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Abstract: Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neu-
rodegenerative disorders, including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral
sclerosis, multisystem atrophy, and progressive supranuclear palsy. This article is concerned specifi-
cally with mitochondrial dysfunction as defined by reduced capacity for ATP production, the role of
depleted levels of key nutritionally related metabolites, and the potential benefit of supplementation
with specific nutrients of relevance to normal mitochondrial function in the above neurodegenerative
disorders. The article provides a rationale for a combination of CoQ10, B-vitamins/NADH, L-carnitine,
vitamin D, and alpha-lipoic acid for the treatment of the above neurodegenerative disorders.

Keywords: mitochondrial dysfunction; neurodegenerative disorders; coenzyme Q10; B-vitamins;
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1. Introduction

Mitochondrial dysfunction is a common factor known to be involved in the pathogen-
esis of a number of both common (Parkinson’s disease, Alzheimer’s disease, amyotrophic
lateral sclerosis) and less common (multisystem atrophy, progressive supranuclear palsy)
neurodegenerative disorders, as detailed in subsequent sections of this article. Mitochon-
drial dysfunction in neurodegenerative disease is a broad area of research in which many
review articles have been published. This article is concerned specifically with mitochon-
drial dysfunction as defined by reduced capacity for ATP production, with the objective of
correlating evidence for the depletion of levels of key nutritionally-related mitochondrial
metabolites, with the potential symptomatic benefit of their supplementation in the above
neurodegenerative disorders; this in turn provides a rationale for the utilisation of multi-
supplement combinations for the management of these disorders, which to date has usually
not been the case. Parkinson’s disease (PD) is a chronic and progressive neurodegenerative
disorder characterised by proteinaceous intraneuronal Lewy body formation and striatal
dopamine depletion in the substantia nigra of the mid brain [1]. Patients with PD com-
monly experience motor symptoms such as bradykinesia, tremor, muscle stiffness (rigidity),
and postural instability. Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterised by initial memory impairment and cognitive decline. AD is the
most common form of dementia and is characterised by an accumulation of abnormal
neuritic plaques composed of β-amyloid peptide, together with neurofibrillary tangles of
misfolded tau protein, in the brain of AD patients [2]. Amyotrophic lateral sclerosis (ALS),
otherwise known as motor neuron disease, is a progressive disorder characterised by the
degeneration of upper and lower motor neurons within the brain and spinal cord, resulting
in a loss of muscle control. A hallmark of ALS is the development of ubiquinated protein
aggregates [3]. Multiple system atrophy (MSA) is an example of one of the less common
neurological disorders. MSA results from the progressive degeneration of neurons and glia,
with the subsequent dysfunction of the autonomic nervous system. The pathogenesis of
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MSA has been linked to the dysfunction of an enzyme (COQ2; 4-parahydroxybenzoate:
polyphenyl- transferase) in the CoQ10 synthetic pathway [4]. Progressive supranuclear
palsy (PSP) is a disorder resulting from tau protein aggregation in brain tissue, causing
problems with balance, movement, and vision [5]. In order to identify the most appropriate
nutrients, one must first consider the mechanism of normal mitochondrial function, partic-
ularly with regard to cellular energy supply, and this is addressed in the following section.
This review is structured to then include sections on the assessment of mitochondrial
dysfunction, followed by sections on nutrient deficiency and nutrient supplementation (in
the following order: CoQ10, selenium, B-vitamins/NADH, L-carnitine/acetyl-L-carnitine,
alpha-lipoic acid, vitamin D3), respectively, in the above neurodegenerative disorders.

2. Normal Mitochondrial Function

Mitochondria have a number of key functions in cell metabolism, the most important
of which is arguably cellular energy supply. Briefly, in the latter process, glucose (derived
from dietary sugars) is converted via glycolysis into pyruvate, which is then imported
into mitochondria. Within the mitochondrial matrix, the pyruvate is then converted via
acetylCoA and the TCA cycle to carbon dioxide, generating NADH from NAD+ and
FADH2 from FAD in the process [6]. As an alternative energy source, fatty acids (derived
from dietary fats) can also be transported into mitochondria and thence into the TCA cycle.
NADH (together with FADH2) then acts as the main source of electrons for transport
along the electron transport chain in the process of oxidative phosphorylation, through
which the majority of the cellular ATP requirement is generated [7]. It could be argued
that a considerable number of nutrient-type substances are involved directly or indirectly
with this aspect of mitochondrial function; however, the nutrients identified of principal
importance in the present article include the B vitamins B1, B2, and B3 (a precursor of
NADH), coenzyme Q10 (CoQ10), selenium and vitamin D, alpha lipoic acid, and L-carnitine.
The B vitamins and alpha lipoic acid have important roles in the TCA cycle; CoQ10,
selenium and vitamin D in oxidative phosphorylation; and L-carnitine in the transport of
fatty acids into mitochondria prior to utilisation in the TCA cycle. Nutrients may have
more than one function; for example, CoQ10 and alpha lipoic acid also act as important
intracellular antioxidants.

3. Mitochondrial Dysfunction

As noted above, mitochondria have a number of important functions within cells, and
a definition of mitochondrial dysfunction therefore depends on which of these functions
is being addressed. In this article, mitochondrial dysfunction is defined as the inability
to generate sufficient levels of ATP in response to cellular requirements. Based on this
definition, mitochondrial dysfunction can be measured using a variety of systems and
methods. Systems include isolated mitochondria, isolated cells, blood biomarkers, and real-
time in vivo measurements [8,9]; measurement methods include quantification of electron
transport complex levels or TCA cycle enzyme activities, assays to determine ATP levels, or
assessment of ATP (or related metabolites) made via 13C NMR, 31P NMR, or positron emis-
sion spectroscopy [10,11]. Mitochondrial dysfunction may occur for a number of reasons,
but this article is concerned specifically with mitochondrial dysfunction that results from a
deficit in key nutritional substances, either dietary-derived or endogenously synthesised.

4. Evidence for Mitochondrial Dysfunction in Neurodegenerative Disorders

The common neurodegenerative disorders PD, AD, and ALS on which this article is
focused are as recognised by Lamptey et al. [12].

In PD, dysfunction of the mitochondria resulting from alterations in mitochondrial
morphology, mutations of mitochondrial DNA, anomalies in calcium homeostasis, and
impairment of the electron transport chain have all been reported [13]. Mitochondrial
dysfunction has been observed in both sporadic and genetic forms of PD, as well as toxin-
induced models of the disease. In AD, mitochondrial dysfunction associated with altered
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mitochondrial morphology, decreased complex IV activity, and reduced ATP levels have
been identified in postmortem tissue, in platelets, and in fibroblasts [14]. In ALS, disruption
of mitochondrial structure, dynamics, bioenergetics, and calcium buffering have been
extensively reported [3]. Analysis of mRNA expression levels using blood samples from
ALS patients identified abnormalities in mitochondrial electron transport chain proteins,
including reduced levels of FAD synthase, riboflavin kinase, cytochrome C1, and succi-
nate dehydrogenase complex subunit B [15]. In multisystem atrophy (MSA), impaired
respiratory chain complex activity/CoQ10 levels have been reported in postmortem brain
tissue and in fibroblasts [16]. In progressive supranuclear palsy (PSP), mitochondrial DNA
mutation and impairment of the electron transport chain have been reported [17].

5. Nutrient Deficiency in Neurodegenerative Disorders

Deficiencies of nutrient-type mitochondrial metabolites have been identified in PD,
AD, ALS, MSA, and PSP, as described in the following sections; whether such deficiencies
constitute a cause or consequence of these disorders remains to be established. These
deficiencies are outlined in Table 1.

Table 1. Nutritional deficiencies in neurodegenerative disorders.

Nutrient Report of Deficiency Ref No.

Coenzyme Q10

• Deficiency in cerebral cortex CoQ10 status in PD patients
• Reduced CoQ10 in plasma and platelets in PD patients
• Depleted levels of CoQ10 in blood associated with development of AD
• Reduced CoQ10 in plasma or postmortem brain tissue of MSA patients

[18,19]
[20,21]
[22]
[23–25]

Selenium
• Se deficiency in brain tissue in PD patients
• Depleted Se levels in blood or brain tissue in AD
• Se blood levels inversely associated with ALS

[26]
[27,28]
[29,30]

B-vitamins/NADH

• Reduced B1 levels in blood and CSF fluid in PD patients
• B1 deficiency in blood and autopsied brain samples from AD patients
• B1 levels depleted in blood and CSF in ALS
• Reduced blood B2 levels associated with developing ALS
• Reduced blood B2 in PD patients
• Reduced blood B2 in AD patients
• Reduced B3 (niacin) in PD
• Niacin intake inversely related to development of AD

[31–33]
[34]
[35,36]
[37]
[38]
[39,40]
[41]
[42]

L-carnitine/acetyl-L-
carnitine

• Reduced blood levels in PD
• Reduced CSF levels in AD
• Reduced levels of carnitine acetyltransferase in postmortem brain tissue of AD patients

[43–45]
[46]
[47]

PVitamin D3

• Depleted D3 blood levels and increased risk of PD
• Depleted D3 blood levels and increased risk of AD
• Depleted D3 blood levels and increased risk of ALS
• D3 deficiency reported in MSA

[48]
[49,50]
[51]
[52,53]

Coenzyme Q10: In PD, a deficiency in cerebral cortex CoQ10 status (together with
impaired complex I activity) has been reported in PD patients [18,19]. A decrease in
CoQ10 status has also been reported in both the plasma and platelets of PD patients [20,21].
Depleted levels of CoQ10 in blood are associated with an increased risk of developing
AD [22]. In MSA, several studies have reported a reduction in plasma or postmortem brain
tissue. Thus, in a series of 44 MSA patients, Mitsui et al. [23] found a significant reduction in
the mean plasma CoQ10 level of approximately 30% compared to controls. Barca et al. [24]
found CoQ10 levels to be significantly depleted (by 40%) in postmortem cerebellar tissue
from MSA patients compared to controls. In addition, in a study using induced pluripotent
stem cell (iPSC)-derived neurons, CoQ10 levels were significantly reduced in MSA patients,
particularly those with COQ2 functional variants [25].
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Selenium: Deficiency of selenium in brain tissue, via its role in selenoproteins such as
the antioxidant enzyme glutathione peroxidase, has been implicated in the pathogenesis of
PD [26]. Depletion of circulatory or brain tissue selenium levels are also implicated in the
pathogenesis of AD [27,28]. In ALS, blood levels of selenium are inversely associated with
ALS occurrence [29,30]. Selenium is an interesting case, as both reduced and excessive tissue
levels have been implicated in the development of these neurodegenerative disorders [28,54].

B-vitamins/NADH: Reduced levels of vitamin B1 (thiamine) in blood and CSF have
been reported in PD patients [31,32], and thiamine deficiency has been implicated in the
pathogenesis of PD [33]. Vitamin B1 deficiency has been reported in blood and autopsied
brain samples from AD patients [34]. In ALS patients, vitamin B1 levels are depleted
in blood and CSF [35,36]. In a study comprising a large cohort of Chinese patients with
ALS, Wang et al. [37] found that reduced blood levels of vitamin B2 (riboflavin) were
associated with an increased risk of developing ALS. Reduced blood levels of vitamin B2
in PD patients were reported by Coimbra et al. [38], and similarly in AD patients by Liu
et al. [39] and Lanyau-Dominguez et al. [40]. Levels of vitamin B3 (niacin), the precursor of
NADH, are reduced in PD [41]. In AD, dietary intake of niacin was inversely related to the
risk of cognitive decline and development of AD [42].

L-carnitine/acetyl-L-carnitine: L-carnitine blood levels were found to be significantly
reduced in PD patients from the Faroe Islands, which have a high prevalence of PD [43].
Reduced levels of acyl-L-carnitine in plasma from PD patients have been reported [44,45].
Lodeiro et al. [46] reported reduced levels of L-carnitine in CSF from early AD cases.
Reduced levels of carnitine acetyltransferase (the catalyst of L-carnitine acylation to acetyl-
L-carnitine) have been reported in postmortem brain tissue from AD patients [47].

Vitamin D3: Vitamin D receptors (VDR) are located within mitochondria and are
necessary for normal mitochondrial function [55]. Studies in animal model systems have
shown VDR knockdown results in decreased mitochondrial oxidative capacity and reduced
ATP production [56]. There is evidence for depleted circulatory vitamin D3 levels and
increased risk of PD [48], AD [49,50], and ALS [51]. In the less common neurodegenerative
disorders, vitamin D3 deficiency has been reported in MSA [52,53].

6. Nutrient Supplementation in Neurodegenerative Disorders

Coenzyme Q10: In a Phase II clinical trial conducted by Schults et al. [57], oral CoQ10
supplementation (300–1200 mg/day) was found to reduce the functional decline of patients
with early-stage PD. A subsequent Phase III clinical trial involving six hundred patients
was undertaken with PD patients receiving CoQ10 dosages of 1200 or 2400 mg/d [58].
Despite 1200 mg/d being the highest dosage used in the previous study, the mean change
in UPDRS (Unified Parkinson’s Disease Rating Scale) score of treated patients was not
found to be significantly lower than that of the placebo group; the researchers concluded
that since CoQ10 appeared to show no apparent clinical benefit, they could not recommend
its use in the treatment of early-stage PD. The contrasting findings of the clinical studies
by Shults et al. and Beal et al. may reflect the broad range of sporadic PD patients used
in the two clinical trials, with the heterogeneous patient populations contributing to their
contradictory findings. Furthermore, no assessment of an underlying CoQ10 deficiency
was determined in the PD patients prior to commencing CoQ10 supplementation in the
study by Beal et al., which may explain the limited therapeutic potential of CoQ10 reported.

In AD, in a randomised clinical trial in which 70 patients with mild-to-moderate
AD were treated with CoQ10 (400 mg; three times/day) for 16 weeks, no clinical benefit
or significant effect on the CSF biomarkers for AD (amyloid-beta and tau protein levels)
were reported [59]. To date, no large clinical studies have assessed the cognitive effect
of CoQ10 supplementation in AD; however, clinical studies with the CoQ10 analogue
idebenone have reported modest cognitive and behavioural improvements in patients
following supplementation [60,61]. There were, however, drop-out rates as high as 71%
in these studies. A subsequent, one-year, multicentre, double blind, placebo-controlled,
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randomised clinical trial of 536 AD patients found that idebenone treatment (120, 240, or
360 mg, three times a day) failed to slow cognitive decline in AD [62].

In ALS, although supplemental CoQ10 or its synthetic analogue MitoQ prolonged sur-
vival in a mouse model of ALS [63,64], a Phase II trial supplementing 2700mg CoQ10/day
for 9 months in 185 ALS patients found insufficient benefit to warrant a Phase III study [65].

To date, there have been no randomised controlled trials of CoQ10 in MSA.
There have been two randomised controlled trials of supplementary CoQ10 in PSP. In

the study by Stamelou et al. [66] of 20 PSP patients, supplementation with 5 mg/kg/day
CoQ10 for 6 weeks resulted in improved cerebral energy metabolism assessed via magnetic
resonance spectroscopy, as well as an improvement in PSP rating scale. In the study by
Apetauerova et al. [67] of 60 PSP patients, supplementation with 2400 mg/day CoQ10
for up to 12 months did not significantly improve PSP symptoms or disease progression;
however, the study had a high patient dropout rate and lacked the precision to exclude a
moderate benefit of CoQ10.

Selenium: Selenium supplementation partially reversed impaired dopaminergic neu-
rotransmission in MPTP-induced PD in mice [68] but has not been evaluated clinically in
randomised controlled trials. In contrast, there have been several randomised controlled
trials supplementing selenium (typically 200 mcg/day) in AD. In the PREADVISE trial,
selenium alone or in combination with vitamin E had no significant effect in reducing AD
incidence [69], whereas supplementation with selenium in combination with probiotics
showed some improvement in cognitive function [70]. Cardoso et al. [71] reported that
supplementation with high-dose sodium selenate significantly improved Mini-Mental State
score in AD subjects.

NADH/NAD/nicotinamide: There have been two randomised controlled trials of
NADH/NAD/nicotinamide—in PD and AD, respectively. In a Phase I study, 30 PD patients
were given 1gm of nicotinamide riboside or placebo for 30 days; this resulted in increased
brain levels of NAD and upregulated mitochondrial metabolism (as measured via 31P nmr
spectroscopy and positron emission tomography), which was associated with mild clinical
improvement [72]. In AD, patients were administered 10mg NADH/day or placebo for
6 months; subjects treated with NADH showed no evidence of progressive cognitive
deterioration and had significantly higher total scores on the MDRS (Mattis Dementia
Rating Scale) compared with subjects treated with placebo (p < 0.05). Analysis of MDRS
subscales revealed significantly better performance by NADH subjects on measures of
verbal fluency (p = 0.019) and visual–constructional ability (p = 0.038) [73].

B-vitamins: A clinical study comprising 50 PD patients found that long-term treat-
ment with vitamin B1 (100 mg administered via intramuscular injection) improved PD
symptoms, particularly motor function [74]. There have been several clinical studies sup-
plementing vitamin B1, or its synthetic derivatives benfotiamine or fursultiamine, in AD.
Supplementation with vitamin B1 (3 g/day for 3 months to 1 year) in AD patients showed
mixed results; the study by Nolan et al. [75] reported no benefit on AD progression, whist
the study by Meador et al. [76] found some symptomatic benefit. A randomised controlled
trial supplementing benfotiamine (600 mg/day for 1 year) reported improved cognitive
function in AD patients [77], and a study supplementing fursultiamine (100 mg/day for
3 months) resulted in improved cognitive function in cases with mild AD [78]. With regard
to vitamin B2, oral supplementation (90 mg/day for 6 months) resulted in improved motor
capacity in a series of 20 PD patients [38]. In a case study, a patient with a form of ALS re-
sulting from riboflavin transporter deficiency showed dramatic symptomatic improvement
following high-dose oral supplementation (15 mg/kg) with riboflavin [79].

L-carnitine: Beneficial effects of L-carnitine or acetyl-L-carnitine have been described
in several animal models of Parkinson’s disease—in MPTP-induced Parkinson’s disease in
mice, acetyl-L-carnitine protected against damage to endothelial cells and loss of dopamin-
ergic neurons in the substantia nigra pars compacta and caudate putamen [80]. Acetyl-L-
carnitine also protected the dopaminergic nigrostriatal pathway in a 6-hydroxydopamine-
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induced model of Parkinson’s disease in the rat [81]. To date, there have been no ran-
domised controlled trials of L-carnitine or acetyl-L-carnitine in PD patients.

There have been nine randomised controlled trials of L-carnitine or acetyl-L-carnitine
(typically 1.5–3 gm/day for 6–12 months) in AD. Administration of acetyl-L-carnitine
to AD patients by Spagnoli et al. [82] resulted in a slower rate of deterioration in 13
of the 14 outcome measures, reaching statistical significance for the Blessed Dementia
Scale, logical intelligence, verbal critical abilities, long-term verbal memory, and selective
attention. Sano et al. [83] found that administration of acetyl-L carnitine significantly
slowed the decline in memory-related parameters. Pettegrew et al. [84] assessed the effect
of acetyl-L-carnitine administration via 31P NMR finding an increase in ATP levels and
significantly less deterioration in AD patient Mini-Mental Status and Alzheimer’s Disease
Assessment Scale test scores. Thal et al. [85] and Brooks et al. [86] reported that acetyl-L-
carnitine slowed the progression of AD (assessed via the Alzheimer Disease Assessment
Scale) in younger subjects. A meta-analysis by Montgomery et al. [87] confirmed the efficacy
of acetyl-L-carnitine for the treatment of mild cognitive impairment and mild Alzheimer’s
disease. L-carnitine or acetyl-L-carnitine have been shown to improve manifestations of
AD in animal models [88,89]. Kepka et al. [90] have reviewed the potential role of dietary
L-carnitine in the prevention of Alzheimer’s disease.

There has been one randomised controlled trial of acetyl-L-carnitine in ALS [91]. Forty-
two patients received acetyl-L-carnitine and forty received the placebo, with the following
parameters assessed: number of patients no longer self-sufficient; changes in ALSFRS-
R, MRC, FVC, and McGill Quality of Life (QoL) scores; median survival. In the cohort
receiving acetyl-L-carnitine, 34 patients became non-self-sufficient versus 30 receiving
placebo (p = 0.0296). Mean ALSFRS-R scores at 48 weeks were 33.6 and 27.6 (p = 0.0388),
respectively, and mean FVC scores 90.3 and 58.6 (p = 0.0158), respectively. Median survival
was 45 months (acetyl-L-carnitine) and 22 months (placebo) (p = 0.0176).

Alpha-lipoic acid: The neuroprotective action of alpha lipoic acid has been demon-
strated in a number of cellular or animal models of PD [92–94]. To date, there have been no
randomised controlled trials or other types of clinical studies of alpha-lipoic acid in PD.

With regard to AD, in a randomised controlled trial, Shinto et al. [95] found that
alpha-lipoic acid and omega-3 fatty acids in combination slowed cognitive and functional
decline in AD patients over 12 months. In an open-label clinical study, 600 mg of alpha
lipoic acid was given daily to 43 patients with AD (receiving a standard treatment with
acetylcholinesterase inhibitors) over a period of 48 months. Patients were assessed via
Mini-Mental State examination, AD assessment scale, and cognitive subscale. Whilst
the improvement in patients with moderate dementia was not significant, the disease
progressed extremely slowly in patients with mild dementia [96]. An open-label study by
Fava et al. [97] evaluated the effect of alpha lipoic acid (600 mg/day) on cognitive function
in AD patients, with and without diabetes. One hundred and twenty-six patients with AD
were divided into two groups, with (group A) or without (group B) diabetes. Cognitive
functions were assessed by MMSE, Alzheimer’s Disease Assessment Scale–Cognitive
(ADAS-Cog), Clinician’s Interview-Based Impression of Severity (CIBIC), Clinical Dementia
Rating (CDR), and Alzheimer’s Disease Functional and Change Scale (ADFACS). At the end
of the study, MMSE scores showed a significant improvement in 43% of patients in group A
(26 subjects) and 23% in group B (15 subjects) compared to baseline (p = 0.001). ADAS-Cog,
CIBIC, and ADFACS scores also showed a significant improvement in group A versus
group B. Studies performed in animal models of memory loss associated with aging and
AD have shown that α-LA improves memory in a variety of behavioural paradigms [98].

A randomised controlled clinical trial to assess the neuroprotective effect of alpha-
lipoic acid in ALS is currently in progress, led by Dr Zhiying Wu of Zhejiang University
Medical School, China.

Vitamin D3: There have been several randomised controlled trials of vitamin D3
supplementation in PD. Suzuki et al. [99] reported that vitamin D3 supplementation might
stabilise PD for short periods, whilst a meta-analysis by Zhou et al. [100] found no evidence



Int. J. Mol. Sci. 2022, 23, 12603 7 of 14

for improved motor function in PD patients. Supplementation with vitamin D3 reduced the
risk of osteopenia in PD [101]. A randomised controlled trial by Jia et al. [102] suggested
that vitamin D3 supplementation may improve cognitive decline in AD patients, whilst a
meta-analysis by Du et al. [103] found no evidence that supplementation with vitamin D3
reduced the risk of developing AD. Vitamin D3 supplementation had no significant effect
on motor dysfunction in ALS patients [104].

Details of the use of nutrient supplementation in neurodegenerative diseases are
summarised in Table 2.

Table 2. Nutritional supplementation in neurodegenerative disorders.

Supplement Effect Ref No.

Coenzyme Q10

• 300–1200 mg/day reduced the functional decline of patients with early-stage PD
• 1200 or 2400 mg/day did not lower the mean change in UPDRS
• 400 mg three times/day showed no clinical benefit or significant effect on the

CSF biomarkers for AD
• 2700 mg/day found insufficient benefit to warrant a Phase III study in

ALS patients
• 5 mg/kg/day resulted in improved cerebral energy metabolism and in

improvement in PSP rating scale (PSP = progressive supranuclear palsy)
• 2400 mg/day did not significantly improve PSP symptoms or

disease progression

[57]
[58]
[59]
[65]
[66]
[67]

Selenium

• No RCTs in PD patients
• Se alone or in combination with vitamin E had no significant effect in reducing

AD incidence
• Se in combination with probiotics showed some improvement in cognitive

function in AD subjects
• Se significantly improved Mini Mental State score in AD subjects

[68]
[69]
[70]
[71]

NADH/NAD/
Nicotinamide

• 1 g/day nicotinamide riboside resulted in increased brain levels of NAD and
upregulated mitochondrial metabolism in PD patients

• 10 mg NADH/day was associated with no evidence of progressive cognitive
deterioration and with significantly higher total scores on the Mattis Dementia
Rating Scale as well as significantly better scores in verbal fluency and
visual-constructional ability

[72]
[73]

B-vitamins

• Long-term treatment with vitamin B1 (intramuscular injection 100 mg) improved
PD symptoms, particularly motor function

• Mixed results of vitamin B1 treatment in AD patients: no effect on AD
progression vs. some symptomatic benefit

• Benfotiamine (600 mg/day for 1 year) improved cognitive function in
AD patients

• Fursultiamine (100 mg/day for 3 months) improved cognitive function in cases
with mild AD

• Vitamin B2 (90 mg/day for 6 months) resulted in improved motor capacity in
20 PD patients

• High-dose oral (15 mg/kg) of riboflavin in a patient with a form of ALS resulting
from riboflavin transporter deficiency showed dramatic symptomatic
improvement following a case study

[74]
[75,76]
[77]
[78]
[38]
[79]
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Table 2. Cont.

Supplement Effect Ref No.

L-carnitine/acetyl-L-carnitine

• To date, no RCTs of L-carnitine or acetyl-L-carnitine in PD patients, only
preclinical studies

• Slower rate of deterioration in 13 of the 14 outcome measures on the Blessed
Dementia Scale in AD patients

• Significant slowing of the decline in memory-related parameters in AD patients
• Increase in ATP levels and less deterioration in Mini-Mental Status and AD

Assessment Scale test scores
• Slower progression of AD assessed via the Alzheimer Disease Assessment Scale

in younger subjects
• Meta-analysis confirmed the efficacy of acetyl-L-carnitine for the treatment of

mild cognitive impairment and mild AD
• One RCT of acetyl-L-carnitine in ALS: mean ALSFRS-R scores at 48 weeks were

33.6 and 27.6, respectively; mean FVC scores 90.3 and 58.6, respectively; median
survival was 45 months (acetyl-L-carnitine) and 22 months

[80,81]
[82]
[83]
[84]
[85,86]
[87]
[91]

alpha-lipoic acid

• Neuroprotective action of alpha-lipoic acid demonstrated in cellular and animal
models of PD; to date, no RCTs or other clinical studies of alpha-lipoic acid in PD.

• Combined alpha-lipoic acid and omega-3 fatty acids slowed cognitive and
functional decline in AD patients

• 600 mg/day slowed the progression of AD over 48 months
• 600 mg/day improved cognitive function in AD

[92–94]
[95]
[96]
[97]

Vitamin D3

• D3 supplementation might stabilise PD for short periods
• Meta-analysis found no evidence for improved motor function in PD
• D3 supplementation reduced the risk of osteopenia in PD
• D3 supplementation may improve cognitive decline in AD patients
• Meta-analysis found no evidence that D3 supplementation reduced the risk of

developing AD
• D3 supplementation had no significant effect on motor dysfunction in

ALS patients

[99]
[48]
[100]
[101]
[102]
[103]

7. Conclusions

In reviewing the potential benefits of nutritional supplements on mitochondrial dys-
function in neurodegenerative disorders, one must first define mitochondrial dysfunction
and how it is measured, and secondly identify the key nutrients of relevance to mitochon-
drial function. For the purposes of this review, mitochondrial dysfunction is defined in
terms of altered cellular energy production, with the key nutrients identified as CoQ10,
selenium, B vitamins/NADH, L-carnitine, alpha-lipoic acid, and vitamin D. The potential
role of these nutrients was then reviewed in selected neurodegenerative disorders, which
are characterised by mitochondrial dysfunction; PD, AD and ALS as examples of com-
mon disorders; and MSA and PSP as examples of less common disorders. Whilst there is
considerable evidence for the efficacy of all of the above nutrients in cell-based or animal
models of these disorders, relatively few relevant clinical studies have been identified.
The best-studied nutrient/disease combinations were for CoQ10 and PD (six randomised
controlled trials), and acetyl-L-carnitine in AD (nine randomised controlled trials); there
have also been single randomised controlled trials of CoQ10 in ALS and acetyl-L-carnitine
in ALS, respectively. To date, there have only been two randomised controlled trials of
NADH/nicotinamide (in PD and AD, respectively), and one randomised control of alpha-
lipoic acid in AD. In some of these studies, the outcome has been surprisingly disappointing,
a notable example being the lack of efficacy of CoQ10 in a Phase III trial in PD. This in turn
may be a reflection of the current uncertainty as to whether such substances can access the
blood–brain barrier; however, this may also relate to the fact that nutrients are usually used
in isolation in clinical studies, and that combinations of the above nutrients may be more
effective. An example is the synergistic interaction between CoQ10 and selenium. CoQ10
occurs in cells in two closely related forms: oxidised (ubiquinone) and reduced (ubiquinol);
continual interconversion between these CoQ10 forms is required for normal mitochon-
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drial function, including cellular energy generation and antioxidant protection. Selenium
is a component of the enzyme thioredoxin reductase, which catalyses the reduction of
ubiquinone to ubiquinol. Thus, a deficiency of either selenium or CoQ10 can impact on
this interconversion process, and subsequent mitochondrial function or supplementation
with CoQ10 is likely to be less effective if individuals are also deficient in selenium [104].
Examples of this type of approach in clinical situations include the combination of CoQ10
and selenium for the prevention of cardiovascular disease in the elderly [105], CoQ10 and
NADH used to improve fatigue in chronic fatigue syndrome [106], CoQ10 and L-carnitine
for migraine prophylaxis [107], and L-carnitine and alpha-lipoic acid for the improvement
of peripheral neuropathy in diabetic patients [108]. The study by Cornelli [109] is of partic-
ular interest, since some improvement in cognitive function (assessed via MMSE score) in
AD patients was noted after supplementation with a combination of B vitamins, vitamins
C and E, CoQ10, carnosine, beta-carotene, selenium, and l-cysteine. In this review, we
have selected nutrients known to have a key role in mitochondrial function; however, a
limitation to this approach is the exclusion of other nutrients known to be involved in
mitochondrial metabolism.

In summary, we have selected a number of neurodegenerative disorders that are
known to involve mitochondrial dysfunction in their pathogenesis. We have further
selected a number of nutrients that have a key role in mitochondrial function. We then
correlated data on the deficiency (Table 1) and supplementation of these nutrients (Table 2)
in the said neurodegenerative disorders. In this review, we have therefore provided a
rationale for a combination of CoQ10, B-vitamins/NADH, L-carnitine, vitamin D, and
alpha-lipoic acid to support the future treatment of these neurodegenerative disorders. To
the best of our knowledge, this is the first review to systematically correlate evidence for
the depletion and potential symptomatic benefit of these key mitochondrial metabolites in
this range of neurodegenerative disorders.
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