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Abstract: Background: Intense training exercise regimes cause physiological changes within the
heart to help cope with the increased stress, known as the “athlete’s heart”. These changes can mask
pathological changes, making them harder to diagnose and increasing the risk of an adverse cardiac
outcome. Aim: This paper reviews which machine learning techniques (ML) are being used within
athlete’s heart research and how they are being implemented, as well as assesses the uptake of these
techniques within this area of research. Methods: Searches were carried out on the Scopus and
PubMed online datasets and a scoping review was conducted on the studies which were identified.
Results: Twenty-eight studies were included within the review, with ML being directly referenced
within 16 (57%). A total of 12 different techniques were used, with the most popular being artificial
neural networks and the most common implementation being to perform classification tasks. The
review also highlighted the subgroups of interest: predictive modelling, reviews, and wearables, with
most of the studies being attributed to the predictive modelling subgroup. The most common type
of data used was the electrocardiogram (ECG), with echocardiograms being used the second most
often. Conclusion: The results show that over the last 11 years, there has been a growing desire of
leveraging ML techniques to help further the understanding of the athlete’s heart, whether it be by
expanding the knowledge of the physiological changes or by improving the accuracies of models to
help improve the treatments and disease management.

Keywords: athlete’s heart; cardiology; machine learning; electrocardiography; echocardiography;
pre-participation screening

1. Introduction

Heart disease is the leading cause of death worldwide, accounting for 16% of the total
world’s deaths in 2019 [1]. In the UK alone, around 7.6 million people are living with heart
disease which causes, on average, one death every three minutes [2]. Exercise is one of
the best methods for improving health and reducing the cardiovascular risk factors [3].
However, extreme exercise regimes, such as those followed by athletes, cause physiological
changes in the heart to help it cope with the increased demands placed upon it [4]. These
physiological changes, also known as the “athlete’s heart”, can cause issues as they are
difficult to distinguish from pathological changes, exposing athletes to sudden cardiac
death [4].

Sudden cardiac death is the most common cause of death in young athletes, with
current estimates placing its incidence rate between 1 in 40,000 and 1 in 80,000 athletes per
year [5]. To prevent this, pre-participation screening, using techniques such as electrocar-
diography (ECG) and echocardiography, are used to identify the cardiovascular conditions
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associated with a sudden cardiac death, allowing for appropriate treatments and avoiding
adverse outcomes. Although shown to be generally effective, there are still approximately
1% false positives, resulting in some athletes going undiagnosed, e.g., the cardiac arrest
of Christian Eriksen at the Euro 2020 tournament and Fabrice Muamba in the FA Cup
quarterfinals in 2012).

Artificial intelligence (AI) has rapidly grown over the last decade, with machine
learning (ML) accounting for the majority of this growth [6]. ML techniques, powered
by advances in computational performance and very large datasets, have shown a great
success and they frequently outperform human performance [7]. ML is commonly used in
supervised and unsupervised learning tasks. Supervised ML techniques work in two parts:
first, the ML algorithm is trained using input variables and labelled output variables to
learn the associates between the two, then, the trained model is used to make predictions
on a test set, again where the labels of the outputs are known, to assess the performance [8].
Some examples of these methods include artificial neural networks (ANN), Random Forest,
etc. Unlike supervised ML, unsupervised ML uses unlabelled data and automatically finds
the key relationships and structures within the data. Two examples of such methodologies
are t-distributed stochastic neighbourhood embedding (t-SNE) and principal component
analysis (PCA).

The use of ML techniques applied to diagnostic investigations may prove valuable
to help detect cardiac conditions in athletes, establish the risk levels, and develop an
understanding of the physiological changes more accurately. ML models trained using
different data modalities and data formats have been applied successfully in detecting
many cardiovascular issues [9–13], showing how ML can solve a range of tasks, such
as predicting mortality following a cardiac intervention [13], in specific populations of
individuals [12], predicting coronary heart disease [10] and estimating the prognosis of
patients with congenital heart failure [11].

The aim of our study, therefore, is to review the current state of ML applied to the
athlete’s heart by evaluating the current trends regarding the ML methodologies and
approaches used within the area and determining the relevant questions and problems
ML currently faces. To this end, we plan to focus the review on the following: (1) ML
applications in the assessment of the athlete’s heart, and (2) understanding the desire to
implement ML approaches within this area of research.

2. Methods
2.1. Search Strategy and Selection Process

To obtain the data needed to carry out the review, the Scopus and PubMed online
electronic databases were searched to return the relevant literature. Table 1 outlines the
criteria used to define the search term and where, within the manuscript, each term focuses.
The literature returned from the searches was then reviewed and filtered by two authors,
RAAB and DLO, by the titles and abstracts, and then through full-text readings, which
were carried out by RAAB, so that only the studies relevant to the review were included.

Table 1. Criteria used to build the literature search.

Criteria Term Location

A “deep learning” OR “machine learning”
OR “artificial intelligence” Anywhere within the manuscript

B electrocardio* OR echocardio* Anywhere within the manuscript

C “athletes heart” OR “athlete*” Title, Abstract, or Keywords

2.2. Search Results

The search process is detailed in Figure 1. Based on the search criteria, 132 total studies
were returned from the searches performed on the Scopus and PubMed online databases.
The unique studies from these searches were subsequently extracted, which left a total
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of 128 studies. The titles and abstracts of these 128 studies were reviewed, resulting in
79 studies being excluded as they were deemed to be not relevant due to having a different
focus area than the one specified for this review.
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Figure 1. Study selection flow chart.

Of the 49 studies that remained, 1 study was excluded from the review due to issues
with accessing the full manuscript, leaving 48 studies to be included for full-text readings
and to form the dataset for this review. However, during the full-text readings, a further
20 studies were excluded: 16 were excluded as they were deemed to be not relevant to
the review, and the other 4 were excluded due to concerns about their quality, i.e., being
vague and having an unclear description of either their methodology or approach used to
develop their models, how the evaluation criteria were presented, and why certain metrics
were used over others. After all the exclusions had been applied, this left a final total of
28 studies that were considered for this review [4,14–40].

3. Results
3.1. Study Subgroups

Of the 28 studies, several different approaches were taken. We clustered the studies
into four subgroups: predictive modelling, reviews, wearables and others. Each study was
then assigned to one of these four groups using the criteria outlined in Table 2. “Predictive
Modelling” made up most of the studies with 10 (36%) [14,16,21,22,26,27,31,32,34,40] being
assigned to this group. “Reviews” was the next single largest group with eight (29%)
studies [15,17,18,23,29,30,35,38]. “Wearables” was the smallest single group with four (14%)
studies [20,25,28,37]. The final six (21%) unassigned studies [4,19,24,33,36,39] were placed
in the “Others” group as they did not meet the inclusion criteria for the previous groups.
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Table 2. Criteria for classification.

Group Criteria

1 Predictive Modelling
Main aim is to use some methodology to
create a model or framework that can be

used to classify data

2 Review
Consolidate existing literature in some way

to construct practical guidelines or conduct a
systematic review, etc.

3 Wearables

Main aim is the discussion or development
of wearable technology for use as either a

solely data collection enterprise or to conduct
automatic analysis

4 Others Does not fit the above criteria

3.1.1. Predictive Modelling

The studies within this group are focused on using methods that can be applied to a
dataset to attribute one of two or more classes to each patient or participant. This has been
approached in two main ways. The first and most popular type of approach implemented was
to use ML to learn from the data and make predictions on what class each patient/participant
should be classified as automatically. Eight of the studies [14,16,21,22,26,27,34,40] use this
approach, applying ML algorithms in varying levels of complexity, from linear discriminant
analysis (LDA) to ANN. A more in-depth discussion of the individual methods which
were used and their respective applications can be found in the section “Machine learning
approaches used”.

The second approach used in the other two studies forgoes the use of ML and instead
focuses on defining an algorithm tree that can be manually followed by a human user to
help improve the accuracy of their diagnoses. Vergani et al. [31] proposed a diagnostic
algorithm that can be used by healthcare professionals to distinguish between a hyper-
trabeculation phenotype, noncompaction phenotype, and left ventricular noncompaction
cardiomyopathy. Viviers et al. [32] focused on comparing the predictions made by a sports
physician using a history questionnaire and a physical examination, to a technician using
computer-assisted auscultation on the nature of cardiac murmurs in collegiate athletes.
These two approaches are focused on classification, as with the ML-focused studies, but
they have done so in a way that only utilizes human expertise.

3.1.2. Reviews

Within the data, there were eight studies which were classified as reviews. Georgijević
and Andrić [17] and Lucas et al. [23] had relatively similar aims: they both reviewed
the current use of different modalities in the pre-participation screening of athletes, with
Georgijević and Andrić [17] looking specifically at ECG and Lucas et al. [23] concentrating
on echocardiography. These studies also review the guidelines for how their respective
modality should be used in the pre-participation environment and the benefits that they
provide. Higgins et al. [18] had a different focus and instead reviewed the different
defects that can cause a sudden cardiac death in young athletes and recommend which
modalities are best suited to best diagnose each. Chang [38] also focused on the ECG,
but their approach was to consider the positives and negatives of applying it to screening
young adults, as well as a brief discussion on how AI is likely to shape the future of
the heart screening of athletes. Conversely to the studies already mentioned, Beavers
and Chung [35] and Seshadri et al. [29] both centred their reviews on wearables. More
specifically, Beavers and Chung [35] highlighted the emerging wearable technologies and
how they can be used to aid in heart assessments, with specific examples focused on
minimising the cardiovascular risk in athletes. Seshadri et al. [29] reviewed the ways in
which the data collected from wearables had been analysed with ML to evaluate athletes’
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heart health, with several successful implementations reported to have achieved accuracies
as high as 98% in the prediction of obstructive hypertrophic cardiomyopathy.

The remaining two studies are systematic reviews: Claudino et al. [15] focused on the
sports performance and injury risk of athletes within team sports and highlighted which AI
techniques have been applied within each sport, while Van Eetvelde et al. [30] looked more
specifically at the ML methods which have been used in the prediction and prevention
of general sports injuries. Our review differs from both Claudino et al. [15] and Van
Eetvelde et al. [30] in two key areas: (1) we focus on highlighting ML applications towards
the athlete’s heart exclusively, instead of the wider research area of injury prevention and
risk, and (2) we aim for a more comprehensive overview of the ML approaches themselves,
and emphasise the relevant challenges that are present and how to address them through
future research.

3.1.3. Wearables

The four studies in this category share the same goal: they describe the develop-
ment or implementation of wearable hardware that can be used by athletes to help collect
physiological data automatically. However, they differ in their individual implementa-
tions of the wearable technology, and in how the data are collected, stored, and analysed.
Adetiba et al. [25] developed a smart jersey to be worn by athletes to automatically record
an ECG signal. These data are then automatically passed through an ANN that has been
pre-trained to identify heart defects and returns whether the result is normal or not to
a smartphone application. Hussain et al. [20] proposed a fog-centric, wireless, and real-
time framework for health and fitness analysis, which consists of collecting data such as
ECG recordings, body movement, and posture from multiple wearables simultaneously,
which is then fed into two ML models: one to predict the exercise being performed by
the athlete; the other to predict the athlete’s health state. Similar to the aforementioned
studies, Castillo-Atoche et al. [37] described the development of a new wearable ECG
with a dynamic power management strategy that then automatically passes the collected
data to an ML model to detect arrhythmias in real time. Unlike Adetiba et al. [25] and
Hussain et al. [20], the final study in this group by Rymarczyk et al. [28] concentrated
exclusively on the development of a new type of electrode for physiological signal sensing
as an alternative to a conventional gelled electrode.

3.1.4. Others

The remaining six studies do not match any of the criteria for the three main groups.
Instead, these are individual pieces of research that provide a different overview of the
athlete’s heart. Chatzakis et al. [39] focused on developing an electronic health record, with
a built-in decision support system, to support paediatric cardiovascular disease screening.
Dockerill et al. [33] utilised a case series approach to assess the hearts of 27 runners before
and after an extreme running event whilst documenting the changes in the cardiac structure
caused by an acute bout of exercise. Similarly, Kerkhof et al. [4] investigated the changes
in the heart of a select group: three division one undergraduate crew athletes explored
the use of ‘focused’ echocardiography in screening athletes to assess their heart health
and function.

The studies by Bernardino et al. [36], Huang et al. [19], and Mlynczak and Krysztofiak [24]
bring unique approaches. Bernardino et al. [36] used cardiac magnetic resonance imaging
data for athletes and non-athletes and applied several techniques, such as statistical shape
analysis and dimensionality reduction, to highlight the areas of the heart that underwent a
remodelling due to endurance exercise (more details on the methods used are discussed in
the section on the “Machine learning approaches used”). Huang et al. [19] is the only study
to leverage unsupervised clustering to investigate the validity of sport-specific adaptions
in athletes’ hearts (the methods are further discussed in the section on the “Machine
learning approaches used”). Mlynczak and Krysztofiak [24] focused on discovering causal
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relationships between cardiovascular and respiratory variables in elite athletes whilst they
were supine and standing, aimed at developing appropriate training plans.

3.2. Data Modalities Used for Athlete’s Heart Assessment

Within this review, a data modality refers to the type of data collected. There are
various modalities mentioned within the studies being reviewed, from images to signal
data. There are examples of these being used as a sole modality as well as examples where
information from multiple modalities have been used to evaluate the heart, with the splits
for all the modalities mentioned displayed in Figure 2.
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Our review highlighted that only 23 of the 28 studies mentioned which modality, or a
combination of modalities, were used to either review or generate their dataset. The most
commonly used was an ECG, with it listed in 16 of the studies, and it is the sole modality
used in 9 of the studies. This is expected due to it being able to detect several conditions
associated with sudden cardiac death in athletes, such as hypertrophic cardiomyopathy,
arrhythmogenic right ventricular cardiomyopathy, myocarditis, dilated cardiomyopathy,
brigade syndrome, long QT syndrome, and Wolff-Parkinson-White syndrome [18]. The
use of the ECG as part of athletes’ screening is recommended by associations worldwide,
including the European Society of Cardiology (ESC) and the International Olympic Com-
mittee, highlighting its widespread application within the literature [17]. ECGs are also
very commonly used among healthcare practitioners due to them being a cost-effective,
non-invasive technique with a relatively high sensitivity for detecting underlying cardiac
disease [23].

Echocardiography is the next most commonly used modality, with it being used
in conjunction with other techniques in seven studies, with it being the sole modality
used in two. Like with an ECG, echocardiography is widely used for many of the same
reasons. It is non-invasive and, compared with other imaging modalities such as CT
imaging and MRI, it is cost-effective [18]. It also plays a crucial role in diagnosing some
conditions where the ECG is less sensitive such as Marfan Syndrome, coronary anomalies,
and dilated cardiomyopathy [18]. Echocardiography also yields positive results when
used in conjunction with the information generated from other sources, such as ECGs, in a
multimodal approach [23].
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Another popular modality that has seen some use is the tabular records, which en-
capsulates various sources of information relating to the patient/participant such as their
age, sex, and race. This modality was referred to in five studies, with it appearing as the
sole modality once. Rahman et al. [27] gave a compelling reason as to why tabular records
should not be used as a sole modality in regard to the evaluation of athletes’ hearts. Their
use of the tabular information taken from the American Heart Association questionnaire
for classification was not able to perform as well as a cardiologist that had both ECG
and echocardiographic data available. However, it does serve an important purpose, as
certain demographics such as age, race, and gender have already been shown to affect the
heart differently, so ignoring this information may lead to overlooking a key insight. This
point is further supported by Narula et al. [26], whereby using information derived from
both tabular records and the echocardiogram, they built an accurate predictive model (the
specific model performances, with metrics, can be found in the section on the “Machine
learning approaches used”).

Other modalities are referenced; however, they are used less frequently than the three
most popular modalities: electrocardiography, echocardiography, and tabular records,
discussed above. Cardiac MRI is referenced twice [31,36], and computer-assisted auscul-
tation [32] and magnetocardiography [22] are both mentioned once. The reasons for this
trend likely lie in the already highlighted cost-effectiveness and non-invasive nature of the
three popular modalities when compared to their alternatives.

A common theme throughout the studies is that in the majority of cases, the key
features pre-extracted from the modality are analysed instead of the raw data itself. The
features can either be extracted manually by a healthcare professional, such as the physical
measurements [21,22,26], or by using a technique to generate statistical features instead [14,40]. The
only study that bucks this trend was by Castillo-Atoche et al. [37], where they developed
their model on ECGs in an image format instead.

3.3. Machine Learning Approaches Used

The application of ML has been used in 13 of the studies considered for this review.
Eight of them were assigned to the “predictive modelling” group, three were assigned to
the “wearables” group, and two were assigned to the “other” group. The most commonly
used method was the ANN, with it being used in 5 out of the 13 studies [14,21,25,26,40].
This was then closely followed by support vector machines [21,26,27,40], used in 4 out of
the 13 studies, and then random forest [26,27,40] and logistic regression [16,34,36], tested
in 3 out of the 13 studies. Other techniques that were also mentioned within the literature
but were less commonly used were decision trees [16,34], naïve Bayes classifiers [21,27],
multiple linear regression [19], k nearest neighbours [21], linear discriminant analysis [22]
and long-term short memory neural networks (LSTM) [20], convolutional neural networks
(CNN) [37], and hierarchical clustering [19]. A summary of all 13 studies can be found in
Table 3 which details the aims of each study along with other key information.

Table 3. Summary of studies that applied ML methods.

Study Sample Size (N) Type of Method Problem Addressed Performance Metrics
Stated

Adetiba et al. [14] 40 ANN Automatic heart defect
detection for athletes Accuracy = 0.9

Adetiba et al. [25] 40 ANN

Develop a wearable ECG
that can be worn by

athletes to help
automatically detect

defects

Accuracy = 1
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Table 3. Cont.

Study Sample Size (N) Type of Method Problem Addressed Performance Metrics
Stated

Barbieri et al. [34] 26,002 Decision trees
Logistic regression

Classify whether an
athlete is at

cardiovascular risk or not
AUC = 0.78

Bernardino et al. [36] -

Logistic regression
Principal component

analysis
Statistical shape

analysis

Highlight areas of the
heart that undergo

cardiac remodelling due
to endurance exercise

-

Castillo-Atroche et al. [37] 56,542 samples
from 487 patients CNN

Automatically predict
arrhythmias in athletes in

real time
Accuracy = 0.939

Christ and Rückert [40] 22 and 9

ANN
Random forest
Support vector

machine

Predict whether a patient
was an athlete or not

based on ECG readings
Accuracy = 0.981

Długosz et al. [16] 160 Decision tree
Logistic regression

(1) Use ECGs to estimate
the level of cardiac
troponin (cTnI) in
amateur athletes

(2) Detect coronary artery
disease (CAD) in athletes

AUC = 0.91

Huang et al. [19] 598

Agglomerative
hierarchical Clustering

Multiple regression
analysis

(1) Identify athlete
groups with similar

characteristics
(2) Investigate the

validity of sport-specific
adaption for evaluating

athlete’s hearts

-

Hussain at al [20] 7200 data points
from 4 athletes LSTM

(1) Predict and athlete’s
health state

(2) Predict the activity
being performed by an

athlete

(1) Accuracy = 0.97
(2) Accuracy = 0.83

Laurino et al. [21] 14 and 12

ANN
K nearest neighbours

Naïve Bayes
Support vector

machines

Classifying heart states in
athletes between those at
rest and those in stressful

conditions

Accuracy = 0.86

Lombardi et al. [22] 26 Linear discriminant
analysis

Determine whether
patients with idiopathic
ventricular arrhythmias
with left bundle branch
block and inferior axis

morphology arrhythmia
originated from the aortic
sinus cusps or the right

ventricular outflow tract

Accuracy = 0.947
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Table 3. Cont.

Study Sample Size (N) Type of Method Problem Addressed Performance Metrics
Stated

Narula et al. [26] 139

ANN
Random forest
Support vector

machine

Discriminate between
hypertrophic

cardiomyopathy from
physiological

hypertrophy in athletes

AUC = 0.795

Rahmen et al. [27] 470

Naïve Bayes
Random forest
Support vector

machines

Predict whether an
athlete’s heart is normal

or not

Accuracy 0.742 and
0.553 for experiments
1 and 2, respectively

The main application of ML within these 13 studies is towards classifying whether a
patient/participant has a particular heart disease or defect, with 8 out of the 13 having this
focus. Adetiba et al. [14] used an artificial neural network to classify whether an athlete’s
heart is normal, or whether one of the following defects was present: tachyarrhythmia,
bradyarrhythmia, or hypertrophic cardiomyopathy. This was done by extracting the
ECG signals, applying a first-order statistical signal processing technique, and passing
these features as inputs to train the model. The final model reported an accuracy of 90%.
A subsequent study [25] from the same authors, published two years later, performed
the same classification task, included feature extraction methods, and used only ANN.
However, this time the data were generated by a wearable jersey they designed, reporting
an accuracy of 100%.

Lombardi et al. [22] used linear discriminant analysis to determine whether patients
with idiopathic ventricular arrhythmias with a left bundle branch block and inferior axis
morphology arrhythmia originated from the aortic sinus cusps or the right ventricular
outflow tract. Manually extracted features from multiple modalities were used to create
the linear separation between the two classes, achieving a final accuracy of 94.7%. The
aim of Narula et al. [26] was to discriminate between the hypertrophic cardiomyopathy
and physiological hypertrophy in athletes. The manually extracted features from the
echocardiographic scans as well as tabular records were used as the inputs to train a
support vector machine, random forests, and an ANN model. The predictions from each
model were taken and a voting system was used to determine the overall class of the
patient. The reported performance of this ensemble method was an AUC of 0.795.

Długosz et al. [16] used different ML techniques in an attempt to address the two
aims of the study, which were to use ECGs to estimate the level of cardiac troponin (cTnI)
in amateur athletes as well as detect coronary artery disease (CAD) in the same cohort
of patients. The cTnI levels of the athletes were recorded at several times before and
after a sporting event, and CAD was confirmed in six athletes. The study attempted
(unsuccessfully) to train a logistic regression model to estimate the cTnI levels. However,
they were able to detect CAD successfully by training a grid search optimised decision tree
using the pre-extracted features from ECGs performed on the athletes and tabular records
such as their BMI and age and the blood levels of the cTnI. The best performing model
achieved an AUC of 0.91.

The work by Rahman et al. [27] differs from the above three studies as it forwent any
formal screening test data such as ECGs or echocardiograms and used the tabular record
information collected from the American Heart Association questionnaire. It aimed to
predict whether an athlete’s heart was normal or not and it did this by training three models:
a support vector machine, a random forest, and a naïve Bayes classifier. They performed
two experiments, the first was on the whole dataset, which contained a large positive class
(representing healthy hearts) bias, and another on a dataset where the positive class had
been subsampled to create a biased dataset. The best results reported for these experiments
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were an accuracy of 0.742 using the support vector machine for the first experiment, and
0.553 using the random forest for the second experiment.

Regardless of their stated results and methodology, many of the studies referred to
previously share a similar drawback: they all used a small dataset for their analyses. The
size of the dataset used by Adetiba et al. [14,25] is n = 40, Lombardi et al. [22] is n = 26,
with Narula et al. [26], Długosz et al. [16], and Rahman et al. [27] using larger datasets
of n = 139, n = 160, and n = 470 participants, respectively. The use of small datasets
can lead to problems when trying to leverage ML methods such as ANN, whereby the
model will not learn the underlying relationship between the input variables and the
output, potentially resulting in the model overfitting the data and reducing its ability
to generalise to new, unseen data. Barbieri et al. [34] and Castillo-Atoche et al. [37] both
addressed this issue by using much larger datasets for their analysis. Barbieri et al. [34] used
26,002 participants for their analysis, to classify whether an athlete is at a cardiovascular
risk or not. For this, the authors use tabular record information as well as the features
manually extracted from ECGs as inputs to train and test two models, one built using a
decision tree, the other using logistic regression. The logistic regression model provided the
best performance, generating an AUC of 0.78. Castillo-Atoche et al. [37] used a much larger
dataset consisting of 56,542 ECG samples taken from 487 patients to automatically predict
arrhythmias in athletes in real time. The ECG samples were analysed in an image format,
with 55,222 samples taken from 480 subjects used for training and 1320 samples taken
from 7 athletes used for the test. The training dataset was pieced together using several
open-access online datasets, with the test set comprised of a manual reading taken from
their discussed wearable. The model used to make the predictions was developed using a
CNN and achieved an accuracy of 94.3% on the training set and an average accuracy across
the seven athletes in the test set of 93.9%.

The remaining five studies that applied ML techniques have a different focus other
than disease classification. Christ and Rückert [40] aimed to use ML to predict whether a
participant was an athlete or not based on their ECG criteria. The authors used statistical
measurements for time-domain features and discrete Fourier transforms to extract the
frequency domain features that were then used as model inputs. An ANN, a support vector
machine, and a random forest model was trained and tested on the data, with the best
performance coming from the random forest model which generated an accuracy of 98.1%.

Laurino et al. [21] focused on classifying the heart states in athletes, distinguishing
between heart rates that were at rest and those during stressful conditions. Like with many
of the approaches stated thus far, the features from the ECGs were manually extracted to
be used as the dataset for this analysis. K nearest neighbours, support vector machines,
naïve Bayes, and artificial neural networks were all tested, and the best result came from
the artificial neural network, which successfully managed to separate the two classes with
an accuracy of 0.87 and 0.86 on the training and test set, respectively.

Hussain et al. also used a similar application of ML [20] whereby they used an LSTM
neural network on the waveforms generated from the heart rate, breathing rate, and heart
rate variability, to predict the athletes’ health state. The health state considered for the
analysis were aerobic, anaerobic, V02 max, hazardous, and moderate, and their model
was able to classify the athletes with an accuracy of over 97%. Hussain et al. [20] also
described a second ML application, where they again used an LSTM network to predict
what activity the athlete was performing. They trained four models for four different
experiments, all using breathing waveform data and the ECG data as the inputs, with the
best stated predictive performance being an accuracy of over 83%.

Huang et al. [19] are different from the former as they leveraged unsupervised learning
in an attempt to find hidden clusters within the dataset. The study had two aims: (1) to
explore the natural clustering of echocardiographic variables to identify athlete groups
with similar characteristics; and (2) to investigate the validity of sport-specific adaption
through a data-driven approach for evaluating the athlete’s heart. To address the first aim,
through utilising standard statistical tests such as an ANOVA and t-tests as well as multiple
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regression analysis, they were able to show clear training-related adaptations between
the groups which were defined by using Mitchell’s classification. For the second aim, the
agglomerative hierarchical clustering managed to find two distinct clusters for both male
and female athletes, confirming sport-specific adaptions.

The final study by Bernardino et al. [36] used a different approach and ML imple-
mentation to the other twelve studies. They presented a linear statistical shape analysis
framework that looked for shape differences between the athletes and a set of control
participants. This framework works by using a combination of dimensionality reduction
techniques, principal component analysis, and partial least squares to reduce the high
dimensional shape vectors to a latent space that contains the most relevant shape patterns.
Logistic regression was then used to classify what shape patterns were the most discrim-
inating between the two populations, and then they used this information to provide a
visual representation of the changes. This framework was applied to cardiac magnetic
resonance imaging for the study population which was able to highlight areas of the heart
that undergo a cardiac remodelling due to endurance exercise.

There is a total of 11 years between the earliest study published by Laurino et al. [17]
in 2011 and the most recent study published by Castillo-Atoche et al. [37] in 2022. Over
most of this time, the implementation of machine learning was fairly straightforward:
selecting a classification task, testing several techniques to find which performed the best,
and reporting the results. However, more recently, the types of ML techniques which
have been used have become more complex and intricate, as seen in Hussain et al. [20]
being the first to leverage deep learning methodologies in the form of an LSTM, and
Castillo-Atoche et al. [37] leveraging the power of CNNs for image analysis. Additionally,
the problems ML are being applied to are becoming more focused and novel, as seen in
Bernardino et al. [34] and Huang et al. [19]. This indicates the beginning of a trend towards
a more in-depth ML analysis being implemented within the research area.

4. Discussion

The studies evaluated as part of this review indicate that there is a clear drive within
the research area of the athlete’s heart to leverage ML. This is shown by 57% of the
28 studies either using ML to create a model to answer a question or solve a particu-
lar problem [14,16,19–22,25–27,34,36,37,40], or to evaluate how ML is being implemented
in similar areas through review studies [15,29,30]. The most popular application of ML is
in its use to generate models for classifying patients/participants to aid in diagnosing heart
defects at an early stage.

The results stated in the research are very positive, showing the real benefit ML could
have should it see a widespread adoption. What the studies also show is that alongside
the traditional disease and heart health predictive modelling, there is also a desire to use
ML to help further develop the knowledge surrounding the athlete’s heart itself. This has
been done by studies aimed at quantifying the magnitude of exercise volume on cardiac
adaptations within athletes’ hearts when compared to that of the general population.

5. Limitations of Current Research

The use of ML is desirable in many tasks, including health care, as properly trained
models can help reduce errors in diagnosis by either matching human performance [41]
or even being superior in some cases [7]. Even though the ML applications in this area
have shown promise, several issues could potentially slow the adoption of such techniques
and limit their application in the real world. First, the vast majority of the data used in the
studies that reference ML, or any of the 28 studies in the full literature reviewed, do not
use an open-source dataset. This is problematic, making it difficult for external groups to
assess the data to determine potential biases that were missed in the study or to validate
the stated models being presented. This will likely be a difficult problem to overcome, due
to the nature of the data being analysed. For the teams elite athletes compete for, having
information about their players’ health, or obtaining it for elite athletes from other teams,
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can give an unfair advantage in situations such as transfer markets [42]. Therefore, it is not
in the best interests of the main collectors of athletes’ data to make it publicly available
and performing the data collection at the scale needed by third parties would become very
costly. The only study that uses open-source data is by Castillo-Atoche et al. [37], where
they fuse several open-source databases to form a training dataset. The datasets used are
the MIT-BIH Arrhythmia Database [43], ECG-ID Database [44], MIT-BIH Supraventricular
Arrhythmia Database [45], MIT-BIH Atrial Fibrillation Database [46], QT Database [47], and
Long Term ST Database [48] which are all hosted on PhysioNet [49]. Even though the use of
open-source data is positive, this approach does not solve the issues discussed. First, there
is not a clear description of how the data has been fused and pre-processed, hampering
validation efforts. Additionally, the open-source data used does not contain the athlete’s
data used in the study, again further hindering the ability for an external validation.

Another issue relating to the data is that many of the studies use small sample sizes for
their analyses. This poses a problem, especially with ML applications, as it is well known
that having more data available can not only increase the model’s performance but increase
the generalisability of the model. Adetiba et al. [25] is an example where a classic symptom
of overfitting is present, as the stated accuracy is unusually high at 100%. This, paired
with the very small data size and the inability to reproduce the work due to non-public
data, further supports the idea that overfitting may be present in this model. Furthermore,
heart defects in athletes are generally at a low prevalence in a given population, hence a
small sample size is unlikely to be fully representative of the disease which the authors
are attempting to analyse. Hussain et al. [20] further demonstrated the effects imbalanced
data can have on the results in the accuracy stated for the health state predictions of 97%.
Even though the dataset is large, the prevalence for the class of concern, whether the health
state is currently hazardous, represents only 0.085% of the dataset, with the classes aerobic
and moderate accounting for 92.7% of the dataset. This causes an issue as it becomes very
easy for a model to overfit and generate good performance metrics by mainly predicting
the majority classes. This increases the difficulty for an ML model to fully understand
trends that distinguish what separates the class of interest and reduces the likelihood of it
generalising well to an unseen dataset.

As briefly mentioned previously, the analyses are mainly performed using the features
extracted from the different modalities, such as electrocardiograms, as inputs for their
analysis instead of the raw input itself. With the successes seen by using the raw data as
inputs to develop ML models for the prediction of different heart conditions [50–52], it
is surprising that none of the studies has attempted to implement this approach toward
the athlete’s heart. Additionally, restricting the input data to the pre-extracted features
only means working under the assumption that the features themselves explain enough
variance between the different output classes to enable accurate predictions, which may
not hold true. Another potential issue arises due to either the time and associated cost of a
healthcare practitioner extracting these features manually, which can further exacerbate the
small dataset issue, or using a feature extraction technique which may not fully capture all
the relevant features of the original input, harming the model’s performance.

A further point here is that most models which have been built have used supervised
ML as the basis of the analysis. The difficulty here again is that the data are required
to be labelled for supervised ML to be carried out, meaning an expert practitioner will
need to analyse the data to provide an appropriate diagnosis or status to each sample,
which can be costly and time-consuming. There may also be a situation where assigning
labels to the data is not appropriate or even possible to do accurately, for example where a
cross-sectional study was performed with no specific outcome in mind, or if the equipment
needed for a gold standard diagnosis is unavailable. This problem will only be worsened
by the ever-increasing volume of the data generated and could result in large numbers of
datasets being underutilized, again exacerbating the issues surrounding the lack of open-
source data and small sample sizes. Another problem supervised ML has in this context
is, as described in the previous paragraph, the low prevalence of adverse outcomes in the
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athlete’s heart. Having limited information on non-healthy hearts will likely impact the
ability of any supervised ML to properly model the underlying structures that distinguish
a healthy and non-healthy heart. There are techniques that can be applied to help improve
the performance on imbalanced datasets, however, again, these come with their own
challenges, such as potentially introducing an additional bias to the results. Considering
the numerous challenges associated with supervised ML in this area, it hints that a different
approach may be appropriate to generate an optimal output.

6. Future Research and Impact

A great first step would be an organised effort to generate large, open-source datasets
consisting of athletes’ hearts data so that ML models can be built, tested, and validated by
external researchers to confirm the performances of different models. This should also help
in building up the trust between those developing the models and those that will be using
them, which in turn may help speed up the adoption. This approach is not novel, with
the creation of public databases playing a pivotal role in pushing key areas of research in
closely related disciplines, such as atrial fibrillation detection [6].

A further area for future research will be to focus on applying ML models to the
raw data instead of using pre-extracted features. This will have obvious benefits which
have already been stated of saving time and money, in theory allowing the scope of future
projects to be more ambitious. The main reason for this approach, however, is the potential
for the discovery of novel biomarkers by the ML model, finding associations between the
features in the raw data and the previously unknown outcome. These discoveries would
help push this research field forwards, helping to strengthen the understanding of the
athlete’s heart. Castillo-Atoche et al. [37] is the only study within the review that embraces
the raw data in the form of ECG images. Their study clearly shows the benefits of this
approach with their model being able to carry out analysis automatically and to a high
degree of accuracy.

In addition to this, there should also be a focus on developing frameworks that can
use ML models that can analyse the raw data from several modalities simultaneously to
make its decisions. Rahman et al. [27] suggested that the data from electrocardiography
and echocardiography should be considered by healthcare professionals when performing
athletes’ heart screenings to yield the best results. Therefore, it seems a logical next
step to evaluate whether this hypothesis transfers to ML models and if it yields tangible
improvements to the model’s performance.

Another potential avenue that could be pursued is to look at developing models to
determine disease progression alongside the physiological adaptations of the athlete’s heart.
All the predictive modelling conducted in the above literature centres on determining the
presence of the disease, not necessarily the severity of the disease or how it will develop
within the subject. By expanding the research in this area, it will provide healthcare
professionals with the tools and information needed to help properly manage the disease
and provide the appropriate treatments earlier.

Finally, future research should start to focus on expanding the implementation of
unsupervised ML due to its advantages in certain situations over supervised ML. As
unsupervised learning does not require labelled data, instead finding key relationships
within the data automatically, it provides a solution to the issues with datasets which were
mentioned above, relating to the time and cost of labelling, as well as the data where labels
are simply not appropriate. A more significant benefit of unsupervised ML in this context
is that it allows for a rephrasing of the problem and provides an alternative look into the
data. For example, instead of taking the classical approach and phrasing the problem
as a binary classification problem, such as is the athlete’s heart healthy or not healthy,
the problem can instead be constructed as an anomaly detection task and answer “What
does a healthy athlete’s heart look like?”. This approach provides compelling solutions to
the issues discussed in the limitations section surrounding the low prevalence of adverse
outcomes in athletes’ hearts, as only healthy data would be required to develop such a
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model, providing solutions which give a deeper understanding of the raw data itself, as
well as looking at to what degree the data are similar.

7. Conclusions

This review shows that there is a clear desire for using ML within the assessment
of the athlete’s heart. The most commonly used ML methodologies within this research
area were ANNs, support vector machines, and random forests, where the most common
implementation was to perform predictive modelling in the form of disease classification.
With a continued development and sustained advancements, the future potential of ML
applications is promising, not only in improving model prediction accuracies, but in aiding
in the understanding of the underlying physiological changes within an athlete’s heart.
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