
Belfield, SJ, Firman, JW, Enoch, SJ, Madden, JC, Erik Tollefsen, K and Cronin, 
MTD

 A Review of Quantitative Structure-Activity Relationship Modelling 
Approaches to Predict the Toxicity of Mixtures

http://researchonline.ljmu.ac.uk/id/eprint/18083/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Belfield, SJ, Firman, JW, Enoch, SJ, Madden, JC, Erik Tollefsen, K and 
Cronin, MTD (2022) A Review of Quantitative Structure-Activity Relationship
Modelling Approaches to Predict the Toxicity of Mixtures. Computational 
Toxicology. p. 100251. ISSN 2468-1113 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Computational Toxicology 25 (2023) 100251

Available online 8 November 2022
2468-1113/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A review of quantitative structure-activity relationship modelling 
approaches to predict the toxicity of mixtures 

Samuel J. Belfield a,*, James W. Firman a, Steven J. Enoch a, Judith C. Madden a, 
Knut Erik Tollefsen b,c,d, Mark T.D. Cronin a 

a School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom 
b Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo N-0579, Norway 
c Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway 
d Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway   

A R T I C L E  I N F O   

Keywords: 
QSAR 
Mixture toxicity 
Review 
Modelling 
Uncertainty 

A B S T R A C T   

Exposure to chemicals generally occurs in the form of mixtures. However, the great majority of the toxicity data, 
upon which chemical safety decisions are based, relates only to single compounds. It is currently unfeasible to 
test a fully representative proportion of mixtures for potential harmful effects, and as such in silico modelling 
provides a practical solution to inform safety assessment. Traditional methodologies for deriving estimation of 
mixture effect, exemplified by principles such as concentration addition (CA) and independent action (IA), are 
limited as regards the scope of chemical combinations to which they can reliably be applied. Development of 
appropriate quantitative structure-activity relationships (QSARs) has been forwarded as a solution to the 
shortcomings present within these techniques – allowing for the potential formulation of versatile predictive 
tools capable of capturing the activities of a full contingent of possible mixtures. This review addresses the 
current state-of-the-art as regards application of QSAR towards mixture toxicity, discussing the challenges 
inherent in the task, whilst considering the strengths and limitations of existing approaches. Forty studies are 
examined within – through reference to several characteristic elements including the nature of the chemicals and 
endpoints modelled, the form of descriptors adopted, and the principles behind the statistical techniques 
employed. Recommendations are in turn provided for practices which may assist in further advancing the field, 
most notably with regards to ensuring confidence in the acquired predictions.   

1. Introduction 

A significant proportion of toxicological and physicochemical anal
ysis is performed upon single compounds, yet the scenario of one being 
exposed to a single chemical in isolation is unrealistic [82]. In reality, 
both humans and environmental species face various, ever-changing 
mixtures of chemicals throughout daily life [21]. Most, if not all, 
chemicals are encountered as mixtures, for instance specifically mar
keted formulated mixtures such as pesticides, food and feed additives 
and cosmetics (typically referred to as intentional mixtures). In addition, 

exposure to mixtures of chemicals that may interact is not limited to 
manufactured products. For example, co-administration of drugs may 
lead to drug-drug interactions and environmental pollutants may also 
present themselves unintentionally as mixtures from different sources 
[36,58]. The prevalence of mixtures occurring either intentionally or 
unintentionally is evidently large, although only partial regulation of 
intentional mixture is currently provided [28]. 

Chemical mixtures can be defined as combinations of two or more 
chemicals that retain their individual, unaltered chemical identities 
[21]. In certain circumstances, mixtures may be more problematic when 

Abbreviations: AOP, Adverse Outcome Pathway; CA, concentration addition; DHFR, dihydrofolate reductase; ELUMO, energy of the lowest unoccupied molecular 
orbital; ELUMO + 1, energy of the second lowest unoccupied molecular orbital; ECHA, European Chemicals Agency; EU, European Union; IA, independent action; 
INFCIM, INtegrated Concentration Addition-Independent action Model; NOEL, no-observed-effect level; QSAR, quantitative structure–activity relationship; QSI, 
quorum sensing inhibitor; SiRMS, Simplex Representation of Molecular Structure; SMILES, simplified molecular input line entry system; TMP, trimethoprim; UVCB, 
unknown or variable composition, complex reaction products or biological materials. 
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compared to single compounds; a significant concern arises where the 
individual components are present in mixtures at concentrations where 
no effect would be anticipated e.g., lower than the no-observed-effect 
level (NOEL), yet in combination may have the potential to exert un
expected toxicological effects [22,21]. In addition, one of the key actions 
of the European Union’s (EU’s) recent “Chemicals Strategy for Sus
tainability Towards a Toxic-Free Environment” is to take account of the 
effects of chemical mixtures [23]. However, as the ability to assess the 
vast number of potential combinations of substances using traditional 
experimental toxicity testing is unfeasible [21], the value that predictive 
approaches can provide to mixture toxicity is anticipated to play an 
increasingly important role in toxicity assessment. 

Traditional approaches for hazard assessment of chemical mixtures 
may either consider the mixture as a whole (top-down), or contributions 
from the individual components (bottom-up). In general, assessments 
are typically driven by bottom-up frameworks, where the individual 
toxicities of all components are known and then modelled mathemati
cally to predict the combined effect of a mixture [29]. In such bottom-up 
or component-based approaches, it is essential to consider the influence 
of interactions which may arise between individual components. Where 
it is presumed that each constituent compound does not impact upon the 
biological activity of the other, the combined toxicity of a mixture is 
estimated according to the principle of additivity [21,81]. Should 
components be understood to operate through similar modes of action, 
this is typically framed through application of concentration addition 
(CA) [46]. Alternatively, those with dissimilar modes may be modelled 
with assumption of independent action (IA) [5]. These have since been 
termed “first generation” techniques [38]. Whilst the decision on which 
to adopt is dependent upon the nature of the mixture under examina
tion, the enhanced conservatism inherent within CA has led to its 
emergence as the generic methodology particularly favoured by risk 
assessors [3,20,37]. “Second generation” models, further accounting for 
variation in mode of action and in turn combining elements of both 
approaches (integrated addition) later emerged – with uptake generally 
restricted on account of the greater quantities of empirical data required 
in their training [38]. 

Deviations from the ideal of additivity may be noted in instances 
whereby inter-component interactions do occur. The prevalence of such 
non-additive effects must not be understated, with a recent literature 
review by Martin et al. [52] observing such behaviours within almost 
half the experimental mixture studies they review (n = 1220). The term 
“synergy” describes the phenomenon through which mixture activity is 
observed as greater than that predicted by simple additivity, and 
“antagonism” the inverse in which it is less than [2,6,29,63]. Neither CA 
nor IA is equipped to handle such eventualities, and as such the potential 
occurrence of either serves to contribute greatly towards uncertainty 
surrounding estimation of overall mixture toxicity – notably at very low 
exposure levels [9,29]. Whilst the concept of the “funnel hypothesis” has 
been forwarded as a means of rationalising the observation that devia
tion from additivity is less common amongst multi-component (greater- 
than-binary) mixtures [79], the occurrence of both synergy and antag
onism remains challenging to forecast. 

In order to assess the toxicity of a greater number and form of mix
tures, both additive and non-additive, there is scope for the application 
of further modelling approaches. One such class of models are quanti
tative structure-activity relationships (QSARs). QSARs have been used 
widely in various industrial sectors to predict a range of toxicity end
points, as well as enabling data gap filling [51]. Predictions are 
formulated through identifying the correlation between quantifiable 
properties of the chemical, and the endpoint of concern – thus a model 
may allow for estimation of missing data by making use of structural 
information [15]. One of the earliest applications of QSARs towards 
mixtures was reported by Könemann [41], where it was recognised that 
the additive toxicity of mixtures could be predicted without use of 
empirical mechanism of toxic action data. Following this, much effort 
has been put into further development of related methods – since 

labelled “third generation”. Significant scope exists for utilisation of 
such approaches, on account both of their practicality and potential 
predictive power. Ready generation of input parameters through 
employment of computational techniques may allow for data generation 
and broadening of applicability domain. 

With regard to safety assessment, there is an ever-growing need for 
the harmonisation of approaches that address the effects of mixtures on 
human health and the environment. The role of in silico methods within 
the determination of mixture toxicity is deemed essential yet requires 
careful consideration of the array of challenges and gaps that currently 
exist [11]. For example, deficiencies in appreciation of realistic co- 
exposure scenarios, component interactions, mechanistic knowledge 
and grouping criteria may each impede progress [7]. Ensuring resolu
tion of these issues will undoubtedly require “extensive strategic trans
disciplinary initiatives”, and as such it is inevitable that in silico 
approaches will be of immense value within mixture safety assessment 
[16]. However, it is acknowledged that available QSAR workflows for 
the analysis of mixtures are insufficient (Muratov et al., 2012). To enable 
a better understanding of the state-of-the-art, this study presents a 
narrative review of the different QSAR approaches to predict mixture 
effects within chemical safety assessment (i.e., toxicological studies). 
Knowledge identified from the review can be utilised to supplement 
current QSAR uncertainty assessment schemes. 

2. Materials and methods 

2.1. Collection of literature 

Literature relating to the use of QSAR for the assessment of mixture 
toxicity was identified using the Web of Science database. To ensure that 
all relevant work was captured, a broad search was conducted for 
studies from 1970 onwards. Keywords selected within the initial search 
(performed 25/10/2020) included “QSAR” and “mixture” – this 
returning 434 publications. The search criteria used resulted in many 
articles not relevant to this specific topic being identified. These were 
removed following screening of abstracts. Only articles focusing on 
QSAR development for mixtures were retained, so reducing the list to 
134 taken forward for full text review (for graphical overview of 
workflow, please refer to Fig. 1). 

2.2. Compilation of information 

A detailed analysis of the publications identified was undertaken, 
resulting in a further reduction of the number of articles for reasons 
including: unavailability of key information, models developed for sin
gle chemicals, studies on essential oils/nanoparticles, and mixtures 

Fig. 1. Overview of workflow adopted in the recovery and screening of liter
ature for inclusion within this study. 
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predicted solely through either concentration addition or independent 
action. Although CA and IA are both currently accepted methods used 
within regulatory approaches [21], the focus of the present study is upon 
QSAR protocols, and as such the decision was made to remove them. The 
final list comprised 40 studies, with these being additionally charac
terised with regards to: mixture composition (number of components, e. 
g., binary), chemical classification, taxa or testing system, endpoint 
examined, descriptors adopted (both class of, and conceptual approach 
applied in generation of mixture descriptors), and finally modelling or 
statistical technique applied. Table 1 contains overview of the stand
ardised terminology adopted relating to this characterisation. 

3. Results and discussion 

Evaluation of the literature resulted in identification of 40 relevant 
publications. As summarised in Table 2 and Fig. 2, the majority of 
studies could be classified into groupings dependent upon methodology, 
endpoint etc. Further investigation of these characteristics has enabled 
the focus of current approaches to be outlined. 

3.1. Chemical classification 

Classes of chemicals considered in these articles could be classified 
broadly as belonging to one of four families: industrial chemicals (re
ported in 22 articles), pharmaceuticals (n = 9), biocides (n = 6) and 
priority pollutants (n = 5). In general, the majority of articles related to 
environmental studies, including those for pharmaceuticals, with only a 
limited number of investigations considering human health effects. 
Future work into mixture assessments, therefore, should focus upon 
extending studies of the lesser examined groups, with a particular focus 
given to human health effects. Cell lines could provide a route towards 
realising this. 

3.2. Mixture composition 

Different varieties of mixtures were investigated, ranging from bi
nary to complex. Binary mixtures made up the majority (n = 38) of 
studies recovered, with comparatively few utilising multi-component 
combinations, i.e., ternary (n = 10), quaternary (n = 7), quinary (n =
4) and the more realistic supra-quinary (n = 3) –the latter term referring 
to those containing greater than five constituents. In addition to the 
number of components within the mixture, it is also important to 
consider the relative proportions of each, i.e., their ratios. Excluding 
supra-quinary, there are ten articles that investigated multi-component 
mixtures. Most of these were of fixed ratio design with some exceptions 
allowing varied ratios [34,59,73,40,48,17,80,32]. Fixed ratio designs 
have been demonstrated as favourable within mixture studies, allowing 
for the distribution of the effect concentration range to be maximised, 
whilst additionally reducing number of experiments required [39]. 

Equitoxic ratios were most commonly used - this referring to mixtures 
where each component exists at the concentration that would result in 
identical effect if examined separately [25]. The likelihood of a mixture 
occurring naturally as equitoxic is very small, hence non-equitoxic ratios 
provide a more realistic representation [78]. Additionally, it has been 
demonstrated, dependent upon the ratios of chemicals within a mixture, 
that the type of joint action observed can vary [78,33]. As a result, 
studies involving the investigation into non-equitoxic mixtures can 
ensure that changes in joint action are captured. 

Binary mixtures studies are limited to predictions within this scope, 
unless validated otherwise. It is acknowledged that they may serve as an 
imperfect representation of real-world exposure scenarios [37]. As such, 
the importance of developing models that can predict the effects of not 
only binary, but more importantly multi-component mixtures, is crucial. 
Nevertheless, assessments of binary mixtures can provide invaluable 
insights into methodology for modelling, as well as being utilised to gain 
information on mode of action [30]. 

3.3. Taxa or testing system 

A variety of species were used in the toxicological studies; however, 
the majority investigated bacterial-based bioassays (n = 27). Within this 
group, use of bioluminescent bacterium Aliivibrio fischeri (formerly 
Photobacterium phosphoreum) predominated. Such tests are relatively 
inexpensive and enable large quantities of consistent data to be gener
ated rapidly. Accordingly, they have been routinely employed as a first 
screening method within test batteries [60,27]. However, for these tests 
to effectively monitor an ecosystem, they must be used in combination 
with other biotests as well as chemical analysis [27]. 

Various species other than bacteria have nevertheless been subject to 
investigation. Data from algae, cell lines (mammalian and amphibian), 
embryos, insects, amphibians, and viruses have all been used to develop 
mixture QSARs. Algal bioassays make up the second most common 
grouping (n = 4), with testing upon algae providing an important insight 
into the balance of aquatic ecosystems as a result of them being primary 
food producers [50]. Cell lines have been used in only a small number of 
studies, with such examinations potentially providing insight into spe
cific simple mechanisms of interest. Cell line studies are an important 
testing procedure enabling the key processes towards a desired endpoint 
to be captured (Pistollato et al., 2020), however, the extrapolation of 
such information to entire organisms may prove difficult [90]. In gen
eral, QSAR developed to investigate the toxicological effects of mixtures 
has focused upon environmentally-relevant species, with fewer consid
ering human health. 

3.4. Endpoint 

The majority of toxicological endpoints for which mixture QSARs 
were developed related to acute effects. In total, 30 studies have 
investigated acute toxicity, in comparison to only a few chronic. Ex
amination into the acute effects of chemicals can provide useful and 
fundamental information, with testing being comparatively simple, 
interpretable and high throughput. Moreover, such tests can enable 
underlying mechanisms of toxic action to be defined [18]. However, the 
use of acute toxicity data for QSAR modelling is not without its limita
tions. Adverse effects can result from an array of physiological, bio
kinetic, cellular and molecular events that span different levels of 
biological organisation. Measuring such complex systems in isolation 
will inevitably result in a loss of information [42]. In comparison, 
toxicity following chronic exposure can better provide a realistic 
contribution to risk assessment of chemicals, particularly within envi
ronmental settings where organisms are exposed to the long-term effects 
of pollutants [71]. However, knowledge of the chronic effects towards 
organisms of mixture exposure is sparse due to the intricacies of pro
cesses required for their determination – compounded by their duration 
and the costs of analyses [89]. Accordingly, within the scope of the 

Table 1 
Summary of defined QSAR characteristics and the categories within.  

QSAR Characteristics Categories 

Chemical classification Biocides, industrial, pharmaceuticals, priority pollutants 
Mixture composition Binary, ternary, quaternary, quinary, supra-quinary1 

Taxa or testing system Algae, amphibian, bacteria, cell line, embryos, insect 
Endpoint Acute, chronic, developmental, drug efficacy, growth 

inhibition, inhibition of reproduction 
Descriptor formulation 

(approach) 
Distribution coefficient, fragment non-additive, integral 
additive, integral non-additive, single variable 
component, structural similarity 

Descriptor formulation 
(class) 

Molecular docking, molecular fragment, molecular 
structure, physicochemical, quantum chemical 

Modelling or statistical 
technique 

CA and IA, CORAL, machine learning, partial order 
ranking, regression analysis, regression analysis 
(assumed)  

1 Mixtures containing greater than five components. 
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Table 2 
Summary and main characteristics of QSARs used in the mixture toxicity studies identified.  

Chemical 
classification 

Mixture composition Taxa or test 
system 

Endpoint Molecular descriptor formulation Modelling or 
statistical 
technique 

Reference 

Conceptual 
approach 

Descriptor class 

Biocides Binary Insect Acute Fragment non- 
additive 

Molecular fragment CORAL [8] 

Priority pollutants Binary Cell line Acute Integral additive Molecular structure Regression 
analysis 

[31] 

Industrial Binary Bacteria Acute Integral additive Molecular structure Regression 
analysis 

[12] 

Industrial Binary Bacteria Acute Single variable 
component 

Molecular structure Regression 
analysis 

[87] 

Biocides Binary Bacteria Acute Integral additive Molecular structure Regression 
analysis and 
machine learning 

Wang et al., 
2018a 

Priority pollutants Binary and ternary Embryos Developmental Integral additive Molecular structure Regression 
analysis 

[34] 

Pharmaceuticals and 
biocides 

Binary, ternary and 
quaternary 

Bacteria Acute Integral additive Molecular structure Regression 
analysis 

[59] 

Pharmaceuticals Binary and ternary Bacteria Acute Integral additive Molecular docking Regression 
analysis 

Wang et al. 
[73] 

Pharmaceuticals Binary Bacteria Acute Integral additive Molecular docking Regression 
analysis 

Wang et al., 
2018c[72] 

Pharmaceuticals Binary Bacteria Acute and chronic Integral additive Molecular docking Regression 
analysis 

[71] 

Pharmaceuticals Binary Bacteria Acute Integral additive Molecular docking Regression 
analysis 

[47] 

Pharmaceuticals Binary Bacteria Chronic Integral additive Molecular docking and 
physicochemical 

Regression 
analysis 

[24] 

Priority pollutants Binary Cell line Acute Integral additive Molecular structure and 
physicochemical 

Regression 
analysis 

[26] 

Industrial Binary Bacteria and 
algae 

Acute Integral additive Quantum chemical Regression 
analysis 

[10] 

Industrial Binary and ternary Cell line Organ-level 
effects 

Unclear Physicochemical Regression 
analysis 

[40] 

Industrial Binary Bacteria Acute Single variable 
component 

Quantum chemical Regression 
analysis 

[33] 

Biocides Supra-quinary Bacteria Acute Structural similarity Molecular structure Machine learning 
and CA and IA 

Kim et al., 
2013b[39] 

Pharmaceuticals Binary Virus Drug efficacy Fragment non- 
additive 

Molecular fragment Machine learning [53] 

Pharmaceuticals Binary Bacteria Chronic Integral additive Molecular docking and 
physicochemical 

Machine learning [89] 

Industrial Binary Not Stated Chronic Integral additive Molecular structure and 
quantum chemical 

Regression 
analysis and 
machine learning 

[49] 

Industrial Binary Bacteria Acute Single variable 
component 

Physicochemical and 
quantum chemical 

Regression 
analysis 

[65] 

Industrial Binary Bacteria Acute Fragment non- 
additive 

Molecular fragment CORAL [67] 

Priority pollutants 
and industrial 

Binary Not Stated Acute Integral additive Molecular docking and 
physicochemical 

Assumed 
regression 

[77] 

Pharmaceuticals Binary Bacteria Acute and chronic Integral additive Molecular docking and 
quantum chemical 

Assumed 
regression 

[88] 

Priority pollutants Binary Bacteria Acute Integral additive and 
distribution 
coefficient 

Physicochemical Assumed 
regression 

Wang et al., 
2011a[75] 

Biocides Binary, ternary, 
quaternary and 
quinary 

Embryos Developmental Unclear Physicochemical Regression 
analysis 

Wang et al., 
2011b[74] 

Industrial Binary Bacteria Acute Single variable 
component 

Physicochemical and 
quantum chemical 

Regression 
analysis 

[66] 

Industrial Binary, ternary and 
quaternary 

Bacteria Acute Integral additive Physicochemical and 
quantum chemical 

Regression 
analysis 

[48] 

Industrial Binary Algae Growth inhibition Distribution 
coefficient 

Physicochemical Regression 
analysis 

[85] 

Industrial Binary, ternary, 
quaternary and 
quinary 

Bacteria Acute Distribution 
coefficient 

Physicochemical Partial order 
ranking 

[17] 

Industrial Binary Algae Growth inhibition Integral additive Physicochemical and 
quantum chemical 

Regression 
analysis 

[70] 

Industrial Binary Bacteria Acute Integral non- 
additive 

Quantum chemical Regression 
analysis 

[86] 

Industrial Binary, ternary, 
quaternary, quinary 
and supra-quinary 

Bacteria Acute Integral additive Physicochemical Regression 
analysis 

[69] 

(continued on next page) 
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review, few studies utilised QSARs to predict chronic toxicity. However, 
a small number of successful applications have demonstrated that mo
lecular docking based QSARs may prove a valuable tool for predicting 
such endpoints [89,24,71]. The current literature available for QSAR 
chronic mixture toxicity provides a solid foundation to be developed 
upon, with further research being required in areas of multi-component 
mixtures, as well as in higher-order species. 

3.5. Mixture descriptor formulation 

3.5.1. Conceptual approach 
A fundamental distinction between the handling of single com

pounds and chemical mixtures when constructing QSAR lies in the na
ture of the descriptors which must be employed for each purpose. Whilst 
generation of molecular descriptors relating to discrete organic sub
stances is generally a trivial process, provision of equivalents suitable for 
characterising mixtures is an issue of greater complexity. A variety of 
approaches are attested within literature, based upon differing as
sumptions regarding the nature and relevance of interactions between 
member substances (Muratov et al., 2012). 

3.5.1.1. Integral additive. The single most popular approach amongst 
those studies recovered (present within 21 of 40), formation of integral 
additive descriptors rests upon the intuitive premise that the properties 
of a mixture may be determined simply through summing those of its 
individual components – accounting for their relative prevalence and 
assuming occurrence of no meaningful interaction between each. 

dmix =
∑

xidi (1)  

Where dmixis a mixture descriptor, dithe descriptor relating to chemical i, 
and xithe fraction of the mixture composed by chemical i. 

Application of the methodology in its simplest form is exemplified in 
the work of Huang et al. [32], whereby toxicity of substituted phenol 
combinations is inferred solely through reference to a mixture octanol/ 
water partition coefficient logkowmixcalculated via fractional addition of 
the logkowbelonging to each component. Versatility of the approach is 
such that there exist few limitations with respect to the nature of de
scriptors which may be used alongside it (refer to Section 3.5.2 and 
Table 3 for examples). Accordingly, its adoption is noted in in
vestigations employing molecular docking and quantum chemical 
techniques. 

Despite widespread utilisation, shortcomings of this framework 
remain apparent. Disregarding of the potential impact of inter- 
component interactions (toxicodynamic, toxicokinetic or physico
chemical) when inferring mixture adverse effects is most noteworthy 
amongst these. Such a limitation almost certainly renders it 

unapplicable for instances in which non-additivity is present – whilst in 
principle (despite favourable results) harming its capacity to model even 
general additive effects. 

3.5.1.2. Integral non-additive. By contrast to the above, non-additive 
approaches envisage the mixture not merely as an agglomeration of 
mutually-inert components. Instead, they seek to integrate consider
ation of interactions existing between the molecules within – essentially 
modelling the mixture as a unit with bulk properties distinct to it (rep
resenting a more appropriate approximation of reality). Although 
appealing as a route towards the addressing issues inherent within ad
ditive methodologies, adoption has been limited. 

A single study [86] employing an integral, non-additive approach 
was retrieved. Within, toxicity of a series of binary 1:1 combinations 
consisting of simple substituted benzenes was modelled through use of 
quantum chemical descriptors. Properties of a mixture were derived 
through direct calculation of parameters of the appropriate pooled 
molecular pair – thus allowing for influence of electronic interactions 
between members to be accounted for. The rationale behind the lack of 
widespread uptake of this technique, despite conceptual promise, may 
lie in the restrictions placed upon its practical application: not only is 
scope of eligible mixtures constrained to those exhibiting 1:1 component 
ratio, but requirement to initiate unique calculations relating to each 
potential combination of substituents is potentially unwieldy. 

3.5.1.3. Fragment non-additive. The non-additive principle is extended 
for application within fragment-based approaches to characterising ac
tivity of binary mixtures – forming the basis of three toxicologically- 
relevant studies. Whilst a thorough overview of core techniques is pre
sented within Section 3.5.2.4, it is sufficient when considering genera
tion of mixture descriptors to recognise the parallels which are present 
between this and “integral non-additive” methodology. In much the 
same manner, the molecular pair is treated as a unit. Individual frag
ments may incorporate atoms from either one or both components, and 
as such may provide descriptors relating both to individual compounds 
and to the unitary mixture. 

3.5.1.4. Distribution coefficient-based. This approach remains suitable 
for instances in which activity of a mixture is modelled as a function of 
its partitioning between lipophilic and aqueous phases. Verhaar et al. 
[68] reported derivation of a formula through which the distribution 
coefficient representing a mixture may be determined from those of its 
constituent chemicals. 

Table 2 (continued ) 

Chemical 
classification 

Mixture composition Taxa or test 
system 

Endpoint Molecular descriptor formulation Modelling or 
statistical 
technique 

Reference 

Conceptual 
approach 

Descriptor class 

Biocides Supra-quinary Algae Inhibition of 
reproduction 

Structural similarity Molecular structure CA and IA [56] 

Industrial Binary, ternary, 
quaternary and 
quinary 

Bacteria Acute Distribution 
coefficient 

Physicochemical Assumed 
regression 

[80] 

Industrial Binary, ternary and 
quaternary 

Amphibian Acute Integral additive Physicochemical Regression 
analysis 

[32] 

Industrial Binary Bacteria Acute Distribution 
coefficient 

Physicochemical Regression 
analysis 

[44] 

Industrial Binary Bacteria Acute Distribution 
coefficient 

Physicochemical Assumed 
regression 

[43] 

Industrial Binary Bacteria Acute Single variable 
component 

Quantum chemical Regression 
analysis 

[84] 

Industrial Binary Bacteria Acute Distribution 
coefficient 

Physicochemical Regression 
analysis 

[83]  
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Kmix =
W
V

×

∑n
i=1

Q0
water,i
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Where Kmix is the lipoid/water partition coefficient of the mixture 
(substances such as n-octanol, chloroform and C18-Empore discs having 
been employed for this function), W the volume of the aqueous phase, V 
the volume of lipoid, Q0

water,i the initial amount of chemical i in water, 
KSDithe partition coefficient of chemical i, and n the total number of 
chemical components in the mixture. Seven relevant studies adopting 
this approach were retrieved, with modifications to the methodology 
offered on occasion (please refer also to Section 3.5.2.1). 

3.5.1.5. Single variable component. Each of the aforementioned tech
niques seeks to characterise toxicity of mixtures through consideration 
of the contributions of all substances within. However, there exist 
several studies (five retrieved from literature) in which activity is 
instead inferred through reference to properties of only a single con
stituent. In all instances, sequences of binary combinations were 
examined, whereby-one component was held in common and the other 
was varied. Typical is the examination by Su et al. [66], within which 
electronic and physicochemical parameters of a selection of substituted 
phenols were alone employed in order to model the toxicity of its mix
tures alongside elemental lead. Whilst the majority of investigations 
have focused upon metallic-organic combinations, it should be noted 
that an early study by Yuan et al. [84] featured solely organic 

Fig. 2. Quantification of features present amongst those parameters defining key QSAR characteristics.  
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components. 

3.5.1.6. Similarity. A minority of studies adopt QSAR not as a means of 
directly inferring the toxic potential of a mixture from the properties of 
its components, but instead as a means of assessing the similarity of 
screened compounds against those for which experimental data are 
present. Both Mwense et al. [56,39] have put forward variations on this 
theme. Such similarity-based approaches enabled the mixtures compo
nents to be separated into clusters, which could then be subjected to CA 
and IA calculations (see Section 3.6 for further information). 

3.5.2. Descriptor class 
Many different varieties of molecular descriptors exist, indicating the 

differing complexity levels of chemical structural representation [13]. In 
principle, any intrinsic molecular property appropriate for adoption as a 
descriptor within standard, single-component QSAR is further amenable 
to application within the domain of the mixture. As such, the range of 
properties referenced explicitly across the following subsections (on 
account of appearance within the existing literature) should not be taken 
as exhaustive. 

3.5.2.1. Physicochemical. Considering the modelling of mixture 
toxicity, physicochemical descriptors have been employed from the very 

earliest studies. Of particular prominence are those based upon quan
titative expression of the distribution of a substance between aqueous 
and representative lipophilic phases – this in short owing to their 
applicability in modelling compounds which exhibit a narcotic mode of 
action. Exemplified by logarithm of the octanol-water partition coeffi
cient, these are acknowledged as being amongst the most effective 
general parameters to predict toxicity; having seen widespread use in 
many models for both single chemicals and mixtures [37,43]. It should 
be noted, however, that utility in handling toxicity mediated through 
means of chemical reactivity or receptor interaction may be diminished. 

Application to mixtures is typically facilitated through adoption of 
one of two techniques introduced within Section 3.5.1: the dedicated 
method of Verhaar et al. [68], or the more general integral additive 
approach. Employing the former, models were successfully developed to 
predict mixture toxicity of non-polar narcotic [83,43] and polar narcotic 
[44] chemicals. Following on, Wei et al. [80] reported formulation of a 
simplified model demonstrating strong predictive power for both polar 
and non-polar mixtures. The aforementioned approaches have been 
limited to bacterial toxicity with regression-based models. However, 
additional studies have validated the methodology within algae studies, 
as well as with Partial Order Ranking methodology [85,17]. 

Considered by Roberts [62] and by Altenburger et al. [1], the 
employment of the integral additive approach towards formulation of 
mixture partition coefficients has since been demonstrated in various 
environmental studies [32,70,48,69]. One of the few studies to compare 
both Verhaar and integral additive methodologies directly was 
completed by Wang et al. [75], in which the mixture toxicity of per
fluorinated carboxylic acid was assessed. Results demonstrated that the 
equivalent Verhaar-adapted approach provided in this instance the 
stronger at describing the mixtures’ hydrophobicity. 

3.5.2.2. Molecular docking. Information gathered from molecular 
docking of chemicals into receptors has been used routinely, particularly 
as a drug discovery tool enabling the early identification of potentially 
active candidate molecules. These techniques facilitate the development 
of mechanism-based models, with interactions between chemicals and 
receptors being simulated. Specifically, such studies could relate to 
receptor-mediated molecular initiating events [14]. These simulations 
enable the interaction energy required for a chemical to bind to its target 
protein (Ebinding) to be determined [61]. In each of the examples subse
quently presented, Ebindingrelating to individual components are summed 
to form mixture descriptors through adoption of the integral additive 
approach. 

Wang et al. [77] were amongst the first to propose the use of binding 
energy descriptors in modelling mixture toxicity – examining the 
feasibility of substituting logKowmix with the molecular docking 
descriptor Ebinding, owing to the linear trend observed between the two. 
Zou et al. [88] investigated both the acute and chronic toxicities of 
antibiotics from the sulfonamide family, alongside the sulfonamide 
potentiator trimethoprim. The study initially identified the receptors 
responsible for both their acute and chronic effects towards Aliivibrio 
fischeri; determining them to be luciferase, dihydropteroate synthase 
and dihydrofolate reductase. Models using the binding energies towards 
each protein, supplemented by pKa, were shown to successfully predict 
the toxicities of mixtures for both exposures. Further to this study, Zou 
et al. [89], employed docking in order to curate a library of simulated 
antibiotic-receptor interactions, spanning several prominent mecha
nisms of action. Through this, the ready construction of mechanistically- 
grounded QSAR models relevant to a wide range of potential antibiotic 
combinations was facilitated. 

More recently, Wang et al. [71] also investigated chronic effects of 
antibiotics. A mechanism-based QSAR model was developed whereby 
the chronic toxicity of sulfonamides, sulfonamide potentiators tetracy
clines could be extrapolated from acute toxicity. Unlike previous 
extrapolation models, understanding of the differing toxic mechanisms 

Table 3 
Descriptors calculated using DRAGON software, displayed within their respec
tive blocks.  

Descriptor Title Block Publication 

piPC06 Molecular multiple path count of 
order 6 

Walk and path 
counts 

[31] 

Mor12m Signal 12 / weighted by mass 3D-MoRSE 
descriptors 

[12] 

Mor13s Signal 13 / weighted by I-state 3D-MoRSE 
descriptors  

L/Bw Length-to-breadth ratio by 
WHIM 

Geometrical 
descriptors 

Eig08_EA 
(ed) 

Eigenvalue n. 8 from edge 
adjacency mat. weighted by edge 
degree 

Edge adjacency 
indices 

Eig09_EA 
(ed) 

Eigenvalue n. 9 from edge 
adjacency mat. weighted by edge 
degree 

Edge adjacency 
indices 

Eig09_AEA 
(dm) 

Eigenvalue n. 9 from augmented 
edge adjacency mat. weighted by 
dipole moment 

Edge adjacency 
indices  

RDF045s Radial Distribution Function – 
045 / weighted by I-state 

RDF descriptors  

J_RG Balaban-like index from 
reciprocal squared geometrical 
matrix 

3D matrix-based 
descriptors  

VE2_B(p) Average coefficient of the last 
eigenvector from Burden matrix 
weighted by polarisability 

2D matrix-based 
descriptors 

[87] 

TIC3 Total Information Content index 
(neighborhood symmetry of 3- 
order) 

Information 
indices 

Eig06_AEA 
(dm) 

Eigenvalue n. 6 from augmented 
edge adjacency mat. weighted by 
dipole moment 

Edge adjacency 
indices 

PJI2 2D Petitjean shape index Topological 
indices 

[34] 

2χν Valence connectivity index of 
order 2 

Connectivity 
indices 

0χν Valence connectivity index of 
order 0 

Connectivity 
indices 

RDF035m Radial Distribution Function −
035 / weighted by mass 

RDF descriptors [59] 

HATSs Leverage-weighted total index / 
weighted by I-state 

GETAWAY 
descriptors 

H-047 H attached to C1(sp3)/C0(sp2) Atom-centred 
fragments  

Independent componentsa N/A [56]  

S.J. Belfield et al.                                                                                                                                                                                                                               



Computational Toxicology 25 (2023) 100251

8

between acute and chronic exposures was considered. In a variation 
from Zou et al. [88], in which DHFR served as the sole mediator of TMP 
toxicity, the targets for the antibiotics reported in this study were rep
resented by surrogate luciferase proteins. Due to a specific target not 
being considered and instead characterised by surrogates, the model 
demonstrated promise in predicting the toxicity chemicals for which 
mechanisms are unknown. 

Molecular docking studies have introduced new concepts to the field 
of QSAR mixture toxicity. [24,47,73] developed mechanistic models 
derived from binding energies of antibiotics towards target proteins 
from which they were able to theoretically identify the effective con
centration of the mixtures. Wang et al.[73] also proposed equivalent 
findings but included ternary mixtures. Each study incorporated terms 
describing the extent to which each specific component contributed 
towards protein binding, i.e., the effective concentration. Wang et al. 
[73] further commented upon this, stating that such terms could be 
interpreted as representing the processes of a component passing 
through the cell membrane and reaching its target protein. Thus, the 
component which had a higher probability of interacting with its target 
protein could be identified depending upon the value of coefficient 
attached to the term. The authors utilised this knowledge to enable 
calculation of the actual toxicity ratio – a value which was subsequently 
used to aid in determining which component had the greater contribu
tion to toxicity. 

Wang et al. [72] further employed docking techniques in investiga
tion of mixture effects of the recently popularised antibiotic alternative - 
quorum sensing inhibitors (QSIs). However, current research remains 
largely focused upon simple binary mixtures of antibiotics– with only 
[73] extending examination into multi-component mixtures. It is further 
noted that existing studies have yet to integrate consideration of mixture 
toxicokinetics in a manner which would allow conclusions to be drawn 
regarding likely absolute exposure of targets to components. 

3.5.2.3. Molecular structure. Structure-based descriptors (otherwise 
known as 2D or topological), provide simplistic, interpretable informa
tion about molecular structure, as well as being easy and quick to 
generate [13]. A variety of software is available to calculate these pa
rameters, with DRAGON (previously available at: https://chm. 
kode-solutions.net/pf/dragon-7–0/) used in several reported mixture 
studies. DRAGON software calculated over 5000 molecular descriptors, 
with these being organised into logical blocks. A range of different 
blocks exists, with these including, but not limited to: constitutional, 
ring descriptors, topological indices, walk and path counts, and con
nectivity indices. The DRAGON software was used to obtain descriptors 
in six studies identified in this analysis, as summarised in Table 3. Due to 
the range of chemical mixtures and species examined within, it is 
inevitable that a variety of descriptors were used. For example, Chen 
et al. [12] and Zhang et al. [87] both utilised edge adjacency indices 
derived from H-depleted molecular graphs. Both studies utilised toxicity 
data for bioluminescent bacteria, with Chen et al. [12] investigating 
aromatic halogenated chemicals and Zhang et al. [87] nitro-substituted 
benzenes and zinc. These parameters were successful in both instances, 
additionally proving worth within mixtures of different mixing ratios 
[87]. Gaskill and Bruce [26] further found that information indices were 
able to predict mixture toxicity. The authors developed various models 
to predict impact of polycyclic aromatic hydrocarbon mixtures towards 
liver cells, with additional topological descriptors being utilised. These 
topological descriptors, particularly with respect to planar PAHs, proved 
to be significant in predicting effects, highlighting the role planar 
characteristics and bond orientation play in causing toxicity. 

3.5.2.4. Molecular fragments. Fragment-based descriptors have been 
described as a promising method for the QSAR modelling of mixtures 
[13]. However, there are relatively few examples of their use in practice. 
Muratov et al. [53], predicted combination effects of antivirals against 

poliovirus-1 through use of Simplex Representation of Molecular 
Structure (SiRMS) - a framework which enables molecular structures to 
be represented as a system of simplexes (tetratomic fragments), capable 
of capturing features at the topological level. Modifications to the 
approach were undertaken to enable extension for analysis of binary 
systems, generating descriptors applicable either to single components 
(bounded simplex), or else drawing elements from across both (un
bounded simplex). The latter can be considered as structural descriptors 
of the mixture as a unit and as such “non-additive”. Whilst this approach 
is highly desirable, that no other recent toxicological report has utilised 
this methodology suggests that it may only be applicable within certain 
cases. 

Other fragment-based descriptors were utilised by Toropova et al. 
[67], who demonstrated the ability of the CORAL software 
(https://www.insilico.eu/coral) to again predict toxicity of binary 
mixtures. Molecular structures of components were represented by 
SMILES, using a disconnected approach with a marker (i.e., “.”) sepa
rating each string. Recently, Carnesecchi et al. [8] further extended this 
approach, making use of expanded “quasi-SMILES”. In this case, the 
toxic units of each chemical in the binary mixture are incorporated. A 
classification model predicting potential for non-additivity (either syn
ergism or non-synergism) was simultaneously reported. Results ob
tained indicated that consideration of toxic units not only enabled 
greater interpretability of the models, but also improved the statistical 
performance. In general, models developed by the CORAL software 
enable frequently occurring molecular features that cause binary 
mixture toxicity to be identified. However, studies thus far using these 
procedures (and SiRMS) have only been limited only to binary mixtures. 

3.5.2.5. Quantum chemical descriptors. Quantum chemical descriptors 
are able to describe the electronic and geometric properties, and in
teractions, of molecules. Although potentially intensive as regards de
mands upon computational power and running time, they offer greater 
detail with respect to electronic effects than do traditional empirical 
methods [35,64]. The most commonly applied quantum chemical de
scriptors utilised for modelling mixture toxicity were the molecular 
orbital energies, with energy of the lowest unoccupied molecular orbital 
(ELUMO), or slight adaptions, being routinely used. This metric accounts 
for the electrophilicity of a molecule [64], correlated as it is to its 
electron affinity. Studies extended this parameter to multi-component 
mixtures [48], and the variation ELUMO +1 (energy of the second 
lowest unoccupied molecular orbital), in combination with total charge 
weighted partial positively surface area PPSA, have proven superior to 
previous hydrophobicity-dependent QSARs for non-polar narcotics [49]. 
Additionally, the difference between the lowest and highest frontier 
molecular orbitals, i.e., ELUMO − EHOMO, or vice versa, have been proven 
effective in mixture calculations. Wang et al. [70] first used this 
parameter, which is able to determine the stability of the molecule, 
collectively within a traditional hydrophobicity model to enable better 
predictions of the joint toxicity of polar narcotics. 

In each of the aforementioned instances, orbital mixture descriptors 
were generated through integral additive means. Quantum chemical 
descriptors have, however, additionally found employment in a distinct 
collection of studies introduced within Section 3.5.1.5, under the head
ing “Single variable component”. A typical example is provided through 
Jin et al. [33], whereby models are created considering the energy dif
ference between molecular orbitals- a parameter termed the relative 
hardness index (EHOMO − ELUMO). Multi-pointwise toxicological models 
(i.e., approaches for mixtures predicting varying effect concentrations) 
are an under-researched area, although interestingly an additional 
report studying them, that of Su et al. [65], did employ quantum 
chemical descriptors. Within, the joint toxicity of nitroaromatics with 
copper at low, medium, and high concentrations was modelled. The 
results were similar to those of Jin et al. [33], in that varying the con
centrations of the components played a pivotal role on the joint effects 
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within the mixture. 
Currently, the majority of literature describing use of quantum de

scriptors is focused exclusively on single mixture ratios - typically 
equitoxic. Realistically-encountered combinations of molecules are ex
pected to deviate from this ideal, thus suggesting that a range of com
positions would provide for stronger predictions. These studies, 
furthermore, concentrate almost exclusively upon industrial compounds 
– thus serving only a restricted area of chemical space. 

3.6. Methods for model development 

A variety of statistical approaches were reported across the reviewed 
literature with regression analysis dominant. Comparatively simple to 
establish and interpret, regression has been the classical approach in 
QSAR since its inception. It is, however, not without limitations, with 
consideration of parameter collinearity required in order to ensure that 
robust models are developed [45]. As an alternative, machine learning 
approaches permit nonlinear relationships to be better modelled, which 
is attractive in mixture toxicity due to the varying nature of underlying 
combination effects. Two studies developed models using both regres
sion and machine learning, enabling direct comparisons between the 
performance of both. Results suggested that machine learning ap
proaches, specifically radial basis function neural networks, enable 
improvements in statistical fit [49,76]. Although, machine learning is a 
current trend in the area of in silico prediction, it is not without its 
limitations: ensuring that models are well established typically requires 
a high volume of data. Potential for overfitting must be taken into ac
count, and difficulties in interpretation owing to the black box nature 
typically hinder derivation of mechanistic knowledge [45]. 

Whilst studies incorporating exclusively either CA or IA (first gen
eration) are considered beyond the scope of this review, a small quantity 
of second-generation models are eligible for inclusion on account of 
their integration of QSAR methodology. Each of the following tech
niques may be distinguished by the conditional adoption of CA or IA in 
modelling of inter-component interactions, dependent upon the extent 
of similarity either in molecular structure or mode/mechanism of action 
between substances. As such, the combined toxicity of like compounds is 
determined through the principle of CA, and dissimilar through IA – 
with ultimate mixture effect being derived from the contributions of 
both. Mwense et al. [55] introduced an approach termed INtegrated 
Concentration Addition-Independent action Model (INFCIM), whereby 
this similarity was determined using computed molecular descriptors. 
The following equation was employed to calculate overall toxicity: 

ECx,mix = ωA • (CA)+ωB • (IA)

where coefficients ωAand ωB are the weightings for the contributions of 
CA and IA. 

Although this initial model had no theoretical capabilities to provide 
predictions that would exceed concentration addition, the model was 
later revised in order to address these limitations [56]. Analogously, 
[39] developed an approach which incorporated both CA and IA known 
as a two-stage prediction model. Unlike previous two-stage prediction 
models which relied on knowledge of modes of toxic action for all 
components, the authors utilised machine learning clustering techniques 
to group the constituents – employing CA within-group (stage 1) and IA 
between-group (stage 2) in determination of absolute mixture effect. 
Excellent performance against realistic environmental mixtures was 
reported, highlighting the possibility of success even in absence of 
mechanistic information. Such models, however, remain at present 
limited to non-interacting mixtures. 

3.7. Uncertainty criteria and assessment for mixture studies 

The assessment of chemical mixtures by means of QSAR methodol
ogies is continually generating greater interest. In ensuring that such 

work is up taken in regulatory settings, it is essential that potential 
uncertainty associated with models are defined. Cronin et al., [15] 
recently developed a set of criteria that enabled the full assessment of 
QSAR models from conception to application, facilitating all aspects of 
uncertainty to be defined and scored. This was further expanded upon 
by Belfield et al. [4], where it was demonstrated that the criteria could 
also be employed to determine fitness-for-purpose. Although these 
criteria have been developed in order to account for all potential usages 
of QSAR, completion of the present literature review has elucidated 
further areas of consideration specifically relevant to construction of 
QSAR models for prediction of mixture effects. As such, areas have been 
identified that can be bolstered with lessons learnt to improve the 
assessment of QSARs for mixture. Specifically, it can be defined that 
these additional considerations relate to chemical description, 
descriptor calculation, and statistical performance. These are discussed 
beneath – with accessory detail provided in Supplementary Table 1. 

Firstly, worthy of note is that within the current structure of the 
QSAR uncertainty criteria, the consideration of chemical mixtures is 
approached (as clearly defined under criterion 1.1b – “Assessment of 
significant impurities or mixtures”). However, unambiguous guidance 
ought to be provided for the assistance of users unfamiliar with mixture 
handling. To ensure that scorings are assigned correctly, further infor
mation on what is to be expected is suggested within the comment 
section. Not only is it vital that all components within mixtures are fully 
identifiable, but additionally that the proportion represented by each 
must be reported. Clearly, measured endpoints will be dependent upon 
the ratio at which mixtures are investigated, but such information is 
additionally required to enable accurate calculation of mixture de
scriptors. Omission of mixture ratios will therefore restrict external 
reproducibility. Further to this, and in a similar vein (although not 
discussed further in the present review), guidance to correct reporting 
techniques of substances of Unknown or Variable composition, Complex 
reaction products or Biological materials (UVCB) as detailed by the 
European Chemicals Agency (ECHA) are provided [19]. 

Arguably the most important aspect that changes from modelling 
single chemicals to mixtures is the handling of descriptors. An entire 
section of the criteria has been devoted to the consideration of the va
rieties of descriptors a user may employ (this being 1.3 – “Measurement 
and/or Estimation of Physico-Chemical Properties and Structural De
scriptors”), yet methodologies to convert such features into mixture 
descriptors are needed. As reviewed in Section 3.5 many approaches are 
used to define mixture descriptors. Selection of the correct method in 
characterising these is not only dependent upon the type of descriptors 
chosen (such as fragment-based compared to physicochemical), but 
additionally by the interaction effects within the mixture. Capturing 
such complex processes and concerns by updating comment guidance to 
existing criteria would clearly be insufficient; thus, an additional topic 
must be supplied to fulfil the need. The current structure of the criterion 
1.3 enables all plausible descriptors to be considered, relying upon user 
discretion to evaluate only relevant features that have been employed. 
As such, supplementing a new point into this section will not alter the 
validation process, but instead extend applicability of models that may 
be evaluated. A further criterion 1.3d (“Calculation of mixture de
scriptors, if utilised”) is proposed that will enable the uncertainty level 
of mixture descriptors to be defined. The main aspect needed to satisfy 
this recommended criterion is that the selected approach has been 
derived through thorough consideration of potential interaction effects. 
Calculating these effects is a topic well studied, with a variety of 
methods alluded to in the comments for user guidance. 

The final section that would benefit from further guidance relates to 
external validation. Within QSAR modelling, exhaustive validation is 
required to ensure that predictive performance is correctly evaluated. 
However, compared to that of traditional QSAR procedures, validation 
methods for mixtures require further deliberation. Mixtures present 
further challenges whereby the same components may exist inside 
different mixtures. Splitting without consideration of this fact will 
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undoubtedly result in datapoints from the same mixture appearing 
within both training and testing sets, thus resulting in over-optimistic 
estimations (Muratov et al., 2012). To combat such occurrences, 
various strategies have been developed, namely: “points out”, “mixtures 
out”, “compounds out”, and “everything out” (for detailed discussion of 
these, please refer to [57,54]. Validating mixture models without 
consideration of these facts will certainly affect the legitimacy of pre
dictions, as well as the associated uncertainty. As selection of appro
priate validation methods is already well defined within criterion 2.2a 
(“Statement of statistical fit, performance and predictivity”), providing 
further guidance under the “comment or other information” heading 
will ensure that mixture strategies can be fully considered. 

4. Key findings 

The purpose of the current review was not only to identify current 
trends in QSAR mixture modelling, but also to determine whether 
existing modelling practices are sufficient to accurately address issues 
that mixtures present. Regardless of the source of the model or model
ling approach, a number of commonalities can be identified. These form 
a general appraisal, or overview, of the state-of-the-art of QSAR mixture 
modelling: 

4.1. Need for models  

• Modelling is a vital approach to assess the toxicity of mixtures. It is 
inconceivable that all possible combinations of chemicals (and at 
varied ratios) can be experimentally measured. Therefore, there 
needs to be a much greater emphasis on modelling approaches for 
mixture toxicity. 

4.2. Need for proper problem formulation 

• Much of the current modelling of mixture toxicity has been per
formed on an ad hoc basis. There needs to be greater organisation of 
these modelling studies to make them realistic of real-life exposures 
and able to address the problems associated with ensuring environ
mental and human safety. Utilising the uncertainty criteria proposed 
by Cronin et al. [15], with guidance previously suggested, would 
provide a rational foundation for addressing such issues. 

4.3. Availability of data for modelling  

• This review has demonstrated the paucity of data available for 
mixtures. Repositories such as PubChem (https://pubchem.ncbi. 
nlm.nih.gov/), ChEMBL (https://www.ebi.ac.uk/chembl/), Drug
Bank (https://go.drugbank.com/), IPCheM (https://ipchem.jrc.ec. 
europa.eu/) and ChemTHEATRE (https://chem-theatre.com/) have 
been postulated to resolve this issue, yet collating a reliable dataset 
from such sources is currently unfeasible (Muratov et al., 2012). As 
such, gathering a larger dataset would likely be reliant upon litera
ture, with the current review highlighting a breadth of publications 
containing compatible information. It is evident that not only is more 
data required, but that a more systematic means of storing, distrib
uting and retrieving these data is also essential. 

4.4. Understanding data relevance and quality  

• There must be greater appreciation of what types of study are useful 
to assist in environmental risk assessment and will assist in the 
characterisation of real-life exposure scenarios. Linked to this is the 
lack of assessment of data quality, with few of the studies being 
performed to OECD Guidelines or Good Laboratory Practice. If future 
testing materialises, then there should be a greater emphasis on 
determining the relevance of experimental studies and ensuring that 

their quality is suitable for all purposes, including regulatory 
adoption. 

4.5. Identification and incorporation of interaction effects into models  

• As yet, there is no consensus on how to approach the inclusion of 
interaction effects, where they exist, into QSAR models. A better and 
more complete understanding is required of whether we need to go 
beyond the typical additive approach. One place where such 
knowledge could be identified and compiled is via a more extensive 
review and compilation of drug interaction effects. In addition, there 
could be a greater understanding and application of our knowledge 
of mechanisms of toxic action, particularly for acute environmental 
toxicities. Linked to this, there are obvious opportunities to incor
porate knowledge and understanding from Adverse Outcome Path
ways (AOPs) into our schemes [14]. Techniques such as read-across 
could be of particular assistance in this regard. 

4.6. Modelling approach (descriptors and statistical methods) 

• Models identified with this review used the full range of QSAR de
scriptors from physicochemical properties to 2D and quantum 
chemical calculations. There is no ideal descriptor for use in a 
mixture QSAR study, but those chosen should be pragmatic and give 
credibility to the model, notably by allowing full mechanistic inter
pretation. Ideally such descriptors should be simple, unambiguous 
and easy to calculate. Likewise, there is no consensus on how de
scriptors can be formalised to account for the mixture contributions 
and constitution.  

• Statistical approaches applied in development of models for mixture 
toxicity range from simple regression analyses to machine learning. 
No ideal technique can be recommended at this time. It is appreci
ated that as the mixtures become more complex, there is likely to be a 
greater need to adopt machine learning approaches. Whilst rapid and 
potentially accurate, these typically lack transparency and inter
pretability, in turn hindering uptake and acceptance.  

• A possibility that has yet to be explored fully in terms of mixture 
toxicity modelling is use of read-across such that effects and even 
potency may be established from similar or analogous mixtures. Such 
approaches have seen great acceptance for single chemicals and are 
increasingly being considered for botanical substances, natural 
products and UVCBs. 

4.7. Towards a unified approach to model meaningful effects for realistic 
environmental and other mixtures  

• Many currently available mixture toxicity QSAR are theoretical and, 
as such have limited practical application. Despite this, they have 
provided a wealth of knowledge on which we can build new 
frameworks and approaches to model such endpoints. Given the 
possibilities and the appreciated challenges associated with model
ling toxicity, there is a great need to develop a unified approach to 
understanding its application towards mixtures, alongside practical 
means to developing, evaluating and applying such models to real
istic environmental exposures of relevant chemical combinations. 

5. Conclusion 

The present review has provided a detailed analysis of the differing 
approaches that have been used throughout QSAR development to 
predict the effects of mixtures. In general, reoccurring trends presented 
themselves throughout toxicological-based publications, whereby bi
nary mixtures at a single concentration ratio are examined in an additive 
manner. Mixture descriptors have commonly been constructed from 
molecular descriptors through an integral additive approach, and 
resulting models traditionally developed using regression analysis. The 
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majority of research on mixtures has been directed towards environ
mental effects, whilst other fields, for instance human health, have been 
under-studied. It is expected that to increase the uptake of QSAR pre
dictions, greater respect towards potential interaction effects should be 
granted, alongside consideration of more realistic exposure scenarios. In 
general, research up to the current time has provided an excellent 
foundation, where future work that addresses current limitations may 
not only improve relevance, quality and therefore uptake of predictions. 
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