. bunkering, sea water treatment, electrical systems or machine 

maintenance). Evaluating the participants’ mental workload for each task would indicate the 

scenario that the participants on average, found the most difficult thus, indicating the tasks with 

the highest risk of human error. 

A connectivity study could be performed on the data obtained to see the neural networks 

between the left side and right side DLPFC. This would allow us to see the parts of the DLPFC 
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that are activated simultaneously, allowing us to use fNIRS as a prediction method towards an 

alternative performance classification model or to use connectivity as a method of identifying 

the areas of a task where participants have the highest levels of activation.  

10.6 Recommendations 
This project, methodology, model and research findings will be relevant to differing sectors. For 

example, this method and model could not only be applied to maritime engine room operations but 

also to bridge operations where it is assumed that deck officers will experience similar PSFs. 

This work could also be applied to operator training in various sectors. In the maritime sector this 

work could be used to evaluate engineer and deck officer training procedures by either: 

• Evaluating one training programme against another with respect to OFS post training on a 

ship simulator. This would tell educators the value of their training programmes against 

another and how each operator benefits from the training. 

• Evaluating the difference in OFS before and after the training programme to see the benefit 

of the training programme compared to a totally inexperienced operator. 

• To evaluate practical against theoretical training methods against OFS. This could influence 

training techniques with respect to depth of learning and operator competency. 

• Training tasks and sub tasks can be broken down into sections and individually evaluated to 

gauge an understanding of their validity and varying levels of difficulty from a 

neurophysiological activation perspective. 

• Evaluating operator against operator to see who would be best suited to which role. This 

could achieve an optimal work force of operators. 

As stated earlier these techniques can be applied to any simulated scenario using a desktop 

simulator of tasks or applied to an aircraft, ship, train driving, automotive driving simulator. 

Final note -  Ethics of the study 
Ethical approval of this study was obtained via Liverpool John Moores Universities ethics review 

panel. A full documented outline of this exact tasks, including environment and equal pay scales 

(based on an hourly rate) to participants.  
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1- Introduction 

1.1 - Abbreviations 

  

 

 

 

ACB Air Circuit Breaker 
AHU Air Handling Unit 
AOP Additional Operator Panel 
BMCS Boiler Monitoring & Control System 
BW Bilge Well 
C.F.W. (CFW) Cooling  Fresh Water  
C.S.W. (CSW) Cooling  Sea Water 
C/R Control Room 
CB Circuit Breaker 
CCC Cargo Control Console 
CCR Cargo Control Room 
CMS Control Monitoring  System 
C.O.P.T. (COPT) Cargo Oil Pump Turbine 
DGU DEIF Generator Unit 
DU Display Unit 
E/G (EG) (EmG) Emergency Generator 
E/R (ER) Engine Room 
E/S Engine Side 
ECC Engine Control Console 

L.S.H.F.O. (LSHFO) Low Sulfur Heavy Fuel Oil 
L.S.M.D.O. (LSMDO) Low Sulfur Marine Diesel Oil 
L/T (LT, L.T.) Low Temperature 
LAH  Level Alarm High 
LAL Level Alarm Low 
LCC Large Crude (oil) Carrier 
LCP Local Control Panel 
LGSP Local Group Starter Panel 
LIAH  Temperature Indicator Level High 
LOP Local Operating Panel 
D.O. (MDO) Marine Diesel Oil 
M.G.O. (MGO) Marine Gas Oil 
M.G.P.S. Marine Growth Prevention System 
M/E (ME) Main Engine 

ECR Engine Control Room 
EMCY  (EM’CY) Emergency 
ESB Emergency Switch Board 
EXH Exhaust 
F.O. (FO) Fuel Oil 
F.W. (FW) Fresh Water 
F/E Finishing with Engine 
FF Fire Fighting 
FP Feeder Panel 
FPP Fixed Pitch Propeller 
G/E (GE) Generator Engine 
GB Generator Breaker 
GPBP Group Push Button Panel 
GSP Group Starter Panel 
H.F.O. (HFO) Heavy Fuel Oil 
H.T. (HT) High Temperature 
HPP Hydraulic Power Pack 
HPU Hydraulic Power Unit 
I.G.G. (IGG) Inert Gas Generator 
J.W. (JW) Jacket Water 
L.O. (LO) Lube Oil 
L.P. (LP) Low Pressure 
L.S. (LS) Low Sulfur 

MCD Main Circuit Diagram 
MSB (MSBD, MSWB) Main Switch Board  
O.W.S. (OWS) Oily Water Separator 
  

P.C.O. (PCO) Piston Cooling Oil 
P/P (PP) Pump(s) 
PAH  Pressure Alarm High 
PAL Pressure Alarm Low 
PB Push Button 
PD DB (PDB)  Power Distribution Board  
PMS Power Management System 
RCS Remote Control System 
S.W. (SW) Sea Water 
S/G (SG) Steering Gear / Shaft Generator 
ShG Shaft Generator 
S/T Stern Tube 
SC Sea Chest 
STP Sewage Treatment Plant 
T/C (TC) Turbo compressor 
TAH Temperature Alarm High 
TAL Temperature Alarm Low 
T/G (TG Turbo Generator 
TI Temperature Indication 
TIAH  Temperature Indicator Alarm High 
TK Tank 
VIT Variable Injection Timing 
W Water 
W.B.P.T. (WBPT) Water Ballast Pump Turbine 
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1.2 - The Ship 
 

The simulator is modeling the Propulsion Plant, Electric Power Plant, Control Monitoring System 

(CMS), auxiliary systems, equipment, units and mechanisms of a general Tanker LCC (Large Crude Oil 

Carrier). The prototype for development is Aframax Tanker 115,000 DWT. 

Ship general characteristics: 

 

 

 

 

 

 

1.3 - Simulator console button bars 
The pages (buttons on the button bar) of the Propulsion console are described in brief below: 

Max. continuous rating (MCR) 736 kW at 105 RPM 
Normal continuous rating (85% of MCR 364 kW at 101.4 RPM 
Length overall 248.92 meters 
Breadth, moulded 43.8 meters 
Designed draft, moulded 14.925 meters  
Service speed 15.5 knots 



188 
 

• Displays of the page BCC model the Bridge control console panels; 

• Displays of the page ECR model the Engine Control Room control console panels; 

• Displays of the page MSB model the Electrical Power Plant Main Switchboard control panels; 

• Displays of the page CMS model Control Monitoring System remote control displays on the 

ECR desk; 

• Displays of the page BMCS model Boiler Monitoring & Control System remote control displays 

on the ECR desk; 

• Displays of the page Diag model the diagnostic Cylinder Indicator Diagrams of the Main 

propulsion and Diesel engines of the generators, and combustion process; 

• Displays of the page SYS contain mimics of the ship’s systems. They model manual remote 

and local control of the respective units and mechanisms. 

• The following pages model equipment control in the ship engine rooms: 

SG – Steering Gear room page; ER1 – Engine Room 1 page; ER2 – Engine Room 2 (Deck 

2) page; ER3 – Engine Room 3 (Upper Deck)  page; ER4 – Engine Room 4 (Deck A) 

page; FFR – Fire Fighting Room page. EmG – Emergency Generator room page; CCR – 

Cargo Control Room page. 

The displays of a page menu contain mimics of the Local Operating Panels (LOPs) of the units and 

mechanisms, switchboards (SWBDs), power distribution boards (PDBs), group starter panels (GSP), 

etc. and the 3-D pictures of the engine rooms where applicable. 

The pages of the Virtual Hardware console are: 

• GSP1 – No. 1 Group Starter Panels; 

• GSP2 – No. 2 Group Starter Panels; 

• CCP – Cargo Control Panel; 

• EG  – EM’CY Generator Engine panel; 

• ESB – Emergency Switchboard and Shore connection panels; 

• G1 – Generator 1 upper and lower panels; 

• G2 – Generator 2 upper and lower panels; 

• FP1 – MSB No. 1 Feeder AC440V upper and lower panels; 

• FP2 – MSB No. 2 Feeder AC440V upper and lower panels; 

• BUS – Bus Tie panel; 

• ShG – MSB Shaft Generator upper and lower panels; 

• Syn – MSB Synchro upper and lower panels; 

• TG – MSB Turbo Generator upper and lower panels; 

• ECR – Engine Control Room panels;  

• 220v – MSB Feeder AC220V upper and lower panels; 

• Full – unified system diagram (as video wall). 

 

 

Figure 0-1 - Bottom bar of propulsion console 
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Figure 0-2 - Bottom bar of the virtual hardware console 

 

1.4 - LCS software 
The Loading Control System (LCS) software kit LCS 7957 

LCC Tanker - ‘Initial’ is designed for calculating and controlling the vessel’s loading, trim and stability in the 

course of its operation, as well as for: 

• Calculating the vessel loading by entering data on the ship’s provisions, liquid cargoes, water 

ballast and cargoes carried; saving the input loading data in the computer memory; LCS help 

system allows the trainee to familiarize with the system and its options; 

• Estimating an intact vessel trim, stability and longitudinal strength data, comparing it with the 

allowed values. 

Note:   The LCS and the task model would always both run on the same computer.  

During the execution of an exercise the simulator model communicates with the LCS and sends the 

information about the volumes and density of the liquids in cargo and ballast tanks. Using this data the LCS 

calculates the vessel loading, trim and stability parameters. These values are displayed in the LCS dedicated 

windows and are also displayed on the CMS panels of the simulator. 

LCS can be switched between Online and Standard modes. 

• In Online mode, LCS constantly receives the actual values of Volume, Density and Temperature for 

cargo tanks.  

• In Standard mode the parameters of cargo tanks and store tanks can be edited manually. 

Note :  When the simulator is running, the LCS must be in Online Mode. Switch to Standard mode only when the 
exercise is paused. 

Note :  In Online mode, make sure, that the Product column in the Cargo Tanks window is empty for each of cargo 
tanks. This is required for correct displaying of actual values. 
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1.4.1 LCS system Monitoring (ballast tanks) 

 

When monitoring the ballast tanks in order to achieve the desired volume please refer to the 

pictures above and below. To load the correct screen in order to monitor the ballast tank volume 

please follow the instructions below; 

• Right click anywhere on the ‘ship picture’ as seen above. A ‘Ship picture options’ box will 

appear.  

• Select the Ballast box and click ok. 

• Then select ‘options’ at the top of the screen, then mode, the standard.  

• Then select the tank that you want to monitor (highlighted in green as seen below). 

• Re-select ‘options’, then mode, the online. 
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1.5 Alarm System 

 

When an alarm is raised a loud siren will be head along with the alarm Icon at the top right hand side 

of the screen above will flash read (this is the alarm bell icon). When you hear and see the ship alarm 

you can see the system that needs attention by following the instructions below; 

• Click on the CMS icon on the bottom left hand screen (as shown above). 

• Click on the alarm summary icon at the bottom of the CMS screen. 

• Check the POINT-ID description to locate the source of the problem. 

1.6 Ballast System 
In order to start ballasting follow the instructions below; 

 

• Select ‘CCR’ icon and then ballast mimic control panel. It is also advised to have the ballast 

system on the left hand screen in order to monitor the water flow. 
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• Open valves on the desired chosen water line by clicking and holding on the green buttons 

as shown above.  

• Open the ball values by clicking and holding open (o), until the value is at 100% open. 

 

 

 

When all the valves are open to the desired ballast tank you can turn the pump on by; 

• Select the cargo control room icon (CCR) at the bottom of the screen. 

• Select Ballast pump control then the below screen will appear. 

• Click and hold on the green start button for either pump 1 or pump 2. (You will notice the 

ammeter value will increase when the pump is on). 

• The system will then start ballasting. 

• The water flow is shown by the water line turning green and moving in the direction towards 

the ballast tanks as shown above. 
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Appendix B – R-studio code 
 

library(MASS) 

 

######Upload data###### 

 

dataDistraction <- read.csv(file.choose(), header=TRUE) 

 

dataWorkload <- read.csv(file.choose(), header=TRUE) 

 

dataTraining <- read.csv(file.choose(), header=TRUE) 

 

dataFatigue <- read.csv(file.choose(), header=TRUE) 

 

####LDA analysis on data##### 
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Distraction 
 

dataDistraction.lda <- lda( Group ~ Channel.1 + Channel.2 + Channel.3 + Channel.4 + Channel.5 + 

Channel.11 + Channel.12 + Channel.13 + Channel.14 + Channel.15, 

  

data=(dataDistraction) 

 

 

dataDistraction.lda.p <- predict(dataDistraction.lda, 

 newdata=dataDistraction[,c(2,3,4,5,6,7,8,9,10,11)])$class 

 

Workload 
 

dataWorkload.lda <- lda( Group ~ Channel.1 + Channel.2 + Channel.3 + Channel.4 + Channel.5 + 

Channel.11 + Channel.12 + Channel.13 + Channel.14 + Channel.15, 

                            data=dataWorkload) 

 

 

dataWorkload.lda.p <- predict(dataWorkload.lda, 

                                 newdata=dataWorkload[,c(2,3,4,5,6,7,8,9,10,11)] 

)$class 

 

Training 
 

dataTraining.lda <- lda( Group ~ Channel.1 + Channel.2 + Channel.3 + Channel.4 + Channel.5 + 

Channel.11 + Channel.12 + Channel.13 + Channel.14 + Channel.15, 

                            data=dataTraining) 

 

 

dataTraining.lda.p <- predict(dataTraining.lda, 

                                 newdata=dataTraining[,c(2,3,4,5,6,7,8,9,10,11)] 

)$class 
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Fatigue 
 

dataFatigue.lda <- lda( Group ~ Channel.1 + Channel.2 + Channel.3 + Channel.4 + Channel.5 + 

Channel.11 + Channel.12 + Channel.13 + Channel.14 + Channel.15, 

                            data=dataFatigue) 

 

 

dataFatigue.lda.p <- predict(dataFatigue.lda, 

                                 newdata=dataFatigue[,c(2,3,4,5,6,7,8,9,10,11)] 

)$class 

 

 

###determine how well the model fits##### 

 

###Distraction#### 

table(dataDistraction.lda.p, dataDistraction[,1]) 

 

###Workload### 

table(dataWorkload.lda.p, dataWorkload[,1]) 

 

###Training### 

table(dataTraining.lda.p, dataTraining[,1]) 

 

###Fatigue### 

Table(dataFatigue.lda.p, dataFatigue[,1]) 

 

#####Cross Validate the model##### 

 

###Distractio### 

dataDistraction.lda.2 <- lda( Group ~ Channel.1 + Channel.2 + Channel.3 + Channel.4 + Channel.5 + 

Channel.11 + Channel.12 + Channel.13 + Channel.14 + Channel.15, 

                    data=dataDistraction, 
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                    CV = TRUE) 

###Workload### 

dataWorkload.lda.2 <- lda( Group ~ Channel.1 + Channel.2 + Channel.3 + Channel.4 + Channel.5 + 

Channel.11 + Channel.12 + Channel.13 + Channel.14 + Channel.15, 

                              data=dataWorkload, 

                              CV = TRUE) 

###Training### 

dataTraining.lda.2 <- lda( Group ~ Channel.1 + Channel.2 + Channel.3 + Channel.4 + Channel.5 + 

Channel.11 + Channel.12 + Channel.13 + Channel.14 + Channel.15, 

                              data=dataTraining, 

                              CV = TRUE) 

###Fatigue### 

dataFatigue.lda.2 <- lda( Group ~ Channel.1 + Channel.2 + Channel.3 + Channel.4 + Channel.5 + 

Channel.11 + Channel.12 + Channel.13 + Channel.14 + Channel.15, 

                              data=dataFatigue, 

                              CV = TRUE) 

 

###look at the assigned classes for the observation##### 

 

###Distraction### 

table(dataDistraction.lda.2$class, dataDistraction[,1]) 

 

###Workload### 

table(dataWorkload.lda.2$class, dataWorkload[,1]) 

 

###Training### 

table(dataTraining.lda.2$class, dataTraining[,1]) 

 

###Fatigue### 

table(dataFatigue.lda.2$class, dataFatigue[,1]) 
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######Results######################################################################

###### 

 

###Distraction### 

##### Predict for A = % accurite ##### 

##### predict for B = % accurite ##### 

 

###Workload### 

##### predict for A = % accurite #### 

##### predict for B = % accurite #### 

 

###Fatigue### 

##### predict for A = % accurite #### 

##### predict for B = % accurite #### 

 

###Training### 

##### predict for A = % accurite #### 

##### predict for B = % accurite #### 
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Appendix C – Distraction task questions and point at which they are 

asked 
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Appendix D – Full SPSS Analysis of data from all studies. 
 

The data below includes every analysis conducted for all studies. The majority of which was deemed 

not relevant/overkill for the final thesis. 

Distraction 

Time data 
The relevant areas of the workflow evaluated in this test are; fault occurrence (1), fault detection (2), 

and fault solution (3)(x-axis) against time (y-axis). 

 

Figure - workflow stages with respect to time 

 

As expected, a significant effect was found between workflow stages[F(2,17) = 12544.14, P<0.01, 
eta^2 = 0.99] as depicted in the figure above.  
 
Pairwise comparisons show significant effects between all workflow stages (1=Fault occurrence, 2= 
fault detection & 3=fault solution) p<0.01 as depicted below in table 7. Maulchy’s test of sphericity 
showed a significant effect therefore tests of within subject’s effects using Greenhouse-Geisser 
showed [F=23957.7, p<0.001, eta^2 = 0.99]. 
 

0

50

100

150

200

250

300

350

400

Fault Occurrence Fault Detection Fault Solution

Ti
m

e 
(s

ec
o

n
d

s)

Workflow stages

Workflow against Time



200 
 

 
Table - Pairwise comparisons of workflow stages 

Due to the significant effects shown in the above pairwise comparisons t-test were conducted in 
order for us to see the size of the effect. The fault solution stage was used as Level (i) for all tests as 
this stage has the most significance. 
 

• Fault solution (level i) vs Fault occurrence (level j) t = 334.425/2.069 = 161.63, p<0.001 

• Fault solution (level i) vs Fault detection (level j) t = 313.650/2.065 = 151.89, p<0.001 
 

Effect of distraction with respect to time 

The ANOVA showed a significant interaction between distraction and workflow with respect to time 
[F(1,18) = 95.982, P<0.01, eta^2 = 0.919. A significant interaction was found in tests within subjects 
effects using Greenhouse-Geisser [F=118.8, P<0.001, eta^2 = 0.87].  
 

HBO Data 
The original tests showed no significant effects when evaluating data from the middle region of the 

DLPFC. Therefore, the middle region data was omitted for the second test. 

Workflow (left and right side DLPFC) 

The ANOVA showed a significant effect between workflow stages[F(3,16) = 16.195, P<0.01, eta^2 = 

0.752]. Test within subjects effects showed [F(3,16) = 14.428 P<0.01, eta^2 = 0.650]. This is depicted 

in the figure below. 
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Figure- Workflow stages with respect to HBO 

Pairwise comparisons found with a 95% confidence (P<0.05) significant main effects between 

workflow stage 4 (the fault solution stage) and all other stages (baseline p<0.01, Fault occurrence 

p<0.01 and Fault detection p<0.01) as depicted in the table below: 

 

Table-Pairwise comparisons of workflow stage 
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Due to the significant effects shown above, paired t-tests were conducted to see the size of the 

effect. Level (i) remained the fault solution stage, level (j) varied between workflow stages. 

• Fault solution (level i) vs Baseline  (level j) t = 0.011/0.001 = 11, p<0.001, effect size (r) = 0.7 

• Fault Solution (level i) vs Fault Occurrence (level j) t = 0.007/0.001 = 7, p<0.001, r =0.35 

• Fault Solution (level i) vs Fault Detection (level j) t = 0.006/0.001 = 6, p=0.001, r = 0.2 

Distraction (left and right side DLPFC) 

The ANOVA showed no significant interaction for workflow and distraction with respect to 

HBO[F(3,16) = 0.479, P<0.05, eta^2 = 0.082].  

Region of Interest (left, right, middle DLPFC) 

The region of interest is the left, middle and right sides of the dorsal lateral pre-frontal cortex. Each 

region contains 5 channels as depicted in chapter 5.2.  

The ANOVA revealed a significant interaction between ROI and workflow [F(6,13)=5.93, p<.01, 

eta2=.73].  Test within subjects showed no significant effects [F=2.5, p=0.08, eta^2 = 0.123] The 

main effects for ROI was insignificant [F(2,17)=1.52, p=.25]. This is depicted in the figure below. 

 

Figure- Region of interest with respect to HBO 

Increased Workload 

Time data 
The relevant areas of the workflow evaluated in the study were; fault occurrence (1), fault detection 

(2), and fault solution (3)(x-axis) against time (y-axis). 

The bar chart below shows all 20 participants partaking an increased workload test. Half are 

distracted and half are not distracted. From the mean time taken for all participants, the fault 

solution stage of the workflow took the longest to complete as shown in the figure below. 
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Figure  - workflow stage with respect to time. 

Below, the figure shows a comparison of the mean time between 10 participants in standard 

workload group and 10 participants in an increased workload but undistracted group. This allows us 

to see the effect of increased workload alone. 

 

Figure - Time taken for workflow stage with respect to workload. 

Effects of Increased workload on distraction with respect to time 

A significant effect was found for distracted participants with an increased workload against not 
distracted participants with an increased workload [F(2,17) = 8564, P<0.01]. The mean times for 
participants in the increased workload*distracted group were higher during fault occurrence, fault 
detection and fault solution, when compared to those participating in the increased workload*not 
distracted group as shown in the table below. 
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Table - mean time taken for workflow stage with respect to distraction 

 
Pairwise comparisons of workflow using 20 Increased workload participants (10 distracted, 10 not 
distracted) in table 12 below show significant effects between all workflow stages (1=Fault 
occurrence, 2= fault detection & 3=fault solution) p<0.01 as depicted below in table. Maulchy’s test 
of sphericity showed a significant effect therefore tests of within subject’s effects using Greenhouse-
Geisser showed [F=14884.2, p<0.001, eta^2 = 0.99]. 
 

 
Table - Pairwise comparisons of workflow stage 

Due to the significant effects showing in the above pairwise comparisons t-test were conducted in 
order for us to see the size of the effect. The fault solution stage was used as Level (i) for all tests as 
this stage has the most significance. 
 

• Fault solution (level i) vs Fault occurrence (level j) t = 455.780/3.580 = 127.31, p<0.001 

• Fault solution (level i) vs Fault detection (level j) t = 436.135/3.684 = 118.39, p<0.001 
 

Effect of Increased workload*distraction*workflow with respect to time 

The ANOVA showed a significant interaction between workload*distraction*workflow with respect 
to time [F(2,17) = 39.392, P<0.01, eta^2 = 0.99. A significant interaction was found in tests within 
subject’s effects using Greenhouse-Geisser [F=37.439, P<0.001, eta^2 = 0.99].  
 

Effect of Increased workload with respect to time 

A significant effect was found for increased workload*not distracted against standard workload*not 
distracted participants (10 increased workload, 10 standard workload) [F(2,37) = 5801.29, P<0.01, 

Number of Participants
Mean Time 

(seconds)

Fault Occurrence Distracted 10 30.51

Not Distracted 10 34.35

Fault Detection Distracted 10 57.4

Not Distracted 10 46.75

Fault Solution Distracted 10 514.02

Not Distracted 10 462.4
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eta^2 = 0.99]. The mean times for participants in the increased workload group were higher during 
the fault solution stage, when compared to those participating in the standard workload group as 
shown in the table below. 
. 

 
Table  - Mean times for workflow stages with respect to workload. 

 
Pairwise comparisons of workflow for 10 increased workload*not distracted and 10 standard 
workload*not distracted participants in table 14 below show significant effects between all 
workflow stages (1=Fault occurrence, 2= fault detection & 3=fault solution) p<0.01 as depicted 
below in table. Maulchy’s test of sphericity showed a significant effect therefore tests of within 
subject’s effects using Greenhouse-Geisser showed [F=8404.6, p<0.001, eta^2 = 0.99]. 
 

 
Table  - Pairwise comparisons of workflow stages 

Due to the significant effects showing in the above pairwise comparisons, t-test were conducted in 
order for us to see the size of the effect. The fault solution stage was used as Level (i) for all tests as 
this stage has the most significance. 
 

• Fault solution (level i) vs Fault occurrence (level j) t = 395.102/4.433 = 89.13, p<0.001 

• Fault solution (level i) vs Fault detection (level j) t = 374.892/3.889 = 96.4, p<0.001 
 

Number of Participants
Mean Time 

(seconds)

Fault Occurrence Standard Workload 20 32.4

Increased Workload 20 32.43

Fault Detection Standard Workload 20 53.2

Increased Workload 20 52.075

Fault Solution Standard Workload 20 366.8

Increased Workload 20 488.21
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Effect of Increased (10 increased workload*not distracted) vs standard workload (10 standard 

workload*not distracted) *workflow with respect to time 

The ANOVA showed a significant interaction between workload and workflow with respect to time 
[F(2,37) = 233.782, P<0.01, eta^2 = 0.99. A significant interaction was found in tests within subject’s 
effects using Greenhouse-Geisser [F=210.292, P<0.001, eta^2 = 0.99].  
 

HBO data 

The effect of Increased workload (10 increased workload*not distracted against 10 standard*not 

distracted) with respect to HBO. 

A significant effect was found for increased workload participants against standard workload 
participants [F(2,37) = 105.143, P<0.01]. The mean HBO for participants in the Increased workload 
group were higher only during the fault solution stage, when compared to those participating in the 
standard workload group as shown in the figure  below. 
 

 
Figure - Workload with respect to workflow stage 

 
The figure below shows the fault solution stage of the workflow for the left and right side DLPFC as 
this is the area with the most significance. 
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Figure  - Workload with respect to the fault solution stage 

 
Pairwise comparisons showed a significant effect for workload shown in the table below. 
 

 
Table - Pairwise comparisons of workload 

 
Due to the significant effects showing in the above pairwise comparisons, t-tests were conducted in 
order for us to see the size of the effect. Increased workload was used as Level (i) and standard 
workload level (j). 
 

• Increased Workload (level i) vs Standard workload (level j) t = 0.014/0.001 = 14, p<0.001 
 

Effect of Increased workload*workflow (10 increased workload*not distracted participants). 

The ANOVA showed a significant interaction between Increased workload and workflow with 
respect to HBO [F(3,36) = 74.281, P<0.01, eta^2 = 0.99. A significant interaction was found in tests 
within subject’s effects using Greenhouse-Geisser [F=162.177, P<0.001, eta^2 = 0.99].  
 
Pairwise comparisons show significant effects for the fault solution workflow stage p<0.01 as 
depicted below in the table below.  
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Table - Pairwise comparisons of workflow stages 

Maulchy’s test of sphericity showed a significant effect therefore tests of within subject’s effects 
using Greenhouse-Geisser showed [F=262.170, p<0.001, eta^2 = 0.99]. 
 
Due to the significant effects shown in the above pairwise comparisons, t-tests were conducted in 
order for us to see the size of the effect. The fault solution stage was used as Level (i) for all tests as 
this stage has the only significance. 
 

• Fault solution (level i) vs Baseline (level j) t = 0.038/0.002 = 19, p<0.001 

• Fault solution (level i) vs Fault Occurence (level j) t = 0.036/0.002 = 18, p<0.001 

• Fault Solution (level i) vs Fault Detection (level j) t = 0.035/0.002 = 17.5, p<0.01 
 

Effects of distraction on workload (10 increased*distracted, 10 Increased*not distracted) with respect 

to HBO. 

A significant effect was found for distraction [F(3,16) = 7.617, P<0.01]. The mean HBO for 
participants in the distracted group were higher during all workflow stages, when compared to those 
participating in the not distracted group as shown in the figure below. Increased workload is shown 
by the two bars on the left and standard workload on the right.  
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Figure - Effect of distraction 

 
Pairwise comparisons show a significant effect for distraction on workload p<0.01 as depicted below 
in the table below.  

 
Table  - Pairwise comparisons of distraction 

Due to the significant effects showing in the above pairwise comparisons, t-tests were conducted in 
order for us to see the size of the effect. Distraction was used as Level (i) for tests. 
 

• Distracted (level i) vs Not Distracted (level j) t = 0.009/0.002 = 4.5, p<0.001 
 

Effects of Distraction*workload (10 increased*distracted, 10 Increased*not distracted) on workflow 

stage with respect to HBO. 

A significant effect was found for distraction on workload with respect to workflow [F(2,17) = 

18.967, P<0.01]. The mean HBO was higher for all workflow stages but is more prominent for the 

fault solution stage as shown in the figure  below. 
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Figure - Effect of distraction with respect to workflow stage 

Pairwise comparisons found a significant effect for distraction on workload with respect to workflow 

P<0.01 as depicted in the table below. 

 

Table - Pairwise comparisons of workflow stage with respect to distraction 

Due to the significant effects showing in the above pairwise comparisons, t-tests were conducted in 
order for us to see the size of the effect. The distraction was used as Level (i) for tests against fault 
solution for level (j) as this was shown to be significant above. 
 

• Distracted (level i) vs Fault solution (level j) t = 0.118/0.006 = 19.7, p<0.001 
 

Effect of ROI (10 Increased workload and distracted, 10 increased workload and not distracted). 

A significant effect was found for ROI [F(2,17) = 247.629, P<0.01]. The mean HBO for left and right 
regions are higher for all workflow stages, when compared to the middle region as shown in the 
figure below. 
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Figure - Region of interest comparison 

 
 
Maulchy’s test of sphericity showed a significant effect (p=0.016) therefore tests of within subjects 
effects using Greenhouse-Geisser showed [F=99.414, p<0.001, eta^2 = 0.909]. 
 
Pairwise comparisons show significant effects for the left and right regions of the DLPFC p<0.01 as 
depicted below in the table below.  

 
Table - Pairwise comparisons of ROI 

 
Due to the significant effects showing in the above pairwise comparisons, t-tests were conducted in 
order for us to see the size of the effect. The left and right regions were used as Level (i) for tests 
against the middle region as this was shown to be significant above. 
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• Left region (level i) vs Middle region (level j) t = 0.029/0.002 = 14.5, p<0.001 

• Right region (level i) vs Middle region (level j) t = 0.026/0.002 = 13, p<0.001 
 

Effect of ROI*workflow (10 increased workload and distracted, 10 increased workload and not 

distracted) with respect to HBO 

The ANOVA showed a significant interaction between ROI and workflow with respect to HBO [F(6,13) 
= 116.612, P<0.01, eta^2 = 0.99. Maulchy’s test of sphericity showed a significant effect therefore, 
test within subject’s effects using Greenhouse-Geisser showed [F=75.761, P<0.001, eta^2 = 0.909].  
 

Effect of ROI*workflow*distraction (10 increased workload and distracted, 10 increased workload and 

not distracted) with respect to HBO 

The ANOVA showed a significant interaction between ROI*workflow*distraction with respect to HBO 
[F(6,13) = 3.998, P=0.017, eta^2 = 0.99. Tests within subject’s effects using Greenhouse-Geisser 
showed [F=3.839, P=0.033, eta^2 = 0.909].  
 

Effect of ROI*Increased workload (10 Increased workload and not distracted, 10 standard workload 

and not distracted) with respect to HBO 

A significant effect was found for ROI*increased workload participants [F(2,37) = 56.538, P<0.01]. 
The mean HBO for left and right regions of the DLPFC was higher for all workflow stages, when 
compared to the middle region as shown in the figure below. 
 

 
Figure - ROI with respect to workload 

 
Pairwise comparisons showed significant effects for increased workload for the left and right regions 
as depicted in the table below. 
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Table- Pairwise comparisons of ROI with respect to workload 

Due to the significant effects showing in the above pairwise comparisons, t-tests were conducted in 
order for us to see the size of the effect. The increased workload was used as Level (i) for tests 
against the left and right region as level (j). 
 

• Increased workload (level i) vs Left region (level j) t = 0.030/0.002 = 15, p<0.001 

• Increased workload (level i) vs Right region (level j) t = 0.027/0.002 = 13.5, p<0.001 
 

Effect of ROI*workflow*Increased workload (10 increased workload and not distracted, 10 standard 

workload and not distracted) with respect to HBO 

A significant effect was found for ROI*Workflow*increased workload participants [F(6,33) = 46.6, 
P<0.01]. The mean HBO for participants in the Increased workload group were higher for the left and 
right regions only during the fault solution stage as shown in the bar chart above in chapter 6.2.2.1. 
 
Pairwise comparisons showed significant effects for standard workload*left and right regions for the 
fault solution workflow stage and for increased workload*left and right regions for the fault solution 
workflow stage as shown in the table below. 
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Table- Pairwise comparisons of ROI with respect to workflow and workload 

Due to the significant effects showing in the above pairwise comparisons, t-tests were conducted in 
order for us to see the size of the effect. The increased workload and left/right regions are used as 
Level (i) for tests against fault solution as level (j). 
 

• Increased workload*Left (level i) vs Fault Solution (level j) t = 0.104/0.005 = 20.8, p<0.001 

• Increased workload*Right (level i) vs Fault Solution (level j) t = 0.097/0.006 = 16.2, p<0.001 
 
Standard workload*left/right regions are level (i) and fault solution is level (j) below. 
 

• Standard workload*Left (level i) vs Fault Solution (level j) t = 0.010/0.005 = 2, p<0.001 

• Standard workload*Right (level i) vs Fault Solution (level j) t = 0.014/0.006 = 2.3, p<0.001 
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Fatigue 

Time data 
The relevant areas of the workflow evaluated in the study were; fault occurrence (1), fault detection 

(2), and fault solution (3)(x-axis) against time (y-axis). 

From the mean time taken for all participants, the fault solution stage of the workflow took the 

longest to complete as shown in the figure below.  The bar chart below also shows a comparison of 

the mean time for participants to complete the task from the fatigued*standard and 

Fatigued*increased workload groups. 

 

Figure - Fatigue with respect to workflow stage 

Effects of fatigue (10 fatigued*increased workload, 10 Fatigued*standard workload) on workflow with 

respect to time 

A significant effect was found for Fatigued*Increased workload against fatigued*standard workload 
participants [F(2,17) = 52815.9, P<0.01]. The mean times for participants in the increased workload 
group were higher during fault occurrence, fault detection and fault solution, when compared to 
those participating in the standard workload group as shown in the table below. 

 

  

Number of 
participants 

Mean time 
(seconds) 

Fault 
Occurrence Increased WL 10 33.3 

 Standard WL 10 33.3 

Fault Detection Increased WL 10 50.1 

 Standard WL 10 49.7 

Fault Solution Increased WL 10 486.6 

 Standard WL 10 362.6 
Table - Participant averages 
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Pairwise comparisons show significant effects between all workflow stages (1=Fault occurrence, 2= 
fault detection & 3=fault solution) p<0.01 as depicted below in the table. Maulchy’s test of sphericity 
showed a significant effect therefore tests of within subject effects using Greenhouse-Geisser 
showed [F=97363.1, p<0.001, eta^2 = 1.00]. 
 

 
Table- Pairwise comparisons of fatigued participants on workflow stages with respect to time. 

 
Due to the significant effects showing in the above pairwise comparisons. T-tests were conducted to 
see the size of the effect. The fault solution stage was used as Level (i) for all tests as this stage has 
the most significance. 
 

• Fault solution (level i) vs Fault occurrence (level j) t = 391.245/1.176 = 332.691, p<0.001 

• Fault solution (level i) vs Fault detection (level j) t = 374.720/1.223 = 306.394, p<0.001 
 

Effect of workload*workflow on fatigue (10 fatigued*increased workload, 10 Fatigued*standard 

workload) with respect to time. 

The ANOVA showed a significant interaction between fatigue *workload on workflow with respect 
to time [F(2,17) = 1313.6, P<0.01, eta^2 = 0.994. A significant interaction was found in tests within 
subject effects using Greenhouse-Geisser [F=2542.6, P<0.001, eta^2 = 0.993].  
 
Pairwise comparisons show significant effects between all workflow stages (1=Fault occurrence, 2= 
fault detection & 3=fault solution) p<0.01 as depicted below in the table below.  
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Table - Pairwise comparisons of workload*workflow with respect to fatigue 

 
Due to the significant effects showing in the above pairwise comparisons, t-test were conducted in 
order to see the size of the effect. Increased workload was used as Level (i) for all tests as this stage 
has the most significance. 
 

• Increase Workload (level i) vs Fault occurrence (level j) t = 33.34/0.342 = 97.49, p<0.001 

• Increased Workload (level i) vs Fault detection (level j) t = 50.03/0.426 = 117.44, p<0.001 

• Increased Workload (level i) vs Fault Solution (level j) t = 486.6/1.543 = 315.36, p<0.001 
 

Effect of Fatigue vs Not Fatigued (10 Fatigue*standard workload, 10 Standard) with respect to time 

A significant effect was found for fatigued against not fatigued participants [F(2,17) = 18589.8, 
P<0.01, eta^2 = 1.00]. The mean times for participants in the fatigued group were higher during all 
workflow stages, when compared to those participating in the not fatigued group as shown in the 
figure below. 
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Figure - Workflow stages with respect to fatigue 

 
Maulchy’s test of sphericity showed a significant effect therefore tests of within subjects effects 
using Greenhouse-Geisser showed [F=33487.5, p<0.001, eta^2 = 0.99]. 
 
Pairwise comparisons show significant effects between all workflow stages (1=Fault occurrence, 2= 
fault detection & 3=fault solution) p<0.01 as depicted below in the table below. 
 

 
Table - Pairwise comparisons of workflow stages 
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Due to the significant effects showing in the above pairwise comparisons, t-test were conducted to 
see the size of the effect. The fault solution stage was used as Level (i) for all tests as this stage has 
the most significance. 
 

• Fault solution (level i) vs Fault occurrence (level j) t = 319.430/1.626 = 196.451, p<0.001 

• Fault solution (level i) vs Fault detection (level j) t = 303.155/1.699 = 178.431, p<0.001 
 

Effect of Fatigued vs Not Fatigued on workflow stage (10 fatigued*standard workload, 10 standard) 

with respect to time 

The ANOVA showed a significant interaction between fatigue and workflow with respect to time 
[F(2,17) = 17.15, P<0.01, eta^2 = 0.669. A significant interaction was found in tests within subjects 
effects using Greenhouse-Geisser [F=32.837, P<0.001, eta^2 = 0.646].  
 
Pairwise comparisons show significant effects between all workflow stages (1=Fault occurrence, 2= 
fault detection & 3=fault solution) p<0.01 as depicted below in the table below. 
 

 
Table - Pairwise comparisons of workflow stage with respect to fatigue 

 
Due to the significant effects showing in the above pairwise comparisons, t-test were conducted to 
see the size of the effect. The fatigued group was used as Level (i) and workflow stage as level (j) 
 

• Fatigued (level i) vs Fault occurrence (level j) t = 33.34/0.525 = 63.5, p<0.001 

• Fatigued (level i) vs Fault detection (level j) t = 49.7/0.502 = 99.0, p<0.001 

• Fatigued (level i) vs Fault Solution (level j) t = 362.570/2.111 = 171.8 
 
For the t-tests below, the not fatigued group is used as level (i) and the workflow stage as level (j). 
 

• Not Fatigued (level i) vs Fault occurrence (level j) t = 31.59/0.525 = 60.2, p<0.001 

• Not Fatigued (level i) vs Fault detection (level j) t = 47.78/0.502 = 95.2, p<0.001 

• Not Fatigued (level i) vs Fault Solution (level j) t = 341.22/2,111 = 161.6, p<0.001 
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HBO data 

The effect of fatigue (10 Fatigued*standard, 10 Standard) with respect to HBO. 

No significant effect was found for fatigue. However, mean HBO for participants in the fatigued 
group were higher when compared to those participating in the not fatigued group as shown in the 
figure below. 
 

 
Figure - Effect of Fatigue 

 
 

Effect of fatigue (10 fatigued*standard workload, 10 standard workload) on workflow stage with 

respect to HBO 

The ANOVA showed a significant effect for workflow with respect to fatigue [F(3,16) = 72.506, 
P<0.01, eta^2 = 0.931 as depicted by the figure below. 
 

 
Figure - effects of workflow with respect to fatigue 
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Maulchy’s test of sphericity showed a significant interaction was found in tests within subjects 
effects using Greenhouse-Geisser [F=29.464, P<0.001, eta^2 = 0.621]. 
 
Pairwise comparisons show significant effects for the fault solution workflow stage p<0.01 as 
depicted below in the table below.  

 
Table - Pairwise comparisons of workflow stages with respect to fatigue 

Due to the significant effects showing in the above pairwise comparisons, t-tests were conducted in 
order for us to see the size of the effect. The fault solution stage was used as Level (i) for all tests as 
this stage has the only significance. 
 

• Fault solution (level i) vs Baseline (level j) t = 0.011/0.002 = 5.5, p<0.001 

• Fault solution (level i) vs Fault Occurence (level j) t = 0.008/0.002 = 4, p<0.001 

• Fault Solution (level i) vs Fault Detection (level j) t = 0.008/0.002 = 4, p<0.01 
 

Effects of Fatigue*workload (10 fatigued*increase workload, 10 fatigued*standard workload) with 

respect to HBO 

A significant effect found for workload whilst fatigued [F(2,17) = 69.896, P<0.01. The mean HBO for 
participants in the increased workload group are significantly higher, when compared to those 
participating in the standard workload group as shown in the figure below.  
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Figure - Effects of Fatigue*Workload 

 
Pairwise comparisons show a significant effect for increased workload*fatigued p<0.01 as depicted 
below in the table below.  

 
Table - Pairwise comparisons of workload with respect to fatigue. 

 
Due to the significant effects showing in the above pairwise comparisons, t-tests were conducted in 
order for us to see the size of the effect. Increased workload was used as Level (i). 
 

• Increased workload (level i) vs Standard workload (level j) t = 0.023/0.003 = 7.67, p<0.001 
 

Effects of Fatigue*Workload (10 fatigued*increased workload, 10 fatigued*standard workload) on 

workflow stage with respect to HBO. 

A significant effect was found for fatigue*workload with respect to workflow [F(2,17) = 40.227, 

P<0.01]. The mean HBO was significantly higher for the fault solution workflow stage as shown in the 

figure below. 
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Figure - Fatigue*Workload with respect to workflow stage 

Pairwise comparisons show a significant effect for fatigue*workload with respect to workflow 

P<0.01 as depicted in the table below. 

 

Table - Pairwise comparisons of fatigue*workload on workflow stage with respect to HBO. 

Due to the significant effects showing in the above pairwise comparisons, t-tests were conducted to 
see the size of the effect. Increased workload was used as Level (i) for tests against workflow stage 
for level (j) as this was shown to be significant above. 
 

• Increased Workload (level i) vs Fault Detection (level j) t = 0.006/0.001 = 6, p<0.001 

• Increased Workload (level i) vs Fault Solution (level j) t = 0.085/0.005 = 17, p<0.001 
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Effect of ROI (10 fatigued*increased workload, 10 Fatigued*standard workload) 

A significant effect was found for ROI [F(6,13) = 9.505, P<0.01]. The mean HBO for left and right 
regions are higher for all workflow stages, when compared to the middle region as shown in the 
figure below. 
 

 
Figure - Effects of ROI 

 
Maulchy’s test of sphericity showed a significant effect (p=0.00) therefore tests of within subjects 
effects using Greenhouse-Geisser was analysed but showed no significant effects]. 
 
Pairwise comparisons showed no significant effects for regions of the DLPFC p<0.01. 
 

Effect of ROI*workflow (10 fatigued*increased workload, 10 fatigued*standard workload) with 

respect to HBO 

The ANOVA showed a significant interaction between ROI and workflow with respect to HBO [F(6,13) 
= 18.041, P<0.01, eta^2 = 0.821. 
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Figure - ROI with respect to workflow stage 

 
Pairwise comparisons showed no significant effect for ROI with respect to workflow. 
 

Effect of ROI*workflow*Fatigue (10 fatigued*increased workload, 10 fatigued*standard workload) 

with respect to HBO 

The ANOVA showed no significant interaction between ROI*workflow*fatigue with respect to HBO.  
 

Fatigue vs Distraction vs Increased workload 

Time study 
The relevant areas of the workflow evaluated in the study were; fault occurrence (1), fault detection 

(2), and fault solution (3)(x-axis) against time (y-axis). 

The figure below shows mean time taken for all participants. The bar chart below also shows a 

comparison of the mean time for participants to complete the task from the fatigued, distracted, 

increased workload and standard workload groups. 
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Figure - Comparison of performance shaping factors with respect to workflow stage 

The Figure below is a bar chart showing the mean time taken for participants to complete the 

exercise with respect to PSF. 

 

Figure - Comparison of performance shaping factors 

The table below shows the workplaces factors and the number of participants in each group against 

the mean time in seconds for each workflow stage. 
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Number of 
Participants 

fault 
Occurrence 
(seconds) 

Fault 
Detection 
(seconds) 

Fault 
Solution 

(seconds) 

Standard 10 31.59 47.78 341.22 

Distracted 10 33.22 58.58 392.44 

Increased 10 30.51 46.75 462.4 

Fatigued 10 33.34 49.7 362.57 
Table - performance shaping factors and workflow stage output 

The effect of PSF against a Standard test 

A significant effect was found for a comparison of PSF [F(2,35) = 20113.431, P<0.01]. The mean times 
for all groups were higher during the fault solution stage when compared to all other stages. 
 
Pairwise comparisons show significant effects between all performance shaping factors (1=Standard, 
2= Distracted, 3=Increased workload & 4=Standard workload) p<0.01 as depicted below in the table.  
 

 
Table  - Pairwise comparisons of performance shaping factors 

 
Maulchy’s test of sphericity showed a significant effect therefore tests of within subject effects using 
Greenhouse-Geisser showed [F=34963.5, p<0.001, eta^2 = 0.999]. 
 
Due to the significant effects shown in the above pairwise comparisons. T-tests were conducted in 
order for us to see the size of each effect. Increased Workload was used as Level (i) for all tests as 
this factor has the most significance. 
 

• Increased workload (level i) vs standard test (level j) t = 39.690/1.841 = 21.559, p<0.001 

• Increased workload (level i) vs Distraction (level j) t = 18.473/1.841 = 10.034, p<0.001 

• Increased workload (level i) vs Fatigued (level j) t = 31.350/1.841 = 17.029, p<0.001 
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The second group of t-tests show the effect size of each PSF compared to a standard test. For this 
group of t-tests, a standard test was used as level (j) throughout. 
 

• Distraction (level i) vs Standard test (level j) t = 21.217/1.841 = 11.525, p<0.001 

• Increased workload (level i) vs Standard test (level j) t = 39.690/1.841 = 21.559, p<0.001 

• Fatigued (level i) vs Standard test (level j) t = 8.340/1.841 = 4.530, p<0.001 

 

The Effects of PSF with respect to workflow 

The ANOVA showed a significant effect between PSF with respect to workflow [F(6,72) = 126.381, 
P<0.01, eta^2 = 0.918.  
 
Pairwise comparisons show significant effects between all PSF p<0.01 as depicted below in the table.  

 
Table - Pairwise comparisons of performance shaping factors with respect to workflow. 

Maulchy’s test of sphericity showed a significant effect therefore tests of within subject effects using 
Greenhouse-Geisser showed [F=207.998, p<0.001, eta^2 = 0.945]. 
 
Due to the significant effects showing in the above pairwise comparisons, t-test were conducted in 
order to see the size of the effect. PSF were used as Level (i) and Fault solution for level (j) for all 
tests as this stage has the most significance. 
 

• Distraction (level i) vs Fault Solution (level j) t = 392.440/3.725 = 105.353, p<0.001 

• Increased Workload (level i) vs Fault Solution (level j) t = 462.4/3.725 = 124.134, p<0.001 

• Fatigue (level i) vs Fault Solution (level j) t = 362.570/3.725 = 97.334, p<0.001 
 

HBO study 
The relevant areas of the workflow evaluated in the study were; Baseline (1), fault occurrence (2), 

fault detection (3), and fault solution (4) (x-axis) against HBO (y-axis). Also evaluated was region of 
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interest; left side and right side. The middle region was omitted due to the lack of usable data in 

previous tests. 

The Figure below shows mean HBO for all participants. The bar chart below also shows a comparison 

of the mean HBO for participants for the full duration of the task from; the fatigued, distracted, 

increased workload and standard workload groups. Data is taken from the left and right regions of 

the DLPFC. 

 

Figure - Performance shaping factors*workflow with respect to HBO 

Below is the figure showing the mean HBO taken from participants for the full duration of the 

exercise, against PSF. 
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Figure - Comparison of Performance shaping factors 

 

The effect of PSF against a Standard test 

A significant effect was found for a comparison of PSF [F(3,35) = 121.617, P<0.01].  
 
Pairwise comparisons show significant effects for Increased workload p<0.01 as depicted below in 
the table.  
 

 
Table - Pairwise comparisons of Performance shaping factors. 
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Maulchy’s test of sphericity showed a significant effect therefore tests of within subject effects using 
Greenhouse-Geisser showed [F=188.706, p<0.001, eta^2 = 0.836]. 
 
Due to the significant effects shown in the above pairwise comparisons. T-tests were conducted in 
order for us to see the size of each effect. Increased Workload was used as Level (i) for all tests as 
this PSF has the most significance. 
 

• Increased workload (level i) vs standard test (level j) t = 0.019/0.002 = 9.5, p<0.001 

• Increased workload (level i) vs Distraction (level j) t = 0.017/0.002 = 8.5, p<0.001 

• Increased workload (level i) vs Fatigued (level j) t = 0.018/0.002 = 9, p<0.001 
 

The Effects of PSF with respect to workflow 

The ANOVA showed a significant effect between PSF with respect to workflow [F(3,37) = 52.126, 
P<0.01, eta^2 = 0.823.  
 
Pairwise comparisons show significant effects for Distraction, Increased workload and fatigue mainly 
for the fault solution stage of the workflow (p<0.01) as depicted below in the table.  

 
Table - Pairwise comparisons of Performance shaping factors with respect to workflow 

 
Maulchy’s test of sphericity showed a significant effect therefore tests of within subject effects using 
Greenhouse-Geisser showed [F=77.890, p<0.001, eta^2 = 0.863]. 
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Due to the significant effects showing in the above pairwise comparisons, t-test were conducted in 
order to see the size of the effect. Workplace factors were used as Level (i) and Fault solution for 
level (j) for all tests as this stage has the most significance. 
 

• Distraction (level i) vs Fault Solution (level j) t = 0.015/0.003 = 5, p<0.001 

• Increased Workload (level i) vs Fault Solution (level j) t = 0.082/0.003 = 27.3r, p<0.001 

• Fatigue (level i) vs Fault Solution (level j) t = 0.016/0.003 = 5.3r, p<0.001 

Effect of ROI 

The ANOVA has shown no significant effects for ROI with respect to PSF or workflow. 

Combined PSFs 

Time study 
The relevant areas of the workflow evaluated in the study were; fault occurrence (1), fault detection 

(2), and fault solution (3)(x-axis) against time (y-axis). 

The Figure below shows mean time taken for all participants. The bar chart below also shows a 

comparison of the mean time for participants to complete the task from the fatigued*increased 

workload, distracted*increased workload and standard test groups. 

 

Figure - Combined PSF's with respect to workflow 

Below is a bar chart showing the mean time taken for participants to complete the exercise against 

PSF. 
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Figure - Comparison of combined PSF's 

Below the table shows the PSF and the number of participants in each group against the mean time 

in seconds of each workflow stage. 

  

 

Number of 
Participants 

Fault 
Occurrence 

Fault 
Detection 

Fault 
Solution 

Standard Test 10 31.59 47.78 341.22 

Distracted*Increased 10 34.35 57.4 514.02 

Fatigue*Increased 10 33.34 50.03 486.6 
Table - Mean times of combined PSF's 

The effect of combined PSF against a Standard test 

A significant effect was found for a combined PSF [F(2,26) = 27068.592, P<0.01. 
 
Pairwise comparisons show significant effects between combined PSF (1=Standard, 2= 
Distracted*Increased workload, 3=Fatigue*Increased workload) p<0.01 as depicted below in the 
table.  
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Table - Pairwise comparisons of combined PSF's 

 
Maulchy’s test of sphericity showed a significant effect therefore tests of within subject effects using 
Greenhouse-Geisser showed [F=49378.3, p<0.001, eta^2 = 0.999]. 
 
Due to the significant effects shown in the above pairwise comparisons. T-tests were conducted to 
see the size of each effect. A standard test was used as Level (j) for all tests. 
 

• Distracted*Increased workload (level i) vs standard test (level j) t = 61.727/1.170 = 52.758, 
p<0.001 

• Fatigued*Increased workload (level i) vs standard test (level j) t = 49.793/1.170 = 42.558, 
p<0.001 

 

The Effects of combined PSF with respect to workflow 

The ANOVA showed a significant effect between combined PSF with respect to workflow [F(2,27) = 
904.021, P<0.01, eta^2 = 0.985.  
 
Pairwise comparisons show significant effects between combined PSF p<0.01 as depicted below in 
the table.  

 
Table - Pairwise comparisons of combined PSF's with respect to workflow 
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Due to the significant effects showing in the above pairwise comparisons, t-test were conducted in 
order to see the size of the effect. PSF were used as Level (i) and Fault solution for level (j) for all 
tests as this stage has the most significance. 
 

• Standard test (level i) vs Fault Solution (level j) t = 341.220/2.812 = 121.344, p<0.001 

• Distracted*Increased Workload (level i) vs Fault Solution (level j) t = 514.020/2.812 = 
182.795, p<0.001 

• Fatigue*Increased workload (level i) vs Fault Solution (level j) t = 486.6/2.812 = 173.044, 
p<0.001 

 

HBO study 
The relevant areas of the workflow evaluated in the study were; Baseline (1), fault occurrence (2), 

fault detection (3), and fault solution (4) (x-axis) against HBO (y-axis). Also evaluated was region of 

interest; left side and right side. The middle region was omitted due to the lack of usable data in 

previous tests. 

The Figure below shows mean HBO for all participants. The bar chart below also shows a comparison 

of the mean HBO for participants for the full duration of the task from; the fatigued*Increased 

workload, distracted*Increased workload, and standard test groups. Data is taken from the left and 

right regions of the DLPFC. 

 

Figure - Combined PSF's*workflow with respect to HBO 

The figure below is a bar chart showing the mean HBO taken from participants for the full duration 

of the exercise, against combined PFS. 
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Figure – Comparison of combined PSF's 

 

The effect of combined PFS against a Standard test 

A significant effect was found for a combined PFS [F(3,25) = 142.398, P<0.01].  
 
Pairwise comparisons show significant effects for combined PFS p<0.01 as depicted below in the 
table.  
 

 
Table - Pairwise comparisons of combined PSF's 

 
Maulchy’s test of sphericity showed a significant effect therefore tests of within subject effects using 
Greenhouse-Geisser showed [F=405.907, p<0.001, eta^2 = 0.938]. 
 
Due to the significant effects shown in the above pairwise comparisons. T-tests were conducted to 
see the size of each effect. A standard test was used as Level (j) for all tests. 
 

• Distracted*Increased workload (level i) vs standard test (level j) t = 0.028/0.002 = 14, 
p<0.001 
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• Fatigue*Increased workload (level i) vs standard test (level j) t = 0.019/0.002 = 9.5, p<0.001 
 

The Effects of combined PSF with respect to workflow 

The ANOVA showed a significant effect for combined PSF with respect to workflow [F(3,26) = 69.997, 
P<0.01, eta^2 = 0.890.  
 
Pairwise comparisons show significant effects for combined PSF, mainly for the fault solution stage 
of the workflow (p<0.01) as depicted below in the table.  

 
Table - Pairwise comparisons of PSF's with respect to workflow 

 
Maulchy’s test of sphericity showed a significant effect therefore tests of within subject effects using 
Greenhouse-Geisser showed [F=93.246, p<0.001, eta^2 = 0.874]. 
 
Due to the significant effects showing in the above pairwise comparisons, t-test were conducted in 
order to see the size of the effect. PFS was used as Level (i) and Fault solution for level (j) for all tests 
as this stage has the most significance. 
 

• Standard test (level i) vs Fault Solution (level j) t = 0.009/0.006 =1.5, p<0.001 

• Distracted*Increased Workload (level i) vs Fault Solution (level j) t = 0.118/0.006 =19.67, 
p<0.001 

• Fatigue*Increased workload (level i) vs Fault Solution (level j) t = 0.085/0.006 =14.17, 

p<0.001 

Effect of ROI 

The ANOVA has shown no significant effects for ROI with respect to combined PSF or workflow. 
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Appendix E – Ship accident database data 

References Performance Shaping Factors (PSF) 

Accident 

code 

source 
Fatigue Distraction Workload Weather Noise Vibration Loss of concentration  temperature communication procedure time Injury Visibility 

m19co40

3  

MTSB 1 1 1 1 
   

1 1 
 

1 
  

M18P001

4 

MTSB 
 

1 1 
          

M03W00

73 

MTSB 
  

1 
 

1 1 1 
      

M01M00

5 

MTSB 1 1 
     

1 
  

1 
  

M99F002

3 

MTSB 1 
         

1 
  

M95N001

1 

MTSB 
  

1 
   

1 
    

1 
 

Bitfjord 

04/2005 

MAIB 1 
            

SD 

DEXTERO

US 

05/2010 

MAIB 
  

1 
          

THAMES 

10/2009 

MAIB 
 

1 
           

HAVEN 

HAWK 

06/2007 

MAIB 
  

1 
          

CORNER 

BROOK 

03/2005 

MAIB 
 

1 
           

FRI 

STREAM 

11/2006 

MAIB 
  

1 
          

KOCATEP

E S 

10/2006 

MAIB 1 
         

1 
 

1 
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SALINE 

02/2009 

MAIB 
 

1 
        

1 
  

MV 

SONIA 

29/2000 

MAIB 
  

1 
          

SUNNA 

01/2007 

MAIB 1 
      

1 
 

1 1 
  

HSS 

STENNA 

EXPLORE

R 

05/2003 

MAIB 
  

1 
          

STENNA 

PIONEER 

03/2010 

MAIB 1 
            

VANGUA

RD 

09/2004 

MAIB 
  

1 
          

WEST 

EXPRESS 

07/2008 

MAIB 
  

1 
     

1 1 
   

RMS ST 

HELENA 

19/2001 

MAIB 1 
     

1 
      

MARIELLA 

01/2008 

MAIB 
  

1 
          

NORSEA 

16/2003 

MAIB 
  

1 
       

1 
 

1 

WMS 

HARLING

EN 

05/2007 

MAIB 
  

1 
          

BREAKSE

A 

03/2006 

MAIB 
 

1 
           

CALYPSO 

8/2007 

MAIB 1 
      

1 
     

PRIDE OF 

CANTERB

MAIB 
  

1 
     

1 1 
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URY 

22/2015 

ISLE OF 

INISHMO

RE 

07/2008 

MAIB 1 
         

1 
  

FINLANDI

A 

SEAWAYS 

2/2021 

MAIB 
 

1 1 
      

1 
   

SAFMARI

NE NUBA 

03/2010 

MAIB 
 

1 
           

MORNES 

3/2009 

MAIB 
   

1 1 1 
 

1 
  

1 
  

ARCO 

AVON 

17/2006 

MAIB 1 
 

1 
      

1 
   

MSC 

COLOMBI

A 

08/2007 

MAIB 1 
            

WIGHT 

SKY 

14/2018 

MAIB 
 

1 
           

MILLENIU

M CITY 

01/2008 

MAIB 
  

1 
          

HEBRIDES 

20/2017 

MAIB 
  

1 
          

CELTICA 

HAV 

1/2019 

MAIB 
  

1 
          

SEA 

BREEZE 

14/2015 

MAIB 1 
            

EDDYSTO

NE AND 

RED 

MAIB 
   

1 1 1 
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EAGLE 

16/2018 

ALEXAND

ER 

TVARDOV

SKIY 

10/2013 

MAIB 
  

1 
          

SVITZER 

MOIRA 

19/2016 

MAIB 
   

1 1 
        

ARROW 

8/2021 

MAIB 
  

1 
     

1 
   

1 

FRI 

OCEAN 

26/2013 

MAIB 1 
 

1 
          

QUEEN 

VICTORIA 

05/2008 

MAIB 
    

1 1 
       

200240 Nautic

al 

Institu

te 

(MARS

) 

1 
 

1 
          

202018 Nautic

al 

Institu

te 

(MARS

) 

         
1 1 

  

201153 Nautic

al 

Institu

te 

(MARS

) 

 
1 1 

          

201454 Nautic

al 

Institu

te 

(MARS

) 

 
1 1 

     
1 
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200151 Nautic

al 

Institu

te 

(MARS

) 

1 
 

1 
          

200317 Nautic

al 

Institu

te 

(MARS

) 

 
1 

     
1 

     

200853 Nautic

al 

Institu

te 

(MARS

) 

1 
            

200653 Nautic

al 

Institu

te 

(MARS

) 

  
1 

      
1 

   

200614 Nautic

al 

Institu

te 

(MARS

) 

 
1 

           

200908 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

201233 Nautic

al 

Institu

te 

(MARS

) 

1 
 

1 
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200337 Nautic

al 

Institu

te 

(MARS

) 

1 
     

1 
      

200235 Nautic

al 

Institu

te 

(MARS

) 

1 
            

200513 Nautic

al 

Institu

te 

(MARS

) 

 
1 1 

          

201124 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

201146 Nautic

al 

Institu

te 

(MARS

) 

 
1 

           

2011X61 Nautic

al 

Institu

te 

(MARS

) 

1 
            

201734 Nautic

al 

Institu

te 

(MARS

) 

  
1 
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201129 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

200962 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

200615 Nautic

al 

Institu

te 

(MARS

) 

1 
     

1 
      

201622 Nautic

al 

Institu

te 

(MARS

) 

 
1 1 

          

201058 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

202133 Nautic

al 

Institu

te 

(MARS

) 

1 
            

202148 Nautic

al 

Institu

te 

(MARS

) 

1 
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201746 Nautic

al 

Institu

te 

(MARS

) 

 
1 1 

          

201631 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

201209 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

201114 Nautic

al 

Institu

te 

(MARS

) 

 
1 

  
1 1 

       

201567 Nautic

al 

Institu

te 

(MARS

) 

1 
       

1 1 
   

201255 Nautic

al 

Institu

te 

(MARS

) 

  
1 

         
1 

201246 Nautic

al 

Institu

te 

(MARS

) 

  
1 
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201782 Nautic

al 

Institu

te 

(MARS

) 

 
1 

           

201044 Nautic

al 

Institu

te 

(MARS

) 

  
1 

     
1 

    

201879 Nautic

al 

Institu

te 

(MARS

) 

1 
 

1 
       

1 
  

201061 Nautic

al 

Institu

te 

(MARS

) 

  
1 

       
1 

  

201312 Nautic

al 

Institu

te 

(MARS

) 

1 
 

1 
          

201305 Nautic

al 

Institu

te 

(MARS

) 

1 
            

200970 Nautic

al 

Institu

te 

(MARS

) 

 
1 

 
1 
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201329 Nautic

al 

Institu

te 

(MARS

) 

1 
     

1 
      

201929 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

201425 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

2011X02 Nautic

al 

Institu

te 

(MARS

) 

1 1 
           

201007 Nautic

al 

Institu

te 

(MARS

) 

  
1 

          

2011X06 Nautic

al 

Institu

te 

(MARS

) 

1 
  

1 
         

201662 Nautic

al 

Institu

te 

(MARS

) 

 
1 

  
1 1 

       



248 
 

2018/000

861 

EMSA 

(Europ

e) 

  
1 

          

2018/000

1865 

EMSA 

(Europ

e) 

 
1 

           

2019/006

699 

EMSA 

(Europ

e) 

  
1 

          

2018/000

926 

EMSA 

(Europ

e) 

  
1 

          

2018/000

1228 

EMSA 

(Europ

e) 

1 
            

2018/000

1043 

EMSA 

(Europ

e) 

  
1 

          

2018/000

518 

EMSA 

(Europ

e) 

  
1 

        
1 

 

2762/201

8 

EMSA 

(Europ

e) 

  
1 

          

2524/201

8 

EMSA 

(Europ

e) 

1 
            

2633/201

8 

EMSA 

(Europ

e) 

 
1 1 

          

2018/000

101 

EMSA 

(Europ

e) 

  
1 

          

2505/201

8 

EMSA 

(Europ

e) 

1 
        

1 
   

2168/201

8 

EMSA 

(Europ

e) 

1 
        

1 
   



249 
 

 

 

 

1884/201

8 

EMSA 

(Europ

e) 

1 1 1 
          

2033/201

8 

EMSA 

(Europ

e) 

 
1 1 

 
1 

  
1 

     

1204/201

8 

EMSA 

(Europ

e) 

  
1 

          

1146/201

8 

EMSA 

(Europ

e) 

1 
            

1059/201

8 

EMSA 

(Europ

e) 

1 1 
  

1 
        

2019/002

177 

EMSA 

(Europ

e) 

  
1 

          

  
38 28 61 6 9 6 6 7 7 10 12 2 4 


