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STUDY PROTOCOL

Multiple N-of-1 trials to investigate hypoxia 
therapy in Parkinson’s disease: study rationale 
and protocol
Jules M. Janssen Daalen1, Marjan J. Meinders1,2, Federica Giardina3, Kit C. B. Roes3, Bas C. Stunnenberg4,5, 
Soania Mathur6, Philip N. Ainslie7, Dick H. J. Thijssen8 and Bastiaan R. Bloem1* 

Abstract 

Background: Parkinson’s disease (PD) is a neurodegenerative disease, for which no disease-modifying therapies exist. 
Preclinical and clinical evidence suggest that hypoxia-based therapy might have short- and long-term benefits in PD. 
We present the contours of the first study to assess the safety, feasibility and physiological and symptomatic impact of 
hypoxia-based therapy in individuals with PD.

Methods/Design: In 20 individuals with PD, we will investigate the safety, tolerability and short-term symptomatic 
efficacy of continuous and intermittent hypoxia using individual, double-blind, randomized placebo-controlled 
N-of-1 trials. This design allows for dose finding and for including more individualized outcomes, as each individual 
serves as its own control. A wide range of exploratory outcomes is deployed, including the Movement Disorders 
Society Unified Parkinson’s Disease Rating scale (MDS-UPDRS) part III, Timed Up & Go Test, Mini Balance Evaluation 
Systems (MiniBES) test and wrist accelerometry. Also, self-reported impression of overall symptoms, motor and non-
motor symptoms and urge to take dopaminergic medication will be assessed on a 10-point Likert scale. As part of a 
hypothesis-generating part of the study, we also deploy several exploratory outcomes to probe possible underlying 
mechanisms of action, including cortisol, erythropoietin and platelet-derived growth factor β. Efficacy will be assessed 
primarily by a Bayesian analysis.

Discussion: This evaluation of hypoxia therapy could provide insight in novel pathways that may be pursued for PD 
treatment. This trial also serves as a proof of concept for deploying an N-of-1 design and for including individualized 
outcomes in PD research, as a basis for personalized treatment approaches.

Trial registration: ClinicalTrials.gov Identifier: NCT05214287 (registered January 28, 2022).
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Background
Parkinson’s disease (PD) currently affects 10 million 
people worldwide and its prevalence is projected to rise 

exponentially in the coming decades [1]. Several sympto-
matic treatments are available, the mainstay of which has 
been levodopa for over half a century. Many patients con-
tinue to experience significant disability, despite deploy-
ment of all available management strategies. Therefore, 
additional treatment modalities are needed.

Anecdotal evidence from individuals with PD sug-
gests that ascending to high-altitude areas occasion-
ally improves motor symptoms of PD, in a subacute 
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way. These findings were recently confirmed in a survey 
that we conducted among individuals with PD who had 
recently been on vacation (Janssen Daalen et al., manu-
script submitted). We hypothesize that the positive effect 
of altitude on PD symptoms results from the decreased 
arterial oxygen tension at high altitude, which serves as 
an acute bodily stimulus for multisystem adaptations that 
potentially have protective effects on cellular homeosta-
sis and survival [2, 3]. Therefore, altitude simulation has 
been the topic of research for potential therapeutic appli-
cation in a variety of diseases.

Preclinical studies have suggested that hypoxia pro-
vokes release of survival-enhancing neurotransmitters. 
Specifically, the short-term clinical effects of hypoxia 
therapy appear to be related to augmented dopamine 
release from the substantia nigra [4–9]. Hypoxia therapy 
may improve parkinsonian symptoms via stabilization of 
hypoxia inducible factor 1 (HIF-1) and its downstream 
pathway, which in turn activates tyrosine hydroxylase 
(TH), the main rate-limiting enzyme in the production 
of dopamine [10, 11]. Several studies have demonstrated 
that HIF-1 stabilization leads to an increase in TH pro-
duction, and consequently a rise in cellular dopamine 
content [8–13]. In addition, hypoxia protocols have a dif-
ferent influence on sympathetic nervous system activity, 
which regulates the body’s stress response [12, 14–16]. 
For example, long-term hypoxia increases noradrena-
lin-adrenalin ratio [12], which might ameliorate non-
dopaminergic symptoms [17]. Taken together, these 
converging observations in animals and humans, provide 
a rationale that explains the potential positive effects of 
hypoxia on PD symptoms.

In addition to the short-term effects mentioned 
above, other studies also suggest that repeated expo-
sure to hypoxia induces an evolutionary well-conserved 
adaptive mechanism. This adaptive response involves 
improves cellular energy metabolism as impaired by 
mitochondrial dysfunction, inhibits oxidative stress 
and induces adaptive plasticity, suggesting that in addi-
tion to the acute symptomatic effects, hypoxia might 
also exert long-term neuroprotective effects [18–20]. 
The concept behind these neuroprotective effects is the 
phenomenon of hypoxic preconditioning (HPC): induc-
tion of a sub-toxic hypoxic stimulus to improve the (sys-
temic) tolerance of cells and tissues to subsequent more 
severe toxic stimuli. Although there is debate regard-
ing the most potent hypoxia treatment regimen, clinical 
and preclinical evidence suggests that these effects are 
more pronounced when applied using a regime of inter-
mittent hypoxia therapy (IHT) as compared to continu-
ous hypoxia, meaning that hypoxia is present for short 
periods (i.e., minutes), interspersed with short periods 
of normoxic recovery. To date, hypoxia therapy, mostly 

IHT, has been used in a variety of populations, including 
fragile ones such as individuals with spinal cord injury, 
COPD, cardiac morbidity and multimorbidity, without 
any significant side effects [21–30]. However, the safety, 
feasibility and efficacy of hypoxia-based therapy have not 
been systematically investigated yet in individuals with 
PD. In this exploratory trial, we will assess the potential 
of hypoxia-based therapy in PD by assessing the physi-
ological response to hypoxia, while also measuring the 
short-term symptomatic effects. To assess both continu-
ous and intermittent hypoxia treatment regimens, this 
trial will deploy a double-blind, randomized placebo-
controlled N-of-1 design, which allows for testing all 
selected hypoxia protocols in all participants [31].

Study objectives
Primary objectives
(i) toevaluate the safety and feasibility of both intermit-
tent and continuous hypoxiatherapy in individuals with 
PD under well-controlled circumstances.

(ii) to explore the responsiveness of acute sympto-
matic outcome measures ofintermittent and continuous 
hypoxia therapy in individuals with PD underwell-con-
trolled circumstances.

Secondary objectives
(iii) to assess the acute symptomatic effects on selected 
subjective and standardized symptom scales.

(iv) as a hypothesis-generating addition, to explore the 
potential mechanisms of (intermittent) hypoxia therapy 
on PD.

Hypothesis
We hypothesize that short-term hypoxia-based protocols 
are safe to apply in individuals with PD without cardi-
orespiratory comorbidity, and that IHT has short-term 
effects on dopamine, noradrenalin and stress-responsive 
symptoms in PD.

Methods/Design
Multiple N‑of‑1 trials
In this study, we will conduct multiple series of rand-
omized, double-blind and placebo-controlled N-of-1 tri-
als (also known as single participant cross-over trials). 
This design includes the testing of multiple hypoxia pro-
tocols in every participant, and it allows for the analysis 
of treatment effects in the individual participant (in addi-
tion to group effects) because the participant serves as 
his or her own control. Lastly, this design can result in 
a higher power when considering small populations as 
compared to other traditional designs, making N-of-1 
trials appropriate for studying rare diseases and per-
sonalized treatment [32, 33]. N-of-1 trials are especially 
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suitable to investigate treatments in chronic, sympto-
matic conditions, where period effects (i.e. changes in 
disease state) and carry-over effects (i.e. lingering treat-
ment effects) are limited. Given the slowly progres-
sive nature of PD with relative stable symptoms, several 
N-of-1 trials have already been successfully performed to 
study symptomatic treatments in PD [34, 35].

Study population
Twenty individuals with a diagnosis of PD (established 
by a neurologist according to the international Move-
ment Disorder Society criteria) and Hoehn & Yahr stages 
between 1.5 and 3 will be included. Higher Hoehn & Yahr 
stages will be excluded for two reasons: firstly because of 
the significantly greater damage to dopaminergic path-
ways in advanced PD, which might limit the identifica-
tion of nigrostriatal-mediated effects of hypoxia-based 
interventions; and secondly because of the high burden of 
testing participants in the OFF state in this more severely 
affected population. We aim to enrich our study popula-
tion with individuals that have experienced (subjective) 
positive symptomatic effects at high altitude. In addition, 
we aim to include at least five individuals without prior 
experience with the positive effects of high altitude on 
their symptoms. This enrichment approach ensures that 
participants are more likely to be responders and allows 
us to validate our approach to identify each individual’s 
optimal protocol for clinical benefit. We believe that the 
selection bias introduced by our approach is justifiable 
because of the study’s explorative nature. In addition, PD 
is a very heterogeneous disease, for which a one-size-fits-
all treatment approach is unlikely to be successful. There-
fore, we wish to investigate for which individuals this 
therapy could be beneficial and the proposed approach 
is likely to be most promising. Main exclusion criteria 

relate to cardiorespiratory comorbidity and unstable PD 
medication. All inclusion and exclusion criteria can be 
found in Table 1.

Sample size
Because this is the first study in which the clinical effects 
of hypoxia therapy will be measured in PD and because 
of the study’s exploratory nature, a formal sample size 
calculation cannot be performed. A previously pub-
lished power and sample size simulation study aggre-
gated N-of-1 trials with multiple cycles of intervention 
and placebo per participant, and found that under certain 
assumptions N-of-1 trials needed only one-third of the 
sample size of an RCT to reach a similar power and type 
I error [36]. This was confirmed in a recent aggregated 
N-of-1 trial that investigated the effectiveness of the drug 
mexiletine in myotonia, in which the aggregated N-of-1 
trial showed comparable treatments effects on a person-
alized Likert scale (i.e., the same outcome measure as we 
propose) with inclusion of 11 participants vs 57 partici-
pants in a traditional cross-over RCT [32]. Our proposed 
sample size of 20 was motivated by this work, in combi-
nation with the sample size consensus for feasibility stud-
ies of 20–30 [37].

The observed effect sizes and standard deviations of the 
different hypoxia protocols that are found to be clinically 
meaningful at the participant group level in this study 
(N = 20) will be used to simulate a power and sample size 
calculation for a future follow-up study that will be pow-
ered for efficacy using the data generated in this study.

Recruitment, screening and inclusion
Individuals with PD will be recruited via the web-based 
ParkinsonNEXT recruitment website (www. parki nsonn 
ext. nl) and, if necessary, from the outpatient registry 
of our university medical center – all patients on this 

Table 1 Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Clinical diagnosis of Parkinson’s disease by a 
movement-disorder specialized neurologist

Individuals with diseases leading to restrictive and obstructive pulmonary diseases, pulmonary diffusion 
deficits, apnea and cardiac output deficits, such as pulmonary fibrosis, COPD, sleep apnea or excessive 
alcoholic intake, and congestive heart failure respectively

Hoehn and Yahr staging 1.5 to 3 Arterial blood gas abnormalities at screening day

Age > 18 years Individuals with shortness of breath or other airway or breathing-related inconvenience related to lack of 
dopaminergic medication will be excluded

Participant can provide informed consent Inability to comply to intervention in off-medication condition (for example due to extreme discomfort, 
distress or severe head tremor due to being OFF, i.e. without dopaminergic medication)

Individuals with unstable dopaminergic medication dose (changes in the last month)

Individuals likely to start dopaminergic treatment in the next month, also judged by their treating neu-
rologist

Individuals with active deep brain stimulation

Individuals unable to provide informed consent

http://www.parkinsonnext.nl
http://www.parkinsonnext.nl
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list have already consented to be contacted for research 
purposes. After a first telephone contact with the coor-
dinating investigator, potential participants will receive 
an email with detailed information about the study, 
including an overview of necessary time investment 
and the risks of participation, as well as the informed 
consent form. Specifically, we will ask participants with 
a positive altitude experience to share this project in 
their own networks of hikers or mountaineers.

Individuals will have a consultation by telephone 
conducted by the coordinating investigator to answer 
questions about the research and the informed con-
sent. If the participant is still interested, screening 
questionnaires will be sent before the physical screen-
ing day. The coordinating investigator will contact the 
participant by phone to check if potential exclusion 
criteria are met, to prevent any unnecessary partici-
pant visits. This process will be registered in a pre-
screening list. In this way, a transparent overview of 
study pre-selection will be available. The informed 
consent will be completed before initiation of the 
screening day. The participant has the right to with-
draw consent at any moment during the study period. 
Drop-outs will be replaced.

Intervention
We will study the response to multiple exposures of dif-
ferent pre-selected hypoxia protocols per participant, 
as at present there is no conclusive evidence for the 
effect of different hypoxia stimuli. This will optimize 
the chances for any changes in outcomes being identi-
fied, and allowing the possibility of defining the optimal 
dose of hypoxia as a therapeutic intervention individu-
ally. The selection of interventions was based on multi-
ple studies that investigated and reviewed the hypoxia 
regimes that are currently perceived as being most 
effective [38–43]. In this N-of-1 trial design, every par-
ticipant will receive two sets of five different conditions, 
with one being the placebo and the other four variants 
of an active intervention, consisting of either intermit-
tent or continuous hypoxia at FiO2 0.127 (~ 4000  m) 
and 0.163 (~ 2000  m). All interventions are adminis-
tered twice to enhance intra-individual discriminative 
power towards a sufficiently low or high probability 
(see Statistical Analysis). As it is shown that hypoxic 
preconditioning effects may linger for up to four days 
[44], a wash-out of at least five days between sessions 
will be built-in. Once a week, one of the following five 
conditions will be administered following the order 
resulting from a Latin square randomization (see Sta-
tistical Analysis):

Active interventions:

• Continuous hypoxia for 45  min, at ~ 2000  m (16.3% 
 O2)

• Continuous hypoxia for 45  min, at ~ 4000  m (12.7% 
 O2)

• Intermittent hypoxia with 5 × 5-min at ~ 2000  m 
(16.3%  O2), interspersed with 5-min normoxic recov-
ery

• Intermittent hypoxia with 5 × 5-min at ~ 4000  m 
(12.7%  O2), interspersed with 5-min normoxic recov-
ery

 Placebo intervention:
• Continuous normoxia for 45 min (20.9%  O2)

The intervention will be performed at Radboud uni-
versity medical center in Nijmegen, the Netherlands. 
A commercially available hypoxicator will be used to 
deliver the hypoxic bout (B-cat High Altitude, the Neth-
erlands). The hypoxicator (as an oxygen concentrator) is 
ISO 13485:2016 certified and uses a process called pres-
sure swing adsorption to filter ambient air and to extract 
oxygen from that air. The principle is widely used in oxy-
gen concentrators, but is inversely applied in the case 
of hypoxicators. Instead of oxygen-rich air, the result-
ant hypoxic gas is administered to the patient [45]. The 
hypoxicator is connected via medical-grade tubes to two 
large (> 50L) reservoir air bags that buffer the hypoxic gas 
mixture, which optimizes stability of the delivered FiO2. 
Intermittent hypoxia and the placebo situation is admin-
istered by switching a three-way Hans Rudolph® valve 
to either room air or the hypoxic circuitry. The intra-
day and between-day reliability of the hypoxicator were 
tested on multiple days before application in participants. 
Intraday variability was low (average range 0.2 percent 
points around desired FiO2) and between-day variabil-
ity was within 0.1 percent points of desired FiO2. Seven 
days before the start of the first intervention, a one week 
at-home registration of self-reported outcomes of symp-
tom severity will be conducted by a short daily morning 
survey. This assures a solid baseline of symptom severity 
that will be used in the Bayesian analysis (see Statistical 
Analysis).

Study procedures
Screening
Before inclusion, potential participants will come to the 
hospital for a dedicated screening day, during which 
extensive safety screening will be conducted. Firstly, 
this will consist of standard pulmonary function testing 
(PFT) using spirometry to assess the presence of any pre-
viously unknown restrictive or obstructive pulmonary 
diseases. Second, a carbon monoxide diffusion test for 
any unknown diffusion deficits is conducted to exclude 
any unknown comorbidity that might pose a health risk 
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during the study. Finally, peak cough flow and mean 
inspiratory pressure (MIP) are assessed, as well as subjec-
tive respiratory problems via a selection of questions that 
predicted PD-related respiratory problems (Supplemen-
tary Table  1) in a recent study [Van de Wetering et  al., 
submitted]. All participants will also undergo an electro-
cardiogram (ECG) to screen for any cardiac abnormali-
ties such as dysrhythmias or signs of ischemia.

Subsequently, participants will be blindly exposed 
to stepwise decreasing levels of FiO2 until an FiO2 of 
0.127 is administered fully. This will be performed in 
four steps. Before every step (step duration of approxi-
mately 5 min), arterial blood gas (ABG) and vital param-
eters are evaluated and compared to the pre-determined 
stop criteria (Supplementary Table  2). Vital parameters 
including peripheral oxygen saturation will be collected 
every 5 min and will be correlated to the ABG results to 
evaluate whether these vital parameters reflect the ABG 
results. If one or more of the stop criteria are met and the 
breathed-in air does not yet contain an FiO2 of 0.127, the 
intervention will be stopped. Moreover, the participant 
will then be excluded from further interventions and will 
be replaced.

Pilot phase
To ensure optimal safety, a pilot study of the first two par-
ticipants selected for this study protocol will be deployed 
before conducting this study protocol at full pace. During 
the screening procedure, all individuals will be exposed 
to gradually decreasing FiO2’s until an FiO2 of 0.127 
(~ 4000 m altitude) is reached. In these two individuals, 
the most intense intervention (continuous hypoxia at 
FiO2 0.127) will be administered for 45 min, to evaluate 
whether exhaustion in individuals with PD will limit the 
maximum safe duration as clinical experience is limited. 
In the remaining participants, the 4000  m intervention 
will be administered until ABG parameters have stabi-
lized. When no serious adverse events occur, the protocol 
will be continued. During this pilot phase, the same stop 
criteria will be adopted as during the interventions.

Intervention
After completion of the screening day, participants 
will visit the hospital on a weekly basis, for 10 consecu-
tive weeks. Treatments and in-hospital assessments will 
be conducted in the practically-defined OFF phase and 
will therefore commence in the morning. The treatment 
session in the OFF state is preceded by a baseline clini-
cal assessment and is immediately followed by a post-
intervention clinical assessment and an assessment after 
30  min (Table  3). The intervention is administered in a 
hospital by an experienced lab technician, who also con-
tinuously monitors participants during and after the 

intervention. During the intervention, the inhaled FiO2 is 
measured continuously using the COSMED® metabolic 
system (Quark CPET metabolic cart for cardiopulmonary 
testing, COSMED Srl, The Metabolic Company, Italy), 
which also measures peripheral oxygen saturation, blood 
pressure, respiratory rate and tidal volume. In addition, 
the subjective participant experience regarding dizziness, 
discomfort and stress is registered by the lab technician 
during the intervention. In addition, to maximize safety 
of the participants during the intervention, clear stopping 
criteria are defined. If these are met, the lab technician 
will  halt the intervention (‘Stopping Criteria’, Supple-
mentary Materials).

Randomization and blinding
Randomization
Subjects will be equally divided in 5 groups with different 
interventions order according to a Latin square design (5 
periods/interventions). Allocation to intervention order 
will be randomized by a computer-generated randomiza-
tion scheme. Interventions will be randomized at study 
start in two sets. As depicted in Fig. 1, set I will be ran-
domized for the first five interventions and set II for the 
second five interventions. This reduces the risk of pla-
cebo effects in Set II potentially provoked by any positive 
effects that may have been experienced in Set I. This bal-
anced randomization scheme minimizes bias introduces 
by the resulting order effect and period effect. Carry-over 
effects are minimized by ascertaining a sufficient wash-
out period between every treatment.

Blinding
The intervention is double-blind for the participant 
and assessor, but not for the lab technician (because of 
safety and monitoring purposes). Ventilation during the 
administration is expected to increase by ~ 20%, mostly 
due to increased tidal volume and less often due to res-
piratory rate [46]. Risk of unblinding due to these limited 
ventilatory effects is unlikely and has not been reported 
in previous hypoxic experiments [28, 46–48]. Addition-
ally, complaints of discomfort or shortness of breath are 
sometimes reported, regardless of the administered FiO2, 
indicating that this will not hamper blinding [23–25]. 
Changes in respiratory parameters will be available for the 
lab technician during the experiments, but will not be dis-
closed to the assessor. The assessor will only enter the lab 
after the intervention has been fully completed and will 
not have access to the vital parameters and blood param-
eters of the participant from which it might be possible 
to infer the assigned intervention. This problem is also 
mitigated by adding the placebo condition. We will assess 
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the success of the blinding procedure by asking the par-
ticipant in what sequence the different treatments were 
administered after the first and second treatment set.

Outcomes and measurements
Primary outcomes
The main primary outcomes of this study are the safety 
and feasibility of IHT under well-controlled circumstances 
in a lab-based setting. Safety outcomes will be measured 
by the lab technician during the intervention and by the 
reporting of adverse events. The feasibility question-
naire (Supplementary Table 3) is designed together with a 

patient researcher. The questionnaire’s content is based on 
the main categories from a widely used feasibility frame-
work [49]. Statements in every category (e.g. acceptabil-
ity, expectancy) were subsequently inspired by previously 
published healthcare feasibility questionnaires. Primary 
outcomes are summarized in Table 2.

Secondary outcomes
Self‑reported outcomes
In this exploratory study, we will use a battery of out-
comes to determine which symptoms or signs might 
respond to hypoxia. In accordance with accepted N-of-1 

Fig. 1 Design of the self-reported outcomes scoring in the multiple N-of-1 trials of every individual patient

Table 2 Primary outcomes

Primary outcome variable Measurement frequency

Nature and number of adverse events Every 10 min during intervention, up to one hour post-intervention, one time next morn-
ing post-intervention

Self-reported dizziness, discomfort and stress on a ten-point 
scale

Every 10 min up to one hour post-intervention, one time next morning post-intervention

Number of serious or irreversible adverse events Every 10 min, up to one hour post-intervention, one time next morning post-intervention

Measured continuously for safety, recorded:

- Blood pressure systolic-diastolic Baseline and every 5 min—> 30 min post-intervention

- Heartrate Baseline and every 5 min—> 30 min post-intervention

- Respiratory rate Baseline and every 5 min—> 30 min post-intervention

- Oxygen saturation Baseline and every 5 min—> 30 min post-intervention

Feasibility questionnaire (total score and subscores)
(in Supplementary Materials)

After  1st,  5th and  10th intervention
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trial design recommendations and previously conducted 
trials [32, 50, 51], we have chosen to predefine person-
alized (self-reported) outcomes for each individual, 
scored on a 10-point Likert scale. Contrary to standard-
ized PD scales, these outcomes better reflect important 
effects for the individual, and are potentially more sensi-
tive to subtle treatment effects, reducing the risk of type 
II errors. Therefore, we included three participant-rated 
outcomes that assess on a 10-point Likert scale (allow-
ing half points) general symptom impression, the urge 
to take a next dose of dopaminergic medication and the 
effect on one specific symptom that participants can 
choose themselves, based on goal attainment scale prin-
ciples (Table  3). This symptom must fulfill the follow-
ing criteria: it must fluctuate in severity throughout the 
day or between days, changes in its severity should be 
swiftly apparent and, if applicable, it is a symptom that 
previously improved at high altitude. To ensure a base-
line score on these outcomes, participants will report 
these on a daily basis in the morning (in OFF) during 

the baseline period, i.e. 7 days preceding the start of the 
intervention period. On intervention days, participants 
will report these self-reported outcomes pre-interven-
tion, directly post-intervention, 30  min post-interven-
tion and from that moment on, another five times, on 
an hourly basis. In addition, these will be measured once 
every morning (i.e. in OFF) for the next three mornings 
after the intervention.

The measurement scheme of all outcomes is displayed 
in Supplementary Fig.  1. Patients will report all self-
reported outcomes digitally.

Assessor‑rated outcomes
Assessor-rated outcomes are summarized in Table  3. 
These consist of gold-standard general motor tests 
(Movement Disorders Society Universal Parkinson’s Dis-
ease Rating Scale part III, or MDS-UPDRS part III) and 
non-motor tests (symptoms from the MDS Non-motor 
symptoms scale, or NMSS), supplemented with specific 
tests for bradykinesia (Purdue pegboard test [52]), gait 

Table 3 Secondary outcomes

Self‑reported outcome variable Researcher Participant Moment of measurement (in 
addition to baseline)

Measurement unit

General symptom impression X Directly after intervention and post-
intervention 30 min, 1 h, 2 h, 3 h, 4 h 
and 5 h, and once every morning on 
the next three days

10-point Likert scale allowing half points

Urge for dopaminergic medication 
on the usual moments of intake

X Directly after intervention and post-
intervention 30 min, 1 h, 2 h, 3 h, 4 h 
and 5 h, and once every morning on 
the next three days

10-point Likert scale allowing half points

Participant‑selected symptom (goal 
attainment scale)

X Directly after intervention and post-
intervention 30 min, 1 h, 2 h, 3 h, 4 h 
and 5 h, and once every morning on 
the next three days

10-point Likert scale allowing half points

Motor symptom severity (self-
selected, symptom that improved 
most during high altitude exposure, if 
applicable)

X Directly after intervention and post-
intervention 30 min, 1 h, 2 h, 3 h, 4 h 
and 5 h, and once every morning on 
the next three days

10-point Likert scale allowing half points

Motor symptoms
MDS-UPDRS part III

X 30 min post-intervention Total score and subscores

Hand tremor
Accelerometry/gyroscope

X Directly post-intervention, 30 min post-
intervention

Amplitude

Rapid alternating movements
Accelerometry/gyroscope

X 30 min post-intervention Amplitude

Bradykinesia
Modified Perdue pegboard test

X 30 min post-intervention Number of pins

Gait
Timed Up & Go Test

X 30 min post-intervention Steps and seconds

Balance
MiniBESTest

X 30 min post-intervention Total score and subscores

Non‑motor symptoms
MDS Non-motor Scale symptoms

X 30 min post-intervention 10-point Likert scale (half points)

Stress
Heartrate variability

X During intervention, directly after inter-
vention, 30 min post-intervention

RR interval
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(Timed Up & Go Test [53]), balance (Mini-BESTest [54]) 
and quantified versions of the UPDRS items on tremor 
and pronation-supination (performed using accelerom-
etry). These secondary outcomes are measured 30  min 
post-intervention, after which hypoxic preconditioning 
is believed to have its initial first window effects peak. 
After 30 min, the acute effects of hypoxia therapy peak, 
as shown in people with a cervical spinal cord injury [55], 
with the second window only occurring approximately 
3 h post-intervention.

Various selected outcomes, including the UPDRS part 
III, are sensitive to the Hawthorne effect: individuals with 
PD try to perform as good as possible due to the aware-
ness of being observed. To mitigate such effects, the pla-
cebo condition is added, for which the multiple N-of-1 
design is also particularly suited [31, 36, 56].

Baseline characteristics that will be collected include 
age, gender, H&Y, quality of life (Parkinson’s disease 
questionnaire 39 [57]) and other medication. Potential 
effect modifiers include levodopa-equivalent dose (LED), 
sleep quality (4-point ordinal scale) and physical activity 
(International Physical Activity Questionnaire – Short 
Form, IPAQ-SF [58]) and these will be measured during 
every pre-intervention phase.

Mechanistic markers
Lastly, three markers will be measured in serum, which 
serve as a hypothesis-generating addition to our study. 
These measures may provide insight into potential path-
ways involved in the (individual) responses to hypoxia 
in our study. These measures include platelet-derived 
growth factor receptor β (PDGFRβ), cortisol and eryth-
ropoietin (EPO).

PDGFRβ is a pericyte-shedded marker in response to 
hypoxia [59–62] and is associated with blood–brain bar-
rier (BBB) permeability [60, 61, 63–65]. Disruption of the 
BBB is a central process involved in PD pathophysiology 
[66] and therefore, acute effects of hypoxia therapy on 
PDGFRβ would give insight in the influence that hypoxia 
might have on BBB integrity in the long term [65].

Cortisol is a marker of physiological and mental stress 
and is hypothesized to rise during systemic hypoxic chal-
lenges [67]. As stress is one of the main determinants of 
variations in symptom severity, we investigate whether 
cortisol release might be associated with the short-term 
symptomatic efficacy of hypoxia-based interventions. 
This will give insight in whether hypoxia has beneficial 
influence on the stress system, or that the physiological 
stress results in fatigue and mental stress, thus worsen-
ing PD symptoms in the short-term. Cortisol is measured 
twice pre-intervention and three times post-intervention, 
because of its concentration changing with circadian 
rhythm.

EPO is a protein that is primarily shedded peripher-
ally by the kidney. Although it is employed as a marker 
of hypoxic dose, attention for its role in neuroprotection 
has risen in recent years [68]. In preclinical PD models, it 
prevents neurotoxicity and preserves neuronal function-
ing [69, 70].

All outcome measures are summarized in further detail 
in Supplementary Fig. 1.

Statistical analysis
All data will be collected using direct entry in Cas-
torEDC, a widely used electronic data capture system for 
clinical data.

Analysis of primary study parameters
Safety outcomes will be analyzed using descriptive statis-
tics of total number and percentages of adverse events, 
number of serious reversible or irreversible adverse 
events and vital parameters. Feasibility outcomes will 
be analyzed using descriptive statistics of feasibility out-
comes including the feasibility questionnaire sum score 
and domain-specific scores.

Secondary study parameters
Bayesian analysis
We will use a Bayesian model for the analysis of indi-
vidual and aggregated N-of-1 trial results. This model 
allows for a direct estimation of the posterior probabil-
ity that a treatment results in a clinically beneficial effect 
[32, 71–73]. The treatment effects resulting from the four 
different hypoxia protocols will be estimated per level of 
interest (i.e. the individual and group level). Every sec-
ondary outcome scored using the 10-point Likert scale 
will be modeled assuming a normal distribution centered 
around the patient’s true mean and variance for each 
protocol. If the posterior probability of reaching a 0.75-
point difference between the secondary outcome after 
treatment and at baseline is greater than 80%, treatments 
are considered effective. Treatments are considered inef-
fective if the same posterior probability is less than 20%. 
Every treatment day has its own baseline (pre-inter-
vention tests are performed) in order to further reduce 
period effects. The minimal clinically important differ-
ence for the secondary outcome MDS-UPDRS part III 
and Mini-BESTest is 4. One additional analysis will be 
performed including baseline characteristics and effect 
modifiers (see Assessor-rated outcomes) as covariates. 
Bayesian analyses will be performed using JAGS version 
3.4.1 [74], run from R [75] using the package rjags [76].

Frequentist analysis
For comparison with the Bayesian analysis we will 
also perform an explorative analysis of the secondary 
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outcomes. For those that are normally distributed, we 
will use dependent  t  tests to calculate mean treatment 
effects, significance levels, and confidence intervals on 
group level. P values are 2-sided, and P < 0.05 will be the 
threshold for significance for all tests. Analyses will be 
performed using R [75].

Monitoring and registration
Quality assurance and monitoring
The study will be monitored regarding the health, safety 
and rights of participants, protocol adherence and quality 
of data and data reporting during this trial at study ini-
tiation, twice during the study (on-site) and once at study 
completion. On-site monitoring visits (performed by 
Radboudumc or designee) will assess the progress of the 
study, study procedures, used study materials and iden-
tify any concerns that result from review of the subject 
Informed Consent documentation, study records, col-
lected data and study management documents. The study 
monitor will also ensure the Investigator adheres to all 
applicable regulations.

Data safety monitoring board
A data safety monitoring board (DSMB) will be estab-
lished, which will consist of a PD-specialized neurologist, 
an anesthesiologist, a pulmonologist, a biostatistician and 
a patient representative. A first interim analysis of the 
safety outcomes will be performed after the pilot phase of 
the first two subjects that are halfway through the treat-
ment protocol (which means every treatment is already 
administered once), to provide the DSMB with the lat-
est data on adverse events and recruitment. The second 
interim analysis after 7 participants have completed their 
protocol will give insight in primary as well as secondary 
outcomes.

Discussion
In this study, we propose multiple N-of-1 trials to inves-
tigate the merits of hypoxia-based interventions as a new 
symptomatic therapy in persons with PD. For the first 
time, this design offers a unique opportunity to test for 
the first time the safety, feasibility and short-term efficacy 
of various interventions in this unexplored therapeu-
tic area in PD. Therefore, a wide variety of participant-
reported and assessor-rated outcome measures will be 
deployed.

Hypoxia-based therapy has been applied extensively 
in research in a wide spectrum of healthy participants 
and individuals with medical conditions, and both 
short- and long-term effects have been investigated. 
Examples of previously studied treatment goals in vari-
ous populations include rehabilitation in spinal cord 
injury (SCI) [55, 77–81], cardiorespiratory control in 

type I and II diabetes [82, 83], endurance and exercise 
tolerance and performance in healthy and geriatric 
individuals [24, 25, 27, 29, 84, 85], cognitive perfor-
mance in geriatric and elderly individuals [22, 26, 28, 
86], cardiovascular risk factors in obese individuals 
[87], reducing acute mountain sickness [88], and train-
ing of respiratory dysfunction [42, 48, 89–91]. However, 
clinical parameters or symptomatic efficacy of hypoxia-
based therapy have thus far never been studied in PD, 
even though the aforementioned underlying working 
mechanisms of hypoxia would make PD an attractive 
disorder to study. One earlier brief report investigated 
the effects of (unspecified) IHT on the hypoxic venti-
latory response in PD and found markedly reduced 
hypoxic ventilatory response, indicating a suboptimal 
response in breathing frequency to hypoxic challenges 
[48]. Because there is such limited previous experience 
with delivering hypoxia to persons with PD, several 
theoretical concerns must be addressed in this study 
proposed here. First, because respiratory abnormali-
ties can already be observed in relatively early stages 
of PD [92], the safety and feasibility profile of different 
hypoxia protocols must be established first; this is one 
of the goals of the present study. Second, the short-
term as well as long-term effects should be investigated 
separately, as different mechanisms might be involved 
[Janssen Daalen et al., manuscript in preparation]. With 
regard to short-term effects, we might counter both 
beneficial and harmful effects (such as stress, increased 
oxidative stress), and the hypoxic dose for which this 
balance is optimal remains to be established in PD.

This exploratory study will provide the first insights 
into the potential of hypoxia-based therapy in PD. Addi-
tionally, our study might yield hypothesis-generating 
insights regarding its underlying working mechanisms. 
At the same time, the findings might also improve our 
understanding of the mechanisms of respiratory involve-
ment in PD and on motor and non-motor symptom vari-
ability, that can be derived from the weekly administered 
neurological test battery. The findings in this study might 
partly be extrapolated to other neurodegenerative dis-
eases, such as Alzheimer’s disease [40] or mitochondrial 
diseases [20]. Although the mechanisms of hypoxia-
based interventions remain to be fully elucidated, we 
believe this rationale warrants the first well-controlled 
randomized trial of hypoxia-based interventions in PD.
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