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Abstract: Forecasting inflation accurately in a data-rich environment is a challenging task and 
an active research field which still contains various unanswered methodological questions. One 
of them is how to find and extract the information with the most predictive power for a variable 
of interest when there are many highly correlated predictors, as in the inflation forecasting 
problem. Traditionally, factor models have been used to tackle this problem. However, a few 
recent studies have revealed that machine learning (ML) models such as random forests may 
offer some valuable solutions to the problem. This study encourages greater use of ML models 
with or without factor models by replacing the functional form of the forecast equation in a 
factor model with ML models or directly employing them with several feature selection 
techniques. This study adds new tree-based models to the analysis in the light of the recent 
findings in the literature. Moreover, it proposes the integration of feature selection techniques 
with Shapley values to find out concise explanations of the inflation predictions. The results 
obtained by a comprehensive set of experiments in an emerging country, Turkey, facing a high 
degree of volatility and uncertainty, indicate that tree-based ensemble models can be 
advantageous by providing better accuracy together with explainable predictions. 

Keywords: Machine learning; Inflation Forecasting, Factor Models, Model Interpretability, 
Tree-based Models; Shapley Values. 

1. Introduction 
 
 Forecasting critical macroeconomic variables as precisely as possible is of great 
importance for authorities and decision-makers to make their economic policy more effective 
and powerful. This will positively contribute to confidence in the economy by decreasing 
uncertainty on the key economic indicators. Emerging economies like Turkey, in which general 
price levels are constantly high and very volatile, suffer more from high inflation rates than 
advanced economies since it shortens the duration of investment projects and substantially 
decreases saving and real incomes. Therefore, it is an uphill battle and of paramount importance 
for an emerging economy to mitigate the detrimental effects of inflation by forecasting it 
precisely. The task of making the economy more stable is generally undertaken by central banks 
all around the world. The difficulty of forecasting macroeconomic indicators stems from the 
presence of many highly correlated variables that affect the concerned variable to be forecasted. 
Hence, how a forecasting model is constructed is an important research problem when there is 
a large pool of candidate correlated variables.  

To deal with this problem, factor models have been utilised to summarise the information 
on a big dataset from which the factors are extracted. Thanks to factor models, instead of putting 
all variables into a forecasting equation, only a few factors are modelled. However, it is not 
certain whether using all independent variables at hand or a reduced set of them via pre-
selection algorithms will provide more informative extracted factors. Some studies claim that 
factor models based on a higher number of variables will not lead to better forecasting 
performance as compared to the factor models relying on a small number of variables (Alvarez 
et al., 2012; Boivin & Ng, 2006). Also, the selection of the number of factors to be used in a 
forecasting equation is still another unanswered problem (Agostino & Giannone, 2012; 
Schumacher, 2007). 
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An alternative approach to forecast an economic variable in data-rich environments is to 
take advantage of variable selection techniques in reducing the number of covariates. Variable 
selection techniques can effectively identify the most influential independent features on a 
variable of interest. This may help the modeller overcome the problem of degrees of freedom, 
which is one of the most encountered problems when modelling high dimensional data. It is 
observed that variable selection techniques have been used for two purposes: as an alternative 
to factor models such as LASSO (Least Absolute Shrinkage and Selection Operator) and LARS 
(Least-Angle Regression) to directly model the variable of interest (Konzen & Ziegelmann, 
2016; Medeiros & Mendes, 2016) or as a pre-selection method in factor models (Bai & Ng, 
2008; H. H. Kim & Swanson, 2018) to identify the targeted variables. Even though numerous 
papers have reported that ML models provide outstanding performance in the context of time 
series analysis (Ahmed et al., 2010; Pavlyshenko, 2019), the usage of these models is still 
limited in the field of macroeconomic forecasting (Masini et al., 2021; Medeiros et al., 2021).  

The lack of interpretability of ML models and the difficulty of the problem of balancing 
the bias-variance trade-off may be regarded as two reasons for this. Making ML models more 
explainable and interpretable has recently become an active and very popular field of study and 
many different techniques have been proposed for this purpose (Carvalho et al., 2019; 
Linardatos et al., 2020). Among these techniques, Local Interpretable Model-agnostic 
Explanations (LIME) proposed by Ribeiro et al. (2016) Shapley Additive exPlanations (SHAP) 
by Lundberg and Lee (2017) have stood out and found many applications in diverse fields 
(ElShawi et al., 2020; Gramegna & Giudici, 2021; Mokhtari et al., 2019). With the help of these 
techniques, it is possible to gain insights into the predictions produced by ML methods by 
quantifying the contribution of each predictor in an additive manner. This enables us to 
understand which indicators or drivers most influence predictive performance.  

The contributions of this study to the literature can be summarised as follows:  
• First, previous studies have used a linear forecast equation and focused on factor 

extraction methods and variable selection to attain more accurate forecasts. However, the 
form of the forecast equation is an important though sometimes neglected component. In 
this study, the forecast equation is changed to a non-linear form with the help of ML 
models.  

• Second, the usefulness of feature selection techniques in a high dimensional environment 
is investigated in two ways. First by examining the ability of different selection methods 
to determine a preferred set of targeted variables with predictive power for factor models. 
The second approach is to employ feature selection techniques as a pre-processing step 
in directly forecasting the variable of interest without using a factor model. This study 
reports an analysis and comparison of the two alternative approaches.  

• The third main contribution is to take advantage of recent advancements in ML in order 
to explain the inflation predictions of these black-box models. This relates to a previous 
paper by Joseph et al. (2021) that deals with black boxes and examines the drivers of 
forecasts of UK inflation. Our study is the first to focus on explaining the drivers of 
inflation forecasts for an emerging economy. This involves identifying both the key 
informative variables but also the sign and the magnitude of their effects on each 
individual prediction. Our paper differs from that of Joseph et al. (2021) in two ways: by 
including additional ML models in the analysis and by proposing the integration of feature 
selection methods with ML models to address the problem of model interpretability in 
high-dimensional settings.  

• The last novel contribution is to provide a more comprehensive analysis of tree-based 
models in the forecasting of inflation. This is based on recent finding by Medeiros et al. 
(2021) that indicate superiority of random forest models against other ML and benchmark 
models in literature. In addition, we analyse also Extremely randomized trees, Adaboost 
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trees, Gradient Boosting Decision Trees (GBDT) and eXtreme Gradient Boosting 
(XGBoost).  
The rest of the paper is organised as follows. The next section is an overview of the 

literature on the application of factor and ML models to predict macroeconomic variables and 
also studies related to forecasting inflation in the Turkish economy. The subsequent section 
discusses the methodology to be followed, the details of data set and the models in the analysis. 
Section 4 presents the results in three parts in accordance with the aims of the study. Finally, 
Section 5 has concluding remarks. 

2. Related Studies 
 
 This section is divided into two parts. The first part summarises the application of factor 
and ML models to macroeconomic forecasting. The second part provides information about 
previous studies of inflation forecasting especially in Turkey. 
 After the seminal studies carried out by Stock and Watson (2002a, 2002b) and Forni et 
al. (2000, 2005), interest in factor models has increased dramatically. Boivin and Ng (2006), 
and Bai and Ng (2008) claimed that using more variables to extract factors would not cause 
better forecasting performance and showed that the factors extracted from the smaller set of the 
variable pool by the help of a pre-selection method produced more accurate forecasts than the 
factors extracted from all variables. Banbura and Modugno (2014) utilised factor models in 
nowcasting and forecasting of the euro area gross domestic product (GDP). The datasets in the 
analysis consisted of three different compositions namely small (14 series), medium (48 series), 
and large (101 series) to investigate the effect of the size of the dataset on the performance of 
factor models. The obtained results showed that using small and medium dataset compositions 
led to more accurate results than the larger one.  
 In another study by Li and Chen (2014), the comparison between LASSO-based 
approaches and factor models was made in forecasting macroeconomic time series. Also, the 
combination of these two groups of models was analysed. The study found that LASSO-type 
models outperformed the factor models, and the combined forecasts gave promising results. 
Garcia et al. (2017) compared a factor model constructed by targeted predictors via a pre-
selection procedure based on t-statistics in a linear model with shrinkage models, complete 
subset regression, and random forest in real-time inflation forecasting. They concluded that 
shrinkage models exhibited superior performances especially for short-horizon forecasts than 
other models considered. Medeiros et al. (2021) attempted to uncover the benefits of ML 
models in forecasting US inflation through a set of state-of-the-art modelling approaches in a 
data-rich environment. Their main finding is that the random forest model dominated all other 
models in the study. In a recent study by Joseph et al. (2021) forecasted UK inflation and tried 
to open the black box nature of ML methods by Shapley values and regression. Even though 
they utilised a limited number of non-linear ML models (Support Vector Machines (SVM), 
Multi-Layer Perceptron (MLP), and random forest), it was suggested that ridge regression can 
be used by central banks and institutions forecasting inflation with large datasets. Ridge 
regression exhibited similar performance with ML models in long sample period but 
outperformed them in short sample period. It appears from the literature that shrinkage and 
some ML models were used both as an alternative to factor models in forecasting and a pre-
selection method among all predictors for factor models (H. H. Kim & Swanson, 2018; Konzen 
& Ziegelmann, 2016; Li & Chen, 2014; Medeiros & Vasconcelos, 2016). 
 Regarding inflation forecasting in Turkey, Ogunc et al. (2013) carried out a wide range 
of econometric models from univariate models to multivariate models to find out which one is 
better at producing more accurate short-term inflation forecasts specifically for Turkey. The 
results reported suggest that models containing more information related to inflation through 
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many variables outperform the univariate models in short-term forecasts. Altug and Cakmakli 
(2016) examined the power of survey expectations as a predictor in inflation forecasting for 
two emerging countries, Brazil and Turkey. The inclusion of survey expectations into models 
increased forecasting performances especially for Turkey which is more volatile compared to 
Brazil. Mandalinci (2017) analysed the predictability of inflation in nine emerging countries 
including Turkey by different modelling approaches and assessed the accuracy of institutional 
forecasts. It was found that central bank independence has a key role in the predictability of 
inflation and institutional forecasts are generally better than model-based ones for emerging 
markets. Soybilgen and Yazgan (2017) assessed inflation expectations in Turkey measured by 
a survey of experts and decision-makers to learn their predictions for current and future 
inflation. It was observed that inflation expectations do not have much predictive value and can 
be worse than even naïve methods, but the directional accuracy has some value.  
 Finally, Gunay (2018) made a comprehensive analysis of some significant components 
of factor models such as choice of feature extraction method, the number of factors and the 
number of lags of each factor in the forecast equation through datasets of industrial production 
and core inflation in Turkey. According to the study, the performance of factor models is 
dependent on the proper selection of important components.  In a recent study by Ozgur and 
Akkoc (2021), shrinkage models (Ridge, Lasso, Adaptive Lasso, and Elastic net) were 
considered to have found the most effective predictors in predicting Turkish inflation. The 
authors claimed that the study is the first one that applies ML models for forecasting Turkish 
inflation, but they actually traditional used regression-based models rather than pure ML 
techniques like SVM or MLP. They found that the shrinkages models led to superior forecasts 
than autoregressive integrated moving average (ARIMA) and multivariate vector 
autoregression (VAR) models. 

3. Models 
 

3.1. Benchmark Models 
The benchmark in this study is autoregressive models, AR(p), which use only the lagged 

values of the target variable 

𝑦"!"#/!# = 𝛼"# +∑ 𝛾"#%𝑦!&%"'
(
%)'            (1)  

where 𝑦! is the dependent variable, h represents the forecasting horizon, and p corresponds to 
the number of lags to be set a value of maximum three.   

3.2. Feature Selection Techniques 
 Several shrinkage models are employed in this study for two purposes: for feature 
selection and as regressors for prediction. These models minimise the general penalised 
regression defined as follows: 

𝜷)# = 𝑎𝑟𝑔min
*!
0∑ (𝑦!"# − 𝜷#+ 𝒙!), + ∑ 𝑝6𝛽#,.; 𝜆:/

.)'
0&#
!)' ;     (2) 

where T is the total number of observations, M is the number of predictors,  𝑝6𝛽#,.; 𝜆: 
corresponds to a penalty function whose tuning parameter is 𝜆 with the task of governing the 
amount of shrinkage. 
Ridge Regression: Ridge regression, proposed by Hoerl and Kennard (1970), is one of the most 
well-known penalised regression models with 𝐿, norm penalty given by Equation 3. The 
intention behind ridge regression was to cope with highly correlated regressor by reducing the 
variance of the estimator in exchange for allowing a small bias. However, the coefficients 
obtained by ridge regression are very small but not exactly equal to zero. It means that it is not 



5 
 

appropriate to select features. Hence, we exploit it as a prediction model but defined here to be 
compatible with other shrinkage models. 

∑ 𝑝6𝛽#,.; 𝜆:/
.)' ∶= 𝜆∑ 𝛽#,.,/

.)'           (3) 

LASSO: The LASSO estimator, introduced by Tibshirani (1996), offers sparse coefficients by 
using the penalty function called 𝐿' norm given in Equation 4, thereby overcoming the problem 
of ridge regression failing to equate the coefficients to zero. In this sense, LASSO can be 
regarded as a feature selection technique as well. It even works under the condition that the 
number of features is bigger than the total number of observations by finding a correct subset 
of the relevant features.  

∑ 𝑝6𝛽#,.; 𝜆:/
.)' ∶= 𝜆∑ >𝛽#,.>/

.)'          (4) 

Elastic Net Regression: Elastic net, proposed by Zou and Hastie (2005), combines the 𝐿' and 
𝐿, norms via Equation 5 to benefit from the useful properties of ridge and LASSO regression 
simultaneously. When there are many highly correlated features, LASSO has a tendency of 
picking just one randomly from this group and ridge regression can lead to better performances 
(Tibshirani, 1996). Elastic net embodies both models as special cases by using 𝛼 ∈ [0,1] 
hyperparameter which controls the importance of 𝐿' and 𝐿, norms. 

∑ 𝑝6𝛽#,.; 𝜆:/
.)' ∶= 𝛼𝜆∑ 𝛽#,., + (1 − 𝛼)/

.)' 𝜆∑ >𝛽#,.>/
.)'      (5) 

LARS: The LARS algorithm, proposed by Efron et al. (2004), is similar to forward stagewise 
regression in terms of selecting the most correlated variable with the residual of the previous 
regression model at each iteration. Unlike stagewise regression, in the case of a set of equally 
correlated features with the residual, it moves equiangularly between features in that iteration. 
There will be k ordered features after k iterations, and it includes LASSO as a special case. 
However, LARS algorithm is more prone to containing the effect of noise due to the procedure 
of refitting the residuals iteratively.  

Orthogonal Matching Pursuit (OMP): the OMP algorithm (Pati et al., 1993) is an improved 
version of the matching pursuit algorithm (Mallat & Zhang, 1993) where its origin comes from 
the field of signal processing. The matching pursuit algorithm is devised to tackle the sparse 
optimisation problem as a greedy method. This algorithm selects one column (atom) from 
training dictionary atoms at a time to find out the best matching atom with the signal while 
minimising the approximation error for the signal iteratively. At each iteration, it finds the 
maximum correlation among the residuals from the previous approximation and the atoms to 
select the next atom. However, when the dictionary consists of similar atoms, the convergence 
will be very slow. OMP algorithm overcomes this situation by making the residuals orthogonal 
to the previously selected atoms with the help of Schmitt orthogonalization. OMP is 
computationally simple and efficient and emerges as an alternative to LASSO. 
Recursive Feature Elimination with Random Forest (RFE_RF): Recursive feature elimination 
is a wrapper-type backward selection method for finding the subset of relevant features by 
taking model performance into consideration (Guyon et al., 2002). It is flexible to use any 
estimator provided that it has a property of ranking features via some importance values or 
coefficients. It is shown that random forest can work very well with recursive feature 
elimination (Granitto et al., 2006). RF provides importance scores for features, but this does not 
mean that it identifies the feature combinations that lead to better accuracy. Recursive feature 
elimination starts with all features and ranks them according to the scores provided by the 
estimator. The worst features are discarded, and the analysis is repeated for the remaining 
features until a stopping criterion is met. The number of features to be selected is a very crucial 
hyperparameter that is determined by cross-validation.  
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Boruta: the Boruta algorithm is a wrapper feature selection method based on random forests to 
find out all relevant features rather than just non-redundant ones by a statistical test (Kursa et 
al., 2010). The core idea behind the algorithm is to generate the shadow feature, which is 
basically randomised copy of the original one, in order to eliminate the correlation between 
output and that feature, and to compare the importance values associated with the original 
feature and its shadow version in the extended dataset.  In a random forests model, the number 
of cases where a feature has a larger importance value than the maximum Z score among 
shadow features is recorded, and these values are later used to decide which features are 
important statistically. 

3.3. Forecasting Models 
SVM: the SVM uses kernel functions to map data into a high dimensional space where the 
transformed data can be modelled linearly. Even though it was originally proposed to solve 
classification problems, it was adapted to regression problems by an ε-insensitive loss function 
(Drucker et al., 1997) and performed successfully in time series forecasting applications (K. J. 
Kim, 2003; Thissen et al., 2003). SVM is appealing because of its ability to minimise empirical 
error while limiting the complexity of the fitted model, thereby preventing overfitting.  
MLP: Although the emergence of neural networks model, which was developed to mimic the 
parallel working principle of the human brain, dates back to earlier times, it has become more 
popular and found many applications in various fields after the advent of the backpropagation 
algorithm (Rumelhart et al., 1986). It has an advantage of non-linear and flexible approximation 
ability to any continuous function with any specified level of precision thanks to hidden 
neurons. However, it may suffer from overfitting problem and requires many hyperparameters 
to be tuned carefully. 

Random Forests (RF): RF consists of decision trees which is simple, fast, non-linear, and non-
parametric machine learning approach for both regression and classification purposes. As an 
ensemble method, RF was purposed by Breiman (2001) to alleviate the overfitting problem that 
regression tree frequently faces and to lower the large variance of forecasts. Training data are 
randomly sampled with replacement to increase diversity between forecasts and a random 
subset of features is selected for each tree to make them more unrelated to each other. The final 
decision of RF model is generally found by taking the average of the individual trees for a 
regression problem or by using majority voting for classification. 

Extremely randomized trees: Another tree-based model called extremely randomized trees was 
proposed by Geurts (2006) to reduce the problem of high variance of decision trees. This model 
benefits from the strategy of perturb-and-combine effectively in constructing decision trees 
after observing the high variance arising from cut-point choice is responsible for the poor 
performance of tree-based models. Two differences of this model from RF model are to select 
the cut-point completely randomly while splitting a node instead of the most discriminative one 
and to use all training data rather than a bootstrap sample. Thus, it is expected that the final 
trees exhibit less dependence on the particular learning sample. 

Adaboost: Adaboost algorithm, by Freund and Schapire (1996), was developed to decrease the 
variance and bias of predictions of a weak learner at the same time. The algorithm aims to 
improve its predictions in a sequential manner by focusing on the bigger errors of the previous 
step. It firstly constructs a very short decision tree called decision stump after giving equal 
weights to all observations. The next step predicts the errors of the previous learner model and 
adaptively weights them according to the size of errors. The final prediction is the sum of all 
predictions made by weak learners. The original algorithm uses decision trees as base learners, 
but the idea can be applied to other models. This study exploits the variant of Adaboost 
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algorithm proposed by Drucker (1997) for regression among other variants. One shortcoming 
of the algorithm is that it is heavily influenced by outliers. 
GBDT: GBDT, proposed by Friedman (2001), introduces a paradigm shift, called functional 
gradient descent. It consists of an additive model built by a stage-wise fashion in which a 
decision tree regression model is added at a time and the previous learners remain unaltered. 
Any loss function can be used providing that it is differentiable, and this loss function is 
minimised by the gradient descent method when new learners are added to the algorithm. 
Different from the Adaboost algorithm, the decision trees in gradient boosting are bigger and, 
its parameters are optimised so as to decrease the loss function value. The final output is the 
sum of the predictions of all weak learners. 
XGBoost: XGBoost is the improved version of the gradient boosting algorithm, developed by 
Chen and Guestrin (2016), relying on the regression trees called CART (Classification and 
Regression Trees) as a weak learner model. It has been a very popular machine learning method 
due to its success in many competitions such as Kaggle and DataCastle by offering superior 
performances in both generalisation and speed. Its superior performance to the gradient 
boosting algorithm stems from two important features. The first one is that the loss function 
consists of the second-order Taylor expansion, meaning that Newton boosting rather than 
gradient boosting, and includes the regularisation term for controlling the complexity of the 
trees to avoid the overfitting problem. The second is to enable parallel computing. In addition, 
XGBoost allows the feature subsampling to make the trees uncorrelated and to speed up the 
algorithm. The shortcoming of the algorithm is to contain a relatively high number of 
hyperparameters that have a great impact on performance. 

3.4. Shapley values and regression 
Shapley values come from cooperative game theory, in which the total payoff is shared 

by players in accordance with their contribution in a coalition (Shapley, 1953). Six decades 
later, a brilliant analogy was made between players in a game and variables in a supervised 
model (Štrumbelj & Kononenko, 2010). While players divide the payoff among themselves, a 
prediction is divided into parts each of which is generated by a separate input variable. This 
enables us to quantify the contribution of each variable to an individual model prediction by 
sampling from the marginal distribution. As a model agnostic method, SHapley Additive 
exPlanations (SHAP) can be calculated for any supervised black-box model, and they stand out 
from other interpretability approaches such as LIME (Ribeiro et al., 2016) and DeepLIFT 
(Shrikumar et al., 2017) by being the only method to satisfy three desirable properties  
(Lundberg et al., 2017) namely local accuracy, missingness, and consistency. That is the reason 
why the Shapley method is preferred in this study.  

Let 𝑦"!"# represent a prediction made for horizon h at time t. This prediction can be 
decomposed into its components via the Shapley values as follows: 

𝑦"!"# = 𝜙!,1# + ∑ 𝜙!,%# ≡ 𝛷!#/
%)'          (6) 

where M is the total number of variables and 𝜙!,1#  is the Shapley value for the jth  variable. The 
𝑗 = 0 component corresponds to the mean model prediction for the training set.  
 The Shapley value of a feature is obtained by the weighted average contribution of that 
feature to the prediction for all possible coalitions (the average marginal contribution): 
 𝜙!,%# = ∑ |3|!(/&|3|&')!

/!3⊆/\% [𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆)]      (7) 
where S is the coalition and 𝑓(𝑆) corresponds to the prediction value of that coalition. 

Even though Shapley additive values are good for finding out the drivers of a prediction, 
they are just descriptive and do not provide any statistical inference from which one can be sure 
that a predictor has statistically significant contribution to the model predictions. One remedy 
for this shortcoming is put forward by Joseph (2019) called Shapley regression. It is based on 
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an auxiliary regression model constructed on the predictions and the corresponding Shapley 
values as follows: 

𝑦!"# = 𝜙!,1# + ∑ 𝜙!,%# 𝛽!,9# + 𝜖! ≡ 𝛷!#𝛣!# + 𝜖!/
%)'       (8) 

where  𝜖!P~𝑁(0, 𝜎:,) and 𝛽!,1# ≡ 1. The null hypothesis for the coefficients 𝛽!,9#  is given below: 
 𝐻19(Ω): {	𝛽!,9# ≤ 0}            (9) 

It should be noted from eq. (9) that only positive coefficients in eq. (8) show significance. 
A possible negative coefficient means that the concerned model fails to learn from that 
predictor. This auxiliary regression measures the alignment between the Shapley components 
and the variable of interest. The ideal situation occurs when the vector 𝛣!# ≡ 1. If  the null 
hypothesis 𝐻19 is not rejected then the predictor does not show statistically significant co-
movement with the predictions. 

Although the coefficients 𝛽!,9#  shed some light on the degree to which the predictor at 
investigation and the prediction are linked, they do not give information regarding the direction 
or magnitude of the components of the Shapley values. For this reason, we define a summary 
statistic called weighted contribution coefficient (WCC) given as below: 

 𝑊𝐶𝐶;" = 𝑠𝑖𝑔𝑛6𝑟<";":
〈><"(?@)>〉#

∑ 〈><"(?@)>〉#$
"%&

			𝜖[−1,1]      (10) 

where 𝑟<";" is the correlation coefficient between the variable of interest 𝑋9 and its Shapley 
value 𝜙9  and where 〈. 〉C" represents for the average of  𝑥9 in Ω9𝜖𝑅. 
 This summary statistic shows the magnitude and direction of the average impact of each 
variable on the output. ∑ >𝑊𝐶𝐶;"> = 1./

9)'  It is different from the Shapley share coefficients 
defined by Joseph (2019) because it does not depend on the 𝛽!,9 coefficient in the linear 
regression model (3) since when the number of variables is high and/or the amount of 
observations is low, the 𝛽!,9 coefficient is not reliable. 

There are some pitfalls when using the Shapley values. The calculation of the Shapley 
value is very time-consuming due to the combinatorial calculation for all possible coalitions 
and, similar to other permutation-based methods, it may include unlikely instances because of 
random sampling from marginal distribution especially when there are some correlated features. 
For every feature there will be a corresponding Shapley value so, in this regard, it can be said 
that it is not a sparse explanation method. To overcome some of these pitfalls, Lundberg et al. 
(2018) put forwarded the TreeSHAP method which is much faster and takes the dependencies 
of features into consideration by relying on the conditional expectation instead of the marginal 
one. However, it works just for tree-based models and it estimates the Shapley value which is 
not equal to zero even for a feature that has no effect on the prediction as the original method 
does (Janzing et al., 2020; Sundararajan & Najmi, 2020).  

We integrate different feature selection techniques with the calculation of Shapley values 
to avoid assigning Shapley values to features with no prediction power and to provide a sparse 
and simple explanation. Hence, at each estimation point, a feature selection technique is firstly 
applied to identify the variables with high prediction power on the predictor or to select a 
variable from a set of correlated variables, assigning a Shapley value of zero to the unselected 
variables. This is intended to reduce the possibility of including unrealistic covariates in the 
analysis and the risk of estimating non-zero Shapley values for uninformative variables. 

4. Dataset and Pre-processing 
 
  It is reasonable to consider that inflation has a potential relationship with practically all 
economic indicators. This study exploits many candidate indicators from different contexts, 
such as interest rates, confidence indexes, stock exchanges, exchange rates, production, etc. In 
order to achieve a seamless transition to the policy of inflation targeting, Turkey abandoned the 
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fixed exchange rate system after the 2001 economic crisis. Eventually, in 2006, Turkey 
officially announced that it started to implement the inflation targeting regime. This can be 
regarded as a real milestone for the whole economy which leads to structural transformations 
and changes the relationship between macroeconomic variables. Taking into account that some 
time series are not available for 2006, 1 January of 2007 was chosen to be the start of the sample 
for our analysis. The core inflation price index, which excludes energy, food and non-alcoholic 
beverages, alcoholic beverages, tobacco, and gold level, was chosen to be the target variable in 
line with the Central Bank of the Republic of Turkey‘s (CBRT) statement of establishing 
monetary policies according to core inflation. The core inflation is more stable compared to 
headline inflation and robust to uncontrollable price fluctuations and seasonal variations. The 
indicators used in the analysis and their web sources are given in Table 1. The number of 
variables amounts to 25 in total, and they reflect the effect of different indicators from many 
sources such as economic, financial, and international data. All variables consist of monthly 
observations from January 2007 and to August 2021.  
 Figure 1 presents monthly and yearly core inflation rates in Turkey. As can be seen from 
Figure 1, with the beginning of the year 2017, inflation in Turkish economy has faced with two-
digit rates and has been subject to more volatility than previous years. The test data start from 
January 2017, consisting of 56 observations, and the expanding window with refitting in every 
next observation of the test data has been implemented. This means that all models in the 
analysis were refitted 56 times across the test data in order to adapt new information or 
structural changes on the indicators as quickly as possible. The test set is the period in which 
the annual inflation rates are mostly above 10 percent, and it includes sudden and rapid 
increases in foreign exchange rates, which is assumed to be responsible for the increase in the 
general level of prices, due to fluctuations in the economy and the adverse effects of Covid-19. 
This makes a real challenge for the study to see whether the findings of the interpretability 
method for ML models are compatible with general economic precepts.   
 

 

Figure 1. Core inflation rates. 

 Before the analysis, all series were checked for stationarity and seasonality. If a series 
exhibits seasonal components, the seasonally adjusted series was obtained by the X-13ARIMA-
SEATS procedure, which is currently widely utilised by most government agencies all around 
the world, and the non-stationary series detected by the Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) test were made stationary by taking first or second differences. Lastly, the data were 
zero-centred and standardised before extracting factors.  
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5. Empirical Methodology 
 
The advancement in technology especially for the last 50 years has led to the collection 

and storage of huge amounts of data in almost all areas of life. But it also introduces a new 
problem of how to extract valuable information from this high-dimensional data. In 
econometric modelling there will generally be a high number of highly correlated variables 
related to the variable to be forecasted. Due to the degree of freedom problem, ordinary least 
squares regression and vector autoregression models can contain a very limited number of 
independent variables and, hence, lack the ability to model complex relationships resulting from 
the interaction of many variables. Therefore, the development of methods that utilise large 
numbers of variables effectively is an active field of research.  
 

Table 1. Variables used in the analysis. 
Variables Source 
Economic Confidence Index  TURKSTAT 
Consumer Confidence Index  TURKSTAT 
Reel Sector Confidence Index  TURKSTAT 
Industrial Production Index TURKSTAT 
Unemployment Rate TURKSTAT 
Core Inflation CBRT 
BIST-100 Index CBRT 
Capacity Utilisation Rate CBRT 
Commercial Credit Interest Rates for TL CBRT 
Commercial Credit Interest Rates for USD Dollar CBRT 
Consumer Credit Interest Rates for TL CBRT 
Euro/Dollar Parity CBRT 
Dollar Exchange Rate CBRT 
Interest Rates for Deposits in Turkish Lira CBRT 
Interest Rates for USD Dollar Deposits CBRT 
Bullion Gold Selling Price (TRY/Gr) CBRT 
Current Account CBRT 
Currency in circulation CBRT 
CPI Based Real Effective Exchange Rate CBRT 
12-months-ahead CPI survey of expectation (mean) CBRT 
Commodity Price Index IMF 
EU Consumer Confidence Indicator EUROSTAT 
EU Industrial Confidence Indicator EUROSTAT 
EU Production in Industry EUROSTAT 
S&P 500 Index YAHOO-finance 
VIX Index YAHOO-finance 

Note: Turkish Statistical Institute (TURKSTAT) web address is https://www.tuik.gov.tr/Home/Index. CBRT web address is 
https://www.tcmb.gov.tr/wps/wcm/connect/en/tcmb+en. International monetary fund (IMF) web address is: https://www.imf.org/en/Home. 
The statistical office of the European Union (EUROSTAT) is https://ec.europa.eu/eurostat/web/main/home. YAHOO-finance web address is 
https://uk.finance.yahoo.com/. 

 
We address this with two different methodological approaches. Firstly, factor models 

were constructed by using all variables but four different forecast equations: linear, SVM, MLP, 
and RF. In this way, the classical form of the forecast equation in factor models was changed 
from linear one to non-linear form through the ML model considered in the study. Previous 
studies have ignored the form of the forecast equation and focused on data structuring and 
feature extraction techniques.  

To select the targeted predictors from the pool of all candidate predictors, which will be 
used to generate the factors in the factor models, six feature selection techniques were 
implemented: LASSO, LARS, Elastic net regression (Elastic), OMP algorithm, RFE_RF, and 
also the Boruta algorithm. In total, this amounts to 28 factor models, most of which were relied 
on ML techniques, built in the analysis. Secondly, to take advantage of the ability of ML models 
in handling a high number of variables, and also to aid interpretability, ML models directly took 
the original variables without carrying out factor extraction. Again, the targeted predictors 
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found by feature selection techniques were used to identify the most informative predictors. In 
this way, 21 ML models were built to model the macroeconomic variable. Lastly, instead of 
using shrinkage models as a feature selection approach, ML models were applied to forecast 
directly the core inflation by using their own equations. In addition to LASSO, LARS, Elastic, 
and OMP model, Ridge regression were used because of their promising performance reported 
in previous studies (Joseph et al., 2021; Li & Chen, 2014). The second part of this study extends 
the analysis of the tree-based models further relying on the recent findings (Medeiros et al., 
2021) about the success of RF model in predicting key macroeconomic variables. Hence 
GBDT, Adaboost, extremely randomized trees, and XGBoost were employed. 
 It is highly likely that there is a lag relationship between the predictors and the variable 
to be forecasted in the analysis. To take this relationship into account, the lagged values of the 
predictors were taken as new predictors. The number of lagged values were decided on 
Bayesian Information Criteria (BIC) calculated for factor models. The study increased the lags 
of each predictor until four, and the minimum BIC value was obtained at three lags. Therefore, 
this resulted in 75 predictors, in total, for the analysis. It is known that the number of factors to 
be used in a forecast equation has a significant effect on the forecasting performance (Agostino 
& Giannone, 2012; Schumacher, 2007). Again, the BIC value was exploited to determine this 
value. It was observed that using only one factor had the smallest BIC value. Hence, the only 
one factor, the most explaining the variance, was chosen for all factor models constructed in 
the analysis. To tune hyperparameters of ML models and feature selection techniques, a 
modified 10-fold-cross-validation (the python package TimeSeriesSplit) for time series data in 
which the training sets that follow one another are supersets of the one that came before them, 
and the validation is always the last one in time was employed for the analysis. The models 
were estimated for inflation forecasts in a real-time environment but excluding data revisions 
to be made in the future. By real-time analysis, it is meant to utilise only the information 
available to the modeller at the time when the predictions are made. Multi-step-ahead forecasts 
are generated by taking the h-step-ahead predictive value to be the dependent variable, as 
suggested in the literature (Günay, 2018; Schumacher, 2007; Stock & Watson, 2002b).  
 The following is forecast equation for factor models: 

𝑦"!"#/!# = 𝛼"# +∑ 𝛾"#%𝑧0&%
(
%)' +∑ 𝛽f#%+D

%)' 𝐹h0&%"'       (11) 

𝑧! = 1200 ∙ (𝑦! − 𝑦!&') − 1200 ∙ (𝑦!&' − 𝑦!&,) 

where 𝑦! is the logarithm of the core inflation price index and 𝐹h0 corresponds to the number of 
the first k estimated factors. 

The numbers of p and m values were determined in terms of BIC value by limiting the 
maximum number of choices to four. To make h-step-ahead forecasts directly, the following 
transformation, by Stock and Watson (2002b), on the variable to be forecasted is defined: 

𝑦!"## = ',11
#
∙ (𝑦!"# − 𝑦!) − 1200 ∙ (𝑦! − 𝑦!&')        (12) 

 To evaluate forecasting performances among different modelling approaches, we used 
relative versions of the root mean squared error (RMSE) and the mean absolute error (MAE), 
calculated on the test set. These relative calculations are based on the following equations, 
respectively: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑅𝑀𝑆𝐸 = '()*(,-.	0.1.234,	567.1)
'()*(9'(:))

,										𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑀𝐴𝐸 = (9*(,-.	0.1.234,	567.1)
(9*(9'(:))

   (13) 
 If these relative measures are less than 1, it indicates the forecasting performance of the 
relative model is better than the simple AR(2) model. For the sake of simplicity, we will call 
them the RMSE and MAE. 
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6. Empirical Results  
 
6.1. The obtained results for factor, shrinkage, and ML models 
 This section presents the forecasting results of the benchmark models, various factor 
models arising from the combination of the form of forecast equation with feature selection 
techniques, shrinkage methods, and different ML modelling strategies for 1-, 3-, 6-, and 12-
month-ahead horizons. In total, 58 forecasting models are evaluated. Table 2 lists the 
forecasting performances with respect to two error evaluation criteria: RMSE and MAE, 
respectively. Since these evaluation metrics vary considerably between the different forecasting 
problems, all evaluation criteria are referred to a benchmark which was taken to be the AR(2) 
model. To discern better performances than the benchmark more easily, values smaller than 1 
are highlighted in bold.  
 In table 2 the set of statistically superior models with respect to each forecast horizon, 
which is detected by the model confidence set (MCS) test by Hansen et al. (2011), is represented 
by shadowing. The MCS tests for each horizon were done at 75% significance level, as 
suggested by Catania (2021). It is understood from this table that different error measures lead 
to change the set of superior models considerably for the horizons.  
 Among different factor model groups, each of which has different forecast equation form 
like linear, SVM, RF, and MLP, the RF factor model stands out from the other by producing 
more accurate forecasts than the benchmark for all evaluation metrics and forecast horizons and 
gives rise to more models to be included the set of the best-performing models. Furthermore, 
the other ML factor models, relying on the SVM and MLP, generally exhibit better 
performances than the linear factor models. This evidence supports the hypothesis that changing 
the functional form of a factor model may be beneficial. However, when feature selection 
techniques are applied to factor models, it is not clear how to determine the importance of 
individual input variables. 

Regarding the performance investigation of shrinkage models, it can be said that the 
shrinkage models attain better performances than the benchmark model according to the RMSE 
possibly due to some extreme values observed in the price index. Hence, it may be concluded 
that the models relying on a high number of variables are less affected by the sudden increase 
or decrease in the dependent variable. Also, when we compare the shrinkage model with the 
classic linear factor models, it is seen that the shrinkage models are as good as or even better 
alternatives to the linear factor models. This observation is in line with the findings of some 
previous studies (Medeiros & Vasconcelos, 2016; Özgür & Akkoç, 2021). Another observation 
from Table 2 is that the MLP factor models generally are worse than the MLP models with a 
high number of variables. In other words, the MLP works very well in high-dimensional settings 
compared to the MLP factor models with a limited number of predictors. However, the same is 
not true for the RF models. They work effectively in both conditions, high and low input 
dimensionalities. Hence, there is no convincing evidence in these results that using factor 
models will produce more accurate forecasts. The effect of variable selection on model 
performance is also not clear but it should be noted that the RF with Lasso model is the only 
model which is always in the set of superior models for all forecast horizons and error measures. 
In general the RF model, which is less affected by feature selection technique, performs very 
well regardless of using summarised information provided by the factors or directly by 
modelling the original features. 
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Table 2. Forecasting performance for models with factors and independent covariates. 

 RMSE MAE 
 h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12 
RW 1.259 1.219 1.066 1.014 1.520 1.289 1.157 1.130 
AR(1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
AR(2) 0.948 1.069 1.017 1.044 1.109 1.217 1.077 1.102 
AR(3) 0.993 1.176 1.041 1.031 1.151 1.287 1.086 1.098 
Linear factor model by all variables 0.969 1.155 1.039 1.039 1.155 1.318 1.121 1.113 
Linear factor model by LASSO 0.960 1.128 0.995 0.867 1.243 1.325 1.156 1.019 
Linear factor model by LARS 0.926 0.950 1.073 0.949 1.224 1.105 1.171 1.066 
Linear factor model by Elastic 1.019 1.170 1.008 0.926 1.374 1.323 1.108 1.085 
Linear factor model by OMP 0.898 1.127 1.040 0.887 1.201 1.336 1.215 1.031 
Linear factor model by RFE_RF 0.970 1.000 0.928 1.053 1.134 1.163 1.049 1.153 
Linear factor model by Boruta 1.020 1.089 1.084 1.071 1.176 1.295 1.161 1.195 
SVM factor model by all variables 0.849 0.955 1.016 0.892 0.914 1.085 1.075 0.887 
SVM factor model by LASSO 0.799 1.100 0.867 0.903 0.936 1.048 0.951 0.982 
SVM factor model by LARS 1.443 0.809 0.912 0.852 1.297 0.917 0.969 0.864 
SVM factor model by Elastic 0.821 0.900 1.011 0.918 0.954 1.048 0.994 0.932 
SVM factor model by OMP 1.149 0.992 0.825 0.900 1.119 1.041 0.887 0.948 
SVM factor model by RFE_RF 0.927 0.898 0.981 0.883 0.931 1.033 0.991 0.951 
SVM factor model by Boruta 1.139 1.548 1.227 0.879 1.044 1.395 1.180 0.966 
RF factor model by all variables 0.803 0.958 0.888 0.836 0.900 0.973 0.926 0.830 
RF factor model by LASSO 0.846 0.964 0.952 0.832 0.973 0.975 0.972 0.818 
RF factor model by LARS 0.814 0.963 0.885 0.831 0.935 0.966 0.900 0.818 
RF factor model by Elastic 0.850 0.964 0.873 0.830 0.970 0.979 0.893 0.825 
RF factor model by OMP 0.803 0.967 0.890 0.836 0.912 0.986 0.912 0.812 
RF factor model by RFE_RF 0.819 0.957 0.893 0.833 0.914 0.962 0.910 0.824 
RF factor model by Boruta 0.812 0.963 0.897 0.842 0.918 0.975 0.896 0.852 
MLP factor model by all variables 0.854 1.016 0.956 0.906 1.027 1.162 1.066 1.000 
MLP factor model by LASSO 0.884 1.075 1.069 0.875 1.120 1.139 1.192 0.961 
MLP factor model by LARS 0.936 1.075 0.988 0.914 1.159 1.118 1.032 0.958 
MLP factor model by Elastic 0.894 0.974 0.938 0.851 1.131 1.081 1.073 0.943 
MLP factor model by OMP 0.908 1.016 0.896 0.941 1.137 1.176 0.964 1.001 
MLP factor model by RFE_RF 0.820 1.143 0.984 1.085 1.010 1.197 1.070 1.105 
MLP factor model by Boruta 1.174 1.156 1.024 0.807 1.142 1.252 1.104 0.896 
OMP 0.884 0.987 0.941 0.893 1.252 1.359 1.140 1.036 
Lasso 0.817 1.021 0.914 0.855 1.023 1.200 1.118 0.954 
Lars 0.818 1.025 0.934 0.733 1.029 1.216 1.055 0.826 
Elastic 0.783 1.076 0.929 0.861 0.966 1.277 1.146 0.964 
Ridge 0.832 0.967 0.875 0.831 0.980 1.031 0.964 0.906 
SVM with all variables 0.837 0.965 0.870 0.846 1.009 0.982 0.922 0.881 
SVM with LASSO 0.913 1.141 0.816 0.869 1.076 1.235 0.926 0.939 
SVM with LARS 0.891 1.290 0.847 1.003 1.082 1.445 0.991 1.087 
SVM with Elastic 1.212 1.029 0.859 1.095 1.387 1.143 0.969 1.065 
SVM with OMP 0.867 1.227 1.016 1.213 1.029 1.214 1.157 1.088 
SVM with RFE_RF 0.783 0.946 0.837 0.865 0.926 1.009 0.945 0.906 
SVM with Boruta 0.755 0.964 0.852 0.779 0.965 1.021 0.998 0.819 
RF with all variables 0.824 0.966 0.900 0.808 0.948 0.958 0.946 0.831 
RF with LASSO 0.816 0.974 0.866 0.829 0.915 0.965 0.909 0.840 
RF with LARS 0.803 0.980 0.876 0.796 0.931 0.975 0.916 0.834 
RF with Elastic 0.903 0.973 0.879 0.853 1.002 0.963 0.876 0.864 
RF with OMP 0.796 0.968 0.879 0.841 0.929 0.949 0.955 0.850 
RF with RFE_RF 0.822 0.954 0.901 0.811 0.948 0.951 0.951 0.828 
RF with Boruta 0.816 0.972 0.884 0.843 0.929 0.958 0.919 0.853 
MLP with all variables 0.831 0.979 0.822 0.864 0.979 0.958 0.998 0.905 
MLP with LASSO 0.815 0.999 0.796 0.764 0.958 1.084 0.948 0.877 
MLP with LARS 0.886 0.992 0.837 0.916 1.081 1.036 0.951 0.972 
MLP with Elastic 0.867 0.964 0.824 0.834 1.021 0.987 1.011 0.868 
MLP with OMP 0.851 0.973 0.881 0.993 1.042 1.087 1.000 0.982 
MLP with RFE_RF 0.842 0.911 0.892 0.890 1.030 1.030 1.000 0.917 
MLP with Boruta 0.905 1.137 0.810 0.848 1.103 1.123 0.969 0.943 
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6.2. Comparison between tree-based models 
The promising results of the RF models in the previous section and a similar finding by a 

recent paper (Medeiros et al., 2021) regarding inflation forecasting, led to the greater focus on 
tree-based models in the rest of this paper. In addition, it is observed that better or identical 
forecasts can be obtained through all or targeted features without using factor models. 
Moreover, even if we use a linear model constructed with latent factors by principal component 
analysis, it does not mean that its parameters have a clear economic interpretation (Buckmann 
et al., 2021). Since obtaining a more explainable prediction by machine learning is a central 
objective of this paper, we focus on tree-based models without factor modelling. Therefore, the 
aim of this section is to find out an answer to the question of whether it is possible to achieve 
more accurate forecasts by means of tree-based models constructed in various ways. For this 
purpose, in addition to the RF model, four tree-based models were used, and their interactions 
with feature selection techniques were analysed again. After adding the tree-based models to 
the analysis, in total, 86 forecasting models were constructed in the scope of this study.   
 Table 3 provides the forecasting performances of tree-based models for all horizons and 
error measures. We added the results of the RF model from the previous table to make 
comparison easy among tree-based models. Again, the MCS test was performed for each 
combination of horizon and error measure to identify statistically the set of the best-performing 
tree-based models shaded in the table. But here, the models better than the benchmark model 
are not denoted by bold fonts because almost all tree-based models with a few exceptions 
outperform the benchmark model. This is an indication of the ability of the tree-based models 
in dealing with big data for macroeconomic forecasting. As can be seen from Table 3, it may 
be concluded that the overall forecasting performance of tree-based models are very close to 
each other. It is hard to say that one method clearly dominates others in any specific horizon 
and error measure. But we notice that the performance of the extremely randomized trees is 
slightly worse than other ones according to the MCS test, especially for 1-month-ahead 
forecasts evaluated by both error measures and for 12-month-ahead horizon evaluated by MAE. 
Among the combination of tree-based models with feature selection techniques, some specific 
models such as RF with LASSO, Adaboost tree with OMP, and XGBoost with LARS are 
notable for leading to superior performance at all points of comparison. We will examine these 
models more closely in the next section to make explanations about their predictions. 
 Table 4 contains the average number of variables chosen by six feature selection 
techniques and their standard deviations for all horizons. As expected, the shrinkage models 
tend to select fewer variables. Among them, the OMP is the one that needs the minimum 
number of variables. The last two techniques in the table are tree-based selection methods. 
Especially, the RFE_RF is the most demanding one needing a large number of variables. It can 
be inferred that when the size of the forecasting horizon is increased from 1-month-ahead to 3-
month-ahead and 6-month-ahead, there is a general tendency of selecting more variables. But 
for 12-month-ahead horizon, the number of selected variables decreases again for all techniques 
except for the RFE_RF.  
 It should be also noted that the model performances are closer to that of the benchmark 
model for 3- and 6-month-ahead horizons in which more features are employed by the 
competing models. The last two columns in Table 4 show the number of being in the set of 
superior models with feature selection techniques, which are calculated with respect to the 
results of Table 2 and 3. Note that the prevalence of well performing models with the LASSO 
is slightly higher than for other model selection methods, with respect to each error measure. 
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Table 3. The forecasting results of the tree-based models. 

 RMSE MAE 
 h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12 
RF with all variables 0.824 0.966 0.900 0.808 0.948 0.958 0.946 0.831 
RF with LASSO 0.816 0.974 0.866 0.829 0.915 0.965 0.909 0.840 
RF with LARS 0.803 0.980 0.876 0.796 0.931 0.975 0.916 0.834 
RF with Elastic 0.903 0.973 0.879 0.853 1.002 0.963 0.876 0.864 
RF with OMP 0.796 0.968 0.879 0.841 0.929 0.949 0.955 0.850 
RF with RFE_RF 0.822 0.954 0.901 0.811 0.948 0.951 0.951 0.828 
RF with Boruta 0.816 0.972 0.884 0.843 0.929 0.958 0.919 0.853 
GBDT with ALL 0.814 0.962 0.866 0.833 0.932 0.956 0.916 0.868 
GBDT with LASSO 0.878 0.967 0.857 0.836 0.995 0.966 0.896 0.843 
GBDT with LARS 0.822 0.993 0.879 0.826 0.964 0.992 0.920 0.825 
GBDT with Elastic 0.883 0.970 0.851 0.826 0.998 0.958 0.896 0.799 
GBDT with OMP 0.813 0.983 0.854 0.830 0.935 0.986 0.912 0.837 
GBDT with RFE_RF 0.821 0.947 0.872 0.840 0.938 0.927 0.932 0.858 
GBDT with Boruta 0.807 0.972 0.902 0.824 0.917 0.953 0.944 0.838 
AdaboostTree with ALL 0.821 0.963 0.930 0.835 0.948 0.956 0.956 0.838 
AdaboostTree with LASSO 0.841 0.976 0.861 0.705 0.960 0.951 0.896 0.807 
AdaboostTree with LARS 0.844 0.978 0.931 0.826 0.984 0.976 0.951 0.812 
AdaboostTree with Elastic 0.997 0.964 0.895 0.839 1.093 0.941 0.942 0.831 
AdaboostTree with OMP 0.819 0.977 0.854 0.828 0.944 0.970 0.925 0.852 
AdaboostTree with RFE_RF 0.821 0.975 0.925 1.016 0.949 0.944 0.978 0.972 
AdaboostTree with Boruta 0.899 0.960 0.878 0.816 0.964 0.942 0.929 0.834 
XGBoost with ALL 0.808 0.987 0.895 0.841 0.925 0.975 0.926 0.859 
XGBoost with LASSO 0.801 0.973 0.854 0.827 0.910 0.962 0.900 0.835 
XGBoost with LARS 0.804 0.977 0.880 0.828 0.937 0.963 0.918 0.847 
XGBoost with Elastic 0.807 0.967 0.862 0.828 0.924 0.946 0.880 0.821 
XGBoost with OMP 0.807 0.996 0.884 0.850 0.914 0.993 0.925 0.892 
XGBoost with RFE_RF 0.807 1.002 0.913 0.852 0.935 0.951 0.913 0.856 
XGBoost with Boruta 0.817 0.989 0.875 0.850 0.952 0.958 0.890 0.852 
Ext.Rand.Trees with All 0.823 0.979 0.892 0.834 0.956 0.956 0.949 0.867 
Ext.Rand.Trees with LASSO 0.831 0.990 0.883 0.873 0.965 0.976 0.900 0.883 
Ext.Rand.Trees with LARS 0.838 0.978 0.890 0.851 0.965 0.979 0.935 0.877 
Ext.Rand.Trees with Elastic 0.836 0.966 0.897 0.813 0.958 0.948 0.925 0.862 
Ext.Rand.Trees with OMP 0.817 0.972 0.840 0.826 0.933 0.975 0.896 0.835 
Ext.Rand.Trees with RFE_RF 0.827 1.011 0.887 0.866 0.959 1.013 0.958 0.903 
Ext.Rand.Trees with Boruta 0.826 0.991 0.860 0.887 0.964 0.979 0.902 0.893 

 
Table 4. The descriptive statistics for the variable selection techniques. 

 h=1 h=3 h=6 h=12  

  Mean  
Std 
dev. 

Mean 
 

Std 
dev. 

Mean 
 

Std 
dev. 

Mean 
 

Std 
dev. 

RMSE 
count 

MAE 
count 

LASSO 8.82 16.5 27.1 20.6 13.25 9.96 7.88 8.54 31 30 
LARS 5.36 5.86 11.5 8.54 8.34 6.93 7.18 5.02 25 27 
Elastic 6.16 12.7 27.7 19.0 15.8 10.3 9.91 9.60 28 29 
OMP 2.84 1.88 3.80 2.38 3.39 2.58 1.27 0.73 26 25 
RFE_RF 53.9 19.5 33.7 20.9 38.5 29.2 47.2 26.7 28 28 
           
Boruta 11.1 9.89 7.04 3.65 8.25 4.38 6.29 4.77 27 28 

6.3. Model-agnostic interpretability with Shapley values 
After observing the success of the tree-based models for inflation forecasting with high-

dimensional data, we now focus on the best models to explain their predictions locally and to 
gain insights about the general relationship between variables and predictors globally. For ease 
of reference, we gathered the models with statistically superior performance for all horizons 
and error measures in Table 5. In this table, there are 11 models and only one model of them 
without any feature selection, Adaboost tree with All, exhibits superior performance. This 
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shows that the feature selection techniques help to obtain models that perform well in general. 
The RF_RFE, which is a greedy algorithm in feature selection, does not lead to any model to 
be included in this table. It is interesting that no model from the GBDT is able to produce 
superior performance in all situations. Among feature selection methods, LASSO and OMP are 
the most effective, each with three models included in the table. 
Table 5.  Best-performing tree-based models for all horizons and error measures. 

 RMSE MAE 
 h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12 
RF with LASSO 0.816 0.974 0.866 0.829 0.915 0.965 0.909 0.840 
RF with LARS 0.803 0.980 0.876 0.796 0.931 0.975 0.916 0.834 
RF with OMP 0.796 0.968 0.879 0.841 0.929 0.949 0.955 0.850 
RF with Boruta 0.816 0.972 0.884 0.843 0.929 0.958 0.919 0.853 
AdaboostTree with ALL 0.821 0.963 0.930 0.835 0.948 0.956 0.956 0.838 
AdaboostTree with LASSO 0.841 0.976 0.861 0.705 0.960 0.951 0.896 0.807 
AdaboostTree with OMP 0.819 0.977 0.854 0.828 0.944 0.970 0.925 0.852 
XGBoost with LASSO 0.801 0.973 0.854 0.827 0.910 0.962 0.900 0.835 
XGBoost with LARS 0.804 0.977 0.880 0.828 0.937 0.963 0.918 0.847 
XGBoost with Elastic 0.807 0.967 0.862 0.828 0.924 0.946 0.880 0.821 
Ext.Rand.Trees with OMP 0.817 0.972 0.840 0.826 0.933 0.975 0.896 0.835 

To select the models to be explained from Table 5, two criteria are applied. One of them is 
the average number of variables used by each model. As mentioned before, the expanding 
window scheme was implemented by refitting all models for every observation of test data. 
Thus, this average value indicates whether the concerned model is sparse or greedy one in 
dealing with the high-dimensional problem. A simple model that utilises fewer variables can 
provide more advantage in making interpretation by avoiding the noise caused by irrelevant or 
superfluous variables even if the performance of complex model is similar to the simple one. 
The other criterion is to have a small error value as much as possible. For this reason, the graphs 
in Figure 2 are drawn with axes showing the values of two criteria.  

According to Pareto optimality, for h=1, RF with OMP and XGBoost with LASSO are in 
the Pareto front in terms of MAE. In other words, they are the non-dominated with respect to 
two criteria. Similarly, RF with OMP for h=1 in terms of RMSE is the only model dominated 
all others with respect to these criteria. From Figure 2, it appears that RF with OMP and 
XGBoost with Elastic for h=3, Ext.Rand.Trees with OMP and XGBoost with Elastic for h=6, 
and Adaboost tree with LASSO and Ext.Rand.Trees with OMP for h=12 are the non-dominated 
ones. We choose these models to open their black box by Shapley values.  

Figure 3 indicates the relative importance values of each predictor obtained by 𝑊𝐶𝐶;" 
statistic for all horizons and the selected models according to the previous analysis. The x-axis 
of these figures is represented by the relative feature importance value vertically sorted and the 
y-axis shows the features whose importance value are greater than the threshold value of 
>𝑊𝐶𝐶;"> ≥ 0.05.  𝑊𝐶𝐶;" determines, in average, how much of model predictions can be 
explained by the predictor examined  𝑋9 and also shows what the direction of the relationship 
is between the predictor and predictions. The colours of the horizontal bars denote the direction: 
red bars illustrate positive relationship and blue bars describe negative relationship, 
respectively.  

It can be seen from figure 3 that y(t-1) is the most influential feature for prediction in all 
ML models and horizons. This result can be expected because the own lags of a series has 
usually the most dominated impact on the overall behaviour of a series. However, in general, 
the direction of the contribution is negative for 1-month-ahead horizon, but it changes to 
positive one when the length of the evaluation horizon is bigger than 1-month. Apart from the 
lagged values of inflation, the most important predictor is dependent on the horizon and ML 
model examined.  
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Figure 2. The scatter plot of two criteria for the best-performing tree-based models. 
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Figure 3. The variable importance bar plot for all horizons. 
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Considering the foreign currency dependency of the Turkish economy, this is in line with the 
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has a key role in inflation forecasts. Finally, the direction of the relationship, detected by ML 
models via 𝑊𝐶𝐶;", between predictors and inflation is consistent with the expectations.   

After examining the general picture of the relative variable importance values and the 
direction of the associations between the predictors and inflation, we make a statistical inference 
by means of Shapley regression to identify which predictors have a statistically significant 
impact on the predictions of ML models. For this reason, the Shapley regression in Equation 
14 is constructed in the scope of this study. This model restricts the number of predictors to be 
included by aggregating the predictors whose importance is low according to a threshold value 
as one predictor called remaining variables in the regression model. Thus, it will only focus on 
explaining the important variables.  

 𝑦!"# = 𝛽!,1# 𝜙!,EFGH_JFKLHG# +∑ 𝛽!,9# 𝜙!,9# + 𝛽!,M"'# 𝜙!,NHDF.M.MO_JFN# + 𝜀!M
9)'    (14) 

where n corresponds to the number of variables that satisfy the threshold value of >𝑊𝐶𝐶;"> ≥
0.05.  

Table 6 shows the results of Shapley regression for four horizons and the two best-
performing ML models. This table presents the coefficients of the examined variables found by 
the linear model and the corresponding relative variable importance values given in 
parentheses. For each coefficient, 𝐻19(Ω): {	𝛽!,9# ≤ 0} hypothesis is tested to find out the 
predictors’ statistical significance in explaining inflation forecasts. The variables with a 
statistically significant contribution to the predictions of ML models are represented by bold 
font, and their significance levels are given at the bottom of the table. There are some negative 
coefficients meaning that the related variable is not learned well by the model in question. For 
1-month-ahead horizon, only Dollar exchange rate (t-1) and the variable that is very closely 
related to it, CPI based real effective exchange rate (t), are found to be statistically significant 
predictors of ML models.  

These findings are consistent with expectation. Since Turkey, as an emerging country, is 
heavily dependent on imported intermediate goods and meets most of its energy needs from 
abroad, the Turkish economy can be very sensitive to price fluctuations in Dollar exchange rate. 
Moreover, the signs of the 𝑊𝐶𝐶;" statistic given in parentheses for these variables are in 
harmony with the prevailing view in economics. As an indicator of the international trade 
competitiveness of a country, a decrease in real effective exchange rate increases the value of 
imported goods in domestic currency, thereby causing the consumer price index to be on the 
rise. Dollar exchange rate (t-1) has positive influence on the forecasts, and as a result of this, it 
leads to increases on the inflation expectation by ML models. In short horizons (h=1 and h=3), 
although more variables are included in the class of important variables, the number of 
significant variables is very low. Maybe high volatility and more noise in short horizons are 
responsible for this.  

For all horizons longer than h=1, the lagged values of the series become significant 
predictors with a high predictive power in improving forecasting performance.  In addition, it 
is seen that CPI survey of expectation turns out to have significant power on the models for 6- 
and 12-month-ahead horizons even if this power is inversely related to the inflation forecasts. 
A notable result is that consumer credit interest rates for TL (t) is found to be statistically 
significant predictor for h=12 by Adaboost tree with LASSO. For the data from Turkey, where 
the relationship between inflation and interest rates has been a topic of discussion recently, it is 
observed that interest rate hikes may have a reducing effect on inflation forecasts/expectations 
in the relatively long-term horizon (h=12). This can be an indication of demand inflation, 
showing an inverse relationship between inflation and interest rates in the long run. 

The relationship between predictors and the forecasted variable may not hold over time 
especially when it comes to macroeconomic forecasting because some economic and non-
economic events such as political and financial crises, recessions, and epidemic diseases like 
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COVID-19 can disrupt or even eliminate the structure that exist between variables. To 
investigate the overall changes in the variable importance over time, the graphs in Figure 4 are 
drawn for all horizon under examination. In these graphs, the test set is divided into six-month 
periods with one exception for the last period consisting of eight-month shown by the x-axis of 
the graphs. The y-axis in the graphs show the mean absolute Shapley values for the variables 
considered important according to the previous analysis. As can be seen from Figure 4, Dollar 
exchange rate and bullion gold selling price, which is highly positive correlated with exchange 
rates, come into play as substantially affecting predictors on the predictions of ML models 
specifically for 1-month-ahead forecasts after the period of January 2018 - June 2018. Although 
this effect is less, it still exists in other horizons except for h=12. During this period inflation 
and exchange rates surged, possibly linked to the decision to hold an early election in Turkey 
in the spring and foreign policy considerations. The dollar exchange rate rose to its historical 
highest value in the summer months and in 2018 and the Turkish lira depreciated by around 
40% against the dollar. Following these events, the inflation rate reached approximately 25% 
annually in that year. Given these circumstances, it means that our forecasting framework 
quickly adapts itself to the new economic environment and successfully replaces its predictors 
with the new predictors which has more predictive power in that environment.  
Table 6. Shapley regression for the best-performing models. 

h=1 
 XGBoost with LASSO RF with OMP 
y(t-1)  1.582 (-0.340) -0.619 (-0.308) 
y(t-2) -0.712 (-0.159)  0.460 (-0.123) 
Bullion Gold Selling Price (TRY/Gr) (t-1)  1.317 (0.063)  2.761 (0.126) 
CPI Based Real Effective Exchange Rate (t)  8.874 (-0.134)*** -1.433 (-0.085) 
Dollar Exchange Rate (t) -  6.828 (0.069)  
Dollar Exchange Rate (t-1)  9.054 (0.113)**  5.236 (0.175)* 

S&P 500 Index (t-1) -  7.389 (0.088) 
remaining variables  3.801 (0.192)  21.613 (0.025) 

h=3 
 XGBoost with Elastic RF with OMP 
y(t-1) 2.599 (0.235)  4.396 (0.351)*** 

y(t-2) 0.173 (-0.114)  4.532 (-0.057) 
y(t-3) 3.368 (-0.232)*  1.631 (-0.198) 
Bullion Gold Selling Price (TRY/Gr) (t-1) -  1.408 (0.055) 
Consumer Confidence Index (t-2) 1.769 (-0.059) - 
Dollar Exchange Rate (t) -  5.120 (0.142) 
Dollar Exchange Rate (t-1) -2.788 (0.088) -6.597 (0.101) 
EU Consumer Confidence Indicator (t) -3.439 (0.085) - 
remaining variables  1.116 (0.188) -41.990 (0.096) 

h=6 
 XGBoost with Elastic Ext.Rand.Trees with OMP 
y(t-1)  1.193 (0.349) 1.217 (0.586)** 

Consumer Confidence Index (t-1)  3.392 (0.083) - 
Dollar Exchange Rate (t) -1.112 (0.056) 0.080 (0.114) 
12-month-ahead CPI survey of expectation (mean) (t-1)  1.945 (-0.121) 11.351 (-0.076)*** 

remaining variables  5.771 (0.391)*** -1.209 (0.224) 
h=12 

 AdaboostTree with LASSO Ext.Rand.Trees with OMP 
y(t-1)  1.178 (0.606)***  2.805 (0.856)*** 

12-month-ahead CPI survey of expectation (mean) (t) - -0.893 (-0.052) 
12-month-ahead CPI survey of expectation (mean) (t-1)  4.093 (-0.136)*** - 
12-month-ahead CPI survey of expectation (mean) (t-2) -9.404 (-0.051) - 
Consumer Credit Interest Rates for TL (t)  6.389 (-0.081)*** - 
remaining variables  0.982 (0.127) -3.454 (0.048) 

Note: *, **, and *** stand for the significance levels 0.1, 0.5, 0.01, respectively. 
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Note that the 12 month-ahead CPI survey of expectation (t-1) is significant for 6- and 12-
month-ahead forecasts for extremely randomized trees with OMP and Adaboost tree with 
LASSO in Table 6. However, when we examine the corresponding graphs in Figure 4, it is 
found out that this variable has an impact on the predictions in only one period. It appears from 
Figure 4 that the lags of the core inflation play a more persistent dominant role as a predictor in 
longer horizons compared to short horizons. Lastly, even though consumer credit interest rates 
for TL (t) is the statistically significant predictor for h=12, we see that this variable only makes 
substantially contribution to the predictions in the dates between 07/2019 and 12/2019. The 
reason behind this that the CBRT decided to significantly increase interest rates in the period 
of 07/2018 and 12/2018, as a result of sharp increases in foreign exchange and inflation rates. 
Thus, our forecasting framework captures this phenomenon in producing more accurate and 
explainable forecasts.  

In addition to global interpretation, the ability of the Shapley values to provide local 
explanations makes it attractive to open the black-boxes that are ML models. To illustrate this, 
we chose two samples from test set in which the XGBoost with LASSO is used to forecast 1-
step-ahead values of the core inflation index for the dates of 07/2018 and 06/2020. 07/2018 is 
the first month after early election in a sense of reflecting the reaction to the result of the 
election.  

The first graph in Figure 5 belonging to 2018/07 shows three predictors making 
contribution to the prediction value of f(x)= –0.082. CPI based real effective exchange rate 
make biggest and positive contribution represented by red colour and y(t-1) and Dollar 
exchange rate(t-1) are the predictors with negative contribution represented by blue colour. 
E[f(x)]=0.028 is the expected value (prediction) when all predictors in the model equal to zero. 
06/2020 is the month where the inflation is on the rise probably related to the worldwide 
restrictions due to COVID-19. The graph at the bottom of Figure 5 indicates that our prediction 
is 0.103 for this month and the expected prediction is 0.068. Our prediction consists of three 
components one of which is positive one and the rest of which are negative ones. For this month, 
the lags of inflation are the dominating predictors.  
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Figure 4. Overall variable importance over time. 
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Figure 5. Local explanations by the XGBoost with LASSO on the dates of 07/2018 and 06/2020.  

7. Conclusion 
 
Considering the key role of short- and medium-term predictions for formulating monetary 

policies, it is of vital importance for central banks to produce their forecasts as accurately as 
possible. Traditionally, factor models have been employed in many macroeconomic problems. 
Recently, shrinkage models have become more popular among researchers when dealing with 
the problems involving many variables. However, these models are generally based on the 
assumption that the relationship between the response variable and predictors is linear. ML 
models offer an alternative modelling approach by taking nonlinear relationships into account.  

Most studies in the literature exploit ML methods to attain better accuracy at the expense 
of the black box nature of ML models. However, central banks are responsible for clearly 
explaining the decisions they make. In this study, we utilise ML models both to achieve accurate 
forecasts and to provide explanations for individual predictions with high-dimensional inputs, 
by relying on Shapley values. For this purpose, a comprehensive comparison is made among 
different models in the data-rich environment of forecasting the core inflation index for Turkey. 
Some important conclusions can be drawn from our empirical findings, as follows. 

First, our results show that using multivariable models provides an advantage in attaining 
more accurate forecasts than those of the univariate models. ML methods can be successfully 
implemented within the framework of the factor models by changing the form of the forecast 
equation from linear to nonlinear. These results are new in the inflation forecasting literature 
involving factor models.  

Second, our results also show that ML methods can be directly applied in a 
macroeconomic forecasting problem in a high-dimensional setting by using all predictors, 
without the need for factor modelling. Among ML models, RF delivers regularly consistent 
forecasting performance in all empirical modelling methodologies in the study. But this is not 
true for the other ML models considered. 

Third, an extended study of differently constructed tree-based models indicates that the 
general forecasting performance of tree-based models do not differ considerably except for the 
extremely randomized trees with slightly worse. In particular, the use of tree-based models with 
feature selection techniques delivers statistically superior set of forecasts for all horizons and 
error measures investigated. In this sense, it can be said that the obtained result contributes to 
the existing literature.   

Finally, the integration of the tree-based forecasting framework of this study with Shapley 
values-based inference provides us a balance between improved model accuracy and statistical 
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inference. For forecasting short horizons, it is seen that Dollar exchange rates and the predictors 
highly related with it are statistically identified to be significant in making contributions to the 
predictions of tree-based ML models. This conclusion is in line with expectations about the 
Turkish economy considering Turkey’s economic structural characteristics.  

Our analysis shows that it is possible to open the black box nature of ML models in an 
economic environment and to offer simple and sparse solutions to high-dimensional 
macroeconomic problems by addressing model interpretability. For future work, it is planned 
to compare with other state-of-the-art Explainable Artificial Intelligence (XAI) techniques to 
find which is optimal under which conditions. This will provide an opportunity for further 
interpretations about the predictions by measuring model fidelity. It will also better elucidate 
the general functional relationships between the covariates and inflation, to offer more evidence 
regarding the consistency of the results obtained with different modelling methodologies.  
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