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Abstract: Maritime traffic situational awareness plays a vital role in the development of intelligent 

transportation-support systems. This state-of-the-art study focuses on near-miss collision risk between/among 

ships but reveals challenges in estimating large-scale traffic situations associated with dynamic and uncertain 

ship motions at a regional level. This study develops a systematic methodology to evaluate ship traffic 

complexity to comprehend the traffic situation in complex waters. In the new methodology, the topological and 

evolutionary characteristics of ship traffic networks and the uncertainty in ship movements are considered 

simultaneously to realise probabilistic collision detection. The methodology, through the effective integration 

of probabilistic conflict estimation and traffic complexity modelling and assessment, enables the evaluation of 

traffic complexity in a fine-grained hierarchical manner. With the AIS-based trajectory data collected from the 

world’s largest port (i.e. Ningbo-Zhoushan Port), a thorough validation of the evaluation performance is 

conducted and demonstrated through scenario analysis and model robustness. Moreover, some critical research 

results are obtained in terms of traffic network heterogeneity analysis; statistics including occurrence frequency, 

temporal distribution, life cycle, and transition probability of traffic complexity patterns; and correlation 

examination between the number of ships and traffic complexity patterns. These findings offer new insights into 

improving maritime traffic awareness capabilities and promoting maritime traffic safety management. 

Keywords: Maritime risk, Ship traffic complexity, Spatial-temporal traffic dynamics, Network topology, 

Situation evolution, AIS data. 

 

1 Introduction 

Maritime traffic safety has always been one of the most crucial research areas because failure to address it will 

cause catastrophic maritime accidents involving intolerable consequences such as life loss, property damage, 

and/or ocean pollution. Economic globalisation over the past decades has led to the rapid growth of shipping 

traffic volumes, making maritime traffic heavier, riskier, and more sophisticated (H. Yu, Fang, Murray, & Peng, 

2019; H. Yu et al., 2021; W. Zhang, Feng, Goerlandt, & Liu, 2020), particularly in hotspots such as restricted 

waters. It is evident by the recent Suez Canal blockage (Lebedev, Lebedeva, & Butsanets, 2021). This has put 

tremendous pressure on practical monitoring tasks for maritime surveillance operators, particularly those who 

supervise ship traffic in waterways and port areas due to the high volume of traffic and complicated maritime 

transportation dynamics they normally encounter. In practice, surveillance operators need to ensure ship traffic 

safety in a navigating situation, generate and send an earlier warning alert when detecting collision risk, and 
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assist navigators in path re-planning for conflict resolution. Although there is a significant appeal in assisting 

operators and controllers to monitor and regulate maritime traffic dynamics, existing technologies and systems, 

such as but not limited to vessel traffic service (VTS) systems, maritime traffic service networks, land radar, 

and intelligent traffic signalling systems (ITSSs), still have some limitations in their practical applications due 

to the increasing ship spatial-temporal movement uncertainty over the last decade. Advanced techniques that 

enable controllers to better comprehend traffic situations and strengthen maritime traffic situational awareness 

are therefore in high demand. This means there are increasing requirements for new modelling capability for 

perceiving forthcoming traffic situations and making decisions to proactively manage ship collision risks. 

It is essential to conduct the quantitative analysis of a maritime traffic situation for proactive maritime 

traffic awareness and hence maritime traffic safety (Bukhari, Tusseyeva, & Kim, 2013; Chen, Huang, Mou, & 

van Gelder, 2019; M. Zhang, Kujala, & Hirdaris, 2022). The rapid development of the Automatic Identification 

System (AIS) has contributed to the accessibility of rich information on ship trajectories for guiding and 

improving vessel traffic situation assessments (R. W. Liu, Liang, Nie, Lim, et al., 2022; R. W. Liu, Liang, Nie, 

Yuan, et al., 2022). With improvements in data acquisition, storage, and processing, an increasing number of 

practical and advanced applications of AIS data have been developed to tackle various issues, such as maritime 

anomaly detection (Iphar, Ray, & Napoli, 2020; Rong, Teixeira, & Soares, 2019, 2022), marine traffic movement 

characterisation (Xin, Liu, Yang, Yuan, & Zhang, 2019; Q. Yu, Liu, Teixeira, & Soares, 2020), spatial-temporal 

ship traffic statistical analysis (Rong, Teixeira, & Soares, 2021; L. Zhang, Meng, & Fwa, 2019), and trajectory 

behaviour modelling and recognition (H. Li et al., 2022, 2020; Liang et al., 2021). Using AIS data-based 

maritime traffic analytics, it is possible to capture the characteristics of ship traffic complexity. Relevant studies 

have recently become popular (e.g., Sui et al., 2020; Y. Wen et al., 2015; M. Zhang, Zhang, Fu, Kujala, & 

Hirdaris, 2022). Ship traffic complexity analysis serves as a tool for traffic controllers to comprehend maritime 

traffic situations and gain traffic situation awareness, offering new insights on promoting maritime traffic safety 

management and supporting traffic situation warnings. However, it remains challenging to effectively integrate 

AIS-based trajectory information into real-time ship traffic situation estimation and evaluation. Specifically, an 

advanced model targeting a full understanding of the traffic situation requires the holistic integrity of multiple 

analyses of the spatial-temporal dynamics and uncertainty in ship movements; the collision risk-related 

interactions among ships; and the structural and evolutionary characteristics associated with the spatial-temporal 

proximity relationships among ships. Therefore, establishing a reliable model for ship traffic situation 
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assessment and management is challenging. However, its success, defined as the condition for developing an 

intelligent transportation support system for autonomous ships, needs to be addressed urgently.  

In this study, a systematic and holistic ship traffic complexity evaluation methodology that is adaptive to 

the complex waters involving heavy and dynamic traffic with high uncertainty is developed to realise real-time 

maritime traffic situation comprehension and advanced traffic awareness. Its success will aid in enhancing 

maritime traffic monitoring capabilities and assist in decision-making for surveillance controllers by accounting 

for traffic behaviour characteristics, including the stochastic and variant conflict relations among ships, traffic 

congestion, and the difficulties brought about by traffic structure for conflict resolution. To achieve this, a new 

framework is developed by  

1) A probabilistic conflict detection (CD) technique incorporating the effects of dynamics and uncertainty 

inherent to spatial-temporal vessel motions to quantify the conflict criticality among ships.  

2) A ship traffic complexity model that extends the application of complex network theory to describe the 

topological and evolutionary characteristics of various inter-ship influence relations.  

3) A fuzzy clustering iterative (FCI)-based complexity evaluation approach to support a fine-grained and 

hierarchical complexity pattern assessment.  

4) A node importance identification method to determine the key risk ships.  

Its new feature lies in the development of a holistic and systematic framework for ship traffic complexity 

evaluation by incorporating both the multi-stage and multi-topology characteristics of ship traffic networks and 

ship spatial-temporal movement uncertainty simultaneously. The main contributions of this study are 

summarised as follows. 

1) The proposed probabilistic CD scheme characterises the conflict probability accurately and reliably by 

considering both the dynamic and uncertain characteristics of spatial-temporal vessel movements. 

Compared with traditional ship collision analysis approaches, the proposed scheme can handle various 

encounter scenarios in complex maritime traffic waters, such as busy ports, thereby facilitating vessel 

drivers and maritime safety authorities to undertake real-time and effective collision risk management. 

2) A new multi-stage and multi-topology-based ship traffic complexity model is established to provide a full 

description of a traffic situation by quantifying the structural characteristics of multi-ship interactions and 

incorporating the evolutionary trend of their conflict relations. A spatial-temporal state matrix accounts for 

the conflict-based spatial structural measurement and dynamic evolution of conflict criticality over time, 
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making it possible to analyse the traffic situation accurately.  

3) To evaluate the traffic complexity matrix, an FCI-based assessment approach is proposed to facilitate 

surveillance controllers in identifying the traffic situation. This approach is practical and configurable 

because of its capability to provide a clear hierarchical description of traffic complexity patterns and its 

feasibility in achieving the fusion of subjective and objective knowledge without being dependent on any 

pre-defined assessment standards. 

The remainder of this study is organised as follows. Section 2 presents an overview of state-of-the-art 

research related to ship collision risk, traffic complexity, and multiple-index evaluation. In Section 3, the 

proposed ship traffic complexity methodology is introduced in detail, including the probabilistic CD, traffic 

complexity matrix construction, FCI-based complexity evaluation, and node importance identification. The 

application results and performance tests using real AIS data-based experiments are presented in Section 4. 

Conclusions and potential future explorations are provided in Section 5. 

2 Literature review 

This section presents a critical analysis of ship collision risk detection and estimation. A systematic overview 

of existing traffic complexity models used to quantify and estimate regional traffic situations is then presented 

to contextualise the primary research of this study. Finally, the merits and weaknesses of various multiple-index 

assessment methods that can be adopted for ship traffic complexity evaluation are discussed. 

2.1 Maritime collision risk detection and estimation 

Maritime collision risk is a popular research topic in the maritime sector. Many researchers have pioneered 

efforts to analyse and quantify ship collision probabilities and severity using different tools, definitions, and 

methodologies. For example, IALA Waterway Risk Assessment Program (IWRAP) is a useful tool 

recommended by International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA) 

and is commonly used to calculate the collision probabilities of ship traffic in specific geographical waters (Kim, 

Park, & Park, 2011). In these studies, collision risk detection and estimation are among the hottest topics because 

they serve as prerequisites for triggering an event that assists in noticing potential collisions and performing 

conflict resolution. Meanwhile, various non-accident criticality measurement concepts, such as traffic conflict 

(Lei, 2020), near-miss (W. Zhang, Goerlandt, Kujala, & Wang, 2016; W. Zhang, Goerlandt, Montewka, & Kujala, 

2015), and collision candidates (Chen, Huang, Mou, & van Gelder, 2018) have been proposed to detect and 

characterise potential dangerous encounter events. Relevant works in this field are categorised into three groups: 
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ship-domain-based methods, synthetic index methods, and dangerous region-based methods. 

The ship domain refers to the safety zone around a vessel within which all other vessels remain clear unless 

authorised. It is employed to estimate collision risks and detect potential conflicts in terms of invasion or overlap 

of the safety zones of encountering ships. In recent years, advances in diversified intelligent technologies and 

increasing AIS data sources have contributed to the development of various ship domain models with different 

shapes (e.g. circular and elliptical (Fujii & Tanaka, 1971; Szlapczynski & Szlapczynska, 2016), polygonal (Y. 

Wang & Chin, 2016), quaternion (K. Liu, Yuan, Xin, Zhang, & Wang, 2021; N. Wang, 2013), and risk-based (L. 

Zhang & Meng, 2019) domains), methodologies (e.g. empirical, knowledge-based, and analytical domains 

(Szlapczynski & Szlapczynska, 2017; L. Zhang & Meng, 2019)), and factors considered (e.g. vessel attributes, 

vessel manoeuvrability, knowledge and condition of navigators, and environmental conditions (J. Liu, Feng, Li, 

Wang, & Wen, 2016; Y. Wang & Chin, 2016)). These models and methodologies work well in quantitatively 

examining candidates with collision potential and undesired consequences; identifying collision risk hotspots; 

and deriving relations between collision candidates and extra information (e.g., historical accident databases 

and accident investigation reports). Thus, in this study, a conflict criticality metric is designed based on ship 

domain models to characterise the conflicts among encountering ships. Nevertheless, it is not feasible to purely 

use a ship domain model to perform real-time CD in highly dynamic waters. Hence, a ship motion prediction 

model is integrated with it for a proper solution to address this limitation. 

Synthetic index methods usually integrate the factors that characterise the spatial-temporal proximity of 

encountering ships for collision risk index (CRI) calculations by employing mathematical expressions or black-

box models. The two most common indices, namely the Distance to Closest Point of Approach (DCPA) and 

Time to Closest Point of Approach (TCPA), were initially synthesised using techniques such as a binary state 

(i.e., safe/dangerous) (Q. Liu, Pedersen, Okazaki, Fukuto, & Tanaka, 2006), linear regression (Chin & Debnath, 

2009), and fuzzy theory (H.-J. Lee & Rhee, 2001) to measure the CRI. In this context, previous researchers 

have also improved and extended the synthesis by considering more proximity factors (e.g., relative bearing, 

relative speed, ship manoeuvrability, ship motion patterns, and stability conditions (Fang, Yu, Ke, Shaw, & Peng, 

2018; Gil, 2021; Gil, Montewka, Krata, Hinz, & Hirdaris, 2020; Öztürk, Boz, & Balcisoy, 2021; M. Zhang, 

Montewka, Manderbacka, Kujala, & Hirdaris, 2021; M. Zhang, Zhang, Fu, Yan, & Goncharov, 2017)), adopting 

advanced fusion techniques (e.g., Analytical Hierarchical Process (Y. Zhao, Li, & Shi, 2016), Multilayer 

Perceptron (Ahn, Rhee, & You, 2012), and Dempster-Shafer evidence theory (B. Li & Pang, 2013)), and 
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ensuring their applicability for various encountering scenarios (Goerlandt, Montewka, Kuzmin, & Kujala, 2015). 

In particular, two other parameters, Bow Crossing Range (BCR) and the Time to Bow Crossing Range, have 

gained much attention owing to their effectiveness in supporting collision evaluations in crossing scenarios (e.g. 

Goerlandt et al., 2015; W. Zhang et al., 2015). For example, Gil, Kozioł, Wróbel, & Montewka (2022) have 

revealed that the combination of the BCR and CPA can cope with various encounter situations to achieve 

effective early collision warnings. Despite that, the critical analysis of these studies reveals that most of them 

adhere to a fundamental hypothesis that the ships will maintain a constant speed during the look-head period 

(Huang, Chen, Chen, Negenborn, & van Gelder, 2020; Xiao, Fu, Zhang, & Goh, 2019). Such a fundamental 

assumption may lead to inaccurate estimations of collision risk. More specifically, when ships perform 

manoeuvres (e.g., course or speed change) during the encountering process, these methods will offer unreliable 

estimation results. In addition, it is very challenging for them to provide an explicit explanation of the CRI 

results due to the interaction effects among different risk factors. Improvements are possible by exploiting the 

spatial-temporal dynamic features of ship movements that correlate with actual collisions in complicated 

encountering scenarios. 

Dangerous region-based methods are dependent on the collection of the sets of ship’s course or speed that 

will result in potential collision danger with other ships. A collision warning is then issued if the dynamic 

attributes of the ship fall into these sets. Classical solution approaches for dangerous region identification 

include Velocity Obstacle (VO) (Huang, van Gelder, & Wen, 2018), Projected Obstacle Area (Larson, Bruch, & 

Ebken, 2006), and Collision Threat Parameter Area (Lenart, 2015). Among them, VO has gained much 

popularity because of its simple operation and excellent performance in the search for collision-free schemes. 

Examples include integrating the ship domain with VO (Szlapczynski & Szlapczynska, 2015), developing 

Probabilistic VO and Generalised VO algorithms by loosening the linear ship motion assumption and taking 

ship manoeuvrability into consideration (Huang, Chen, & van Gelder, 2019; Huang et al., 2018), and extensions 

that consider the entire encountering process when detecting collision candidates (Chen et al., 2018). These 

studies demonstrate their strengths in detecting collision dangers in dynamic traffic situations, and can be 

applied in generalised scenarios. However, there are still unresolved issues from this perspective. Owing to the 

non-negligible computational burdens of mapping from the spatial-temporal proximity of the ship pairs to their 

velocity space, it is difficult for them to integrate the complex prohibit region models holistically. As a result, 

they are generally combined with simple risk measurement models, such as constant minimum safe distance 
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and circular ship domain, for real-time collision detection. This has been deemed the main weakness of 

unveiling collision risk differences under different ship encounter situations. 

In general, maritime collision risk estimation remains an active research field while simultaneously 

evolving towards a new stage where new advanced technologies aided by big AIS data can help improve its 

accuracy. The development of new technologies is justified by two reasons. First, few studies can 

simultaneously cope with the dynamic and uncertain characteristics of vessel motion. Most of them assumed 

that the encountering ships maintained constant velocity or that the ship's future trajectories could be accurately 

obtained when undertaking CD. However, it is challenging to precisely estimate a ship's future trajectories given 

the uncertainty caused by environmental disturbances, navigation plans or intentions, and physical and human 

factors. Consequently, these methods are not applicable to complex waters associated with high traffic density, 

variant manoeuvring behaviour, and unique geographical characteristics. The influence of trajectory uncertainty 

on collision risk estimation has attracted the attention of scholars in the field of air traffic by developing 

probabilistic models for CD (Hao, Zhang, Cheng, Liu, & Xing, 2018; C. H. J. Wang, Tan, & Low, 2019). Second, 

real-time collision risk assessment based on global/regional maritime traffic in busy water areas has rarely been 

investigated to date, thereby offering little insight into ship collision risk from a high-level traffic network 

perspective. It requires the incorporation of ship spatial-temporal dynamics, uncertainty, and collision risk 

interactions among regional maritime traffic. 

2.2 Traffic complexity modelling and evaluation 

Owing to increasing ship traffic movements and the emergence of large and fast vessels, maritime traffic has 

become more complex, resulting in growing concerns about global maritime traffic collision risk (Z. Liu, Wu, 

& Zheng, 2019; Zhen, Riveiro, & Jin, 2017). On this basis, some researchers started to attach importance to a 

new concept, called “ship traffic complexity” (Sui et al., 2020; Y. Wen et al., 2015; M. Zhang, Zhang, et al., 

2022). It is a relatively new research topic in the maritime domain, with the work of (Y. Wen et al., 2015) who 

pioneered the quantitative assessment of traffic situations. However, in the aviation research field, air traffic 

complexity has been long-standing and applied for diverse purposes, including measuring the workload of traffic 

controllers (Cao et al., 2018), enhancing airspace capacity (Flener et al., 2007), assisting controllers in decision-

making and conflict resolution (Radanovic, Eroles, Koca, & Gonzalez, 2018), and implementing traffic situation 

assessment (H. Wang, Song, Wen, & Zhao, 2016).  

At an early stage, traffic density was treated as the basic feature for characterising traffic complexity 
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(Sridhar, Sheth, & Grabbe, 1998). Evidently, it is insufficient to capture the complete picture of complexity 

because many factors, including traffic flow characteristics and space structure associated with the overall traffic 

complexity (Cao et al., 2018) are not considered. For example, Fig. 1 illustrates two ship traffic scenarios with 

the same traffic density. The traffic situation in Fig. 1 (a) encounters more difficulties in controlling potential 

conflicts because many ship pairs will converge soon. In contrast, most ship pairs in Fig. 1 (b) show a dispersed 

trend and thus correspond to relatively low traffic complexity. Consequently, many types of complexity metrics, 

such as Interval Complexity (IC) (Flener et al., 2007) and Input–Output (IO) approach (Pallottino, Feron, & 

Bicchi, 2002), were formulated for traffic complexity assessment. Their critical design entails rationally 

screening and aggregating the complexity factors through a variety of combination means (Prandini, Piroddi, 

Puechmorel, & Brázdilová, 2011). To reflect between-aircraft influence relationships, some research 

communities have intensively studied complexity from the perspective of complex systems. They 

mathematically described the between-aircraft proximity (e.g. approaching effect and potential conflict) in terms 

of the traffic tracking information (e.g., location and velocity) to reveal the irregularity and disorder of the entire 

traffic situation using fractal dimension, topological entropy, and Lyapunov exponent (Delahaye & Puechmorel, 

2010; Delahaye, Puechmorel, Hansman, & Histon, 2004; K. Lee, Feron, & Pritchett, 2009). These studies 

provided insights into traffic complexity but ignored the structural differences in interactions among aircraft. 

 

Fig. 1. Illustration of ship traffic encounter situations in complex waters. 

Complex network theory is an important theoretical framework for characterising complex systems and 

revealing the topological properties of system structures. It is a useful tool for investigating the relations between 

different parts in a system to help understand the pattern and behaviour characteristics created by interacting 

elements. Many systems allow the deployment of complex network theory by abstracting component units as 

(a) (b)
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interactions between units (Barabási & Albert, 1999; Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006). 

With the rapid development of complexity science, complex network theory has become more prevalent across 

many traffic research topics, including vulnerability and resilience analysis of air transportation networks (Wong, 

Tan, Chandramouleeswaran, & Tran, 2020), dependence relation recognition between air traffic network 

structure and safety events (Carro, Valdés, García, & Comendador, 2019), difficulty measurement that 

controllers encounter in different traffic situations (H. Wang et al., 2016), and quantitative assessment of marine 

traffic systems (Sui et al., 2020), from a macroscopic or microscopic perspective. As air and maritime traffic 

have all the characteristics of time-variable complex systems, there has been a growing trend towards 

microscopic traffic network complexity modelling using complex network theory. They (Sui et al., 2020; H. 

Wang et al., 2016) characterised air/maritime traffic as a complex network by denoting aircraft/ships as nodes 

and between-aircraft/ship-pair conflict relations as edges, and then used topological metrics to highlight the 

overall network performance to enhance operators’ perception capabilities for traffic operation situations. 

Despite their popularity, the practical applications of previous models have been limited, including 

⚫ First, most studies ignored the fact that the traffic situation dynamically evolves with time. Obviously, it is 

inadequate to assess a traffic situation by only considering its structural characteristics because capturing 

its traffic dynamic evolving trend is equally important, as it can help analyse the urgency of different traffic 

cases that need immediate solutions to conflicts. 

⚫ Second, the interactions or conflict relations between aircraft-pairs/ship-pairs are formulated based on ideal 

hypotheses, such as regular or constant traffic moving speeds and no environmental disturbance on traffic 

motion. However, the dynamics and uncertainty in traffic movements are detrimental to exploiting real 

traffic conflict patterns, especially for complex traffic scenarios.  

⚫ Third, most of the studies merely concentrated on the overall complexity of the traffic situation but 

overlooked the investigation of how much influence each node has on the traffic network. A thorough 

complexity evaluation that enables the identification of key influential ships is of significant value for 

facilitating conflict resolution.  

⚫ Fourth, compared with traditional methods, which are more dependent on assessment standards and 

unsuitable for processing high-dimensional data, advanced new traffic complexity evaluation techniques 

can accommodate big traffic data to better identify traffic complexity patterns and support traffic alerts.  

These challenges are yet to be addressed in the current literature. An overall solution will, therefore, no doubt 

https://www.collinsdictionary.com/zh/dictionary/english-thesaurus/recognition
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require a new holistic framework involving the advanced models performed jointly, revealing the high 

complexity of the method in this study. However, it is, in return, very beneficial to develop a feasible and reliable 

ship traffic complexity evaluation model from both theoretical and practical perspectives. This will shift the 

paradigm of the current ship collision risk avoidance practise by moving from a local (ship to ship in the same 

water) to a regional traffic network (ships across different neighbouring waters but with potential encounters 

with time) level analysis.  

2.3 Multiple index evaluation 

Typically, traffic complexity evaluation is by nature a high-dimensional, complex, and multiple-index 

assessment issue. It involves many topological metrics in complex network theory to describe traffic complexity 

characteristics. Conventional mathematical solutions to index integration include the Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) (K. Liu et al., 2016), fuzzy comprehensive evaluation (D. 

Liu et al., 2019), entropy weight method (Bian & Deng, 2018), grey relational analysis (J. Li et al., 2015), and 

support vector machine (SVM) (Yitian Xu, Xi, Lv, & Guo, 2012), among others. These approaches provide 

diverse perspectives for the interpretation of index interactions and help study complex systems. However, they 

have been criticised for their inherent weaknesses, such as subjectivity and difficulty in determining index 

weights, inability to process high-dimensional data, low resolution, and the requirement of a large number of 

training samples. In comparison, the FCI approach has recently been favoured by scholars because of its merits 

in handling high-dimensional index vectors and demonstrating quality clustering effects for multivariate data. 

The essence of this approach is to search for the optimal memberships of the assessment samples against 

different performance standards (e.g., risk levels and complexity patterns) based on the fuzzy set theory and an 

optimization algorithm (He, Zhou, Kou, Lu, & Zou, 2011). Compared with the above-named traditional methods, 

it is independent of the evaluation criteria by concentrating on the dataset’s characteristics and can figure out 

the randomness, uncertainty, and fuzziness of the dataset in the evaluation process (Lu, Shang, & Li, 2017; Lyu, 

Shen, Zhou, & Zhou, 2019; D. Wu et al., 2013). In addition, the performance of the FCI model has been verified 

by solving typical benchmark test problems and actual multi-index assessment cases (He & Wan, 2020; He et 

al., 2011). Despite this, current applications of FCI are mainly constrained in the field of complex engineering 

(Q. Wang & Yang, 2020), and there is little research on applying FCI to evaluate ship traffic risk. Therefore, this 

study pioneers the application of FCI to perform a complexity assessment task for global and regional maritime 

traffic. In addition, some improvements to the original FCI model are made by combining it with an intelligent 
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optimisation technique to enhance its searching ability for a global optimal solution and by designing a special 

optimisation objective function to achieve the integration of subjective and objective knowledge. In this way, it 

will produce better and more effective complexity evaluation results. 

3 Methodology: ship traffic complexity modelling and evaluation 

In this section, we provide a systematic description of the proposed ship traffic-complexity methodology. The 

methodology is outlined in four interactive steps, each of which is associated with methods of high dependency 

(see Fig. 2). Specifically, the conflict criticality between each pair of ships is first qualified. This step is achieved 

using a probabilistic CD framework, which can accurately estimate the conflict criticality in the presence of 

ship motion dynamics and uncertainty. Second, we construct a ship traffic complexity matrix based on the 

conflict interactions among ships to characterise the topological and evolutionary characteristics of ship traffic 

at a global level. After these two steps, the complexity matrix is evaluated to determine the complexity classes 

of the regional traffic situation. Finally, the key influential ships in the regional traffic situation are identified to 

assist in relieving traffic complexity. The critical supporting techniques in each step are elaborated in the 

subsequent subsections to demonstrate the logical flow of the methodology.  
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Fig. 2. Framework for ship traffic complexity modelling and evaluation.  

3.1 Probabilistic conflict detection  

A CD approach is first developed from a probabilistic risk viewpoint, in which the influence of uncertainty 

related to various sources on the potential conflict is considered. It is designed to quantify the conflict criticality 

between ship pairs and provide essential functionality for establishing a ship traffic network. The probabilistic 

CD approach is characterised by a conflict criticality measure and conflict probability estimation. 

3.1.1 Conflict criticality measure 

In general, a potential conflict exists if the predicted positions between ship pairs violate the safe separation 

criteria during the look-ahead period (Hernandez-Romero, Valenzuela, & Rivas, 2019; Mitici & Blom, 2018). 

This study characterises vessel conflict using a commonly used ship-domain model (Fujii & Tanaka, 1971). It 

is adaptive to restricted and high-density traffic areas but has low model complexity for practical applications. 

Fig. 3 shows an example of conflict identification. In the figure, a conflict between ships A and B is defined 

when the following inequality is satisfied during the look-head period. 

𝐷𝑖𝑠𝑡𝐴𝐵(𝑡) ≤ 𝑆𝐷𝐴(𝑡) + 𝑆𝐷𝐵(𝑡) (1) 

where DistAB is the distance between the two ships, and SDA and SDB represent the distances between the ship 

centres and their domain boundaries, respectively. Because we focus on identifying ship conflicts with ship 

motion uncertainty, inequality (1) is a probabilistic issue. 

 

Fig. 3. Ship conflict illustration. 

Given that the probability density function (PDF) for the unsafe separation (i.e. DistAB(t) ≤ SDA(t)+SDB(t)) 

SDA
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AB

A 2 B −
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between the two ships at time t is denoted as 𝑓𝐿(𝑡), the instantaneous occurrence probability of a conflict is 

expressed as follows: 

𝑃𝐶(𝑡) = Pr[𝐿(𝑡) ≤ 0] = ∫ 𝑓𝐿(𝑡)(𝜌)𝑑𝜌
0

−∞
 (2) 

where L(t) equals Dist(t)-SDA(t)-SDB(t).  

To further quantify the criticality of a conflict, an appropriate supporting metric in terms of the maximum 

conflict probability over a finite time horizon is designed to characterise the conflict as follows: 

𝐶(𝛾) ≔ max
𝑡∈[0,𝑇]

𝑃𝐶(𝑡) (3) 

where T represents the predicted time range. 

3.1.2 Conflict probability estimation 

The probabilistic CD is implemented in terms of the predicted ship trajectories with uncertainty. Hence, we 

extend CD into a probabilistic framework by developing a ship motion model for future uncertain trajectory 

prediction and a two-stage Monte Carlo (TSMC) simulation algorithm for precise conflict probability 

calculation. 

According to the survey in (Huang et al., 2020), interaction-aware prediction is the most accurate approach. 

This is because this category of methods assumes that ships estimate each other’s trajectories by exchanging 

their navigation plans or intentions through communications, whereas each ship has more relevant information 

related to its future trajectory. Consequently, a ship motion model is built by assuming that each ship obtains 

other ships’ navigation plans or planned trajectory information through interaction. 

Typically, a ship’s navigation plan is associated with a series of waypoints, denoted as WPi=1, 2, …, n+1, 

where the lines between consecutive waypoints constitute the movement route. This study considers the 

uncertainties inherent to the CD issue and models ship motion as a deterministic motion related to the navigation 

plan and an uncertain motion expressed by the probability distribution functions. Therefore, the ship motion 

model comprises three main modules: 1) a continuous dynamic model revealing the physical motion of the ship; 

2) a discrete dynamic model given by the navigation plan; and 3) an uncertainty module coinciding with diverse 

disturbances such as physical, environmental, and human factors. Specifically, the predicted position of ship A 

at the future moment T is computed using the following equation: 

𝑆𝐴⃗⃗⃗⃗ (𝑡𝑐 + 𝑇) = 𝑆𝐴⃗⃗⃗⃗ (𝑡𝑐) + ∫ 𝑉𝐴⃗⃗⃗⃗ (𝑡)𝑑𝑡 + 𝑅(𝜗𝐴
𝑇) ∙

𝑡𝑐+𝑇

𝑡𝑐
𝑄𝐴⃗⃗⃗⃗  ⃗(𝑇) (4) 

where 𝑡𝑐  denotes the current moment, 𝑆𝐴⃗⃗⃗⃗ (𝑡𝑐)  denotes the ship A’s initial position, 𝑉𝐴⃗⃗⃗⃗ (𝑡)  is the ship A’s 
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nominal speed and is described as a piecewise constant function related to the navigation plan, 𝑅(𝜗𝐴
𝑇) 

represents the rotation matrix related to the ship’s nominal heading course 𝜗𝐴
𝑇 at time moment T, and 𝑄𝐴⃗⃗⃗⃗  ⃗(𝑇) 

represents the time-dependent uncertain components associated with the ship's predicted position in the heading 

and lateral directions. Upon obtaining each ship’s uncertain trajectory distributions over the prediction horizon, 

whether inequality (1) holds can be further identified. Because of the uncertainty of the future trajectories of 

encountering ships, the existence of conflicts is also uncertain. 

The addition of the ship motion uncertainty module increases the computational cost of the conflict 

probability estimation. Therefore, a TSMC algorithm that enables fast computation of the conflict probability 

and provides the quantitative bounds of the approximation error is designed. This algorithm is developed in 

terms of the fact that only the maximum conflict probability during the prediction horizon needs to be precisely 

identified. Therefore, the time points with high conflict probabilities are first roughly extracted before 

conducting a larger number of Monte Carlo iterations. Thus, the algorithm can efficiently and accurately 

estimate the conflict criticality. A complete description of the probabilistic CD process can be found in (Xin, 

Liu, Yang, Zhang, & Wu, 2021). 

3.2 Ship traffic network complexity modelling 

As mentioned above, this study extends the application of complex network theory to ship traffic complexity 

modelling. Graph theory is the essence of complex networks. It considers the units in the network as nodes and 

the interrelations between the units as edges, thereby constructing a graph structure. This study identifies 

whether an edge exists between a ship pair based on the conflict criticality between them. If the conflict 

criticality between a ship pair exceeds a pre-defined safety threshold, they are connected by an edge, and the 

weight of the edge is measured by its actual conflict criticality value. In this manner, a ship traffic network can 

be built to lay the foundation for traffic network analysis. Such new quantitative and qualitative features allow 

for simultaneous analysis of the structural and evolutionary characteristics of the traffic network. The relevant 

work is elaborated as follows: 

3.2.1 Topological metrics of traffic network 

The complex network theory provides various lists of network indices to reveal the structural properties of a 

network. To evaluate a ship traffic network, we need to select indices that not only adapt to the basic features of 

ship traffic but also have high representativeness for network performance. Based on these two criteria, six 

indicators are chosen for the traffic network structure characterisation. 



16 
 

(1) Number of nodes 

The number of nodes (N), which is known as the network scale, is a basic characteristic of a network. The 

structure of a network strongly depends on its number. A larger number of ships in a ship traffic network is 

associated with a busier and more complex traffic environment. 

(2) Number of edges 

The number of edges (E) represents the number of connections (i.e., potential conflicts) between all ship 

pairs. Surveillance operators encounter tremendous regulatory pressure when many ships are in potential 

conflict. 

(3) Strength  

Node strength refers to the sum of the weights of the edges connected to one node. This study adopts the 

sum of all node strengths to reveal the total conflict intensity of a traffic situation, which is formulated using 

the following equation: 

𝑆 = ∑ ∑ 𝑤𝑖𝑗/2
𝑑𝑖
𝑗=1

𝑁
𝑖=1  (5) 

where N is the number of nodes, di is the number of nodes connected to node i, and wij is the edge weight 

between nodes i and j. The higher the value of S, the more dangerous the associated traffic situation. 

(4) Clustering coefficient 

The clustering coefficient (CC) describes and measures the clustering/proximity of nodes in a network. 

The local CC of node i is defined as the ratio of “the actual number of edges (𝑁∆(𝑖) ) between the nodes 

connecting with node i” to “the theoretical maximum number of edges between these nodes” as follows: 

𝐶𝑖 =
𝑁∆(𝑖)

𝑑𝑖(𝑑𝑖 − 1)/2
 (6) 

 

Fig. 4. Example of clustering coefficient calculation. 

Although this indicator reveals the proximity of one node to its nearby nodes, it cannot satisfy the general 

rules of ship traffic network complexity modelling, that is, adding a new ship or conflict edge should not result 

in a decrease in traffic complexity. This can be proven by observing Fig. 4. It is found that the clustering 

coefficient of node A decreased after node D and a new edge was added to the network. Therefore, some 
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adjustments are made based on the original metric, and the sum of 𝐶𝑖
′  is used to represent the clustering 

coefficient of the entire traffic network, which is expressed as follows: 

𝐶 = ∑ 𝐶𝑖
′𝑁

𝑖=1 = ∑ 𝑁∆(𝑖)
𝑁
𝑖=1  (7) 

The improved indicator can effectively quantify the degree of cross-conflict among ships while satisfying 

traffic network modelling principles. When the traffic network structure corresponds to a large value of C, this 

implies that conflicts among ships become challenging to resolve. This is because there is a high probability 

that the action taken by one ship for conflict resolution with another ship results in a higher collision risk with 

nearby ships. Hence, a large value of C is associated with a complex traffic situation in which conflict-resolution 

strategies are difficult to implement. 

(5) K-shell decomposition 

K-shell decomposition is a widely adopted technique in graph theory that divides the network structure 

into different layers/shells in terms of the position of the nodes in the network. It assigns an identical positive 

index (ksi) to the nodes in the same layer to help identify the central nodes and rank their global influential 

power (see Fig. 5). Therefore, the sum of ksi is adopted to reflect how the nodes are grouped from a global 

perspective, as follows: 

𝐾𝑆 = ∑ 𝑘𝑠𝑖
𝑁
𝑖=1  (8) 

A traffic network structure with a higher KS value indicates that many ships are close together with 

complex conflict relations; thus, more attention should be received from surveillance operators. 

 

Fig. 5. A schematic diagram of k-shell decomposition. 

(6) Largest component  

The largest component (LC) is a useful measure of the local cohesiveness of a network. It is the largest 

subgraph in a network, where there is at least one path between all node pairs. The size of the LC is expressed 

ks=3

ks=2

ks=1
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as 

𝜂 = |𝑆| (9) 

where |𝑆| represents the number of nodes in the LC. LC reveals the network’s local structural nature, and the 

larger the size of the LC, the more critical and complex the traffic network. 

3.2.2 Multi-stage and multi-topology traffic complexity matrix 

The ship traffic network structure is highly dependent on the conflict relations between the ship pairs, which 

further determines the outputs of the chosen topological indices. In this study, the criticality of a conflict is 

measured in terms of the maximum conflict probability over a finite prediction time horizon. Hence, the traffic 

network structure may differ significantly when different prediction time ranges are adopted. For a given ship 

traffic situation, if the detection time range is too short, there will be few connections between ship pairs. In 

contrast, the edges between ship pairs could be too large. Additionally, the shorter the conflict detection periods, 

the more urgent the appropriate collision avoidance manoeuvres to conflict (Goerlandt et al., 2015; Hu et al., 

2019; Zhen et al., 2017). Thus, this study defines short prediction periods as associated with urgent traffic 

networks, and long periods as related to relatively non-urgent traffic networks. 

To offer a complete description of the structural and evolutionary characteristics of traffic situations, a 

multi-stage and multi-topology-based ship traffic network complexity model is developed to quantify the 

complexity of traffic situations. We establish a two-dimensional spatial-temporal state matrix X using the row 

dimension to describe the evolutionary trend of a traffic situation and the column dimension to quantify the 

corresponding structural characteristics, as follows: 

𝑋 = (𝑥𝑡𝑠)𝑜×𝑝 = [

𝑥11 𝑥12
𝑥21 𝑥22

⋯ 𝑥1𝑝
⋯ 𝑥2𝑝

⋮ ⋮
𝑥𝑜1 𝑥𝑜2

⋱ ⋮
⋯ 𝑥𝑜𝑝

] (10) 

where o denotes the number of prediction time range thresholds for CD and p represents the number of chosen 

topological indices. The element xij in the state matrix represents the output of the jth topological metric 

corresponding to the network structure constructed based on the ith selected conflict-detection time threshold. 

Because ships could be in conflict at some time points (Chai, Weng, & Xiong, 2017; Weng, Meng, & Qu, 2012; 

Weng & Shan, 2015; X. Wu, Mehta, Zaloom, & Craig, 2016), especially for high traffic waters, the first-layer 

traffic network structure is constructed based on real-time conflict relations between ship pairs. Furthermore, 5, 

10, and 15 min are adopted as the detection time thresholds for network construction of the 2nd, 3rd and 4th layers, 

respectively. This is because we focus on the CD in the medium-term time range, that is, the order of tens of 
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minutes, whereas the long-term traffic motion and conflict prediction, that is, over a time horizon of several 

hours, are generally highly inaccurate and, on many occasions, not essential (Jilkov, Ledet, & Li, 2018; Prandini, 

Hu, Lygeros, & Sastry, 2000; Xiao et al., 2019). Consequently, a four-layer and six-topology network model is 

built to fully characterise current and near-future traffic situations. It is noteworthy that this model can be 

extended by setting different detection time thresholds or incorporating more useful network indices according 

to the traffic features of the regulatory waters and surveillance operators’ demands. 

3.2.3 Similarity measurement between different complexity matrices 

Based on the established traffic state matrix, a distance metric must be designed to calibrate the degree of 

closeness between the different traffic state matrices. The traditional Euclidean distance is commonly used to 

measure the similarity degree but ignores the influence differences of the elements in the state matrix. It is 

evident that each topological indicator contributes differently to the complexity of the traffic situation. In 

addition, the rows associated with urgent traffic network structures should be given higher weights because 

small detection time thresholds correspond to urgent conflict relations to be resolved, thereby having a more 

substantial influence on traffic complexity. Consequently, a weighted Euclidean distance metric is introduced 

to rationally define the distance between different traffic state matrices through the combination of a time-

weighted matrix and a space-weighted matrix. 

The forms of time-weighted and space-weighted matrices are expressed as follows: 

𝑊𝑡 =

(

 
 

𝑤𝑡,1
𝑤𝑡,2

⋱
𝑤𝑡,𝑝)

 
 

  

𝑊𝑠 =

(

 
 

𝑤𝑠,1
𝑤𝑠,2

⋱
𝑤𝑠,𝑝)

 
 

  

where 𝑤𝑡,𝑖 = 𝑓
𝑖/∑ 𝑓𝑖

𝑝
𝑖=1 , f denotes a fading time factor that satisfies 0<f<1, 0 ≤ 𝑤𝑠,𝑖 ≤ 1 and ∑ 𝑤𝑠,𝑖

𝑜
𝑖=1 = 1. 

Before computing the distance between two different state matrices, each element in matrix X should be 

normalised to eliminate the influence of the data dimensions using Eq. (11).  

𝑣𝑡𝑠 = (𝑥𝑡𝑠 − 𝑥min,𝑡𝑠)/(𝑥max,𝑡𝑠 − 𝑥min,𝑡𝑠) (11) 

where 𝑥max,𝑡𝑠  and 𝑥min,𝑡𝑠  are the maximum and minimum values in the tth row and the sth column, 

respectively. Consequently, matrix X can be transformed into matrix V (i.e. a normalised matrix), as follows: 
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𝑉 = (𝑣𝑡𝑠)𝑜×𝑝 = [

𝑣11 𝑣12
𝑣21 𝑣22

⋯ 𝑣1𝑝
⋯ 𝑣2𝑝

⋮ ⋮
𝑣𝑜1 𝑣𝑜2

⋱ ⋮
⋯ 𝑣𝑜𝑝

] (12) 

The distance between matrices Va and Vb is further computed by 

𝐷𝑎𝑏 = ‖𝑊𝑡𝑉𝑎𝑊𝑠 −𝑊𝑡𝑉𝑏𝑊𝑠‖ (13) 

Note that the complexity state matrices and weight matrices must be transformed into vector forms to make 

them adaptive to the complexity assessment approach in Section 3.3. The distance metric is fine-tuned as follows: 

𝐷𝑎𝑏 = ‖𝒘(𝒓𝒂 − 𝒓𝒃)‖ = √∑ [𝑤𝑖(𝑟𝑖𝑎 − 𝑟𝑖𝑏)]
2𝑚

𝑖=1  (14) 

where w = [wt,1·ws,1, wt,2·ws,1, …, wt,p·ws,o] = [w1, w2, …, wm], ra = [va,11, va,21, …, va,po] = [r1a, r2a, …, rma] and m 

= o×p. 

3.3 Traffic complexity evaluation 

One of the significant obstacles to using the traffic complexity state matrix for maritime traffic situation 

comprehension is the assessment of complexity classes or patterns (e.g., low-complexity, medium-complexity, 

and high-complexity). This is because the traffic complexity state matrix involves many evaluation indices, and 

there are nonlinear, strong coupling, and uncertain relationships among these indices. This study adopts the FCI 

approach as a solution. The direct application of the original FCI to ship traffic complexity evaluation has several 

technical deficiencies. Hence, further improvements and extensions are essential to produce reliable and 

practical evaluation results. 

3.3.1 Fuzzy clustering iterative approach 

A typical FCI approach uses an iterative computation procedure among the membership matrix, clustering 

centre matrix, and index weight vector to constantly optimise the target function until it finds the optimal U and 

S (Q. Wang & Yang, 2020). The operation details of the FCI approach are presented in the following section. 

Assume that there are n samples, each of which has m assessment indices, Aj = (a1j, a2j, …, amj). The 

sample dataset can be described as an m×n matrix, as follows: 

𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 = [

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋱ ⋮
⋯ 𝑎𝑚𝑛

] (15) 

where aij is the eigenvalue of index i for sample j; i = 1, 2, …, m; and j = 1, 2, …, n. 

To make different indices scale-invariant, dataset A is transformed into a normalised eigenvalue matrix R 

= (rij)m×n using Eq. (11). Meanwhile, we denote the fuzzy membership matrix as U = (ukj)c×n, and the fuzzy class 
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centre matrix as S = (sik)m×c, subject to constraints 0 ≤ 𝑢𝑘𝑗 ≤ 1, ∑ 𝑢𝑘𝑗 = 1
𝑐
𝑘=1  and 0 ≤ 𝑠𝑖𝑘 ≤ 1, where c is 

the number of classes in which n samples are clustered, ukj is the relative membership degree of sample j 

belonging to class k, and sik is the class centre of index i in class k. 

To obtain the optimal U and S, the objective function can be established by minimising the quadratic sum 

of the weighted Euclidean distance from all samples to different fuzzy class centres, which is given by the 

following expression: 

min[𝐹(𝑤𝑖 , 𝑢𝑘𝑗 , 𝑠𝑖𝑘)] = min{∑ ∑ (𝑢𝑘𝑗
2 ∑ (𝑤𝑖(𝑟𝑖𝑗 − 𝑠𝑖𝑘))

2𝑚
𝑖=1 )𝑐

𝑘=1
𝑛
𝑗=1 } (16) 

where wi is the weight of the ith index, satisfying 0 ≤ 𝑤𝑖 ≤ 1 and ∑ 𝑤𝑖 = 1
𝑚
𝑖=1 . 

Based on the Lagrange multiplier method (He et al., 2011; Lyu et al., 2019), the optimal U and S can be 

obtained through an iterative way using Eq. (17)-(18). 

𝑠𝑖𝑘 =∑𝑢𝑘𝑗
2

𝑛

𝑗=1

𝑤𝑖
2𝑟𝑖𝑗/∑𝑢𝑘𝑗

2

𝑛

𝑗=1

𝑤𝑖
2 (17) 

𝑢𝑘𝑗 = [∑
∑ [𝑤𝑖(𝑟𝑖𝑗 − 𝑠𝑖𝑘)]

2𝑚
𝑖=1

∑ [𝑤𝑖(𝑟𝑖𝑗 − 𝑠𝑖ℎ)]
2𝑚

𝑖=1

𝑐

ℎ=1

]

−1

 (18) 

until the following termination conditions are met.  

max
𝑘𝑗
|𝑢𝑘𝑗
𝑙+1 − 𝑢𝑘𝑗

𝑙 | ≤ 𝜀1 and max
𝑖𝑘
|𝑠𝑖𝑘
𝑙+1 − 𝑠𝑖𝑘

𝑙 | ≤ 𝜀2  

where l represents the iteration counter and 𝜀1 and 𝜀2 are the precisions for calculating ukj and sik, respectively. 

Although the FCI approach performs well in coping with complex nonlinear and high-dimensional 

problems, several limitations can be found through its application: (1) it is highly sample-dependent; (2) it is 

easily trapped in local convergence; and (3) it is strongly dependent on the users to identify the optimal number 

of classes c beforehand. 

With respect to the first issue, a constraint is added to the original target function to integrate the decision 

maker’s subjective cognition and objective information derived from the sample dataset. For ship traffic 

complexity evaluation, the number of nodes/ships is regarded as the basic characteristic of regional ship traffic, 

which generally has a more significant contribution to traffic complexity than other indices from the perspective 

of subjective cognition (Y. Wen et al., 2015). Therefore, the objective function of the FCI in this study can be 

redefined using Eq. (19). 
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min 𝑓 = min[𝐹(𝑤𝑖 , 𝑢𝑘𝑗 , 𝑠𝑖𝑘) + 𝐹(𝑤𝑖)]

= min [𝐹(𝑤𝑖 , 𝑢𝑘𝑗 , 𝑠𝑖𝑘) + 𝑀 ∙ max⁡( max
2≪𝑖≪𝑚

𝑤𝑖 −𝑤1, 0)
2] 

(19) 

where M is a penalty factor and w1 denotes the weight of the index of the number of nodes. By doing so, a more 

practical evaluation that combines subjective knowledge with objective information can be achieved. The form 

of Eq. (19) can be conveniently adjusted when more expert knowledge is available.  

With regard to the second issue, intelligent optimization techniques are often combined with the FCI to 

increase the possibility of finding the globally optimal solution (He et al., 2011; Zou, Liao, Ding, & Qin, 2019). 

Thus, an extended moth-flame optimisation algorithm which is combined with Gaussian mutation and chaotic 

local search, called GMCLS-MFO, is adopted to enhance the global optimisation performance of the FCI model. 

The relevant details of the extended MFO operation can be found in (Yueting Xu et al., 2019).  

Regarding the third issue, the Calinski–Harabasz (CH) index is used to identify the optimal number of 

classes. It is computed based on the ratio of the inter-cluster means and the intra-cluster sum of squares, as 

follows: 

𝐶𝐻 =
{∑ ∑ 𝑢𝑘𝑗

2∑ (𝑤𝑖(𝑠𝑖𝑘 − 𝑧𝑖))
2𝑚

𝑖=1
𝑛
𝑗=1

𝑐
𝑘=1 }/(𝑐 − 1)

{∑ ∑ 𝑢𝑘𝑗
2∑ (𝑤𝑖(𝑟𝑖𝑗 − 𝑠𝑖𝑘))

2𝑚
𝑖=1

𝑛
𝑗=1

𝑐
𝑘=1 }/(𝑛 − 𝑐)

 (20) 

where z = (z1, z2, …, zm) is the centre of the entire dataset. The larger the CH index, the better the classification 

performance. 

3.3.2 Extending FCI-based traffic complexity evaluation  

In this study, the enhanced FCI-based traffic complexity assessment approach is among the most important 

methodological contributions. It aims to provide a feasible and reliable evaluation associated with a hierarchical 

description of the traffic complexity patterns. The implementation of the approach comprises the following steps: 

Step 1: Sample extraction, pre-processing, and normalization  

Extract the sample dataset of ship traffic complexity state matrices in terms of real AIS-based trajectory 

data in the investigated waters. Subsequently, transform the complexity state matrices into vector forms to 

construct the sample dataset matrix. Subsequently, standardise the sample matrix to the normalised form for 

performing the extended FCI. 

Step 2: Parameter initialisation 

Initialise the parameters, including precisions 𝜀1 and 𝜀2, variable dimensionality to be optimised d, and 

number of complexity patterns c. 
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Step 3: Implement GMCLS-MFO  

Use the GMCLS-MFO to search for the optimal index weight vector. 

Step 4: Implement FCI 

Return the optimal fuzzy membership matrix U and the optimal clustering centre matrix S using the FCI. 

Step 5: Identify the optimal number of complexity patterns 

Determine the search range for the number of classes c (e.g., c = 2-10). Then, run step 2 to step 4 repeatedly 

for each number of classes and compute the corresponding CH index. Furthermore, identify the optimal c based 

on the CH index. 

Step 6: Output the evaluation results 

Use the following two indicators to evaluate each traffic complexity sample. 

𝐻𝑗
1 = arg⁡max

𝑘
𝑢𝑘𝑗 (21) 

𝐻𝑗
2 = 𝑅𝑗 ∙ 𝑤 (22) 

where 𝐻𝑗
1 represents the complexity pattern/grade of the jth sample and 𝐻𝑗

2 denotes its complexity value. The 

first indicator is determined based on the maximum membership of each sample, whereas the second indicator 

is identified in terms of the weighted sum of the normalised network complexity indices. 

Step 7: Test the validity  

Validate the effectiveness and reliability of the approach based on sensitivity analysis. It is performed in 

terms of the following two axioms (Fan, Blanco-Davis, Yang, Zhang, & Yan, 2020; Q. Yu, Liu, Chang, & Yang, 

2020): (1) a slight increase/decrease in a single factor should lead to a corresponding increase/decrease in the 

evaluation results; (2) the influence of multiple factor changes should be no less than that of a single factor 

change. Here, the effects of factor change on the assessment results are examined based on the degree of 

complexity pattern change and quantitative utility values using the following equations: 

𝐶𝐷 =
𝑛𝑝𝑐

𝑛
 (23) 

𝐼 = ∑ 𝑛𝑘
𝑐
𝑘=1 ∙ 𝑘 (24) 

where n represents the total number of traffic complexity samples, npc is the number of samples with changed 

complexity patterns after the values of factors/indices are adjusted, and nk represents the number of samples 

belonging to complexity pattern k. 

3.4 Key node identification in the traffic network 

Surveillance operators are not only required to proactively monitor a dynamic maritime traffic situation but also 
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to assist navigators in resolving potential conflicts. Therefore, identifying the key influential ships is crucial 

because the guidance for these key ships from a global perspective is helpful in relieving regional traffic 

complexity. It also provides a reference for operators at a local level to reduce the difficulty in controlling and 

mitigating collision risk. A node deletion method is the most typical system analysis method, which is adopted 

to determine the key influential ships in a traffic network. It has already been successfully applied to identify 

the key ports and airports in the traffic domain (e.g., H. Liu, Tian, Huang, & Yang, 2018; X. Wen, Tu, & Wu, 

2018). The main idea of this method is to calculate the changes in network performance after removing different 

nodes from the network. The more significant the drop in network performance, the more influential the node 

is. This method follows the procedure described in. 

⚫ First, the complexity value of the entire ship traffic network with nt nodes at a given time moment is 

calculated, denoted by 𝐻𝑡
2. 

⚫ Second, the ship traffic complexity network is reconstructed after deleting the qth (q = 1, 2, …, nt) node 

and the corresponding complexity with the remaining nt-1 nodes is calculated, denoted by 𝐻𝑡𝑞
2 . 

⚫ Third, the margin of 𝐻𝑡𝑞
2  against 𝐻𝑡

2 is figured out, defined by ∆𝐻𝑡𝑞
2 = 𝐻𝑡

2 − 𝐻𝑡𝑞
2 . 

⚫ Finally, the key nodes are identified based on the values of ∆𝐻𝑡𝑞
2 , a higher value of ∆𝐻𝑡𝑞

2  indicates that 

the node has a more significant impact on the overall traffic complexity.  

4 Applications and case study results 

In this section, we apply and evaluate the performance of the proposed traffic complexity evaluation method. It 

is organised as follows: Section 4.1 illustrates the case study and relevant AIS data. Section 4.2 presents the 

training results for the extended FCI-based evaluation model. Section 4.3 demonstrates how the proposed 

methodology improves regional maritime traffic interpretation and helps in relieving traffic complexity. Section 

4.4 performs a few statistical analyses of the traffic complexity patterns in the investigated waters, while Section 

4.5 conducts a model validation and comparison analysis. 

4.1 Study area and data description 

The Ningbo-Zhoushan port is selected as the experimental research area to test the proposed ship traffic 

complexity methodology. According to cargo throughput, it is the largest port globally, exposing high traffic 

density, restricted navigable waters, and sophisticated time-varying uncertainty in vessel movement. Therefore, 

the port is representative of the complex waters. AIS data records from the port are collected in November. 1, 

2018 to November. 30, 2018. The region for maritime traffic complexity evaluation is bounded between 
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longitudes 122°06E-122°16E and latitudes 29°49N-29°57N (see Fig. 6). Because vessels such as fishing ships, 

pilot boats, and tugboats often exist together for their missions and may not abide by conventional maritime 

safety rules, the AIS messages of general merchant ships, including cargo ships and tankers, are used for 

experimental analysis. 

 

Fig. 6. Illustration of Ningbo-Zhoushan Port, China. 

Although AIS provides a powerful and easy-to-access data source for maritime traffic research, the 

collected data often encounters issues such as missing data or position and speed information errors due to 

various technical failures. Therefore, the AIS data pre-processing module is essential for enhancing data quality. 

This study adopted a systematic pre-processing procedure to clean the data, including noise elimination of each 

vessel attribute (Kang, Meng, & Liu, 2018), trajectory extraction and separation, trajectory consistency 

confirmation (L. Zhao, Shi, & Yang, 2018), and trajectory interpolation (L. Zhang et al., 2019). In this manner, 

we can eliminate possible noise and reconstruct clean and reliable trajectory data for experimental analysis. In 

other words, this data cleansing process is a pre-condition for real-time analysis. 

4.2 Model training results 

This subsection presents the offline training results of the extended FCI-based complexity evaluation model in 

terms of the procedure described in Section 3.3.2. We also demonstrate how the proposed evaluation approach 

improves based on the three deficiencies of the original FCI model mentioned in Section 3.3.1. 

Fig. 7 first shows the boxplot of CH index statistics with the different number of complexity classes. 

According to the assessment standard of the CH index, the number of classes c = 2 corresponds to the best 

classification performance. The problem is that one may not take advantage of the FCI model to support a 

hierarchical complexity pattern assessment when c is too small. This is because the small c is insufficient to aid 

maritime surveillance operators in identifying how complex the traffic situation is at a more fine-grained scale. 

 Hub areas of Ningbo-Zhoushan Port
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Therefore, by considering both the values of the CH index and the application effects of the FCI model, the 

traffic complexity is divided into six classes/patterns: very low (VL), low (L), slightly low (SL), slightly high 

(SH), high (H), and very high (VH) complexity. Additionally, it is shown that searching for the optimal number 

of classes within 2-10 is acceptable as the keen point occurs when c = 6 and the CH index then keeps falling. 

 

Fig. 7. Change in CH index with the increase in the number of complexity classes/patterns. 

In addition to making use of the CH index to address the third issue in the original FCI model, 

improvements in terms of the first two issues in FCI are also analysed. Fig. 8 further illustrates the training 

results of the index weight w and clustering centre S when the number of complexity patterns is six. According 

to Fig. 8 (a), the first five indices have equal importance to traffic complexity, whereas LC is relatively less 

influential. However, if no subjective knowledge, that is, the index of the number of ships has the largest 

contribution to the traffic complexity, is incorporated into Eq. (16), the training results of each index weight are 

overdependent on the features of the sample dataset, which may not meet the general knowledge of maritime 

surveillance operators. It is also observed that the cluster centre distributions of the network indices at different 

traffic network layers depict similar modes (see Fig. 8 (b)). These training results assist in identifying real-time 

complexity pattern memberships of new traffic scenarios. In addition, the optimisation performance of the 

proposed GMCLS-MFO-FCI model is compared with that of the MFO-FCI model. Here, the original FCI is not 

adopted for comparison because its procedure is infeasible for the constrained objective function, Eq. (19). As 

shown in Fig. 9, the proposed model converges faster and exhibits better stability, thereby confirming its 

effectiveness and superiority. 
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Fig. 8. (a) Weights of different network indices; (b) clustering centres of different traffic complexity patterns. 

 

Fig. 9. Iteration optimisation processes of GMCLS-MFO-FCI and MFO-FCI model. 

4.3 Application case analysis 

In this subsection, the performance of the proposed traffic complexity approach is demonstrated using 

application case analysis. It starts by illustrating its online application in traffic complexity recognition using a 

case example, which is related to methodological steps 1-3 in Section 3. Subsequently, the feasibility and 

effectiveness of the approach for traffic complexity mitigation are shown via traffic network heterogeneity 

analysis and key influential ship identification, which are associated with methodological step 4. 

4.3.1 Real-time regional traffic complexity evaluation 

An example of the ship traffic complexity evolution over three hours within the research area is shown in Fig. 

10. In Fig. 10 (a), the memberships provide a fine-grained hierarchical description of the traffic situations. It 

can be clearly seen that the membership distributions of different complexity patterns change over time. 

Moreover, it is relatively easy to find that the periods from 1.2-1.4 and 1.65-2.05 hours are in high traffic 

complexity situations because the membership of very high (VH) and high (H) complexity patterns occupies a 
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large proportion. This finding can support and assist surveillance operators in monitoring and offering timely 

hazard warnings. Fig. 10 (b) shows the changes in the two comprehensive evaluation indices (Eq. (21) and (22)) 

over time: These two indices exhibit consistent trends, which are beneficial for comprehending traffic 

complexity and enhancing the perceptual abilities of traffic controllers.  

To better understand the proposed complexity evaluation approach, Fig. 10 (c) illustrates the process of 

obtaining complexity evaluation results at a random moment. In the figure, steps I–II show the conflict 

probability computation for ship pairs based on the probabilistic CD approach. More information on the 

performance of the probabilistic CD model can be found in the previous work (Xin et al., 2021). Steps III-IV 

demonstrate the process of constructing the multi-stage and multi-topology-based traffic network complexity 

model, which depends on the conflict interactions among ships. Step Ⅴ presents the memberships of the traffic 

complexity patterns and corresponding evaluation results based on the improved FCI approach. 

 

 

Fig. 10. Ship traffic situation evolution. (a) Membership histogram of ship traffic complexity patterns over time; 

(b) curves of traffic complexity assessment indicators over time; (c) illustration of traffic complexity 

(Ⅰ) Spatial distributions of ship position
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computation at time t = 110 min. 

4.3.2 Traffic network heterogeneity analysis and key risk ship identification 

To investigate the features of the traffic network topology structure, the variance of the node degrees (i.e., the 

number of edges to one node) is applied to measure the heterogeneity of the node degree distributions under 

different traffic situations. According to Fig. 11, a high-complexity pattern/value typically indicates a large 

degree of variance. These results suggest that when the traffic complexity is higher, the distributions of node 

degrees are more unbalanced. There is a high probability that several key influential ships occupy the majority 

of conflict edges over the entire traffic network. By contrast, the remaining ships are associated with very few 

edges. Therefore, the identification of key risk ships, especially in high ship traffic complexity situations, would 

be of great practical significance for conflict resolution and traffic complexity reduction. 

 

Fig. 11. (a) Boxplot of variance of degree distributions with respect to different traffic complexity patterns; (b) 

relation between variance of degree distributions and H2. 

Fig. 12 presents an example of the key node identification based on the node deletion method in Section 

3.4. In Fig. 12 (a), it is easy to see which ships have a significant influence on the entire traffic network based 

on the colour index, assisting operators in resolving potential conflicts. Fig. 12 (b) further illustrates the decline 

in traffic complexity after deleting each ship from the traffic network. From the figure, 5 ships are more critical 

to the traffic situation, while the rest are less influential. This result implies that the investigated ship traffic 

network is heterogeneous. In addition, the dynamic changes of the traffic complexity against the ratio of 

removed ships based on deliberate deletion (i.e., deleting the ships based on the descending rank of their 

importance) and random deletion are analysed. According to Fig. 12 (c), the deliberate deletion contributes to a 

significant reduction in traffic complexity. In particular, the complexity index significantly decreases from 0.26 

https://www.collinsdictionary.com/zh/dictionary/english-thesaurus/normally
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to 0.15 after the first two crucial ships are separated from the traffic network. In contrast, the random deletion 

leads to a relatively small decline. This phenomenon means that the identification of key influential ships as 

well as the risk management for these ships are essential and beneficial to relieve traffic complexity, especially 

from a global traffic surveillance management perspective. 

 

 

Fig. 12. (a) Ship traffic network topology; (b) traffic complexity margins of separated nodes; (c) dynamics of 

traffic complexity against the ratio of removed ships. 

4.4 Statistics analysis of traffic complexity characteristics 

Statistical analyses of real AIS data are conducted to reveal the characteristics of ship traffic complexity patterns. 

Fig. 13 shows the probability distributions of the different traffic complexity patterns within the study area. It 

is noticeable that the very low (VL) and very high (VH) complexity patterns jointly account for a minor 

occurrence frequency, whereas the remaining patterns occupy a large proportion. This indicates that ship traffic 

situations primarily exhibit relatively medium-level complexity patterns. In addition, the relatively small 

percentage of VL and VH complexity patterns also means that the proposed complexity pattern classification 

approach would neither result in traffic controllers being subject to extremely severe safety pressure nor make 
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them inefficient in supervising maritime traffic. 

 

Fig. 13. Occurrence probability of different traffic complexity patterns. 

Fig. 14 illustrates the temporal distribution of traffic complexity patterns for every hour of the day. In the 

figure, the peak periods associated with higher traffic complexity patterns can be observed during 10:00-16:00, 

which matches the water traffic situation where high traffic intensity usually occurs during the daytime. Safety-

related navigation departments can implement appropriate risk-control strategies based on statistical analysis to 

ensure the safety of traffic management. The analysis results also serve as a practical reference for balancing 

the operators’ workloads because the monitoring pressure within different periods varies significantly. 

 

Fig. 14. Probabilities of different traffic complexity patterns against the time of day. The horizontal axis with 

label 2 represents 00:00-01:59. 

To identify the dynamic evolutionary characteristics of the traffic complexity patterns, the life cycle of 

the complexity patterns is investigated. This is defined as the existing duration of a traffic complexity pattern 

from occurrence to transfer to another pattern. According to Fig. 15, a high traffic complexity pattern is 
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associated with a short lifecycle. This is primarily attributed to the fact that the higher the traffic complexity 

pattern, the more frequent the sailing activities, and the lower the predictability of the traffic situation. Thus, 

this analysis reveals the relationship between traffic complexity patterns and the life cycle and may facilitate 

the implementation of risk management measures. 

 

Fig. 15. Life cycle of different complexity patterns. 

Furthermore, the transition probability of traffic complexity patterns is explored to fully understand the 

evolving mechanism in traffic situations. As listed in Table 1, two exciting phenomena are observed. First, one 

pattern has the highest proportion of keeping the same complexity pattern in the next moment, followed by the 

transfer to its nearest patterns, whereas jump transitions are less likely to occur. This implies that the ship traffic 

situation will evolve steadily in most cases but may occasionally show dramatic variation. Second, a higher-

complexity pattern corresponds to a larger probability of transferring to other complexity patterns. This may be 

explained by the fact that maritime operators generally take measures to mitigate potential collision risk when 

facing complex traffic situations. Hence, high-complexity patterns will not last too long. These investigations 

provide a prerequisite for future traffic complexity pattern prediction and will enhance proactive traffic 

management. 

Table 1. Transition probabilities between different complexity patterns.  

Pattern Very Low Low Slight low Slight high High Very high 

Very Low 94.2% 5.2% 0.4% 0.1% 0.1% 0.1% 
Low 1.5% 81.2% 14.2% 3.0% 0.0% 0.0% 
Slight low 0.1% 15.3% 77.7% 6.1% 0.7% 0.1% 
Slight high 0.0% 2.7% 7.3% 76.6% 13.1% 0.2% 
High 0.0% 0.0% 1.0% 16.9% 71.6% 10.4% 
Very high 0.0% 0.0% 0.4% 0.4% 20.1% 79.1% 

In addition, Fig. 16 shows the statistical relationships between the number of ships and traffic complexity. 

Both the complexity patterns and complexity values are significantly positively correlated with the number of 
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ships. However, high traffic complexity patterns do not necessarily mean high traffic density. This can be proved 

by observing Fig. 16 (b), where the number of ships is in the range of 15-42 when the traffic situations have 

very high (VH) complexity patterns. In other words, using one metric, such as the number of ships, is insufficient 

to capture the entire picture of traffic complexity. In addition, it is found that an indicator H2 greater than 0.27 

usually implies a very high complexity pattern. Therefore, it can be set as the threshold to declare high traffic 

complexity and assist operators in triggering early warnings. 

  

Fig. 16. (a) Boxplot of number of ships to different traffic complexity patterns; (b) relationship between the 

number of ships and H2. 

4.5 Model validation and comparison analysis 

4.5.1 Sensitivity analysis results 

Model validation is an essential step to ensure the effectiveness of traffic complexity evaluation results. 

According to step 7 in Section 3.3.2, this study applies a sensitivity analysis to check the robustness of the new 

methodology. Table 2 summarises the single-factor change analysis by considering factors including the number 

of nodes and the number of edges associated with the traffic network structure in the first stage as examples. It 

can be seen that the increases/decreases of a single factor contribute to the changes in CD and I. A more 

considerable change in a single factor leads to a more significant variation in the assessment results. In other 

words, the model coincides with the first axiom. 

Table 2. Model validity test (1). 

Change rate of 
N1 

CD I 
Change rate of 
I 

Change rate of 
E1 

CD I 
Change rate of 
I 

Prior value 0 74231 - Prior value 0 74231 - 
+10% +11.86% 77134 +3.91% +10% +0.88% 74424 +0.26% 
+20% +22.59% 79882 +7.61% +20% +1.76% 74615 +0.52% 
-10% +12.32% 71299 -3.95% -10% +0.87% 74041 -0.26% 
-20% +25.55% 68076 -8.29% -20% +1.84% 73829 -0.54% 

Table 3. Model validity test (2). 
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Change rate of N1 / +10% +10% +10% +10% +10% 
Change rate of E1 / / +10% +10% +10% +10% 
Change rate of S1 / / / +10% +10% +10% 
Change rate of C1 / / / / +10% +10% 
Change rate of KS1 / / / / / +10% 

CD 0 +11.86% +12.72% +13.66% +13.68% +15.00% 
I 74231 77134 77326 77536 77540 77836 
Change rate of I - +3.91% +4.17% +4.45% +4.46% +4.86% 

Table 3 further illustrates the multiple factor change analysis. It is found that with the increased number of 

changed factors, the CD continually grows from 0 to 15.00%. Similarly, certain responses related to the index I 

can also be observed. Therefore, the model is in line with the second axiom. These analyses partially validate 

the feasibility and performance of the proposed methodology. 

4.5.2 Comparison analysis with other approaches 

Currently, ship traffic complexity evaluation is an emerging topic under development in the field of maritime 

traffic with increasing traffic in narrow waters, such as ports, and the development of autonomous ships. To 

demonstrate the superiority and practical usability of the proposed complexity methodology, it is compared with 

recently developed models related to ship traffic complexity or regional collision risk. Because the parameters 

in these existing models are difficult to determine and are inapplicable to the selected complex waters, we focus 

on a theoretical comparison analysis instead of a quantitative performance comparison. According to Table 4, 

all of these existing models are specific to open waters. Regional traffic complexity analysis that is adaptive to 

dynamic and uncertain ship traffic in complex and restricted waters has never been approached. Specifically, 

they estimate the converging/diverging trends or potential conflicts among ships based on the assumption that 

the ships maintain their course and speed during the look-ahead period, which hinders their application in 

nonlinear ship motion cases. Furthermore, one model (Sui et al., 2020) used complex network theory to describe 

the topological characteristics of ship traffic networks but failed to account for traffic's dynamic evolving 

properties. Hence, it is difficult to reveal how urgent different traffic scenarios require immediate action for 

collision avoidance. However, the proposed methodology fully considers the dynamic and uncertain ship motion 

behaviours and the structural and evolutionary features related to the conflict interactions among ships, which 

therefore adapts to more general traffic scenarios and provides a better understanding than other relevant 

methods. 

Table 4. Comparison with other ship traffic complexity or regional collision risk models. 

Methods Research focus 

Model 
handling 
dynamic and 
uncertain 

Model 
adaptive to 
water areas 

Traffic 
information 
dimension 

Model considering 
influencing factors 
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traffic 

Wen et al. 
(2015)  

Marine traffic 
complexity 

No Open sea One (space)  
Traffic density, ship 
dynamic attributes 

W. Zhang et 
al. (2019)  

Regional vessel 
collision risk 

No Open sea One (space)  
Traffic density, ship 
dynamic attributes 
and ship domain 

Sui et al. 
(2020) 

Marine traffic 
complexity 

No Open sea One (space)  
Ship dynamic 
attributes, traffic 
topological features 

Z. Liu et al., 
(2019) 

Regional vessel 
collision risk 

No Open sea 
Two (time and 
space) 

Ship domain, 
collision avoidance 
manoeuvre 

van Westrenen 
& Ellerbroek 
(2015) 

Single ship 
complexity in 
multi-ship 
situations 

No Open sea 
Two (time and 
space) 

Ship domain, 
conflict resolution 
space 

Proposed 
approach 

Marine traffic 
complexity 

Yes Any 
Two (time and 
space) 

Ship domain, traffic 
topological and 
evolutionary 
features 

 

5 Conclusion and future research 

This study introduces a systematic ship traffic complexity evaluation approach to comprehend the maritime 

traffic situation and enhance maritime traffic situational awareness. It integrates probabilistic conflict detection, 

traffic complexity modelling, and evaluation to produce reliable perception outputs, which effectively justifies 

the methodological complexity caused by the involvement of multiple methods. If applied, the results could 

contribute to significant changes in the current ship anti-collision best practices. More specifically, the potential 

encounters among ships across different neighbouring waters in the same region can be considered as early as 

possible from a traffic network perspective to minimise the possible conflict probability of ships when they 

encounter the same water locally. It could even present a higher value when the entire shipping industry moves 

away from manned to autonomous ships. The developed methodology is embedded with the following new 

features: 1) the dynamics and uncertainty in ship movements are considered to ensure their applicability to 

various complex traffic scenarios; 2) a multi-stage and multi-topology dynamic traffic network model is 

developed by extending the application of complex network theory, which fully characterises the structural and 

dynamic evolving properties of traffic situations; and 3) the employed FCI-based evaluation approach is 

practical, reliable, and has the ability to present a fine-grained hierarchical description of the traffic complexity 

patterns rather than being solely based on a single assessment value.  

Real data-based experiments are conducted to demonstrate and test the performance of the proposed 

methodology. The results show that the proposed method can effectively detect ship collision scenarios and 
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allow the traffic complexity patterns to be evaluated hierarchically, and hence could be used in practise to help 

improve traffic situation awareness. In addition, the complexity method can identify the key influential ships in 

a complex traffic network, which could facilitate the resolution of traffic conflicts from a strategic level instead 

of being dependent on the navigators to tackle them locally. In addition, some critical research findings and 

possible implications are discussed in terms of traffic network heterogeneity analysis; statistics including 

occurrence frequency, temporal distribution, life cycle, and transition probability of different traffic complexity 

patterns; and the correlation between the number of ships and traffic complexity levels. The validity and 

superiority of the new method are further investigated through sensitivity analysis and comparative analysis 

with existing relevant research. The existing techniques could result in inaccurate estimations of uncertain traffic 

movements and have difficulty revealing dynamic traffic evolutionary characteristics. In contrast, the developed 

complexity methodology estimates traffic complexity better by simultaneously incorporating the topological 

and evolutionary characteristics of traffic networks and ship movement uncertainty. Its methodological 

contributions could be further demonstrated by its generalisation and possible tailoring for application in all 

types of traffic scenarios. 

Current ship collision avoidance still focuses on ship pair analysis at the local level. However, in high-

traffic waters, the countermeasures used by ship A to avoid conflict with ship B could increase the risk of conflict 

with the other ships (i.e., C and D) in the same water. This will force ships to keep manipulating their courses 

and speeds, which is very costly for both human-crewed and autonomous ships, or mixed traffic. This study 

shifts the ship conflict risk analysis from the ship pair local to the global/regional level, where the conflict risk 

of multiple ship encounters can be better managed. Therefore, implementing the proposed approach in an 

intelligent traffic service system can support maritime traffic situational awareness and traffic safety 

management in complex waters. 

Future research will focus on the following aspects: First, the performance of the proposed model requires 

further testing before it can be practically applied in complex port waters. This study only checked the traffic 

complexity evaluation models in traffic scenarios generated using historical AIS data. In the future, an 

effectiveness evaluation can be conducted by incorporating the proposed models into the current commercial 

systems for maritime transportation surveillance. Second, the influence of the risk perception difference on 

probabilistic collision detection, especially for the interaction between large and small ships, could be 

investigated. When encountering ships that are spatially close to each other, large ships are often subject to high 
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collision avoidance pressure and require an earlier alert. Hence, further efforts will be made to integrate the risk 

perception difference into the traffic complexity evaluation by constructing directed ship traffic networks. Third, 

ship manoeuvrability needs to be further factored into traffic complexity estimation in that ships with good 

manoeuvrability usually have higher capabilities to reduce collision risk. Fourth, the traffic complexity model 

could be expanded to forecast future traffic complexity peaks using advanced machine learning techniques, such 

as deep learning and support vector machines. This will facilitate the perception of forthcoming traffic 

complexity in advance and enhance proactive traffic surveillance capacity. Fifth, the aggregation effect of multi-

ship control on traffic complexity mitigation requires further attention and investigation. For example, we 

assume that the importance of ships A and B in a regional traffic situation is calculated as Ea and Eb, respectively. 

When ships A and B are simultaneously deleted from the traffic network, the traffic complexity reduction may 

hold Ea,b > Ea+Eb. This means that the best solution for conflict risk reduction could be derived from the joint 

guidance of multiple ships in a traffic network. Therefore, how to efficiently examine the importance of multiple 

ships in a regional traffic situation and then design appropriate conflict resolution strategies can be researched 

in the future. Finally, we consider developing an improved model to achieve an adaptive switch between 

regional and local traffic complexity measurements so that surveillance operators can gain maritime traffic 

situational awareness at different scales based on their real-time demands. 
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