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Abstract
Open-source model management frameworks such as OCL and ATL tend to focus on manipulating models built atop the
Eclipse Modelling Framework (EMF), a de facto standard for domain specific modelling. MATLAB Simulink is a widely
used proprietary modelling framework for dynamic systems that is built atop an entirely different technical stack to EMF. To
leverage the facilities of open-source model management frameworks with Simulink models, these can be transformed into an
EMF-compatible representation. Downsides of this approach include the synchronisation of the native Simulink model and
its EMF representation as they evolve; the completeness of the EMF representation, and the transformation cost which can be
crippling for large Simulink models. We propose an alternative approach to bridge Simulink models with open-source model
management frameworks that uses an “on-the-fly” translation of model management constructs into MATLAB statements.
Our approach does not require an EMF representation and can mitigate the cost of the upfront transformation on large models.
To evaluate both approaches we measure the performance of a model validation process with Epsilon (a model management
framework) on a sample of large Simulink models available on GitHub. Our previous results suggest that, with our approach,
the total validation time can be reduced by up to 80%. In this paper, we expand our approach to support the management of
Simulink requirements and dictionaries, and we improve the approach to perform queries on collections of model elements
more efficiently. We demonstrate the use of the Simulink requirements and dictionaries with a case study and we evaluate
the optimisations on collection queries with an experiment that compares the performance of a set of queries on models with
different sizes. Our results suggest an improvement by up to 99% on some queries.

Keywords Model driven engineering · Interoperability · Epsilon · MATLAB Simulink · Query optimisation · Eclipse
Modelling Framework
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1 Introduction

Systems engineers typically treat models as living entities,
which must be modified and manipulated throughout the
engineering lifecycle. Inmodel-driven engineering processes
specifically, models are transformed, queried, modified and
validated (amongst other activities) with the aid of model
management frameworks. In the case of such open-source
frameworks like as QVT, ATL, Acceleo and Epsilon, these
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are mostly tailored for managing models conforming to the
Eclipse Modelling Framework (EMF [42]), a de facto stan-
dard for domain-specific modelling [18]. Engineers working
with modelling environments that build atop EMF, such as
Papyrus [44], Capella [37] and SCADE [1], have at their dis-
posal themodel management facilities that these frameworks
provide.

MATLABSimulink is amodelling framework for dynamic
systems that is widely used across many industries includ-
ing aerospace and automotive [2,35,36]. This framework has
its own set of model management activities to operate on its
own models such as code generation and validation, but it
does not offer facilities to export these models in XMI, the
default exchange format for EMF models. As such, involv-
ing Simulinkmodels inmodelmanagement activities outside
of MATLAB—particularly those involving other heteroge-
neous models—can be challenging.

There are multiple scenarios in which Simulink models
are required to be used outside MATLAB. For example, the
interface of its elements (inputs and outputs) could be parsed
and stored in other models (e.g. XML) or used to produce
documentation. Similarly, a number of works have beenwrit-
ten on transformations that produce Simulink models from
SysML models [3,32,39,49]. In this particular scenario, sev-
eral approaches achieve the transformation by generating
MATLAB programs that produce the Simulink models on
execution. Evidently, these approaches are less reusable for
other scenarios, e.g. which may perform slightly different
transformations, as they are written for a particular input
model; but also because they only generate themodel leaving
out the possibility of reading it or modifying it. The Mas-
sif [48] project offers a more reusable approach that makes
Simulink models available to model management frame-
works with EMF support; this is achieved by transforming
Simulinkmodels into anEMF-compatible representation and
vice versa. With this approach, the full Simulink model must
be translated into EMF. This upfront transformation can be
crippling for large models (as demonstrated in [38]) and
unnecessary when the model management programs do not
work on the entire model. Additionally, Simulink models
that continuously evolve may require the co-evolution of the
EMF-counterpart which involves the re-execution of a non-
incremental transformation which can be expensive for large
models. Furthermore, model management programs might
be limited by the set of model element types supported by
the Simulink-to-EMF transformation [31] which currently
does not support Stateflow blocks.

Since Simulink is a tool that allows the creation of large
and complex designs [30], we anticipated that the upfront
transformation required with Massif would be expensive for
these models. As such, we set out to implement an alter-
native approach that would shift the cost away from their
EMF transformation and into the complexity of the manip-

ulating program. Our approach consists in translating model
management operations into small MATLAB programs at
runtime (on-the-fly). This ensures a constant synchronisa-
tion between the modelling tools and the MATLAB models.
Since no upfront transformation is required, the round-
trip engineering and co-evolution costs are eliminated. Our
implementation offers broader model coverage by including
Stateflow elements, Simulink requirement and Simulink dic-
tionary models. Additionally, it offers a more unified way of
accessing model element properties and shares a vocabulary
closer to the one used by MATLAB.

We compare the performance of our approach against
Massif’s upfront model transformation by measuring the
execution time of different stages of a representative model
validation process. This process involves the execution of
OCL-like invariants that validate structural properties on a
sample of the largest available Simulink models on GitHub.
Our evaluation indicates that our approach is more appro-
priate for continuously changing models as it can reduce
the overall time of the validation process by up-to 80%. In
contrast, the transformation-based approach (Massif) is bet-
ter suited for signed-off models that need to be extensively
queried as the cost of the transformation is a one-off and the
validation two orders of magnitude faster.

Although experimental results on our on-the-fly Simulink
bridge approach [38] show that it can reduce the overall exe-
cution time for a set of validation tasks on large models, the
execution time was still high for certain classes of queries.
We identified queries on collections of model elements as an
area for optimisation. In order to improve the performance
of our solution, we rewrite and delegate the execution of
bulk queries to the MATLAB engine to take advantage of
its inner indexes that are inaccessible by external clients.
Experiments with models that grow exponentially in num-
ber of elements suggest that off-loading to MATLAB these
queries can improve their performance by up to 99% in some
cases.

Another area we identified as source of improvement was
the coverage of the Simulink modelling environment which
relies on a set of (different) MATLAB-based models. This is
the case of Simulink requirements and Simulink dictionaries
which add information to the Simulink models. In this paper,
we expand our driver to support these additional model for-
mats.

Our approach offers researchers and practitioners an
additional option to manage Simulink models from model
management frameworks that is convenient for large and/or
continuously evolving Simulink models. Our implementa-
tion atop Epsilon, which offers a set of model management
languages, makes this approach accessible to a range of
model management activities such as model validation,
model-to-model and model-to-text transformations, model
comparison, etc., that can involve multiple heterogeneous
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models (e.g. EMF, UML) in the same program. Developers
of model management frameworks such as ATL can use the
technical details from this work to add support for Simulink
models in their own frameworks.

As shown later in the paper, MATLAB uses a different set
of operations and properties to manage elements in the dif-
ferent types of Simulink models (dictionaries, requirements,
Simulink models) and even for managing different elements
within these models, as is the case of Simulink and Stateflow
model elements. A side contribution of our approach is that it
provides a unified syntax to manage model elements within
the same MATLAB model and across the different types of
models.

This paper is an extended version of the work presented
in [38]. Compared to [38], in this paper, we also:
– Propose and implement a driver with a similar approach
to [38] that supports the management of Simulink dictio-
naries (Sect. 3.2) and requirements (Sect. 3.3). We also
demonstrate how they can be used in a running example
(Sect. 4).

– Propose a method for optimising queries on collections
of Simulink and Stateflow model elements (Sect. 3.1.2).

– Evaluate the performance of proposed collection query
optimisations with an experiment performed on model
element collections of different sizes (Sect. 5.2). This
experiment shows that the optimised queries outperform
the original ones, some by up to 99%.

– Extend our review of related work section (Sect. 7).
Roadmap The rest of the paper is structured as follows. Sec-
tion 2 introduces the modelling technologies used in our
approach and evaluation. Section 3 presents the architec-
ture of our “live” approach to bridge MATLAB Simulink
models, requirements and dictionaries into Epsilon. In addi-
tion, this section presents a query optimisation approach
which works on collections of Simulink and Stateflowmodel
elements. Section 4 presents a running example that show-
cases potential usage of the drivers. Section 5 evaluates the
performance of two approaches to bridge Simulink mod-
els: the upfront Simulink-EMF transformation against the
on-the-fly MATLAB function execution. This section also
evaluates the performance of query optimisations on col-
lections of Simulink/Stateflow model elements. Section 6
discusses observations and lessons learned. Section 7 sum-
marises related work. Section 8 concludes the paper and
discusses future work.

2 Background

In this section, we introduce the modelling technologies at
the core of this work: MATLAB/Simulink, Epsilon, EMF
and Massif.

Fig. 1 Example MATLAB/Simulink model

2.1 MATLAB/Simulink

MATLAB is a commercial tool developed by MathWorks
that provides a variety of numerical computing environments.
Under its Simulink [25] environment, it provides a graphical
block-based modelling framework that supports the design,
simulation and analysis of dynamic systems as well as model
management activities like code generation and continuous
model verification for such systems.
Simulink Models These are file-based models that represent
dynamic systems based on interconnected blocks. A sample
Simulinkmodel representing the behaviour of a car inmotion
after the accelerator pedal [24] is presented in Fig. 1. The
model contains five blocks from the Simulink library: a pulse
generator, a gain, a second-order integrator and two outports.
The pulse generator produces an input signalwhich simulates
the accelerator pedal. The gain simulates themultiplied effect
in the car acceleration. The second-order integrator enables
the acquisition of the position and speed of the car from the
acceleration through its outports. These blocks are intercon-
nected by their ports through directed lines called signals.

Simulink model elements have both a type and a sub-
type. Example model element types include Block, Line
and Port. Elements of type Port may have an inport or
outport subtype. The list of subtypes is much longer for
Block elements. All elements in Fig. 1 are blocks and their
subtypes, from left to right, are: DiscretePulseGenerator,
Gain, SecondOrderIntegrator and Outport.
StateflowMATLAB offers an additional toolbox of decision
logic, called Stateflow [26], used to describe howblocks react
to events, input signals and time-based conditions. This tool-
box is based on state machines and flowcharts that can be
attached to Simulink model elements. Figure 2 shows a sam-
ple Stateflow diagram containing two states named ON and
OFF representing the operating modes of a system, and one
transition,1 named E1, that connects one state to the other.

Stateflow model elements are persisted within a Simu-
link model. On a Simulink model, there is a corresponding
Stateflow machine which contains all Stateflow charts of the
model. Each chart defines decision logic by combining log-
ical elements such as states, boxes, functions, data, events,
messages, transitions, junctions and annotations. Only states,
boxes and functions may contain any other logical elements

1 The arrow on the left is not a transition.
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Fig. 2 Example of MATLAB/Stateflow model elements

indefinitely. Stateflow charts may be included as blocks in
the Simulink model.

All model elements in Stateflow are Stateflow.Object

instances and their specific type names are always preceded
by the Stateflow prefix and a period. For example, states
are of type Stateflow.State.
Simulink functions Simulink models can be manipulated
manually using MATLAB’s graphical interface or pro-
grammatically invoking Simulink functions via MATLAB’s
command line interface. Listing 1 illustrates someof themain
Simulink functions that enable model navigation and modi-
fication.

1 load_system m
2 find_system('m','Type','Block ')
3 find_system('m','BlockType ','Gain')
4 gain=add_block('simulink/Math Operations

/Gain','m/Gain')
5 get_param(gain ,'BlockType ')
6 set_param(gain ,'Name','newName ')

Listing 1 MATLAB Simulink functions

Line 1 shows how to load a model named m (same as its
filename without extension) before we can interact with it.
Line 2 shows how to retrieve all model elements of a given
type, in this case, of elements of type Block from model m
. For the model in Fig. 1, this evaluation would return five
blocks. By changing the value of the type parameter to Line

or Port (instead of Block) the same evaluation would return
the 4 signals or 8 ports from the figure, respectively]. To find
block model elements by their subtype it suffices to change
thetypekeyword forBlockType in thefind\_system func-
tion. Line 3 illustrates query at subtype level which looks for
block elements of subtype Gain. A similar approach applies
for line and port elements whichmust replace the BlockType
keyword for the corresponding LineType or PortType.

Line 4 illustrates the creation of a block of type Gain. The
first function argument is the path of the library block to be
usedwhile the second argument represents the location in the
destination model where the block will be created. This path
starts with the name of the Simulink model, ends with the
new element’s intended name, and may contain in-between
the name of intermediary nested blocks that will contain the
new element. Regarding the management of model element
properties, line 5 gives an example of how to retrieve the
subtype property of a gain block while line 6 shows how to
set the block’s name.

MATLAB Java API MATLAB provides several Application
Programming Interfaces (APIs) that allow the invocation of
MATLAB functions from languages like Python, C, C++,
Fortran and Java. In the case of its Java API, MATLAB
provides the MatlabEngine class that is able to start or con-
nect to a MATLAB engine and also to evaluate MATLAB
functions. The Java API also provides wrappers for specific
MATLAB types such as structural arrays, cell arrays, etc.

Listing 2 illustrates a sample program that starts a MAT-
LAB engine (line 1), evaluates MATLAB functions (lines
2–3) and then closes the connection with the engine (line 5).
The evaluation of MATLAB functions through the engine is
done using the evalmethod which receives the functions as
strings. Line 4 shows how the getVariablemethod can then
be used on the engine to retrieve variables from MATLAB’s
workspace.

1 MatlabEngine e= MatlabEngine.startMatlab ();
2 e.eval("load_system sl;");
3 e.eval("m=getSimulinkBlockHandle('sl ')");
4 Object m = e.getVariable("m");
5 e.close ();

Listing 2 MATLAB Java API

Simulink Projects MATLAB can group multiple Simulink
models inside a project. Additionally, Simulink projects can
contain requirement definitions, test cases and data dictio-
naries that complement the Simulink models.

A data dictionary file represents a data repository which
includes design data such as parameters and signals that are
used to configure the behaviour of Simulink models [28].
The dictionary object is the root element and it contains
sections which in turn contain a set of entry elements.
Each entry has a unique name and a value of an arbitrary
type. The four default sections of a dictionary are named:
Design Data, Configurations, EmbeddedCoder and Other
Data.

The Simulink requirements toolbox enables the definition
of requirements that can be linked to dictionary and Simu-
linkmodel elements. The RequirementSet is the root object
of a requirements definition file and contains elements of
type Requirement, Justification and Reference. Each
of these elements may contain nested elements of the same
parent type, e.g. a requirement can contain other require-
ments. Elements of type Justification are requirements
excluded from implementation and verification metrics,
while Reference elements are proxies for external require-
ment objects from third-party applications.

Note that the traceability information—in the form of
links among requirement, dictionary and Simulink model
elements, is persisted in its own file. Each Simulink model,
dictionary or requirement file which has elements involved in
traceability links will have a corresponding link file with the
same name as the model. At the root of element of these link
files is the LinkSetwhich contains the set of Link elements.
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2.2 Epsilon

Epsilon is a framework of inter-operable languages and tools
designed formodelmanagement tasks likemodel navigation,
validation and transformation. The Epsilon Object Language
(EOL) [19] is an OCL-like model query and transforma-
tion language that all other Epsilon languages are built on
top of. Among these model management languages, we
find the Epsilon Validation Language (EVL) [21]—designed
to evaluate invariants on model elements, and the Epsilon
Transformation Language (ETL) [20]—targeted at model-
to-model transformations.

Epsilon has a layered architecture (see Fig. 3). TheEpsilon
Model Connectivity (EMC) layer provides abstraction facil-
ities that allow models of arbitrary technologies (e.g. EMF,
XML) to be managed in a uniform manner in any of the
Epsilon languages. Concrete EMC implementations for dif-
ferent modelling technologies such as EMF, or PTC Integrity
Modeler, are known as (epsilon model) drivers.

Listing 3 shows a sample EOL program that navigates and
manipulates a model M2 of arbitrary underlying modelling
technology (e.g. EMF, XML). In the first line, the first of all
the elements of type Block contained in themodel is selected
and then assigned to a newvariable namedelement. In line 2,
the value of its name property is retrieved, while in line 3, its
evaluate() method is invoked. Further down, line 4 shows
how a new element of type Block is created and assigned to
the newElement variable while line 5 sets its name property.

1 var element = M!Block.all().first ();
2 element.name;
3 element.evaluate ();
4 var newElement = new M!Block;
5 newElement.name = "My Block";

Listing 3 Example EOL Script.

The EOL program in Listing 3 can be executed on mod-
els of arbitrary technology because the model is injected to
the EOL interpreter at runtime by an arbitrary driver. The
syntax that an EOL program uses to create and delete model
elements, to set and get their properties, or invoke their meth-
ods does not depend on the driver. The contribution of a driver
on any Epsilon program is the availability of model element
types, their properties and additional methods at runtime.
For example, the first() operator works on collections and
is handled by the EOL engine by default.3 In contrast, the
all()method in Listing 3 delegates the collection of all ele-
ments of type Block to the driver that handles model M. For
Listing 3 to terminate successfully, the driver that provides

2 The character “!” is used in Epsilon to separate the runtime name of
the model from a model element type or kind available in that model.
3 Other collection operators such as select() and collect()
are provided in EOL by default although drivers may override their
behaviour.

and manages model M would need to know how to handle
model elements of type Block with a name property and an
evaluate() method.

Epsilon currently provides drivers for a variety of mod-
elling technologies including EMF, XML [19] and Spread-
sheets [12]. Section 3 presents the architecture of the Simu-
link driver which was the main contribution of the original
publication [38], and of the Simulink requirements andSimu-
link dictionary drivers, which are introduced for the first time
in this paper.

2.3 The Eclipse Modelling Framework andMassif

The Eclipse Modelling Framework (EMF) was designed
to build Java applications based on domain-specific model
definitions [40] described with the Ecore meta-modelling
language. EMF offers several representations for their mod-
els including Java code, XML Schema and UML diagrams,
but its canonical format is the XML Metadata Interchange
(XMI). Models conforming to an Ecore metamodel are
referred to as EMF models.
Massif The Massif [48] project enables the transformation
of MATLAB/Simulink models into an EMF-compatible rep-
resentation and vice versa. Massif connects to MATLAB’s
engine to parse and update Simulink models. The result-
ing EMF models conform to an Ecore Simulink meta-model
defined byMassif which is limited to Simulink elements, i.e.
leaving out Stateflow elements.
Massif’s Simulink Ecore meta-model The Massif meta-
model considers any Simulink model element that can be
identified and named as a subtype of the SimulinkElement

class. All subclasses of SimulinkElement are presented in
Fig. 4. Its direct descendants are Connection, Port, Block
and SimulinkModel.

The SimulinkModel class is the root model element
which keeps a reference to the file and version of the Simu-
link model. This class contains all the Block elements along
with their Port and Connection elements.

In Massif, the ports (Port) of a block are either of type
InPort or OutPort and they can be represented by a virtual
block of class PortBlock. Similarly, the lines that connect
the block ports are instances of the Connection class which
can be either SingleConnection or MultiConnection.
Any block whose MATLAB subtype cannot be found as a
class inMassif is considered as a generic Block. Someblocks
have predefined properties as attributes, e.g. the tag prop-
erty in the SubSystem class but most of their properties are
dynamically added to their parameters attribute which con-
tains array of Property elements, each with a name, value
and type.

Some of theMassif meta-model constructs differ from the
wayMATLABmanages Simulink models. The most notable
difference is that Simulink’s block library offers 140 differ-
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Fig. 3 Epsilon architecture

Fig. 4 Simulink element types provided by Massif’s Simulink meta-model

ent Block subtypes (e.g. Gain, Sum, UnitDelay, etc.), while
Massif only provides 11 concrete ones. TheSimulink subtype
of blocks that do not fall under the previous 11 subtypes can
be retrieved from the block’s parameters attribute, look-
ing for the one with the BlockType identifier. Similarly,
there are 5 Port subclasses in Massif’s meta-model out of
the 6 subtypes found in the Simulink library and, in par-
ticular, it is unclear how the State class in Massif maps
to one or both of the Reset and ifaction port types in
Simulink. A related inconsistency can occur when, after a
transformation into EMF, the attributes of some block sub-
classes can have redundant or unpopulated values as they
can also be found within the block’s parameters attribute,
e.g. the tag attribute in the SubSystem class which can
also be found in the parameters. Another difference is that
the Connection class in Massif refers to Simulink model
elements of type Line and subtype signal and that the
MultiConnection and SingleConnection subclasses in
the meta-model are used to refer to the SegmentType prop-
erty of lines in MATLAB which can take the value of trunk
or branch, correspondingly. In addition, subtype capitalisa-
tion is important for Simulink functions, e.g. input is used
to refer to a port subtype as opposed to Input which identi-

fies a block subtype. By contrast, in Massif the InPort and
InPortBlock classes are used to refer to the port and block
elements, respectively. Finally, MATLAB also handles spe-
cial data types such as Cell Arrays4 and Structure Arrays5

which Massif stores as plain Strings.
From Simulink to EMF and vice versa Massif provides four
different ways to transform Simulink models into an EMF-
compatible representation. This process is known as the
import process. The import modes can affect performance of
the process as they differ in the way the MATLAB/Simulink
ModelReference blocks6 are resolved: The shallow mode
does not process the referencedmodel; the deepmode creates
new SimulinkModel elements for each ModelReference

block; the flattening model processes these blocks as
SubSystem blocks; and the referencing mode processes
ModelReference blocks as new EMF resources (once) and
references them in the model.

4 Indexed data containers that can store any type of data.
5 Groups of data in containers that store any type of data.
6 Blocks that represent a reference to another model.
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TheMassif export process transforms the Simulink EMF-
compatible representation into a Simulink file. This process
can produce files with either .slx or .mdl extension.

3 Live Simulink bridges

In this section, we introduce the architecture and implemen-
tation of an approach that bridges models of the MATLAB
Simulink environment with the Epsilon model management
framework through on-the-fly translations of model manage-
ment constructs into MATLAB functions. We choose the
Epsilon [46] model management framework to implement
and evaluate our approach based on the connectivity facili-
ties that it offers and for the variety of model management
languages in which the implementation becomes available.
A similar approach can be implemented by other model
management frameworks with similar connectivity facilities,
such as ATL [17].

We present three concrete implementations (known as
drivers or EMCs) that bridge different Simulink-based mod-
els with Epsilon. The Simulink EMC (Sect. 3.1) manages
Simulink models including their Stateflow model elements.
The Dictionary EMC (Sect. 3.2) handles Simulink dictio-
naries that are used by Simulink models to configure their
models. The Requirements EMC (Sect. 3.3) can manage
requirements that are linked to elements on dictionaries and
Simulink models. The Simulink driver was formerly pre-
sented in [38], while the other two drivers are introduced for
the first time in this work. All drivers are publicly available
as plugins of the Epsilon project [46].
Implementation The Epsilon Model Connectivity (EMC)
layer enables the uniform navigation and manipulation of
models in any Epsilon model management language regard-
less of the model’s underlying technology. Each driver
implementation is able to access and interact with “live”
Simulink models as they generate on-demand MATLAB
commands that are executed on the Simulink model. To
achieve this, these drivers connect to MATLAB’s engine via
the MATLAB Java API.

To illustrate the on-the-fly translation from EOL to MAT-
LAB functions, consider the EOL program in Listing 4.
At runtime, this program receives a model managed by the
Simulink EMC driver, which can handle elements of type
Block and knows how to manipulate their properties. The
EOL Block.all() statement is used to retrieve all the Simu-
link block model elements from the model. To collect these
elements the Simulink driver replaces the ? placeholder in the
MATLAB function from line 1 in Listing 5 with the appro-
priate values, in this case the name of the model and the
kind of element looked for, i.e. Block. The resulting func-
tion (line 2) is then submitted for evaluation to theMATLAB
engine through its Java API. The function returns a collec-

tion of block identifiers which is wrapped by the Simulink
EMC into a lazy collection of SimulinkBlock instances to
be used in subsequent processing. The first() statement
from our EOL program in Listing 4 is then called on this
lazy collection of SimulinkBlock elements. This statement
is an Epsilon operation that works on collections of any type
to return their first element. The following statement Name
is acting on the first SimulinkBlock returned. Since this
model element belongs to the Simulink model handled by
the Simulink EMC driver, it is the driver which handles the
requested property access. To do so, the driver replaces the ?
placeholder in line 3 of Listing 5 and submits its populated
version (line 4) to the MATLAB engine over the API. The
get\_paramMATLAB function in this place is expecting as
first argument the block’s identifier (or handle) which is a
number of type double. The last step consists in parsing the
function result and assigning its value to the EOL variable
name.

var name = Block.all().first().Name;

Listing 4 Collection of block names in EOL

1 find_system('?','type','?')
2 find_system('modelName ','type','Block ')
3 get_param (?,'Name')
4 get_param (34.394856839 , 'Name')

Listing 5 MATLAB functions to collect Simulink blocks and their
names.

Architecture Figure 5 shows the architecture of Simulink-
based drivers and how they relate to the core facilities of the
Epsilon Model Connectivity layer (Group 1). All concrete
drivers such as the Simulink EMC (Group 3), the Dictio-
nary EMC (Group 4) and the Requirements EMC (Group
5) use common classes and helpers that are provided by the
abstract Common Simulink EMC (Group 2) which extends
the core EMC. The common facilities include the config-
uration of the Simulink project and the establishment of
a connection with the MATLAB engine. In addition, a set
of abstract classes to handle lazy collections of Simulink-
basedmodel elements are also provided. Each concrete driver
extends the AbstractSimulinkModel class and implements
its own approach to create, delete and collect elements of spe-
cific types. This is done by overriding the respective methods
from the Model superclass.

3.1 Simulink EMC

This driver manages Simulink and Stateflowmodel elements
which are described in Sect. 3.1.1. We expand on previous
work by adding query optimisations on operations that act on
collections of model elements which are presented in Sect.
3.1.2. A simplified view of this driver’s architecture is pre-
sented in Group 3 of Fig. 5.
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Fig. 5 Simplified architecture of Simulink drivers. Group 1 represents the Epsilon Model Connectivity (EMC) Layer. Group 2 contains the
Common Simulink EMC facilities. Groups 3–5 show the main contents of the Simulink model, Simulink dictionary and Simulink Requirement
EMCs, respectively

3.1.1 Simulink

Model The Simulink EMC driver considers a Simulink file
(*.slx or *.mdl) as a model. This model is managed as
an instance of the SimulinkModel class (see Fig. 5). A
model defines the behaviour of inherited methods from the
class AbstractSimulinkModel in the Common Simulink
EMC layer which in turn extends functionality from the
CachedModel class defined in theEMC layer. Together, these
classes describe how amodel will performCRUD operations
on its owned model elements and the model itself, while they
also determine how to load and dispose the model instance
before and after the execution of a model management pro-
gram, e.g. validation, transformation.
Model ElementsThe SimulinkModelmanages elements that
inherit from the SimulinkModelElement class which can
be either SimulinkElement or StateflowBlock. For each
MATLABSimulink type, e.g. Block, Port and Line, there is
a corresponding class, e.g. SimulinkBlock, SimulinkPort
and SimulinkLine that extends SimulinkElement. These
classes provide additional methods, e.g. to link blocks or

to change their parents; and may override the behaviour of
CRUD operations for the type of element they work on.

As discussed in Sect. 2, Simulink elements in MATLAB
have subtypes, e.g. an element of type Block may be of
subtype Gain or SubSystem. In Epsilon, the union of an
element’s super types and of its concrete type is referred to
as the element’s kinds. The Simulink EMC driver consid-
ers the Simulink subtype (e.g. Gain) as the model element
concrete type, while still considering their Simulink type
(e.g. Block) as one of their kinds. Stateflow element types
(e.g. Stateflow.State) are used as their concrete type in
Epsilon. At the same time, all Stateflow elements belong to
the Stateflow kind in Epsilon.

MATLAB Simulink model elements provide different
ways to be identified (e.g. path, id, handle). However, MAT-
LAB Simulink functions return either handles or paths. As
such, for Simulink elements, the driver uses as identifier
their handle property which is a non-persistent session-based
immutable identifier of type Double. In contrast, the driver
uses the id property (Integer) to manipulate Stateflow ele-
ments which is easy to retrieve from the Stateflow objects
returned by most Stateflow functions and queries. In the rest
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of the paper, we use interchangeably the words identifier or
handle of a model element to refer to the mechanism by
which specific element instances are retrieved across MAT-
LAB toolboxes.
Create element The SimulinkModel instance manages
the creation of Simulink and Stateflow model elements.
When the reserved word new precedes a type name in
an Epsilon program, the interpreted invokes the method
createInstance(type:String) of the EMC model.

To instantiate Simulink blocks, MATLAB requires the
path of the block in the Simulink library. The user is respon-
sible for providing this path in order to instantiate a block in
Epsilon. Once provided, the model populates the MATLAB
function add\_block with the path of the library block then
asks the MATLAB engine to evaluate it. Listing 6 shows the
creation of Sum and SubSystem blocks in EOL using their
library block path.7 The Simulink driver creates these blocks
at the top level of the Simulink model but they can later be
placed elsewhere by changing their parent.

1 var sum = new `simulink/Math
Operations/Sum`;

2 var subsystem = new `simulink/Ports &
Subsystems/Subsystem`;

Listing 6 Model element creation

There is no equivalent add\_port function in MATLAB
to create port model elements. In contrast, the add\_line

MATLAB function which creates lines, requires the source
and target ports to be connected. The Simulink EMC driver
does not allow the direct creation of lines through EOL state-
ment such as new Line or new signal. Instead, lines are
created using linkagemethods on block elements which may
specify the source and/or target ports to be connected. For
example, provided the model from Fig. 1 with no lines, these
can be created with the following EOL program:

1 pulse.link(gain);
2 gain.linkTo(integrator , 1);
3 integrator.linkFrom(outport1 , 1);
4 integrator.linkFrom(outport2 , 2);

Listing 7 Linking methods for block elements in EOL

In MATLAB, Stateflow elements use a different syntax
for instantiation which consists of their type followed by a
container. For example, a Stateflow state can be created by
invoking the function in Listing 8 where chart is the con-
tainer Stateflow element. This same statement can be used
in EOL to instantiate this state by preceding it with the new

reserved word (line 1). Additionally, the Simulink EMC
can delay the instantiation of Stateflow elements until the
parent is assigned. In other words, a placeholder is created
when using a statement with no parent (line 2) which is only

7 The use of the back-tick (`) is required when a type identifier contains
spaces.

submitted to the MATLAB engine for instantiation when its
parent property is assigned (line 3). Before then, other prop-
erties of the Stateflow element can be assigned in memory to
its placeholder. These properties are submitted to MATLAB
just after the element is instantiated.

1 Stateflow.State(chart)

Listing 8 Stateflow element creation in MATLAB

1 var off = new `Stateflow.State`(chart);
2 var on = new `Stateflow.State`;
3 on.parent = chart;

Listing 9 Stateflow element creation in EOL

Delete element In Epsilon programs, deleting a model ele-
ment involves the use of the delete reserved word before
the element to delete as shown in Listing 10.

1 delete sum;
2 delete subsystem;

Listing 10 Simulink element deletion in EOL

functions from lines 1 and 2 in Listing 11, respectively.
There is no equivalent delete\_port MATLAB function.

1 delete_block(blockElement);
2 delete_line(lineElement);

Listing 11 Simulink element deletion in MATLAB

The SimulinkModel is responsible for the deletion of model
elements and does this through its deleteElementInModel
(e:Object) EMC method . For Simulink elements, the
Simulink EMC chooses the appropriate MATLAB function
for the element being deleted and provides its appropriate
identifier.MATLABhas a different syntax to delete Stateflow
elements which is the dot notation, e.g. elementId.delete.
Read and update element properties The SimulinkModel

delegates to instances of the SimulinkPropertyGetter

and SimulinkPropertySetter classes the responsibility of
reading and updating properties of model elements. The for-
mer receives a model element and the property that is to be
retrieved from it while the latter additionally requires the
value to be assigned to the element’s property.

Depending on the kind of model element that these act
upon, they populate and evaluate different MATLAB func-
tions. For example,when dealingwith Simulink blocks, these
property managers evaluate the MATLAB functions from
Listing 12.

1 get_param(element ,'PropertyName ')
2 set_param(element ,'PropertyName ',value)

Listing 12 MATLAB Simulink element getter and setters

An example of an EOL program retrieving and populating
Simulink element properties is shown inListing 13.
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1 subsystem.name = "Controller";
2 var subsystemName = subsystem.name;
3 sum.description = "Sum block";
4 var sumDescription = sum.description;
5 var inportHandles = subsystem.

LineHandles.Inport;

Listing 13 Get and set Simulink element properties in EOL

Lines 1 and 3 set element properties, while lines 2, 4 and
5 get property values from them. In the particular case of
line 5, the property LineHandles returns a Structured Array,
which is aMATLAB-specific type that represents an array of
key-value pairs. InMATLAB, their values are retrieved using
thegetfield(element,property) function. TheSimulink
EMCdriver can identify these types and navigate them as any
other property. In the example, the value of its Inport key
is retrieved.

InMATLAB, the dot notation is used oncemore to get and
set properties from Stateflow elements. This is illustrated in
Listing 14 where the name of a Stateflow State element is
retrieved (line 1) and set (line 2). The syntax to do the same
in an EOL program would be identical.

1 element.Name;
2 element.Name='NewName ';

Listing 14 Get and set stateflow element properties in MATLAB and
EOL

Retrieve elements To collect all instances of a given type,
Epsilon programs use the all() operation on types. Alterna-
tively, to collect all available elements on the model, Epsilon
provides the allContents() operation at the EMC model
level. Given a model M, Listing 15. illustrates different ways
to retrieve Simulink model elements in EOL.

1 var blocks = M!Block.all();
2 var lines = M!Line.all();
3 var ports = M!Port.all();
4 var sums = M!Sum.all();
5 var subsystems = M!SubSystem.all();
6 M.allContents ();

Listing 15 Retrieval of model elements

The all() operation (lines 1–3) triggers the execution
of the getAllOfKindFromModel(kind:String) method
from the SimulinkModel. At first, this method attempts to
find elements of either Block, Line, Port or Stateflow

kind. If the kind argument does not match any of those, as in
lines 4–5, then the SimulinkModel will attempt to find the
MATLAB subtype, e.g. SubSystem blocks or Stateflow.
State elements. In contrast, the use of the allContents()

in line 6 triggers the result aggregation of collections by kind,
i.e. Block, Port, Line, and Stateflow elements.

Line 1 in Listing 16 reminds the reader how elements of
type Port, Block or Line can be collected inMATLAB, while
line 2 shows how this function is adapted to collect elements
by their subtype. The SimulinkModel class populates and

submits the appropriate MATLAB functions for the element
kinds (e.g. Block) or types (e.g. Sum) to be collected and then
stores the results in lazy collection objects which extend the
AbstractSimulinkCollection class.

1 find_system(model ,'type','Port')
2 find_system(model ,'blockType ','Sum')

Listing 16 Retrieval of Simulink elements in MATLAB

Stateflowelements are collected using theMATLABfunc-
tions in Listing 17 which act on the model handle. All
Stateflow objects can be retrieved by passing the Stateflow
.Object as isa parameter but subtypes (e.g. Stateflow.
State) can also be passed instead. The approach to collect
these from Epsilon is shown in Listing 18.

1 model.find('-isa','Stateflow.Object ');
2 model.find('-isa','Stateflow.State');

Listing 17 Retrieval of Stateflow elements in MATLAB

1 M!Stateflow.all();
2 M!`Stateflow.State`.all();

Listing 18 Retrieval of Stateflow elements in EOL

Element Methods The Simulink EMC adds convenience
methods to its model andmodel elements, such as the one for
linking blocks in Listing 7. Other methods are also available,
such as getType(), getParent() and getChildren().
Nevertheless, MATLAB provides many more functions for
its Simulink and Stateflow model elements that would be
challenging to individually replicate in the EMC driver. To
deal with this, when an unknown method in EOL is called on
the model or its elements the following strategy is applied.

ManyMATLAB functions for Simulink model and model
elements have a common structure (Listing 19) which takes
themodel element as first argument. At the same time, model
element operations in EOL are executed as instance methods
and have the form shown in Listing 20.

method_name(element ,arg0 ,..., argN)

Listing 19 Matlab function structure

element.methodName(arg0 ,..., argN);

Listing 20 EOL method structure

To execute non-hard-coded MATLAB functions, the
Simulink driver dynamically translates themethod as aMAT-
LAB command and submits it to the MATLAB engine
for evaluation. The SimulinkOperatorContributor class
specifies this behaviour. As an example, consider the EOL
statements in Listing 21 which would be translated to the
corresponding MATLAB functions in Listing 22.

1 subsys.find_mdlrefs ();
2 subsys.find_mdlrefs('AllLevels ',true);

Listing 21 Invocation of MATLAB functions as EOL methods

123



Runtime translation of OCL-like statements on Simulink models: Expanding domains and optimising queries 1899

1 find_mdlrefs(subsys)
2 find_mdlrefs(subsys ,'AllLevels ',true)

Listing 22 Sample MATLAB functions that act on Simulink elements

MATLAB operations acting on Stateflow elements com-
monly8 share the same syntax as EOL, except that operations
with no arguments do not require brackets in MATLAB.
Through the SimulinkOperatorContributor class, the
Simulink EMC driver can change the translation of these
functions depending on the model element kind they act
upon.

3.1.2 Collection query optimisation

The Simulink driver returns lazy collections of model ele-
ments when retrieving elements by type or kind. This
capability was already presented in [38]. However, perform-
ing collection and selection operations on these collections
can become computationally expensive as these collections
grow in size because they are performed sequentially by
default. Taking advantage of some of theMATLAB functions
which can perform bulk operations much more efficiently, in
thisworkweuse themon collections of Simulink or Stateflow
model elements when select or collect operations involve
property checks on their members.

A collect operation works on a collection and consists in
evaluating an expression on each member of the collection
to return a new collection with the evaluation results. For
example, the EOL statement from Listing 23 starts on a col-
lection of all Block elements in the model and returns a new
collection with all the names of these elements.

Block.all().collect(b|b.Name);

Listing 23 EOL collection of Simulink block names

A select operation also works on collections and filters the
collection leaving only the elements that satisfy a given con-
dition. For example, the EOL statement fromListing 24 starts
fromacollection of elements of Inport type and returns a copy
of the collectionwith only the elements named Temperature

.

Inport.all()
.select(i|i.Name=="Temperature");

Listing 24 EOL selection of Simulink inport blocks

Lazy collections of Simulink or Stateflowmodel elements
work by storing the array of model element identifiers (han-
dles) and only constructing the appropriate wrapper (e.g.
SimulinkBlock, StateflowBlock) when acting on the ele-
ments of the collection. For example, when Block.all()

is invoked in Epsilon, the collection of blocks returned by
the appropriate MATLAB function is an array of Simulink

8 The only method that does not follow this structure is provided by the
driver.

handles (doubles). There are operations we can compute on
this array without having to resolve them into their corre-
sponding SimulinkBlock wrapper instance. For example,
we can get the number of blocks on the collection by getting
the size from the array of Simulink handles. However, when
select or collect operations are invoked on a lazy collection,
their argument expressions are likely to involve interactions
with properties from elements in the collection. As such, the
lazy collections have to iterate over their elements, instanti-
ate them in their appropriate wrapper class and evaluate their
expressions.

In this paper, we have extended the implementation of the
lazy collections to support the invocation of select and col-
lect operations without having to instantiate wrapper classes
for all its elements. To achieve this, the lazy collection first
checks whether the operator’s expression can be optimised
(i.e. has a specific form) and if so then the collection builds
a MATLAB function that can use the array of Simulink han-
dles. Currently, we optimise only those operations whose
expressions can be translated into a valid bulk MATLAB
statement.

For collect operators, we currently support simple prop-
erty navigation expressions such as Listing 23. The MAT-
LAB functions in Listing 25 are used to collect properties
from collections of Simulink (line 1) or Stateflow (line 2)
model elements. These functions take as first argument the
array of element handles and replace the '?' placeholder
with the property name to be retrieved.

simulink=get_param(handles , '?')
stateflow=get(handles ,'?')

Listing 25 MATLAB Simulink and Stateflow collection operations

The Epsilon operator sortBy reuses this implementation
to sort the elements on the collection after they have been
collected in bulk.

The select operator optimisation for collections of Simu-
linkmodel elements uses theMATLABfunction inListing 26
to perform the bulk queries. This function replaces the ques-
tion mark placeholders with property-value pairs that all
elements in the collection must match. When more than one
property-value pair is used the function performs the logi-
cal AND operation. As such, optimised select operations in
Epsilon only support expressionswhich involve logical AND
expressions that, as in the collect case, involve simple prop-
erty checks. Select operations that do not match this criteria
fall back to the default sequential evaluation.

simulink=find_system(handles ,'?','?')

Listing 26 Simulink element selection MATLAB function

An example of a supported EOL query on a collection
of Simulink model elements is shown in Listing 27. The
corresponding MATLAB function submitted to the engine
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is shown in Listing 28, where all refers to a collection of
Simulink element handles.

1 Gain.all().select(g|(g.Gain ==2) and
(g.Name=='Gain'))

Listing 27 EOL selection of Simulink gain blocks

1 find_system(all ,'Gain',2,'Name','Gain')

Listing 28 MATLAB selection of Simulink gain blocks

The select operator for collections of Stateflow elements
delegates to the MATLAB function in Listing 29. The ques-
tion mark placeholders in this function can be replaced with
property-value pairs to be matched from the elements in
the collection. This MATLAB function supports more fine-
grained queries than the find\_systemMATLAB function.
For example, it supportsmultiple logical operators (i.e.AND,
OR, XOR and NOT) to join property-value pairs and also
supports regular expressions for property values.

stateflow=handles.find('?','?')

Listing 29 Stateflow element selection MATLAB function

Listing 30 is an example of an EOL select operation that
can be performed on collections of Stateflow elements. List-
ing 31 shows the MATLAB function that is constructed and
submitted to the MATLAB engine, where all represents a
collection of Stateflow handles.

1 `Stateflow.State`.all().select(s|
(s.Name.startsWith('S')) and
(s.IsExplicitlyCommented ==0) or
not (s.IsImplicitlyCommented ==0)))

Listing 30 EOL selection of Stateflow states

1 all.find('-regexp ','Name','^S','-and',
'IsExplicitlyCommented ',0,'-or',
'-not','IsImplicitlyCommented ' ,0)

Listing 31 MATLAB selection of Stateflow states

The select operator is reused by other Epsilon operators
such as: selectOne, find, findOne, reject, rejectOne, exists and
forAll.

3.2 Simulink Dictionary EMC

This driver manages Simulink Data Dictionary as models. A
simplified view of its architecture is presented in Group 4 of
Fig. 5.

In Sect. 3.1.1, we discussed the process by which EOL
statements are translated into and back-from MATLAB
functions using facilities provided by the Epsilon Model
Connectivity layer. Since the process to manage dictionary
models is very similar, in this section we focus on the MAT-
LAB functions involved in the translation process rather than
the process itself.

Model Before executing an Epsilon program, the Dictionary
EMC invokes the appropriate MATLAB function from List-
ing 32 to either create (line1) a new dictionary model file
(*.sldd) or open one (line 2).After the execution of anEpsilon
program and depending on the runtime model preferences,
changes in the dictionary may be saved or discarded invok-
ing the MATLAB functions from lines 3 or 4 in Listing 32,
respectively. Only if specified at runtime, the dictionary may
be closed after an execution invoking the MATLAB close

function (line 5).

1 dict=Simulink.data.dictionary.create(
file)

2 dict=Simulink.data.dictionary.open(file)
3 saveChanges(dict)
4 discardChanges(dict)
5 close(dict)

Listing 32 MATLAB Dictionary model operations.

Model Elements As discussed in Sect. 2, the root instance
of a data dictionary is the dictionary itself. In the Dictio-
nary EMC, this instance is represented and managed by
the SimulinkDictionaryModel class. The root element
contains four specific sections by default: Design Data, Con-
figurations, EmbeddedCoder and Other Data. Sections are
represented by the SimulinkSection class in the Dictio-
nary driver. Each section contains a set of entry elements
which represent a key-value pair but contain more informa-
tion such as their last modification date and the author of the
changes. In the Dictionary EMC, the SimulinkEntry class
wraps these entries.
Retrieve Elements MATLAB provides several functions to
retrieve either sections or entries from a dictionary. The first
line in Listing 33 shows how to retrieve a section from the
dictionary by specifying the name of the section, in this case
“Design Data”. The second line illustrates how the entries of
the section can be collected.

1 s = getSection(dict ,'Design Data');
2 entries = find(s)

Listing 33 Section and entry retrieval in MATLAB

When an Epsilon program asks for all elements of type
Dictionary (line 1 from Listing 34) the Dictionary EMC
returns the model9 for convenience. For collecting the sec-
tions of a dictionary model (line 2), the Dictionary EMC
invokes the getSectionMATLAB function for the four sec-
tions of the dictionary and wraps each section identifier in
an instance of the SimulinkSection class. As there is no
method to retrieve all entries from a dictionary (line 3) in
MATLAB, the Dictionary EMC invokes the findMATLAB
function on each of the sections of the dictionary. Each of the
entry identifiers returned is wrapped in the SimulinkEntry

class of the driver. However, when the Epsilon program calls

9 In the script, the model is identified at runtime as D.
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for entries of a specific section—such as in lines 4–6, the
find function is only invoked once for the specific section.
At the moment, this driver is unable to handle entries from
the EmbedderCoder section.

1 D!Dictionary.all();
2 D!Section.all();
3 D!Entry.all();
4 D!DesignDataEntry.all();
5 D!OtherDataEntry.all();
6 D!ConfigurationEntry.all();

Listing 34 Dictionary model element collection in EOL

Create Elements There are four sections in a dictionary and
we are not aware of a way to create new ones through the
MATLABAPI. For an entry to be instantiated, itmust specify
the section that will contain it, the name of the entry and its
value as required by the addEntry MATLAB function from
Listing 35.

1 entry=addEntry(section , Name , value)

Listing 35 MATLAB function to create entries

The Dictionary EMC allows the instantiation delay for
entries with a specific section but no name or value, as shown
in line 1 from Listing 36. This delayed instantiation sav-
ing its name and value in memory when provided and only
submits the MATLAB instantiation command to the MAT-
LAB engine when both are assigned. A delayed-instantiation
approach is also applied to entries with no section.

1 entry = new D!DesignDataEntry;
2 entry.Name = "My Entry";
3 entry.Value = "My Value";

Listing 36 Delayed instantiation of entries in EOL

Delete Elements Deletion is only applicable to dictionary
entries as there is noMATLAB function to delete dictionaries
or sections. Listing 37 shows the corresponding MATLAB
function to achieve this.

1 deleteEntry(entry)

Listing 37 MATLAB function to delete entry

Read and Update Element Properties To read and write
model element properties in MATLAB, dictionary, section
and entry elements use the dot notation. In Listing 38, line 1
shows the retrieval of a property from the dictionary and line
2 shows how to set the name of an entry.

1 number = dict.NumberOfEntries
2 entry.Name = 'NewName '

Listing 38 MATLAB dictionary element property getter and setter

There is an exception to the dot notation and it occurswhen
trying to set the value property of entry objects. Getting and
setting this property requires the use of special getter and
setter methods as in Listing 39.

1 setValue(entry ,value)
2 getValue(entry)

Listing 39 MATLB entry value getter and setter

Methods All model elements, i.e. dictionary, entry and sec-
tion, share the same syntax to invoke MATLAB functions on
themselves. This notation (Listing 40) is the function name
followed by the element and an arbitrary number of subse-
quent parameters. The Dictionary EMC is responsible for
translating methods in Epsilon programs to the appropriate
syntax when these act on dictionary-related model elements.

1 method_name(element , arg0 ,..., argN)

Listing 40 MATLAB dictionary method structure

3.3 Simulink Requirements EMC

This driver manages Simulink requirements as models. A
simplified view of this driver’s architecture is presented in
Group 5 of Fig. 5. As in Sect. 3.2, this section focuses on the
MATLAB functions and model elements that are involved
when executing CRUD operations on model elements man-
aged by the Requirements EMC.
Model When an Epsilon program is about to execute, the
Requirements EMC invokes the appropriate MATLAB func-
tion fromListing41 to either create (line 1) a new requirement
definition file (*.slreqx) or open an existing one (line 2). Both
these functions return a handle or identifier of the Require-
ment Set (rs), the root model element. When an Epsilon
program has finished its execution, the Requirement EMC
may save the requirement set (line 3) or close it (line 4) if
specified in the configuration. This corresponds to Epsilon’s
model disposal process.

1 rs = slreq.new(file)
2 rs = slreq.load(file)
3 save(rs);
4 close(rs);

Listing 41 Requirement set MATLAB functions

Tightly related with the requirement management pro-
cess is the ability to process traceability links. MATLAB
persists link information in as many link files (*.slmx)
as there are models involved in the links. For example,
each Simulink model (mySimulink.slx) with link traces
will have a co-located link file (mySimulink.slmx) with
the same name as the Simulink model. Each of these
files contains all the links in which the non-link model
artefact is the destination. The same applies to dictio-
naries and requirements. While MATLAB provides meth-
ods to load link files, when their corresponding model
is loaded or opened, the set of links contained in the
file is loaded in memory as well. Closing and saving
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one of these models has the same effect on its link
set.
Model Elements The root instance of a requirement defini-
tion file is the RequirementSet. In the Requirements EMC,
a requirement set is represented by the RequirementModel

class. A requirement set contains requirement, justification
and reference elements. These are handled in the driver with
the SimulinkRequirement, SimulinkJustification and
the SimulinkReference classes.

InMATLAB, the root instance of any link file is a LinkSet
which contains all the links associated to a model arte-
fact (e.g. a Simulink model, a requirement set or a data
dictionary). As opening or loading model artefacts automat-
ically load their link files, the Requirement driver associates
all available link sets in the form of SimulinkLinkSet

objects to a RequirementModel. Similarly, all the links
contained by the loaded link files are managed by a
RequirementModel in the form of SimulinkLink entities.
However, the models of all Simulink-based drivers have a
getLinks() method which returns the links associated to
themselves.
Retrieve Elements To collect model elements from require-
ment definition files, MATLAB provides the functions in
Listing 42. Lines 1–3 contain functions which collect ele-
ments by type (i.e. requirement, reference and justification)
from the requirement set. To get elements by their subtype,
the findMATLAB function receives the ReqType argument
shown in lines 4–5 which can be used to retrieve require-
ment and reference subtypes. Justifications do not have a
subtype.

1 find(rs ,'Type','Requirement ')
2 find(rs ,'Type','Reference ')
3 find(rs ,'Type','Justification ')
4 find(rs ,'Type','Requirement ','ReqType ',

'Functional ')
5 find(rs ,'Type','Reference ',

'ReqType ','Container ')

Listing 42 Requirement model elements retrieval in MATLAB

In an Epsilon programwhere a model R is managed by the
Requirements EMC, it is possible to collect the requirements
with the statement in line 1 fromListing 43. This invokes line
1 from the MATLAB functions in Listing 42 and the driver
builds a SimulinkRequirement instance from the returned
identifier. A similar procedure is followed for justifications
and references when the Epsilon program executes lines 2–
3. For collecting references and requirements of a specific
subtype, the Requirement EMC needs to know if the subtype
is for a requirement or a reference to pass the right value for
the Type parameter in the MATLAB functions above (lines
4–5). This is why the driver requires prepending the prefix
RQ\_ or RF\_ to the subtype (lines 4–5) to detect whether
it corresponds to a requirement or a reference, respectively.

1 R!Requirement.all();
2 R!Justification.all();
3 R!Reference.all();
4 R!RQ_Functional.all();
5 R!RF_Container.all();

Listing 43 Requirement model element retrieval in EOL

Traceability links are managed differently in MATLAB
and require the use of the slreq.find MATLAB function.
The first two lines in Listing 44 showhow to collect all loaded
link sets or links from the artefacts loaded in the workspace.
Furthermore, it is possible to retrieve links of a specific type
by specifying the subtype as an extra parameter (line 3).

1 slreq.find('Type','LinkSet ')
2 slreq.find('Type','Link')
3 slreq.find('Type','Link','LinkType '

,'?')

Listing 44 Link retrieval in MATLAB

Using the Requirements EMC, it is possible to retrieve the
link sets and link elements through the use of the first two
EOL statements in Listing 45. Similarly, the subtypes of links
can be retrieved directly by prepending the L\_ prefix to the
subtype of the link.

1 R!LinkSet.all();
2 R!Link.all();
3 R!L_Implement.all();

Listing 45 Link retrieval in EOL

Create Elements MATLAB provides different approaches
to instantiation for the different model elements used in
requirement management. Line 1 in Listing 46 shows how
to instantiate a requirement in the loaded requirement set
(rs) by invoking the add MATLAB function. To create jus-
tifications as illustrated in line 2, MATLAB provides the
addJustification function which takes the requirement
set as input. Similarly, to create a reference the add function
requires the parameters Artefact and Domain to distinguish
a reference from a requirement.

1 req = add(rs)
2 jus = addJustification(rs);
3 ref = add(rs ,'Artifact ',FileName ,

'Domain',domain);

Listing 46 Requirement model element creation in MATLAB

Following the same logic as other Simulink-based drivers
described before, to create instances of type requirement,
justification and reference in Epsilon programs it suffices to
invoke statements such as those in lines 1–3 inListing 47. The
Requirements EMC driver allows the direct instantiation of
requirement subtypes (as in line 4) because the add MAT-
LAB function can also receive additional key-value pairs
to configure the requirement at instantiation. Instantiation
with subtype is currently not supported for references in the
Requirements driver.
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1 new R!Requirement;
2 new R!Justification;
3 new R!Reference;
4 new R!RQ_Functional;

Listing 47 Requirement model element creation in EOL

In MATLAB, links require source and destination arte-
facts to be instantiated. The Requirements EMC allows the
instantiation of the SimulinkLink class with no source and
destination artefacts as long as these are provided later.At that
point, the class prepares theMATLAB function in Listing 48
with the appropriate values and submits it for evaluation to
MATLAB’s engine. Direct instantiation of link subtypes is
not currently supported by the driver, but the subtype can be
assigned as a property.

1 link = slreq.createLink(src ,dest)

Listing 48 Link creation in MATLAB

Delete Elements The remove MATLAB function is used to
delete link, reference, justification and requirement elements.
The Requirements EMC submits the MATLAB function in
Listing 49 when a wrapper instance for a link, justification,
reference or requirement is to be deleted in an Epsilon pro-
gram.

1 remove(element);

Listing 49 Requireement model element deletion in MATLAB

Read and Update Element properties Reading and writing
properties of requirement, reference and justification model
elements can be achieved by invoking the MATLAB func-
tions in Listing 50 with the appropriate property key and
values. In contrast, to update or modify properties of the
requirement set (i.e. the model), link sets and links, MAT-
LAB offers a more direct approach where the values are read
or modified using a dot notation as in Listing 51.

1 getAttribute(element ,'Key')
2 setAttribute(element ,'Key','Value')

Listing 50 MATLAB requirement element property getter and setter

1 element.Keyword
2 element.Keyword = value

Listing 51 MATLAB property getter and setter for links, requirement
sets and link sets

Methods The syntax of functions acting on requirement and
linkmodel elements follow the pattern in Listing 52. As done
in other Simulink-based drivers, the Requirements EMCpro-
vides an operation contributor which translates method calls
on model element instances in EOL to the appropriate MAT-
LAB syntax. For example, the EOL methods in Listing 53.
are submitted for execution to the MATLAB engine as in
Listing 54.

1 methodName(element , arg0 ,..., argN)

Listing 52 MATLAB requirement element method structure

Fig. 6 MATLAB Project Structure

1 req.getVerificationStatus("self");
2 req.promote ();

Listing 53 Sample requirement method invocations in EOL

1 getVerificationStatus(req ,'self')
2 promote(req)

Listing 54 Equivalent MATLAB functions forListing 53

4 Multi-model example

To showcase how we extract knowledge from Simulink
related models with the drivers presented in the previous sec-
tion, we now introduce a running example that works on a
sampleMATLAB project [27] which represents a cruise con-
trol system. This project is composed of several files out of
which there are two Simulink models, two requirement set
files and three data dictionaries. Each of these files has a cor-
responding traceability link file as illustrated in Fig. 6. Their
interdependencies are illustrated in Fig. 7. In this example
we will only be working with the crs\_controller.slx

Simulink model (Fig. 8), the crs\_controllerdic.sldd

dictionary (Fig. 9) and with the crs\_req\_func\_spec.

slreqx requirement set (Fig. 10).
Our aim with this running example is to analyse this

project, in particular regarding traceability well-formedness
and unused/unlinked elements. As such, we now present
three analysis scenarios which involve different combina-
tions of Simulink, dictionary and requirement models. The
first scenario consists in identifying Simulink blocks with no
traceability links. The second scenario consists in counting
howmany requirements are barren and orphan. The third sce-
nario checks whether Simulink block configuration variables
are present in a dictionary as entries.
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Fig. 7 Model dependencies

Fig. 8 Simulink model: crs_controller.slx

Simulink elements with no traceability Listing 55 shows an
EOLprogram that can be used to identify the Simulink blocks
which have not been associated with traceability links.When
this program is evaluated against a Simulink model, the EOL
execution engine retrieves all Simulink blocks in the model.
The engine then iterates over these elements to evaluate the
MATLAB function slreq.outLinks which returns a list
with their outgoing links. The select operator ensures that
only those elements with no links for a block are stored in
the unlinked variable. Because in this case no block on
the model has incoming links, the program only needs to
check for outgoing links to determine that a block has no
traceability information. Lines 2 and 3 proceed to compute

Fig. 9 Dictionary: crs_controllerdic.sldd

Fig. 10 Requirement set: crs_req_func_spec.slreqx

the path location of the blocks with no links and the number
of elements found with no traceability, respectively.
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1 var unlinked = Block.all().select(b|
b.`slreq.outLinks`() == null);

2 var paths =
unlinked.collect(b|b.Path);

3 var size = unlinked.size();

Listing 55 Size and paths of Simulink elements with no trceability in
EOL

In this program, the execution of the select operator is
not optimised (see Sect. 3.1.2) as it involves a method invo-
cation and not a property check. In contrast, the execution
of the collector is indeed optimised. The EOL method `

slreq.outLinks`() is resolved at runtime and submitted
to MATLAB as slreq.outLinks(handle).

We observe that 390 blocks out of 454 have no traceability
information in the Simulink model crs\_controller.slx.

Barren and orphan requirementsRequirement analysis com-
monly involves the identification of barren and orphan
requirements. The definition of barren or orphanvaries across
projects. In this example, we define a barren requirement as
a top requirement with no outgoing links while an orphan
as a leaf requirement with no incoming links. One way of
identifying a top requirement is to check if it has no parent
requirementwhile to identify a leaf requirementwe check if it
has no children. In this example, we use a different approach
in which a top requirement is one of type container while a
leaf requirement is of type functional.

Listing 56 shows an EOL program for computing bar-
ren and orphan requirements. This EOL program is executed
on a Simulink requirement model. Line 1 computes the bar-
ren requirements by collecting the requirements of container
type and then filtering those which have no outgoing links.
Line 2 computes the orphan requirements by collecting all
the functional requirements and then filtering those with no
incoming links. The direct lookup of requirements of type
container or functional is a facility provided by the Simulink
requirements driver.

1 var barren = RQ_Container.all()
.select(r|r.`slreq.outLinks`()==null);

2 var orphan = RQ_Functional.all()
.select(r|r.`slreq.inLinks`()==null);

Listing 56 Barren and Orphan requirement queries in EOL

In this particular case, none of the select operators are
optimisable because they do not check any property value.

The execution of this analysis on the requirement set pro-
vided by crs\_req\_func\_spec.slreqx indicates that all
requirements of type container were barren. In contrast, only
16 out of the 66 functional requirements were orphans.
No missing entry definitions When using dictionary entries
to configure blocks on a Simulink model, a common anal-
ysis involves identifying blocks that specify configuration
variables which point to non-existing dictionary entries.

In the Simulink model crs\_controller, there are
blocks which are configured with entry values from the
dictionary crs\_controllerdict. This is the case of satu-
ration blocks which have their upper and lower limit values
set-up from this dictionary. Similarly, 5 out of 13 blocks of
type constant specify their value from an entry in the dictio-
nary.

Listing 57. shows an EOL program for identifying blocks
with configuration values pointing to non-existing entries. In
this program, only the select operation of line 2 is optimised
as it performs a property check on a collection of Simulink
model elements. This program must be executed against the
dictionary model (D) and the Simulink model (S). The first
line of this program collects all the entries from the dictionary
model. To check whether the constant blocks are referencing
entries that do exist, line 2 starts by retrieving all blocks
of type constant and then filters those which will inherit its
value from a dictionary in the select operator. The last part
of this query rejects all those elements which have no match
in the list of entries from line 1. Saturation blocks follow a
similar approach to identify the blocks which are using non-
existent configuration values. Line 3 presents the query for
these blocks which starts by retrieving all elements of type
Saturate. Assuming that by design we expect blocks of this
type to use values from a dictionary, the next step consists
in checking whether the upper and lower limit values are
referencing entry names present in the dictionary.

1 var entries = D!Entry.all();
2 S!Constant.all()

.select(c|c.OutDataTypeStr ==
"Inherit: Inherit via back
propagation")
.reject(c|entries.exists(e|e.Name ==
c.Value));

3 S!Saturate.all().reject(s|
entries.exists(e| e.Name ==
s.UpperLimit) and
entries.exists(e|e.Name ==
s.LowerLimit));

Listing 57 No missing entry definitions in EOL

The execution of this program on the Simulink model and
data dictionary from the running example confirms that there
are no blocks using configuration values with no matching
dictionary entries

With the use cases above, we have demonstrated how the
drivers can be used to perform analysis with information
from the Simulink-based models. We have highlighted the
situations in which collection optimisations can be invoked
and demonstrated that multiple models can be run simulta-
neously.
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5 Evaluation

This section presents a two-part evaluation of the Simulink–
Epsilon drivers. The first part (Sect. 5.1) consists of an
experiment that compares the performance of managing
Simulink models directly via MATLAB functions or build-
ing an intermediate EMF representation with an upfront
model-to-model transformation. This experiment was first
published in previous work [38]. The second part of the eval-
uation is presented in Sect. 5.2 and compares the performance
of collection operators executed on collection of Simulink
and Stateflow model elements using the query optimisations
described in Sect. 3.1.2.

5.1 Experiment on Simulinkmodels

This section evaluates the execution-time performance of two
approaches to bridgeMATLAB/Simulink models in a model
management framework. The first approach consists in using
the Simulink model driver to manage models in the Epsilon
model management framework. The second approach uses
Massif facilities to transform Simulink models into an EMF-
compatible representation. Since Epsilon provides an EMF
driver able to read and write arbitrary EMF-based models,
we use it to manage those produced by Massif in the second
approach. In the following, we refer to the first approach
as live—since it directly manipulates the actual Simulink
model, and to the second one asMassif/EMF—as it uses the
Massif’s import facilities to produce their EMF-compatible
representation.

Epsilon supports model element caching through an
abstraction that both the Simulink model driver and the EMF
driver reuse. We evaluate both approaches with these facil-
ities enabled and disabled. Note that at the time of this
experiment, the query optimisations on Simulink and State-
flow elements had not been implemented.

5.1.1 Experiment set-up

In order to evaluate themodelmanagement of Simulinkmod-
els through both approaches, we compare the performance
of their model validation process applied on large Simulink
models. We have selected a model validation process as a
representative model management operation although other
operations such as model-to-model or model-to-text trans-
formations could have been used instead.
Validation process This process is based on the execution
of EVL invariants that validate structural properties of the
models. EVL has a dedicated engine that consumes an EVL
validation script and any number of models provided by
Epsilon drivers of arbitrarymodelling technology at runtime.
An example of an EVL script is shown in Listing 58. This
script starts by specifying the context in which the invariants

Fig. 11 Execution process for model management programs, in this
case, a model validation with EVL

are to be executed, in this case all elements of kind Block.
Invariantsmay be of type constraint or critique depending on
the severity level of a failed compliance. Line 2 of the script
shows the declaration of an invariant of type critique with
name BlockNameIsLowerCase. Invariants declare their val-
idation check as an EOL statement, which in this case (line 3)
verifies that the name of the element is lowercase. The self

reserved word is a reference to the current model element the
invariant is acting on. If a given block fails the check state-
ment, then fix elements become available if present in the
invariant declaration. In the script, the fix in line 4 updates
the element name to lowercase as specified in the do envi-
ronment (line 7). The fix title (line 5) is just informative.

1 context Block {
2 critique BlockNameIsLowerCase {
3 check : self.Name == self.Name.

toLowerCase ()
4 fix {
5 title : "Name to lower case"
6 do {
7 self.Name = self.Name.

toLowerCase ();
8 }
9 }

10 }
11 }

Listing 58 Sample EVL script with invariant 9 from Table 1

Before the EVL engine can execute the model validations,
the models must be loaded. When the EMF driver is used to
process an EMF model, the model loading stage consists
in the registration of meta-model packages and creating an
in-memory representation of the model. When the Simulink
model driver is used to process a Simulink model file, the
model loading stage consists in establishing the connection
with the MATLAB engine and requesting the model to be
loaded there.

In the following, we consider the model loading and val-
idation execution as two different stages of the validation
process. The overall validation process for each approach is
captured in Fig. 11 where loading and validation are rep-
resented by stages 1 and 2, respectively. In the Massif/EMF
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approach, we consider the transformation of the model (from
Simulink toEMF) as an additional stage of the validation pro-
cess (Stage 0 in Fig. 11). We refer to it as the import stage
after the Massif facilities that enable this transformation.

The implementation of the Epsilon drivers and the struc-
ture of the meta-model used in the EMF driver affect the
way the model is navigated in EOL-based programs. Con-
sequently, the EVL validation script cannot be reused as-is
across approaches. To illustrate this, consider an EOL pro-
gram that retrieves the PortDimension property of a block
model element.When executed on amodelmanagedwith the
Simulink model driver, the EOL statement from Listing 59 is
able to retrieve this property from an element of type block.

block.PortDimension;

Listing 59 Port dimension block property in EOLwith SimulinkModel
Driver

In contrast, when using the EMFdriver with theMassif meta-
model, the statement needs to be adapted (as in Listing 60)
because the Block class in the meta-model does not have
a PortDimension attribute but instead has a parameters

attribute containing a set of Property elements, one of them
with the PortDimension identifier.

block.parameters.selectOne(p|p.name==
"PortDimension").value;

Listing 60 Port dimension block property in EOL with EMF/Massif

In this experiment, wemeasure the execution-time perfor-
mance of the different stages of the validation process, i.e.
(0) Simulink-to-EMF transformation, (1) model loading and
(2) model validation. Notice that: Stage 0 is only applicable
to the Massif/EMF approach; Stage 1 is applicable to both
approaches; and Stage 2 is applicable to each approach with
both the Epsilon caching facilities enabled and disabled.

Each stage of the validation processwas executed 20 times
with 5 warm-up iterations for each model. We used the Java
MicrobenchmarkHarness (JMH) [33] tool to run these exper-
iments on a quad core Intel Core i5-7200U CPU@ 2.5 GHz
with 16GB of RAM. The Java Virtual Machine (64-Bit) was
provided with up to 10GB of memory and ran Java 8 on
JDK 1.8.0_152. All EMF-compatible models were gener-
ated using the shallow mode of the Massif import facilities
which does not process external model references. The val-
idation scripts and the Simulink models that were used in
our experiments can be found in the examples of the Epsilon
project [10].
Validation scripts Equivalent EVL scripts are used to evalu-
ate each approach. Each script consists of 9 invariants (see
Table 1) intended to exercise the model (e.g. using different
operations or navigation strategies) through typical query
language features [41] performed on signature model ele-
ment types [2]. The scripts are equivalent to the best of our

Table 2 Number of elements per type by model size

Size Block Inport Outport Goto From SubSys.

1.112 8785 1373 1177 69 103 717

1.131 8628 1372 1167 62 93 740

1.133 8645 1372 1167 62 93 740

1.134 9536 1489 1269 38 57 861

1.135 8645 1372 1167 62 93 740

1.138 8651 1376 1177 62 93 745

1.141 8634 1374 1156 67 99 714

knowledge as they are using (a) equivalent EVL contexts
which may vary in naming across approaches (e.g. Inport
vs. InPortBlock), (b) equivalent model element navigations
(such as the PortDimension property discussed above), and
(c) equivalent way in which the constraint checks and guards
are prescribed. In Table 1 the Kind column refers to type
of query check inspired on well-formedness constraint cat-
egories used by the Train Benchmark [41], and the Context
column refers to the EVL context, that is, the model element
types on which the invariant is executed. Stateflow blocks
were not included in the validation scripts as Massif does not
support them.

The validation scripts for the live approaches used 96 lines
of code (LOC) and that for the Massif/EMF approach used
110 LOC. The body of the invariants was written in the same
number of lines for both approaches (89 LOC) and the extra
lines were related to helper operations.
Model selection We used BigQuery [13] to find in GitHub
publicly available Simulink files (*.slx) larger than 1 MB.10

Out of the 70 models found, we selected the first 7 models
that could be translated into EMF in under 2 h using Mas-
sif’s import facilities. Table 2 shows the number of model
elements of each type used in the validation. The number
of block elements on the models ranged from 8628 to 9536.
Due to their inaccessibility, we did not process any libraries
in any approach.

5.1.2 Results

All invariants were executed in the same number of model
elements for all approaches. Similarly, the results of the val-
idation reported the same number of failed constraints on all
approaches. The file size of the EMF models produced by
the import stage are displayed in Fig. 12, plotted against the
size of the original MATLAB file.

10 We had access to one industry model that was 1.4 MB in size but for
the experiment we had to find others in public repositories. To increase
our chances to find complex models and to facilitate the collection
procedure, we looked for models persisted in a file larger than 1 MB in
size.
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Table 1 Evaluated invariants

# Kind Context Description

1 PropertyCheck Goto TagVisibility property is local

2 NavigationAndFilter From There is a Goto block in scope with the name of the GotoTag property

3 PropertyCheck Inport/InPortBlock PortDimensions property should not be inherited (−1)

4 PropertyCheck Outport/OutPortBlock Description property is not null or empty

5 NavigationAndFilter SubSystem ForegroundColor property is green for all connected Inport blocks

6 TransitiveClosure SubSystem Subsystem is no more than three levels deep

7 VertexConnectivity SubSystem All outports are connected

8 LoopAbsence SubSystem No feedback. Outports do not connect to the same subsystem

9 PropertyCheck Block Block’s name is in lower case

Fig. 12 Size of the imported EMF models against the original MAT-
LAB files

Figure 13 shows the execution time of each stage of the
model validation process (in seconds and logarithmic scale)
against the size of the MATLAB Simulink model files (in
MB). Sub-figure (a) displays the distribution of Massif’s
import task (Stage 0) which transforms Simulink models
into anEMF-compatiblemodel. Similarly, Sub-figure (b) dis-
plays the time distribution of the model loading task (Stage
1), required by both the EMF and Simulink model drivers.
Sub-figure (c) displays the time distribution of themodel val-
idation task (Stage 2) for both approaches with and without
caching.

Figure 13 shows that most of the performance overhead
of the Massif/EMF approach happens at the import stage
while most of the Simulink model driver overhead happens
at the validation stage. The import stage of the Massif/EMF
approach took between 4486 and 2911s to finish. The Mas-
sif/EMF approach achieved the loading stage in 2.95–3.63 s,
while the Simulink model driver achieved it in 15.5–16.5 s.
The live approach was approximately 1 order of magnitude
slower at the loading stage. In the validation stage, the Mas-
sif/EMF approach took between 22.4–28.9 s, while it took
the Simulink model driver 1877–2098 s to complete. With
caching facilities enabled in both drivers, the Massif/EMF
approach took 8.10–10.2 s, while the Simulink model driver
took 816–882 s to finish. With and without caching, the live
approach was approximately 2 orders of magnitude slower
at the validation stage. The caching facilities improved the
performance in the validation stage by 54.4–72.0% in the
Massif/EMF approach and 55.3–58.0% in the live approach.

Figure 14 shows the whole validation process execution-
time (inminutes) calculated using the sumof averages of each
stage for each approach with and without caching. By com-
paring this overall process, we observe that the live approach

(a) (b) (c)

Fig. 13 Execution-time duration in log-scale against MATLAB/Simulink model file size per stage of the validation process
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Fig. 14 Total execution-time duration (log-scale) againstMATLABfile
size. Note that Massif and Massif-Cached overlap.

improves the performance of the Massif/EMF approach by
taking 70.7–80.0% less time when caching is enabled and by
32.6–53.2% with no caching.

In Fig. 12, we observe that the size of the EMF model
produced by Massif is much larger than the original MAT-
LAB/Simulink (.slx) files. This is partly due to *.slx being
a compressed file format. As Table 2 shows, the size of the
MATLAB/Simulink file is not directly proportional to the
number of Block11 elements in the model. In contrast, the
size of the EMFmodel file seems to be related to the number
of block elements, which would explain the peak on the EMF
file size with the MATLAB/Simulink model with the largest
number of block elements.

5.1.3 Discussion

In this experiment, we focused on a program that only reads
large Simulink models. We intended to investigate the per-
formance of using of both approaches with large models. In
this particular subset of models, our experiment shows that
the overhead of theMassif/EMF approach lies on the upfront
model transformation, whereas for the Simulink EMC, it lies
in the complexity of themodelmanagement program. In con-
trast, the actual execution of the programwith the EMFdriver
works much faster than with the Simulink EMC driver. This
is partly due to the full model being loaded in memory and
potential internal optimisations of the mature EMF driver.

Intense querying is a scenario forwhich theEMFapproach
is more suitable, as the communication with MATLAB is
expensive, and our experiment shows the clear advantage
that the EMF driver has over our Simulink implementa-
tion. However, our experiment also shows the non-negligible
impact that the importing stage has over the overall execution.

11 Inport, Outport, Goto, From and SubSystem are all sub-
types of Block.

Choosing one approach over the other is a matter of deter-
mining the size of the model, understanding the purpose of
the model managing program and being aware of constraints
such as performance or model coverage. For example, it is
likely that large models will incur in expensive import proce-
dures withMassif. Whether this is a sensible cost depends on
the number of times the import is to be executed, the avail-
able time, the model management framework to be used, i.e.
if it only supports EMF and the range of operations to be per-
formed (e.g. do they require Stateflow blocks?). To avoid the
cost of the import process on continuously evolving models,
a practitioner may choose to manually replicate modifica-
tions in the Simulink model in the already imported EMF
copy; however, this would be an error-prone activity.

With the same large models, our implementation avoids
the import/export procedures when the models are evolv-
ing, e.g. changing property values, adding new blocks or
removing blocks. Indeed, intense querying is not the best use
scenario for our driver as demonstrated by the experiment.
With the knowledge of the new query optimisations, the val-
idation scripts used in the experiment could be rewritten to
take advantage of these optimisations in order to reduce cost
of the validation stage.

In Section 5.2, we show how the driver can be used to
generate Simulink models. Further experimentation would
be needed to evaluate how the approaches cope with pro-
grams that not only read the models but also modify them.
Validation scripts in EVL can also feature fix constructs that
invoke EOL expressions on the elements that do not pass the
constraints. While we have not evaluated this, we can antic-
ipate that the validation step with fixes would require little
additional time for both the Simulink EMC driver and the
EMF driver. The difference would be that the overall valida-
tion process with Massif/EMF would require an additional
step to generate the modified Simulink model from the mod-
ified EMF which could potentially be just as expensive as its
import procedure.

5.1.4 Threats to validity

We selected a validation program as a representative model
management operation to compare both approaches. As indi-
cated in the Validation scripts paragraph, the invariants used
in the experiments were intended to exercise the models in
similar ways in both approaches by means, for example, of
interacting with the same types of elements and navigat-
ing properties in similar ways. As such, the invariants were
not intended to be representative of validations performed in
industry, although some were inspired by industrial cosmetic
checks. Validations performed in EVL can be seen as com-
plementary validations as Simulink models can go through
custom validation checks within MATLAB using its Model
Advisor tool.
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Our evaluation only tested the performance of a single
model management language (EVL). Performance results
may vary across other types of model management programs
and also for different EVL programs. Moreover, the valida-
tion script was limited to read-only operations.

The sample of models may not be significant but was
limited by the 2-hour cap imposed to the import stage. Our
experiments would benefit from more diverse models with a
broader range of sizes and more varied constraints.

There may be hidden differences in the implementation of
each driver (EMFvs Simulink) such as internal optimisations
which do not make them entirely comparable. However, for
the purpose of this experiment, both driver implementations
were considered black boxes.

Large and complex models can be built by referencing
multiple models persisted in small files. Our decision to use
large models allowed us to skip the model reference pro-
cessing by ensuring that a single model contained the most
model elements. Additional metadata other than model ele-
ments, such as images, can contribute to the model file size
without affecting its complexity. We have not measured the
impact of the meta-information in the file size, but this is
mitigated by indicating the number of model elements that
were present in each file.

5.2 Experiment on collection queries

We have designed an experiment that evaluates the perfor-
mance of the collection operator optimisations presented in
Sect. 3.1.2. The research question is whether these modifica-
tions improve the performance of select- and collect-based
operators when executed on collections of Simulink or State-
flow elements of different sizes. All resources required to
reproduce the experiment are available under the Epsilon
project [9].

5.2.1 Experiment set-up

This experiment includes the evaluation of EOL queries on
collections of Simulink and Stateflow model elements. We
execute each query on four models with a similar structure
but with different number of model elements that grow expo-
nentially. For each query and model, we observe how the use
of the query optimisations on collections affects the execu-
tion performance.

As we need to have control over the number of elements
of a given type on each model, we decided to generate the
test models. As such, the models share a similar structure but
have some variability which is described later in the paper.
While the generation script is not part of this evaluation, it
serves to demonstrate the write capabilities of the Simulink
model driver.
Model Generation Process

A boiler control system can be designed using an on/off
closed-loop control. Closed-loop control systems are very
common and they can be designed and simulated using the
Simulink environment. Furthermore, on/off controllers are
easy to model as state machines which can be designed using
MATLAB’s Stateflow environment. Since boiler systems can
contain both Simulink and Stateflowmodel elements, we use
them at the core of our model generation process.

The model generation process consists in producing a
number of contrived components with different set points12

all receiving the ambient temperature from a pulse genera-
tor and displaying their status in a scope. In order to scale
our experiment, each model has a different number of boilers
which grow exponentially (base 3) and the value of their set
point is spread out so that each has a different value within
their operational range.At the same time, each boiler has only
one pulse generator and scope. Four models were generated
in total.

Figure 15a illustrates the root level of the model where
all boilers receive as input the ambient temperature from a
pulse generator and display their operational state in a scope.
The set point of each boiler is represented by a block of
type constant with the temperature value. The internal struc-
ture of a boiler is illustrated in Fig. 15b. Each of them has
three input ports and an output port. The inport that receives
the set point is compared with the current ambient tempera-
ture using a block of type substract, whose output goes into
a Stateflow chart. The contents of a chart are illustrated in
Fig. 15c. The chart computes the logic to go from state ON
to state OFF and produces a signal that decides whether it
is required to turn on or off the boiler. The action which
results from the chart logic goes into a delay which repre-
sents the time taken for the real boiler to respond to the signal.
The delayed signal is displayed in the topmost scope and the
one which is used as feedback on the boiler subsystem and
chart.
Queries The list of EOL statements to be evaluated is pre-
sented in Listing 61 where line numbers are used as query
identifiers. These queries were designed to demonstrate both
the usefulness of retrieved information from the boilermodel,
and the complexity supported by the query optimisations
on collections. Four of these statements are executed on
collections of Simulink elements, while the other four are
executed on collections of Stateflow elements. The queries
use EOL select and collect operators both in plain form
and derived form, e.g. exists, sortBy, reject, forAll. While
most of the queries use single operators that evaluate one-
argument predicates, Query 6 uses two operators (select and
forAll) and Query 8 evaluates a three-argument predicate.

12 The temperature at which they start to heat.
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(a) (b) (c)

Fig. 15 Structure of generated Simulink models

1 Block.all().collect(b|b.Name);
2 Block.all().sortBy(b|b.BlockType);
3 Inport.all().select

(i|i.OutDataTypeStr =="boolean");
4 SubSystem.all().selectOne

(s|s.Name=="Chart");
5 `Stateflow.State`.all().reject

(s|s.Decomposition =="PARALLEL_AND");
6 `Stateflow.Transition`.all().select

(t|not (t.SourceOClock ==0))
.forAll(t|t.LabelString <>"?");

7 `Stateflow.Transition`.all().collect
(t|t.LabelString);

8 `Stateflow.State`.all().exists
(s|s.IsImplicitlyCommented ==1 or
s.BadIntersection ==1 or
s.IsExplicitlyCommented ==1);

Listing 61 List of EOL queries

Query 1 is used to retrieve the names of all Simulinkblocks
in the model, including those contained in the boiler sub-
systems. Query 2 sorts all these blocks by their block type.
Query 3 acts on blocks of Inport type, i.e. input ports 1 to
3 in each boiler subsystem (Fig. 15b), and filters those of
Boolean type, i.e. port no. 3 which handles the boiler state.
Query 4 acts on subsystem blocks which include the boilers
and the chart blocks and selects the first element with the
name “Chart”. Moving on to Stateflow elements, the list of
non-parallel states is retrieved with Query 5 using the reject
operator. Query 6 starts by filtering out default transitions,
i.e. those with no source state, and then checks if they have
all been assigned a non-default name using the exists oper-
ator. In a similar fashion to Query 1, Query 7 retrieves the
labels attached to all transitions in the model. Finally, Query
8 checks formalformedness across Stateflow states by check-
ing whether they are explicitly or implicitly commented or if
they have bad intersections.
Model populationOur experiments evaluate the 8 EOL state-
ments on four different models. Each evaluated EOL state-
ment starts from a collections of model elements of a given
type. Thesemodel element collectionsmay contain Simulink
elements of type Block, Inport or SubSystem; or Stateflow
elements of type Stateflow.State or Stateflow.Transition. The

Table 3 Number of elements per type on each model

Model 1 Model 2 Model 3 Model 4

Block 47 137 407 1217

Inport 15 45 135 405

Stateflow.State 15 45 135 405

Stateflow.Transition 15 45 135 405

SubSystem 6 18 54 162

number of elements of each type in the different models is
presented in Table 3.
Infrastructure In the experiment, each EOL statement was
executed 20 times with 5 warm-up iterations on each model.
The Simulink model driver caching facilities were not used.
The experiments were executed on an 8-Core Intel Core i9
CPU @ 2.3 GHz with 16 GB of RAM. The Java Virtual
Machine (64-Bit) was provided with up to 2 GB of memory
and ran Java 8 on JDK 1.8.0_231.

5.2.2 Results

In both optimised and non-optimised executions, all queries
were executed on the same number of elements and yielded
the same results.

The mean execution time of each query is presented in
Table 4 under the Duration section. This section compares
the time (in seconds) taken by each of the models with and
without the collection operator optimisations. The iteration
distribution on the four models is presented in the box plot of
Fig. 16. This figure compares the distribution with optimisa-
tions enabled (right/orange) and disabled (left/blue) for each
model. Note that subplots do not share the y-axis in order to
have a closer look at the distribution per query.

Regardless of the collection size, all queries with optimi-
sations enabled outperformed those which did not use them,
between 50 and 99%. Table 5 summarises the performance
improvement percentage that optimisations achieved on the
different models and queries.

Another view of the results is presented in Fig. 17 where
themean execution time per query is plotted against the num-
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Table 4 Mean query execution
time in seconds and percentage
of time spent sending
commands to MATLAB and
awaiting a response

Duration (s) MATLAB Communication (%)

Q Opt Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

1 Off 0.15 0.38 1.06 3.39 94.74 96.64 97.32 97.61

On 0.00 0.00 0.01 0.01 76.07 75.24 76.47 73.99

2 Off 0.20 0.55 1.73 4.96 97.21 97.70 97.95 97.79

On 0.09 0.24 0.86 2.23 96.92 98.10 98.18 98.50

3 Off 0.06 0.14 0.35 1.08 95.11 96.69 97.06 97.24

On 0.00 0.00 0.00 0.01 75.44 73.23 68.67 59.88

4 Off 0.02 0.06 0.16 0.47 93.60 96.77 97.44 98.06

On 0.01 0.01 0.01 0.01 86.22 84.45 81.85 75.24

5 Off 0.12 0.39 1.93 14.87 95.59 97.05 98.13 99.07

On 0.01 0.02 0.12 0.91 89.03 95.15 98.88 99.78

6 Off 0.70 2.28 8.33 38.49 98.80 98.97 99.15 99.39

On 0.03 0.04 0.16 1.25 95.00 97.09 99.06 99.83

7 Off 1.03 3.13 10.17 38.17 99.31 99.38 99.49 99.58

On 0.02 0.04 0.14 1.02 95.63 97.42 99.09 99.81

8 Off 2.72 8.50 28.04 109.40 99.49 99.49 99.55 99.60

On 0.03 0.05 0.15 0.98 96.76 97.79 99.17 99.82

Column Q indicates the query number, while column Opt indicates whether the optimisations were enabled

Fig. 16 Distribution of the query performance on the models with optimisations off (left/blue) or on (right/orange)

ber of model elements that the query acted on. The y-axis in
this view has been capped at 40 seconds and only Query 8
went above this limit.

Additionally, Table 4 shows (under the MATLAB Com-
munication section) the percentage of execution time thatwas
spend sending or receiving information to/from MATLAB.
Overall, this section shows that without operator optimisa-
tions the impact of the communications with MATLAB lies
above 93%, whereas with optimisations, the impact can be

reduced to 59% in some queries although remaining high
(e.g. 99%) in others.

5.2.3 Discussion

The first four queries acted on Simulink elements, while the
last four acted on Stateflow elements. Non-optimised queries
were more expensive on Stateflow elements than on Simu-
link elements regardless of the complexity of the evaluated
expression. In particular, consider queries 1 and 7 which are
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Fig. 17 Performance of queries, with and without optimisation, against the number of elements in the models

comparable as they both invoke a collect operation that gath-
ers a single property value but work on Simulink blocks and
Stateflow transitions respectively. Despite the fact that in
Model 4 query 1 acts on 1217 blocks while query 7 only
on 405, query 7 is much more expensive than query 1 (with-
out the optimisations). Since more than 98% of the execution
time of Stateflow queries without optimisations is spent on
the MATLAB exchange, a reasonable explanation for this
difference is that MATLAB has more efficient indexes for
Simulink blocks.

Based on preliminary observations, executing the func-
tions that the driver generates in the MATLAB console is
much faster than through its Java API for both the optimised
and non-optimised implementations. In light of the impact
that reducing the number of exchanges with the MATLAB
Java API has, future work will involve investigating optimi-
sations of more complex collect- and select-based arguments
so they can be transformed into a single complex MATLAB
function that only requires to be sent once.

To take advantage of these optimisations, the model man-
agement programmer should be aware of the particular
operations that have been optimised to write the programs
accordingly. A difference with the Massif/EMF approach is
that in that approach there are no particular optimisations to
be aware of.

5.2.4 Threats to validity

The models used in the experiment had a similar internal
structure as it enabled us to focus on the impact of the number
of model elements that the queries acted upon. From this

experiment, it is unclear to what extent the structure of the
models affects the performance.

We chose a range of collection queries that were suffi-
ciently varied and which could be optimised. We recognise
that our evaluation could be complementedwithmore queries
evaluating a broader range of expression forms.

6 Observations and lessons learned

This section summarises observations and lessons learned in
the implementation of the Simulink-based drivers and our
experiments.
Usability Being able to manage these models in either the
native tool or amodelmanagement framework requiresmeta-
model understanding (model element types, their properties
and operations). Model management programs should pro-
vide uniformity and predictability in how model elements
are managed as part of the conciseness and expressiveness
theyoffer compared to general-purpose languages. For exam-
ple, in Epsilon CRUD operations on model element types
share the same syntax regardless of the model’s underlying
technology. This enables practitioners to focus on the model
elements and the logic of their programs.

Uniformity can help to speed the learning process and
make these programs easier to write and maintain. Section
3 evidences the multiple styles that MATLAB uses to man-
age different model elements types, within the same model,
e.g. Simulink versus Stateflow, and between different model
formats, e.g. Requirements versus Dictionary. It is not just
the naming of the MATLAB functions that varies across
operation types (e.g. setAttribute as property setter for

123



1914 B. A. Sanchez et al.

Table 5 Performance improvement (%) by query and model

Query Model 1 Model 2 Model 3 Model 4

1 97.52 98.95 99.43 99.76

2 55.03 56.15 50.20 55.09

3 91.80 97.20 98.82 99.48

4 69.92 87.68 94.95 98.01

5 91.73 93.95 93.71 93.88

6 96.36 98.11 98.07 96.75

7 97.58 98.72 98.64 97.33

8 98.78 99.45 99.46 99.10

requirement elements and set\_param for Simulink ele-
ments), but also the arguments required by those functions.
Similarly, different toolboxes use different notions of what
constitutes an element id in their domain, e.g. Simulink some-
times uses the element id but most functions only work with
their path property (their location) or their handle (a ses-
sion based, non-persisted identifier). Furthermore, in the case
of Simulink different parameters sometimes yield different
result types, e.g. the find\_system function can return han-
dles or paths dependingonwhether theFindAllflag is active.
A side-contribution of our approach is the unification of the
syntax of several MATLAB toolboxes which can make it
easier to focus on the core model management logic.
Completeness MATLAB and its Java API provide facili-
ties to support the execution of CRUD operations on its
model elements and the model itself. This API also pro-
vides an interface for a few MATLAB-specific data types
such as structured arrays. In contrast, Simulink and dictio-
nary models cannot be exported into any exchange format
from this MATLAB, although more exporting facilities are
available for Requirements including ReqIF. It is common
that vendor tools are reticent to export their models into
exchangeable data formats, e.g. to protect their intellectual
property. However, when they do export them, sometimes
they do so partially—like PTC with partial exports [49] and
Simulink with ReqIF, which can make the round-trip engi-
neering prohibitive (e.g. [49]) or complex (e.g. [29]).

In the case of Massif, the Simulink to EMF transforma-
tion is done by an external party. Among the disadvantages
of this transformation is the lack of support for Stateflow ele-
ments and slightly different naming conventions to the ones
used inMATLAB, different places to find element properties
depending on the element type and themanagement of Simu-
link data types as strings. In contrast, model element types
used in the Simulink EMCdriver are closer to thosemanaged
by the MATLAB command line interface and also include
Stateflow elements. In addition, by exploiting the MATLAB
API facilities at runtime our Simulink EMC driver can also
manipulate MATLAB specific data types.

Performance Several criteria can impact the performance of
model management processes that involve Simulink models,
e.g. the size of the model, the program complexity and the
rate of model evolution. Our first experiment on large Simu-
linkmodels showed that the cost of upfront Simulink-to-EMF
transformationwas particularly expensive in theMassif/EMF
approach while the cost of the program execution was much
lower than that of the Simulink EMC driver (by 2 orders of
magnitude). In light of the program execution performance,
the Massif/EMF seems convenient for large signed-off mod-
els (transformation cost paid once) that need to be extensively
queried. In contrast, this same experiment showed that the
overall execution process was reduced by up to 80% with
the Simulink EMC driver, which concentrated the cost in
the program execution. The overall execution performance
makes the Simulink EMC driver better suited for continu-
ously evolving models, otherwise recurrent transformations
would be needed inMassif/EMF.We anticipated that the exe-
cution overhead in our approach was due to the cost of the
MATLAB exchanges. Our proposed optimisations on opera-
tions on collections of Simulinkmodel elements (Sect. 3.1.2)
were able to reduce the number of MATLAB exchanges by
not making them proportional to the collection size.

For smaller models, the decision of one approach or the
other is more related to the model coverage offered by the
approach and the relevance of the EMFmodel, i.e. its support
in themodelmanagement tool and associatedmaintainability
costs.
Other Model validation processes generally involve several
iterations of checking constraints and fixing errors, unless
the model is correct to start with. Similarly, model-to-model
transformation and other model management programs may
also result in the generation or modification of Simulink
models. From our experiments, it is unclear the performance
impact and completeness of the EMF-to-Simulink transfor-
mation although it is likely to have similar costs to the import
procedure and similar issues to those found in other tools such
as those mentioned for the ReqIF requirements imported by
MATLAB [29] or the XMI models exported by PTC [49].
Our on-the-fly approach does not need to incur in round-trip
engineering costs as it directly acts on themodels themselves.

Our piecewise translation of model management con-
structs to MATLAB is convenient to deal with multiple
(heterogeneous) models in the same model management
program and to process the model information within the
managing program. A complete translation of these con-
structs to a MATLAB program that executes just once would
be more complex to orchestrate and to interact with from the
model management program, e.g. to retrieve variable values
that are assigned to elements from other models. The stark
performance difference between the execution of MATLAB
functions in Java or in its console suggests that further opti-
misations and strategies are required to reduce the number
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of exchanges with MATLAB and improve the performance
of model management programs while still preserving their
ability to interact with other models.

7 Related work

It is often desirable to have a common framework to man-
age models from heterogeneous modelling technologies.
Traceability tools such as Capra [23] and Yakindu [16] are
examples of those frameworks, which need to be able to
read models used at different stages of the development
process in order to create and manage traces among their
model elements. Other examples includemodelmanagement
frameworks such as Epsilon [19] andATL [17], which offer a
subset of task-specific languages for model navigation, val-
idation, model-to-model or model-to-text transformations,
etc., and which are able to interact with a number of models
of arbitrary underlying technologies.

When model management frameworks do not offer sup-
port for a specific modelling technology such as Simulink,
import and export facilities can be used to translate the
models into a supported format. Possibly for reasons of pro-
tecting intellectual property, proprietary modelling tools do
not always offer exporting facilities into open modelling for-
mats such as XMI. MATLAB, in particular, does not offer
any export or import facilities for Simulinkmodelswith other
open-source modelling formats. To address this feature gap,
the open-sourceMassif project led the development of import
and export facilities between EMF and Simulink models.
Massif internally uses MATLAB’s command line interface
to parse the Simulink models and populate their EMF repre-
sentation and vice versa.

The OSLC [34] is an initiative that aims to simplify the
software tool integration problem among proprietary tools.
Built atop theW3CResourceDescriptionFramework (RDF),
LinkedData and the REST architecture, OSLC provides a set
of specifications targeted at different aspects of application
and product life cycle management. OSLC is now being used
by proprietary tool vendors (e.g. IBMRational DOORS [15])
and some open source tools (e.g. [7]) who expose a range
of services following these specifications. Nevertheless, the
comprehensiveness of the information exposed by these ser-
vices is at the discretion of the service provider. MATLAB
does not officially provide an OSLC interface for its Simu-
link models, although the Eclipse Lyo [47] project provides
an OSLC adaptor for Simulink [43] for MATLAB version
R2013b, and Massif provides an OSLC adaptor for their
EMF-compatible representations [14]. Reqtify [4] is a pro-
prietary tool which exposes internal traceability information
from Simulink models in a similar fashion to OSLC.

Transformations from SysML to Simulink models (and
vice versa) have motivated several research works such as

[3,5,32,39]. [5,32,39] and [3] made use of model-to-text
transformationswithAcceleo [45] to produceMATLABpro-
grams that on execution created the Simulink model. More
specifically, [5,32] generated several MATLAB scripts to
populate different parts of the Simulink model, Chabibi et
al. [3] proposed the use of a UML profile to annotate the
SysML models before the MATLAB code generation, and
[5,39] suggested that to go back from Simulink to SysML
the creation of a MATLAB script to parse Simulink mod-
els and produce an XML-based SysML model description
file. In the domain of co-simulation, communicating between
MATLABSimulink and other frameworks is a common task.
For example, Engel et al. [8] uses a software environment
based on Ptolemy II [6] to run MATLAB scripts that get and
set parameters of specific Simulink blocks and run simula-
tions. As theseworks either use purposed SysML to Simulink
transformations or focus on setting and getting parameter
values of limited elements, they are not easily reusable for
alternative model management scenarios such as querying
the Simulink model or validating constraints. Examples of
other works that used Simulink models external model man-
agement processes include [31] which performs independent
translation of Simulink and Stateflow blocks into UPPAAL
timed automata representations that are later combined and
used in model checking and [11] which performs invariance
checks on simplistic Simulink model representations written
in JSON. In this regard, the Massif project and our approach
facilitate themanaging anEMF-compatible representation or
the actual Simulink model (respectively) in a broader range
of model management scenarios.

Our Simulink bridge built atop the Epsilon facilities is
not the first one to bridge proprietary tools with the open-
source model management languages of the Epsilon family.
In [12], a spreadsheet driver was introduced to enable the
manipulation of spreadsheets as models where element types
were resolved from spreadsheet names, elements from rows
and properties from columns while enabling flexible rules
to resolve element references or change these conventions.
Our approach is closer to that used by the PTC-IM driver
presented in [49], where an interface with the PTC is used
to manage the models. One difference with the PTC driver
is that in MATLAB the API is not consistent and required
commands to be built on demand. Additionally, MATLAB
has a full-fledged language to manage its model elements
that PTC does not, which allowed us to implement query
optimisations. As in this work, one of the findings of [49]
is that where performance is of essence, it is best to use
the native tooling. In [49], the driver is evaluated against
the native approach to manage the models by the tool, i.e.
Visual Basic. In contrast, in this work our first experiment
compares two different approaches to bridge Simulink mod-
els with model management frameworks, while the second
experiment evaluates an approach to reduce the overhead of
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queries while alsomeasuring the cost of communicatingwith
MATLAB. A former driver for relational databases was pro-
posed in [22] which generated SQL queries at runtime. The
main difference between this approach and ours is the domain
of application and non-uniformMATLAB API used to man-
age different model types. Kolovos et al. [22] investigate the
use services provided by the underlying technology to opti-
mise those provided at the proxy level in a similar fashion to
what we do in this work although no evaluation is provided.

8 Conclusions and future work

We have presented an approach to bridge Simulink mod-
els with model management frameworks that uses on-the-fly
and on-demand translation of OCL-like statements into
MATLAB commands. Given the widespread use of Simu-
link models in industry and the potentially large size of
such models, our bridge offers an alternative approach to
manage these without requiring their complete upfront trans-
formation into an EMF-compatible representation therefore
avoiding expensive transformation costs for largemodels and
potential co-evolution procedures. Our public implementa-
tion, built atop Epsilon, enables comprehensive and uniform
Simulink model, Simulink requirement and Simulink dictio-
nary management, that includes Stateflow elements.

We have evaluated our implementation against a represen-
tative approach that requires an upfrontmodel transformation
into EMF set-up using facilities from the Massif project.
This experiment measured the execution time of a model
validation process evaluated on a sample of large publicly
available Simulink models in GitHub (up to 1.141 MB and
9536 blocks) using both approaches. Our evaluation results
support the claim that the transformation of large Simulink
models into an EMF-compatible representation can be very
expensive and shows that our bridge was able to reduce the
overhead of this approach (mainly due to the transformation)
by up to 80% in the validation process used in an experi-
ment. Further evaluations showed that the cost of continuous
MATLAB communication in our implementation is far from
negligible which led us to introduce optimisations for oper-
ations that work on collections of Simulink and Stateflow
model elements that were able tomake these operationsmore
efficient by up to 99%.
FutureWork In light of the expensiveness of the communica-
tion with MATLAB through the Java API, in future work we
will explore alternative mechanisms to reduce the impact of
these communications which includes expanding our query
optimisations to more complex queries. We are currently
working on an approach that reduces the number of required
exchanges with MATLAB by queueing the commands to be
dispatched until the Epsilon program either finishes or has
to use data computed in MATLAB. We would also like to

add further support MATLAB Simulink-based models such
as those provided by the Tests and Test Harness toolboxes.
In addition, we plan to investigate alternatives to continue
improving the efficiency of OCL expressions in large Simu-
link models and to add support for these optimisations to the
Dictionary and Requirement drivers.
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