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Abstract 
 
Fossil tracks are important palaeobiological data sources. The quantitative analysis of their shape, 
however, has been hampered by their high variability and lack of discrete margins and landmarks. We 
here present the first approach using deep convolutional neural networks (DCNNs) to study fossil 
tracks, overcoming the limitations of previous statistical approaches. We employ a DCNN to 
discriminate between theropod and ornithischian dinosaur tracks based on a total of 1372 outline 
silhouettes. The DCNN consistently outperformed human experts on an independent test set. We also 
used the DCNN to classify tracks of a large tridactyl trackmaker from Lark Quarry, Australia, the 
identity of which has been subject to intense debate. The presented approach can only be considered 
a first step towards the wider application of machine learning in fossil track research, which is not 
limited to classification problems. Current limitations, such as the subjectivity and information loss 
inherent of interpretive outlines, may be overcome in the future by training neural networks on 3D 
models directly, though this will require an increased uptake in digitization among workers in the 
field. 
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Introduction 
 
Distinguishing between tridactyl (three-toed) dinosaur tracks of the herbivorous ornithischians and 
the predominantly carnivorous theropods is a complex and long-standing problem [1–9]. Broadly, 
ornithischian tracks are expected to be wider and more symmetric than theropod tracks, with digit 
impression III less projecting beyond digit impressions II and IV, and with digit impressions being 
broader, more splayed apart, and terminating in blunt hoof marks instead of sharp claw marks. 
However, any of these characteristics can be found in both groups, and which are the most important 
depends on the particular track type in question. Moratalla et al. [1] presented a quantitative 
approach to discriminate these groups, albeit limited to larger theropod and ornithopod tracks. 
Limitations of this approach include the small sample size, issues with the measurement scheme, and 
omission of relevant shape characteristics [1,5,6]; despite this, the method has found wide application 
[3,9–12]. 
 
To overcome the limitations of previous statistical approaches, and to remove as much subjectivity as 
possible, we trained and then employed an artificial neural network to categorise outlines of tridactyl 
dinosaur footprints as theropod or ornithischian. Artificial neural networks are a type of non-linear 
model that can learn from data, and a principal component of machine learning and artificial 
intelligence (AI). Inspired by the structure of the human brain, such neural networks comprise 
interconnected nodes (or neurons), with each connection represented by a number (weight). The 
DCNN learns from its mistakes during multiple training iterations in which the weights are optimised 
to achieve an increasingly good fit to the data structure [13]. We here employ a deep convolutional 
neural network (DCNN) comprised of multiple layers of neurons (deep learning) [13]. 
 



We applied our model to an independent test set and compared its identifications with those of five 
human experts. We then used the neural network to assess outlines from a large trackway from Lark 
Quarry, Australia; a tracksite also known as the Dinosaur Stampede National Monument (Australian 
Natural Heritage List Place ID 105664). The identity of the largest trackmaker has been the subject of 
intense discussion, particularly in the past decade, namely as having been either a predatory 
theropod dinosaur or a herbivorous ornithischian [3,5,14–20]. The ambiguity of the footprint shapes 
and lack of agreement amongst track-workers make this trackway an ideal case study for our machine 
learning approach. 
 
 
Materials and Methods 
 
Standardised track silhouettes 
 
Neural networks can work with a variety of input data, such as simple measurements, categorical 
data, 2D images, and even 3D models. For best performance, however, it is crucial to maximize 
relevant information while minimizing irrelevant information. 
 
Moratalla et al. [1] present both a quantitative approach and a list of qualitative criteria to 
discriminate theropod and ornithischian tracks. Linear and angular measurements, as used by 
Moratalla et al. [1], may be selected to capture what are believed to be the most relevant shape 
features of a track. However, such measurements may not capture all relevant details, such as the 
shape of claw marks. Furthermore, such measurements can be difficult to apply consistently to a large 
number of tracks of varying shapes [21]. 
 
On the other extreme to linear measurements, 3D models capture a maximum of shape information 
[22], but are highly complex and include a lot of information irrelevant to the identification of the 
tracks (e.g., the presence of cracks or ripple marks; what some authors term ‘extramorphological’ 
features). Although neural networks are able to become invariant to such irrelevant information, they 
require a larger sample size to do so. 
 
In order to minimize irrelevant information and maximize sample size, we use black-and-white 
silhouettes of interpretive track outlines. Using silhouettes as input data avoids the need for 
measuring particular anatomical features, allowing for inclusion of any track shape. Furthermore, 
silhouettes may capture most of the information that is considered relevant for the identification of 
tracks, including features such as digit terminations and the number and shape of phalangeal pads. 
However, such outlines have been repeatedly criticised because of their inherent subjectivity and 
simplification of complex 3D morphologies [e.g., 19,23]. 
 
Published outline drawings can be complex and may consist of multiple and/or discontinuous lines, 
dotted lines to indicate uncertainty, internal shadings, and other features. Such complexity does often 
bear the artistic signature of the individual ichnologist. By converging such drawings into simpler 
black-and-white silhouettes, the artistic signature is mostly removed, avoiding irrelevant detail that 
may deteriorate the performance of the model. Silhouettes may be represented as a continuous 
outline or as a set of separate outlines that may show individual pad impressions. 
 



Conversion of published outlines into our standard silhouette format often required some degree of 
interpolation; e.g., dotted lines were treated as solid lines, and gaps in the outline were closed. We 
included tracks of functionally tridactyl ornithischian (basal ornithischians, ornithopods, and 
stegosaurs) and non-avian theropod dinosaurs spanning from the Upper Triassic to the Upper 
Cretaceous. This included tracks that show the impression of digit I in addition to digits II–IV, as long 
as this digit is unlikely to have played a major role in locomotion in the trackmaker. We did not 
include tracks interpreted to have been made by partially buoyant animals, nor did we include tracks 
that show substantial incompleteness, but we include cases in which the track walls have collapsed, 
as in penetrative tracks [24–26]. Some of the included tracks contain little relevant anatomical detail, 
or even misleading features, due to unfavourable substrate conditions, trackmaker behaviour, or 
postformational alteration of the tracks. By training the model on a sufficiently large sample size,  this 
ambiguity is hoped to be reflected by a decreased confidence of the model when classifying such 
tracks. 
 
The majority of outlines were collected from the literature, building on a dataset previously collected 
by Lallensack et al. [7]. Multiple outlines from single trackways were included where available, and, in 
some cases, different interpretations of the same track were included. This data is supplemented with 
outlines drawn by one of us (JNL) from 3D models that are published as part of this contribution or 
have been published elsewhere. The silhouettes are rotated upright (relative to digit impression III) 
before analysis and downscaled to 100x100 pixels, with the shape centred in the image. The model 
was made invariant to subtle variations in rotation and position (see below). 
 
Our original data set consisted of 677 ornithischian and 959 theropodan examples (see supplemental 
data). This imbalance between the categories is caused by the much greater abundance of theropod 
tracks in the fossil record, even though attempts were made to include as many ornithischian tracks 
as possible. Models trained on the full imbalanced data set tended to perform well on large tracks, 
but appeared to be biased towards theropods when testing ambiguous small tracks similar to the 
ichnotaxon Anomoepus. We consequently applied undersampling (see, e.g., [27]) to arrive at a 
balanced data set by randomly removing theropodan examples until their number was equal to that 
of ornithischian examples. 
 
 
Model training 
 
The model training was done using the open-source machine learning library TensorFlow 
(www.tensorflow.org; version 2.9), which was controlled through the Keras interface 
(https://keras.io) using Python scripting. 
 
The model architecture employed, and the parameters used, may drastically influence the 
performance of a model. Precise optimisation of models by finding the best parameters is often 
impractical given the number of possibilities that can be set. We tested separate model architectures 
of increasing complexity, different numbers of epochs (training iterations during which the model 
sees all data in the training set) and batch sizes (the number of silhouettes the model will see at the 
same time) on test sets that were randomly separated from the training set. We used loss rather than 
accuracy to select models [28] and discarded those that showed a problematic degree of overfitting. 
Following these tests, we selected a modification of the VGG16 architecture with four convolutional 



layers with 32, 64, 128, and 128 neurons, respectively. Pooling layers were used in-between these 
layers, and a dense layer of 256 neurons was used for flattening. After each pooling layer and after 
the 256 neuron dense layer, we use a dropout of 0.2 [29]. We selected “Adams” as optimizer and a 
batch size of 30. We used early stopping to select the model version at the epoch where loss was 
minimal [30]. For our selected model, this mechanism led to a training period of 74 epochs, after 
which the validation loss was at 0.37 and the validation accuracy at 0.83. 
 
We used online data augmentation in order to make the model more invariant against slight 
variations in rotation, position, and the exact configuration of pixels of the shape margins, all of which 
are not informative for classification purposes. This was achieved by random horizontal flipping; 
rotation by a random value between -30 and +30 degrees; and a slight random sift in x and y 
direction. These operations were performed on each image before each epoch – as our model was 
trained with 74 epochs, 74 versions per image were created. 
 
For each tested silhouette, the neural network returns a numerical value that ranged between 0 and 
1, to denote confidence of track affinities as ornithischian and theropodan, respectively. A value of 0.5 
indicates an ambiguous outcome without any tendency towards either category. The neural network 
model, along with detailed step-by-step instructions, is provided in the supplemental data. 
 
The final model was validated on a test set of 36 tracks that were collected by JNL from the literature 
(see supplemental data). Tracks were selected to obtain a varied sample that includes both relatively 
obvious candidates and challenging ones. In a few cases, the silhouettes do seem difficult or even 
impossible to assign to their correct label, as they show characteristics of both groups. The same test 
set was given to five researchers who all are established experts on tridactyl dinosaur tracks. These 
researchers were asked to identify each track either as ornithischian (0), theropod (1), or ambiguous 
(0.5). 
 
 
Results and Discussion 
 
Performance on test set and comparison with human performance 
 
On the test set, the neural network outperformed human experts by a constant margin (Fig. 1, Tab. 
1). 86% of tracks were correctly classified while 14% were incorrectly classified. If all neural network 
decisions above 0.4 and below 0.6 are treated as ambiguous (22% of tracks), the neural network 
classified 67% of tracks correctly and 11% incorrectly. The human experts, on average, classified 57% 
correctly, 20% incorrectly, and 24% as ambiguous. These results demonstrate the ability of big data 
applications to outperform human experience when trained on a sufficient sample size. Most of the 
test set examples are significantly different from any of those the model was trained on, 
demonstrating the ability of the model to classify new distinct shapes. 
 
 
 



 
 
Fig. 1. The test set used to compare the performance of the neural network model with that of five 
human experts. The neural network returned values between 0 and 1, with values <0.5 indicating 
more ornithischian-like shapes and values >0.5 indicating theropod-like shapes. Values between 0.4 
and 0.6 are here considered as “ambiguous”. Human experts marked each track as either 
“ornithischian”, “ambiguous”, or “theropodan”. The ratio between correct, ambiguous, and incorrect 
identifications of these five experts is shown for each track. 
 
 
 
Identifier % correct % ambiguous % incorrect 
Expert 1 67 3 31 
Expert 2 58 25 17 
Expert 3 58 25 17 
Expert 4 42 44 14 
Expert 5 58 22 19 
Neural Network (no ambiguous cases) 86 0 14 
Neural Network (0.4–0.6 treated as 
ambiguous) 67 22 11 
 
Table 1: Performance of the individual human experts and the neural network on the test set. Note 



that high percentages of correct identifications are associated with high percentages of incorrect 
identifications, and vice versa. 
 
Limitations and strengths 
 
Our neural network was trained to classify shapes without any context information. When an 
ichnologist decides how to assign a track, such context information (e.g., size, stratigraphy, and shape 
of other tracks of the same trackway) plays an important role. While it is generally possible to provide 
a neural network such context information, this comes at a cost: The model will be more likely to 
overfit, or, in other words, may fail to make a correct assignment when the track in question was 
found outside of its expected context. This may lead to circular arguments: If, for example, 
information on size and geological age is provided to the model, large tridactyl tracks from the Upper 
Jurassic are more unlikely to be classified as ornithischians because no such examples are present in 
the training set. This may easily lead to false conclusions if the a priori assumption (no large 
ornithischians in the Upper Jurassic) is wrong. In this light, this apparent shortcoming of our neural 
network may therefore be its greatest strength: providing objective assessments of shape 
independent of context. Consequently, it has to be the job of the ichnologist to combine the neural 
network evaluation of the shape with all relevant context information to arrive at a meaningful 
interpretation of the track. 
 
In the initial stages of the present project, the authors were undecided on whether to include size 
information. Size is undeniably important in some cases – e.g., a 50 cm long slender-toed track can 
confidently be assigned to a theropod trackmaker, even though the same shape at a much smaller 
scale might well be produced by an ornithischian trackmaker. On the other hand, we may argue that 
tracks that are unambiguously classifiable based on size do not require the judgement of our neural 
network to start with. In all ambiguous cases, evaluating shape independent of size can yet again be 
considered a strength, as it brackets off a priori assumptions about the possible size range of a 
trackmaker, which may be based on incomplete knowledge. This reasoning notwithstanding, we did 
collect size information along with all outlines of our dataset. Tests using an earlier model version that 
included scale information did not appear to produce better results than other models that did not 
include such information, and we consequently abstained from including this information. Another 
difficult decision is the identification of a track as belonging to the left or right foot. Tests using early 
model versions did not show clear improvements in performance when presented with uniform right 
shapes versus randomly mirrored shapes, and most tracks of unknown trackmaker identification 
cannot be unambiguously attributed to left or right to start with. Consequently, we decided to 
augment the data to randomly mirror the shapes, making the model invariant against left or right. 
 
Another inevitable limitation is our reliance on previous identifications of tracks as either “theropod” 
or “ornithischian” to train the models. We assume that the vast majority of these a priori 
identifications are probably correct even when the shapes themselves are ambiguous, since the 
context usually offers valuable clues (most unambiguously the presence of manus impressions, which 
only occur in ornithischians). However, misidentifications cannot be ruled out especially for smaller 
tracks which are particularly ambiguous. 
 
Finally, the greatest limitations of the presented approach are the interpretive outline silhouettes 
themselves. Advantages of using such silhouettes, namely their simplicity and wide availability, are 



compromised by their inherent subjectivity [19,22]. This subjectivity is highlighted by Fig. 2, where 
outlines produced by different researchers may be different in shape to a problematical degree 
[23,31]. Besides adding substantial noise, this subjectivity may shift the neural network evaluation 
towards one or the other category, as is the case with track 3 (Fig. 2, outline of PLF and JNL vs that of 
AR). Furthermore, given the loss of potentially valuable information, the reduction of information 
content can be considered an advantage and a drawback at the same time. Although 
extramorphological features tend to be excluded from interpretive outline drawings to arrive at a 
meaningful hypothesis about the shape of the foot, this is not always possible, and the degree to 
which outlines are “idealised” varies greatly between separate ichnologists. Indeed, some authors 
[e.g., 32] have argued that ‘extramorphological’ features should be considered part of the track itself 
(e.g. displacement rims, collapse structures), and that these features may contain information about 
the trackmaker that should not be excluded. 
 
As we authors experienced with the Lark Quarry trackway (see below), the production of meaningful 
outlines was not always possible, and identifying which features were related to the foot morphology, 
and which to sediment movement, and later erosion, was difficult. Given these drawbacks, our 
approach using interpretive outlines can only be considered the first step, and more objective and 
comprehensive data formats, such as 3D shapes, need to be considered for future applications of 
neural networks (see below). 
 
 
Analysis of Lark Quarry tracks 
 
Previous debate on the identification of the large tridactyl trackway Q1 from Lark Quarry was 
complicated by two points of disagreement: 1) which tracks best reflect the anatomy of the foot, and 
2) how the outline of the individual track should be drawn. The interpretation of outlines of individual 
tracks has been even more controversial and has been argued to be significantly influenced by the 
researcher’s opinion about the trackmaker responsible [3,5,16–20,23]. 
 
We here consider all tracks of the Lark Quarry trackway except for tracks 7, 9, and 11, as these tracks 
lack an obvious tridactyl morphology. Outlines were drawn by all three of us based on digital models 
made from the archival cast material, before damage and reconstruction occurred to many of the 
tracks in situ. It should be noted that in previous work, PLF favoured a theropod affinity [19] and AR 
favoured an ornithopod affinity [3,16], while JNL considered the tracks to be ambiguous. In addition, 
we produced objective outlines of all tracks using the algorithm of Lallensack (2019), run with default 
settings. These objective outlines mimic the way humans interpret outlines but are by design devoid 
of a priori assumptions about the trackmaker. 



 
 
Fig. 2. Tracks 1–6, 9, and 10 of trackway LQ1 from Lark Quarry, Australia. Height maps of 3D models 
are shown together with respective interpretive outlines produced by the three authors (PLF, JNL, and 
AR) and the objective outline algorithm of [23]. Note the marked differences in shape and size 
between outlines, in particular of track 3. Scores returned by our neural network indicate that most 
tracks with the exception of track 3 are ornithischian-like. 



 
For six of the eight tracks, the neural network tended to be in favour of an ornithischian affinity (Fig. 
2). The mean score of PLF, who favoured a theropod affinity of the tracks, was slightly higher (0.32) 
than that of AR (0.26), JNL (0.24), and the objective outlines (0.24). More substantial differences were 
found for track 3, which Thulborn and Wade (1984) considered the best-preserved track: Outlines by 
PLF (0.99) and JNL (0.93) where found to be very theropod-like, while outlines by AR (0.48) and the 
objective outlines (0.52) were ambiguous. This indicates that although a priori assumptions about the 
responsible trackmaker may indeed influence the result in some cases, general trends seem to be 
robust (i.e., this track was the most theropod-like regardless of bias). 
 
However, the mean of scores of all considered tracks is not necessarily an informative measure, as in 
many cases only one or few tracks will convey the anatomy of the foot accurately. We therefore 
continue by taking a closer look at those tracks that have been identified as the best preserved by 
previous workers: track 3, 5, and 6. Track 3 is clearly different in appearance from all other tracks, and 
is consistently recovered as the most theropod-like. Analysis with gradcam [33] of the outline of JNL 
of track 3 (Fig. 3A) suggests that the curvature of digit impression III and the shape of the heel are the 
important features that led to its classification as theropod. The curvature of digit III is also indicated 
by longitudinal ridges at the floor and wall of the track that might represent pull-up structures, 
indicating that this curvature is original and not the result of erosion [16]. 
 
Tracks 5 and 6, which are unambiguously ornithopod-like, are similar to some of the other, more 
fragmented tracks. A direct overlay of interpretive “maximum” outlines of tracks 3 and 5 (Fig. 3C) 
shows that the latter is distinctly wider with larger interdigital angles and a generally more robust 
appearance. Both tracks are, however, almost identical in length. If track 3 does reflect the foot 
anatomy more closely, it must follow that other tracks were broadened due to erosion or rotation of 
the foot. If, on the other hand, tracks 5 and 6 more closely match the foot anatomy, it follows that 
digits II and IV of track 3 are partially collapsed during or after track formation. 
 
While morphologies of most tracks other than track 3 tend to suggest an ornithischian trackmaker, 
the long stride lengths and low pace angulation values of around 180° [16] are more typical for a 
theropod trackmaker. We may also be running into the limitations of using outlines for relatively deep 
tracks, where outlines created near the top of the track are broader and more rounded (and hence 
more ornithopodan) than outlines from deeper in the track, at the foot-sediment interface, as 
demonstrated by Falkingham [19]. This is confirmed by testing (subjectively selected) “maximum” and 
“minimum” contour lines of track 3 (Fig. 3B), where the maximum outline was ambiguous (score of 
0.51) and the minimum outline very theropodan-like (score of 0.98). Future studies involving neural 
networks trained on 3D models of tracks and/or trackway parameters may be able to resolve this 
ambiguity, as we shall come to in our conclusions. 
 
 
 



 
Fig. 3. Analysis of Lark Quarry track 3. A: Gradcam [33] map superimposed on the interpretive outline 
of JNL, highlighting the areas that were important for the classification of this shape as theropod. B: A 
(subjectively chosen) ‘minimum’ contour line superimposed on a ‘maximum’ contour line. The 
minimum contour line gives neural network scores close to 1, suggesting a theropod trackmaker, 
while the maximum contour gives an ambiguous score, suggesting that contours become more 
theropod-like with increasing depth. C: Interpretive outline of track 5 superimposed on that of track 3, 
showing marked differences in width but not in length. 
 
 
 
Re-evaluation of other tracks and implications on trackmaker identification 
 
Shapes attributed or similar to those of the ornithischian ichnogenus Anomoepus are often recovered 
as ambiguous by our model. Anomoepus tracks are typically identified based on the presence of 
manus impressions, inward rotation of the pes, and low relative projection of digit III beyond digits II 
and IV [34]. The ambiguity expressed by our model, however, suggests that Anomoepus cannot be 
reliably distinguished based on pes track shape alone when context data is not available. Such 
difficulties may be illustrated by an isolated track from the Hettangian of Poland that was described as 
a particularly large example of the ornithischian ichnogenus Moyenisauropus (=Anomoepus) [35]. Our 
neural network, however, suggests that a theropod affinity is more likely (0.72). A trackway of three 
tracks from the Lower Jurassic (Sinemurian) Razorback beds of Australia had been traditionally 
interpreted as theropodan in origin [36,37], while a more recent evaluation identified these tracks as 
ornithischian Anomoepus tracks [38]. Our neural network confirms the latter interpretations (scores 
of 0.42, 0.44, and 0.32 for the three tracks, respectively). 
 
Large tridactyl tracks, such as those of trackway 1 from Lark Quarry, pose different problems. Large 
ornithopod tracks are primarily differentiated from large theropod tracks based on their overall wide 
shape and their broad and rounded toe impressions that lack claw traces. Similar ornithopod-like 
features can, however, occur due to unfavourable substrate properties and/or within-sediment 
rotation of the foot, while theropod-like features are more unlikely to result from such factors. 
Consequently, large tridactyl tracks may be more easily mis-identified as ornithopod than as 
theropod. Schulp & Al-Wosabi [11] attributed a large tridactyl trackway from the Upper Jurassic of 
Yemen to an ornithopod trackmaker, although its large size (track length >50 cm) is unusual for 



ornithopods of that age. This was subsequently questioned by Piñuela et al. [8], who argued that 
features of some of the tracks are theropod-like. Our neural network indeed suggested an ornithopod 
affinity for most tracks but two (tracks 5 and 13), which were more theropod-like (0.59 and 0.71, 
respectively). As in the case of Lark Quarry, the identification of the trackway will ultimately depend 
on the question which of these tracks do more closely match the trackmaker’s foot, which cannot be 
fully addressed without careful restudy of the tracks, or 3D models thereof. 
 
 
Future research 
 
The value of fossil tracks as palaeontological data sources cannot be overstated, yet their 
interpretation can be challenging. The shape of tracks is influenced by multiple factors, including 
anatomy, substrate properties, and behaviour, but also post-formational alteration [32,39]. Although 
tracks are organised into separate ichnotaxa based on shape features thought to reflect anatomy, 
these ichnotaxa in fact form a continuum of shapes rather than discrete classes [21]; such continua 
must be analysed using rigorous quantitative methods. Neural networks may overcome limitations of 
previous quantitative approaches and are able to adapt to the immense complexity of the data. The 
application of neural networks may go well beyond simple classification tasks as carried out here. By 
learning to distinguish relevant from irrelevant shape features, these methods could be used to 
constrain foot shape, movement, and sediment properties for a given track or trackway, and even to 
produce outline drawings and measurements from 3D models that capture the important shape 
features better than any current objective outline technique [19,23]. Neural networks, in principle, 
and as demonstrated here, have the ability to outperform human experts in any of these tasks. 
 
Traditional ichnology has been based on interpretive outline drawings in order to document and 
communicate track morphologies. Such outline drawings are, however, deeply problematic for 
quantitative analysis because of 1) their subjectivity, 2) the loss of 3D information, and 3) the 
abstraction of 3D shapes to a set of margins which often do not exist in reality. While outlines drawn 
by a single well-versed researcher might be considered to be consistent, outlines of separate 
researchers are certainly not. Subjective decisions during drawing outlines include the precise 
position of the track margin [19,23], but also the degree of “improvement” to interpolate outlines, 
remove post-formational alterations, and to highlight anatomical features of interest. These 
subjective decisions can result in strikingly different outline tracings of a single track [e.g., 19,23]. 
Because such decisions may be influenced by a priori assumptions, in particular about the trackmaker 
taxon responsible, the danger of circular arguments when analysing these outlines is real. Despite 
this, there is still value in outline drawings for quantitative analysis, if carried out carefully, as 
demonstrated in the present approach. Using such drawings can only be the first step, and future 
work will soon need to switch to 3D models to train such neural networks. 
 
There has been a growing movement toward collecting, and publishing, 3D data, particularly as part 
of a ‘standard ichnological protocol’ [22], utilizing methods such as laser scanning, and particularly 
photogrammetry [40–42]. Long-term digital preservation, however, requires not only the capture of 
sets of photographs suitable for photogrammetry, but also the storage of such data in curated 
repositories such as Figshare and Morphosource, or as supplemental data associated with published 
papers. If kept outside of such repositories, data is likely to be lost eventually after retirement of the 
researcher. Only if and when 3D data is more widely available, quantitative methods such as neural 



networks will be able to fully unlock the potential of fossil tracks as palaeobiological data sources. 
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