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Abstract
Prenatal diagnosis of congenital disease improves clinical outcomes; however, as many as 50% of congenital heart dis-
ease cases are missed by current ultrasound screening methods. This indicates a need for improved screening technology. 
Extracellular vesicles (EVs) have attracted enormous interest in recent years for their potential in diagnostics. EVs mediate 
endocrine signalling in health and disease and are known to regulate aspects of embryonic development. Here, we critically 
evaluate recent evidence suggesting that EVs released from the foetus are able to cross the placenta and enter the maternal 
circulation. Furthermore, EVs from the mother appear to be transported in the reverse direction, whilst the placenta itself 
acts as a source of EVs. Experimental work utilising rodent models employing either transgenically encoded reporters or 
application of fluorescent tracking dyes provide convincing evidence of foetal-maternal crosstalk. This is supported by clini-
cal data demonstrating expression of placental-origin EVs in maternal blood, as well as limited evidence for the presence of 
foetal-origin EVs. Together, this work raises the possibility that foetal EVs present in maternal blood could be used for the 
diagnosis of congenital disease. We discuss the challenges faced by researchers in translating these basic science findings 
into a clinical non-invasive prenatal test.
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Introduction

Approximately 3–5% of pregnancies are complicated by 
congenital anomalies [1]. Early diagnosis improves clini-
cal outcomes [2], yet current screening tools are imperfect. 
For example, up to 50% of congenital heart defects remain 
undiagnosed until after birth [3]. Non-invasive methods of 
screening, which involve a maternal blood test, are increas-
ingly being adopted into clinical practice [4], leading to a 
marked decrease in the utilisation of invasive diagnostic 
procedures such as amniocentesis and chorionic villus sam-
pling [5].

Extracellular vesicles (EVs) are small membrane-bound 
particles produced by many cell types which function in par-
acrine and endocrine signalling [6–8]. EVs can be detected 
in most biological fluids, including blood, amniotic fluid 
and mammary gland secretions [6, 9]. It is reasonably well 
established that the pre-implantation embryo communicates 
with the endometrium via EVs [10], whilst the early post-
implantation embryo produces EVs that serve to dampen 
the maternal immune response and to remodel the maternal 
vascular system [11]. The placenta itself is a source of EVs 
and a number of recent reviews have discussed the role of 
these placental-derived EVs in mediating functions such as 
regulating maternal physiology, immune function and influ-
encing the timing of birth [12–18]. Placental-derived EVs 
within maternal blood have been proposed as biomarkers for 
placenta-related diseases such as pre-eclampsia and gesta-
tional diabetes mellitus [17, 19, 20].

Experimental evidence from animal models indicates 
that, in addition to producing EVs, the placenta can transport 
EVs derived from the mother or foetus between the two cir-
culations. These findings are supported by clinical evidence. 
Here, we critically assess the evidence for communication 
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across the placenta and the potential of foetal-derived EVs 
as biomarkers for congenital disease.

Development and structure of the placenta

The placenta is a temporary organ of pregnancy, forming the 
interface between mother and foetus and functioning primar-
ily to provide the latter with sustenance required for growth 
whilst also protecting the foetus from harmful agents [21, 
22]. The placenta begins to form shortly after the blasto-
cyst implants within the maternal endometrium, developing 
from the extra-embryonic part of the blastocyst known as the 
trophoblast [23–26]. However, it is not until the end of the 
first trimester in human pregnancies that the mature form is 
attained and blood supply to the placenta is established [27].

In humans [21, 26, 28, 29], foetal blood from the umbili-
cal arteries enters capillaries located within 30–40 chori-
onic villi which project into an intervillous space bathed in 
maternal blood (Fig. 1A). This maternal blood is supplied 
by spiral arteries which empty directly into the intervillous 
space (Fig. 1A, B). This process is dependent on proteases 
secreted by the trophoblast, which degrade the endothelial 

walls of maternal arterioles so that blood can pass unim-
peded into the intervillous space [30].

The placental barrier is formed by the syncytiotropho-
blast, a multinucleated layer that forms the walls of the 
chorionic villi, surrounding the foetal vascular endothelium 
(Fig. 1B, C). As the syncytium has no cell junctions, it forms 
a barrier separating the two circulatory systems. The syncy-
tiotrophoblast facilitates limited exchange: small molecules 
(< 600 Da) can diffuse across whilst the transfer of larger 
molecules can occur only if mediated by specific transport 
mechanisms [31]. The syncytium is being constantly worn 
away and it is replenished by the cytotrophoblast, an inter-
nal layer of proliferating mononucleated progenitor cells 
(Fig. 1C) [24]. Foetal blood is separated from maternal 
blood both by the endothelial layer of the foetal capillary 
and by the two layers of the trophoblast (Fig. 1C). All of 
these are foetal cells: there is no maternal cell barrier sepa-
rating the two circulations. Particles transferred from foetus 
to mother must pass first through the endothelium, and then 
through the cytotrophoblast, and finally through the syncy-
tiotrophoblast. Particles transferred from mother to foetus 
must pass in the opposite direction. It is important to note 
that the initially continuous cytotrophoblast layer becomes 

Fig. 1  Anatomy of the placenta. In both humans (A–C) and rodents 
(D–F), the syncytiotrophoblast forms a barrier separating maternal 
blood (pink) from foetal blood (purple). In humans, the syncytio-
trophoblast surrounds the foetal blood vessels which are located in 

villi projecting into the maternal blood space. In the rodent placenta, 
the syncytiotrophoblast surrounds the maternal blood space and sepa-
rates this from foetal capillaries within a structure known as the laby-
rinth
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discontinuous as pregnancy progresses. This has a direct 
consequence on particle transfer, as a full-term placenta has 
just two continuous layers (the syncytiotrophoblast and the 
foetal endothelial cells) [32].

There is considerable diversity in placental anatomy 
within mammals and as a result there is no perfect animal 
model of placentation [26]. Nevertheless, much of the evi-
dence for transport across the placenta comes from studies of 
rodent models; therefore, it is important to note that there are 
anatomical differences between rodent and human placentae. 
In rodents [28, 29, 33, 34], the spiral arteries do not empty 
directly into a cavity, but instead are connected to maternal 
sinusoids, syncytial-lined channels which carry the blood 
to the site of exchange (Fig. 1D, E). The foetal blood ves-
sels form structures similar to the human villi, but these are 
not lined with syncytium (Fig. 1E, F). Exchange takes place 
within a structure called the labyrinth, in which a network 
of foetal and maternal vessels comes into close apposition 
(Fig. 1E, F). Thus, in common with the human placenta, 
the syncytiotrophoblast forms the main barrier of exchange, 
but in rodents this layer surrounds the maternal rather than 
the foetal blood (Fig. 1F). In rodents, the syncytium is a 
double layer, and the mononuclear stem cells, known as 
trophoblast giant cells (TGCs) [35], do not form a complete 
barrier (Fig. 1F). In rodents, there are 3 subtypes of TGCs, 
each with a unique localisation: spiral artery TGCs, maternal 
blood canal TGCs and TGCs within the sinusoidal spaces of 
the labyrinth layer [35].

Extracellular vesicles

Extracellular vesicles produced by the placenta

EV is a collective term for a heterogeneous population of 
vesicles of different origins and morphology. Three sub-
classes of EVs, distinguished by size and origin, are gener-
ally recognised in the literature: exosomes (nanovesicles), 
microvesicles (ectosomes) and apoptotic bodies [9, 36].

The smallest EVs are known as exosomes (size ~30–150 nm) 
[7, 8, 37]. Exosomes are derived from the fusion of multivesicu-
lar bodies (MVBs) with the plasma membrane, releasing their  
intraluminal vesicles (ILVs) as exosomes (Fig. 2). The pro-
cess of exosome biogenesis begins by endocytosis and plasma  
membrane invagination leading to the formation of an early 
sorting endosome (ESE) [38] and then a late sorting endo-
some (LSE). Secondary invagination of the LSE membrane 
forms ILVs, thus creating the MVB [39, 40]. MVBs can either 
be targeted for lysosomal degradation through fusion with 
an autophagosome or they can be transported to the plasma 
membrane for exosome release. At the plasma membrane, the 
cytoskeletal and microtubular network on the luminal side of 

the plasma membrane and the MVB-docking proteins fuse the 
MVB with the membrane leading to exocytotic release of ILVs 
into the extracellular fluid as exosomes [40].

Intermediate-sized vesicles are known as microvesicles 
(MVs) or ectosomes (size ~100nm–1 μm) [37, 41]. MV 
formation is poorly understood; however, they are believed 
to originate by the direct outward budding of the plasma 
membrane (Fig. 2) [41]. Importantly, MVs overlap in size 
with exosomes and cannot be separated from them by size-
based purification methods such as ultracentrifugation and 
size exclusion chromatography [42, 43].

The largest class of EVs are apoptotic bodies. Apop-
totic bodies (size ~50nm–5 μm), as the name suggests, are 
a product of apoptosis [9, 37, 44, 45]. Although they might 
at first appear to represent the debris of dying cells, signal-
ling by apoptotic bodies has been demonstrated in recent 
studies [46]. The composition of these EVs is very different 
to exosomes and MVs as they contain intact organelles and 
chromatin [37].

The trophoblast, which is derived from embryonic tis-
sue (“Development and structure of the placenta”), has 
been shown to produce EVs, and these are secreted into 
the maternal circulation (Fig. 2) [47]. These EVs include 
exosomes and MVs but not apoptotic bodies. The syncytio-
trophoblast, like other epithelial tissues, is constantly under-
going turnover with aged tissue being shed and replaced 
by new tissue from the cytotrophoblast daughter cells. 
However, as the trophoblast is a multinuclear syncytium, 
it cannot fragment into small particles to produce apop-
totic bodies as a single cell would [24]. Instead, clusters of 
aged nuclei are extruded and released as large multinuclear 
structures known as syncytial nuclear aggregates (SNAs 
size 20–200+μm) (Fig.  2) [24, 48–51]. Whether SNAs  
are the placental equivalent of an apoptotic body remains 
controversial [52]. These large particles can be detected in 
maternal blood, carry mRNA [49] and express some of the 
biomarkers found in smaller EVs.

EV subtype classification and isolation is often very diffi-
cult because particles overlap in size and no specific markers 
of EV subtypes are currently available [53]. Some authors 
have proposed a further subdivision of these subtypes (e.g. 
classical vs. non-classical exosomes) [8]. Indeed, it is some-
times unclear precisely which subclass of EV some older 
papers are describing. The term syncytiotrophoblast-derived 
microvesicle (STBM) is sometimes used as a general term 
for undefined placental EVs. For this reason, the Interna-
tional Society for Extracellular Vesicles (ISEV) recommends 
that the general term EV should be used and that specific 
details of isolation procedures and EV characterisation be 
reported [53]. In this review, we will primarily be discuss-
ing exosomes and MVs and, unless otherwise specified, we 
will use the general term EV to describe these collectively.
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Extracellular vesicle transport across the placenta

It is likely that the foetal blood contains EVs originating 
from the developing organs, which may provide information 
on congenital disease. The mechanisms by which EVs cross 
the placenta are yet to be fully understood. The multinucle-
ated syncytiotrophoblast presents an impermeable barrier 
lacking intercellular junctions or pores. It therefore seems 
most likely that EVs must pass through the syncytium itself, 
being taken up on one side and subsequently released on the 
other. To our knowledge, there have been no studies investi-
gating how EVs are taken up by the placenta itself. However, 
a number of reports describe the mechanism of uptake of 
EVs into target cells (reviewed in [54, 55]). For example, 
placenta-derived EVs enter target cells in the uterus by endo-
cytosis and are trafficked to early and late endosomes [56]. 
Thus, it seems possible that this pathway could allow for 
trafficking of EVs across the syncytiotrophoblast and release 

on the opposite surface from MVBs (Fig. 2). It is possible 
that vesicle surface proteins or glycoproteins/proteoglycans 
interact with trophoblast membrane receptors prior to endo-
cytosis and this may limit which EVs are taken up. There 
is very little data on whether or how such transported EVs 
may be processed prior to release. For example, placental 
EVs are known to express tissue-specific surface markers 
(discussed below), but whether trafficked EVs originating 
from the foetus proper take up these markers is not known.

Extracellular vesicle biomarkers

EVs carry a cargo consisting of RNA and soluble proteins 
and in addition are enriched in specific transmembrane and 
membrane-associated proteins and extracellular glycans at 
the vesicle surface. Surface proteins tend to be involved in 
aspects of vesicle biogenesis whilst cargo molecules are 
actively loaded into vesicles from a number of sources. 

Fig. 2  Trafficking and production of extracellular vesicles by the 
placental syncytiotrophoblast. Three classes of EVs produced by the 
syncytiotrophoblast are detectable in maternal blood. Exosomes (30–
150  nm) originate within the endosomal pathway, whilst microvesi-
cles (100–1000  nm) are produced by blebbing from the plasma 
membrane. Syncytial nuclear aggregates are a class of large vesicles 

unique to the trophoblast which contain nuclei. The placenta releases  
endogenous EVs, but also traffics EVs from the foetal to the mater-
nal circulation. It is hypothesised that foetal EVs are endocytosed and  
processed through the endosomal pathway. ESE, early sorting endo-
some; LSE, late sorting endosome; MVB, multivesicular body
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However, many proteins are shared by the different EV sub-
types and unique biomarkers are hard to identify.

The endosomal sorting complex required for transport 
(ESCRT) pathway regulates membrane budding and separa-
tion in a number of cellular processes including both the for-
mation of ILVs during exosome biogenesis and MV budding 
from the plasma membrane [57, 58]. ESCRT complexes 
also have a secondary function in cargo loading of proteins 
tagged with ubiquitin [57]. Common ESCRT biomarkers 
of EVs include ALG-2 interacting protein-X (ALIX) and 
tumour susceptibility gene 101 (TSG101).

The tetraspanins are four-pass transmembrane proteins 
that mediate protein–protein interactions. Tetraspanins form 
clusters within the membrane associated with various pro-
teins and these clusters later bud off the membrane to form 
vesicles [57, 58]. The tetraspanin termed cluster of differ-
entiation 63 (CD63) is enriched in the endosomal pathway, 
specifically within ILVs of MVBs, and therefore is generally 
regarded as a specific marker of exosomes [8, 59]. However, 
tetraspanins are also present in the plasma membrane and 
may also be detected in MVs [58, 60]. Other tetraspanins 
enriched in EVs include CD81 and CD9.

During exosome biogenesis, ESEs communicate with 
the mitochondria, the endoplasmic reticulum (ER) and the 
trans-Golgi network, obtaining cargo from these sources [7, 
58]. EVs also carry a cargo of RNA, particularly micro-
RNA (miRNA), which are likely to function in the regulation 
of gene expression in target tissues [61, 62]. This function 
remains controversial [63], but nevertheless, blood miRNA 
is potentially useful as a biomarker and many studies have 
reported potential diagnostic uses [64–66]. Specific mecha-
nisms for loading miRNA into vesicles exist [67]. Thus, EVs 
can be thought of as vectors to transport signals between 
foetal and maternal tissues in order to exert a functional 
effect [68].

Evidence for EV‑mediated communication 
between the mother and the foetus 
across the placenta

Pregnancy requires substantial crosstalk and signalling 
between the mother and the foetus across the placenta, and 
this is linked to various physiological events during preg-
nancy. The trophoblast produces hormones that influence 
the mother, whilst antibodies are transferred from mother to 
foetus. Evidence is emerging that this bidirectional commu-
nication may be mediated in part by EVs. The trophoblast 
appears to be a source of EVs, and in addition, may permit 
the transfer of EVs between maternal and foetal circulation. 
Here, we will review the evidence for EV-mediated com-
munication across the placenta beginning with a discussion 

of the evidence derived from rodent models, followed by a 
discussion of evidence from clinical studies.

Rodent models

Use of transgenic reporters

Rodent models have been used in several elegant experi-
ments to examine transport of EVs across the placenta. One 
strategy has been the use of a transgenic mouse line in which 
a fluorescent reporter is expressed only in the paternal line-
age and is therefore normally lacking in the mother. Detec-
tion of this marker in EVs within maternal blood or tissues 
provides evidence that foetal- or placental-derived EVs have 
either been released by the placenta or trafficked across 
it. The mouse line most commonly used in these experi-
ments (the mT/mG mouse; Fig. 3) expresses a fluorescent 
reporter—either green fluorescent protein (GFP) or tandem 
dimer tomato (mT)—fused to the N-terminal domain of the 
myristoylated alanine-rich C-kinase substrate (MARCKS) 
protein, a widely expressed lipid-anchored membrane pro-
tein enriched in EVs [69, 70]. Sheller-Miller et al. [71] 
mated a wild-type female to a reporter male carrying the 
mT/mG transgene and immunoprecipitated mT+ EVs from 
maternal plasma at gestation age E16 using an antibody 
against tdT. They found that 35% of total maternal plasma 
EVs were mT + indicating that these EVs were released by 
a cell of embryonic origin (either foetus proper or placenta). 
In addition, mT was detected in the cervix and uterus and co-
localised with the EV marker CD81, suggesting that these 
EVs are specifically targeted to these maternal tissues.

The mT/mG reporter mouse carries a floxed allele in 
which LoxP sites flank the mT coding sequence (Fig. 3) 
[69]. When cells carrying this allele are exposed to CRE 
(phage P1 cyclic recombinase), the allele is recombined; 
thus, the mT sequence is excised from the locus and the 
resulting cells (and EVs derived from them) express the mG 
reporter (membrane targeted GFP) instead of mT (Fig. 3). 
In a clever experiment, Sheller-Miller et al. [71] loaded EVs 
isolated from the culture medium of the human embryonic 
kidney line HEK293T in vitro with CRE protein and then 
intraperitoneally injected these into pregnant wild-type 
mice carrying mT/mG foetuses at gestation age E13. They 
reported expression of mG in placenta (demonstrating pla-
cental uptake) and foetal tissue membranes (demonstrating 
trafficking into foetal circulation). This provides evidence 
that EVs from the maternal circulation had crossed the pla-
centa and delivered their cargo of functional CRE enzyme 
to foetal cells. Furthermore, mG+ EVs could be detected in 
maternal plasma, indicating the EVs derived from recom-
bined foetal cells had subsequently been released by the 
placenta in the reverse direction [71]. Together, this work 
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provides convincing evidence of bidirectional EV-mediated 
communication.

Nguyen et al. [72] used the same mT/mG reporter mouse. 
They crossed an mT/mG female with a male line expressing 
an X-linked constitutive CRE transgene. In this model, all 
maternal tissue should express endogenous mT, but detec-
tion of mG indicates the presence of EVs derived specifi-
cally from a cell of female embryonic origin. mG expression 
was detected in maternal lungs (supporting the tracking dye 
studies discussed below). Interestingly, Nguyen et al. also 
provide evidence that CRE+ EVs may have been released 
by the placenta and induce recombination of the locus in 
the maternal lungs resulting in endogenous mG expression.

In addition to the work on maternal–foetal communica-
tion across the placenta, the mT/mG mouse has been useful  
in demonstrating EV transport across the blood–brain bar-
rier. For example, Mustapic et al. [73] used the brain-specific 
Nestin-CRE line to recombine the locus and subsequently 
demonstrated mG+ EVs in peripheral blood.

One caveat of these studies is that although the mT/mG 
transgene was inserted into the ROSA26 locus, a widely 
used strategy for such targeting normally without affecting 
the mouse [74], mT/mG homozygous mice exhibit a failure 
in mechanoelectrical signal transduction of auditory hair 
cells leading to deafness [75]. High levels of mT prevent 
transmembrane channel-like protein 1 (TMC1), a compo-
nent of the mechano-transducer channel, localising to ste-
reocilia tips of auditory hair cells. These data suggest that 
the reporter can interfere with the function of endogenous 

membrane proteins, raising the possibility that endogenous 
EV proteins could be affected in this mouse model.

Other transgenic models have been developed which 
may overcome this problem, for example, a transgenic rat 
expressing GFP-tagged human CD63. Such fluorescent EVs 
can be isolated from various bodily fluids in this animal 
including blood and amniotic fluid [76]. The same group 
has generated rats expressing tissue-specific CD63-GFP 
using a SRY-box transcription factor 2 (SOX2) promoter to 
drive neural-specific expression in the foetus [77]. Further-
more, an inducible reporter has been produced by generat-
ing transgenic mice expressing CD9-GFP under the control 
of a stop-floxed ubiquitous chicken beta-actin (CAG) pro-
moter [78]. This mouse can be crossed with tissue-specific 
or tamoxifen-inducible CRE lines to produce tissue-specific 
or temporally controlled expression, respectively [78]. These 
methods are yet to be applied to foetal-maternal EV com-
munication studies but offer promising alternatives to the 
mT/mG mouse model.

Use of tracking dyes

Because the syncytiotrophoblast is derived from the embryo, 
the mT/mG transgenic model cannot differentiate between 
EVs trafficked across the placenta from those originating 
within it. An alternative strategy, and one that addresses this 
problem, is to trace the trafficking of labelled EVs injected 
into the animal. Fluorescent dyes that have been used suc-
cessfully in these studies include lipophilic dyes (DiI, DiR 

Fig. 3  The mT/mG mouse model expresses fluorescently labelled 
EVs. A mT/mG mice have been engineered to carry a single copy of 
a transgene inserted randomly into the genome. The transgene (left) 
consists of two expression cassettes for the lipid-anchored MARCKS 
protein fused to a fluorescent reporter (mT: tandem dimer tomato; 
mG: enhanced green fluorescent protein [EGFP]). The ubiquitously 
expressed pCAG promoter drives expression. LoxP sites flank the 

mT cassette. In the unrecombined allele, an upstream STOP codon 
prevents translation of mG, and thus, EVs express mT (right). B The 
enzyme CRE-recombinase recognises the LoxP sites and mediates 
recombination of the allele, resulting in excision of the mT cassette. 
Following recombination, the pCAG promoter drives expression of 
mG, and thus, EVs express mG (right)
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and PKH26, see Abbreviations for full names) which label 
all lipid membranes, and membrane-permeable dyes which 
enter EVs and then react with the amine groups of cargo 
proteins (DDAO-SE and CFDA-SE) (Fig. 4). CFDA-SE is 
particularly useful because fluorescence must be induced 
through cleavage by esterases present within the EV, thus 
reducing background.

Shi et al. [79] isolated EVs from the maternal blood of 
pregnant mice and labelled them with DiI before injecting 
these back into pregnant mice via the tail vein at a num-
ber of timepoints (E8.5, E11.5, E14.5). The embryos were 
then harvested at E16.5, sectioned and imaged. DiI signal 
was observed in the embryonic heart, placenta and other 
tissues, suggesting that EVs derived from maternal blood 
had crossed the maternal-foetal barrier and entered specific 
foetal tissues. Liu et al. [80] isolated EVs from visceral adi-
pose tissue of pregnant mice, labelled them with DiI and 
then injected these into the tail vein of pregnant mice at 
gestation days E8.5 and E11.5. Labelled EVs were detected 
in the placenta and the embryonic heart on embryonic day 
E16.5. Sheller-Miller et al. [71] purified EVs from maternal 
plasma at two gestational ages, E9 and E18. They labelled 
these EVs with CFDA-SE and then intraperitoneally injected 
E15 mice three times at 6 h intervals, followed by a final 
injection 12 h later. They demonstrated fluorescent signals 
at day E17 in both maternal (cervix and uterus) and foetal 

tissues (placenta and membranes). Thus, three independ-
ent studies have demonstrated trafficking from the maternal 
blood across the placenta to specific foetal tissues.

Trafficking in the opposite direction across the placenta 
from foetus to maternal tissue has also been demonstrated. 
Sheller-Miller et  al. [81] extracted EVs from the culture 
medium of primary human amnion epithelial cells grown 
in vitro, labelled them with DiR and then injected these into 
the amniotic fluid of mouse foetuses at E17. They demon-
strated fluorescence on the maternal side of the placenta 1 day 
after injection, as well as targeting to maternal kidneys and 
uterus. These data provide evidence of both trans-placental 
communication and of specific targeting to maternal tissues. In 
addition to the transgenic work described above, Nguyen et al. 
[72] purified EVs from placental explant medium, labelled 
with PKH26 and then intravenously injected these into non-
pregnant female mice. Thirty minutes after injection, the mice 
were sacrificed and the lung and liver were harvested. Fluo-
rescent microscopy analysis of the lungs supports the previ-
ous finding that placental EVs can traffic to the maternal lung 
where they appear to be taken up by interstitial macrophages. 
When EVs derived from the plasma of pregnant and non-
pregnant mice were labelled with PKH26 and then injected 
into the tail vein of non-pregnant recipients, only those EVs 
from pregnant mice were detected in the maternal lungs [72].  
This suggests that foetal-derived EVs present in the plasma of 

Fig. 4  Tracking dyes commonly used to label EVs. Two classes of  
fluorescent dyes are commonly used for EV labelling: membrane-
permeating and lipophilic dyes. A Membrane-permeating dyes 
(DDAO-SE and CFDA-SE) are lipophilic molecules that can cross 
the EV membrane. CFDA-SE is minimally fluorescent in the native 
state, but is activated once inside the EVs by endogenous esterases 

which cleave the acetate groups. DDAO-SE, on the other hand, does 
not require esterases to be activated; instead, it forms covalent attach-
ments to amines both inside and outside of EVs. B Lipophilic dyes 
(DiR, DiI and PKH26) are a family of fluorescent stains for labelling 
membranes and other hydrophobic structures. The fluorescence of 
these dyes is enhanced once incorporated into the EV membrane
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the pregnant mice are able to target maternal tissue. The liver 
was not targeted in either condition.

Tong et al. [82] explored the specific targeting of foetal 
EVs to maternal tissue in more detail. They collected EVs 
from the culture medium of human first trimester placenta 
(8–12 weeks), labelled these with DDAO-SE and injected 
them into the tail vein of pregnant mice at E12.5. Ten major 
organs were imaged at both 30 min and 24 h after injection 
to monitor targeting. This work demonstrated that EVs are 
quickly targeted to maternal lungs and liver and later (at 
24 h) to the kidneys. Importantly, these authors also report 
that many maternal organs are not targeted by foetal EVs, 
including the brain and heart. Furthermore, Tong et al. [82] 
provide evidence that specific maternal tissues become 
receptive to foetal EVs during pregnancy: foetal EVs mod-
ify the vasoconstrictive behaviour of mesenteric arteries in 
pregnant but not in control non-pregnant mice.

Summary of rodent model data

In summary, work in rodents has demonstrated bidirectional 
transport across the placenta indicating that foetal EVs may 
be detectable in maternal circulation. About one-third of 
EVs in the maternal circulation appear to be derived from 
either the foetus or the placenta and these EVs demonstrate 
specific targeting to multiple maternal tissues including 
the reproductive system (uterus, cervix) and enteric organs 
(lungs, kidneys, and liver). Some of these tissues appear 
to become receptive to these EVs only during pregnancy, 
whilst others are receptive in non-pregnant controls. Other 
organs, such as the heart and brain, do not appear to be tar-
geted. On the foetal side, maternal EVs are targeted to the 
heart and placenta. EVs are able to deliver functional protein 
cargo to both maternal and foetal tissues.

Clinical evidence

EVs have been isolated from the maternal blood of patients 
as part of investigations into a number of diseases of preg-
nancy and these data provide evidence that many of the find-
ings from rodent models are applicable to humans despite 
structural differences in their placentas (Fig. 1). One caveat 
of maternal-foetal studies is that together with foetal and 
maternal EVs, the placenta itself releases placenta-derived 
EVs which can be detected in the maternal circulation as 
early as 6 weeks after conception, and their levels continue 
to increase with gestational age [13, 83].

Maternal plasma EV concentration increases during pregnancy

Clinical studies measuring the total EV concentration 
within the blood have demonstrated that pregnant women 
have a higher concentration of EVs than non-pregnant 

women, and that EV concentration increases during the 
course of a pregnancy. Salomon et  al. [84] measured 
the EV protein concentration isolated from plasma in 
first trimester pregnant women and found it to be more 
than 50-fold greater than non-pregnant controls with 
this increasing to a 100-fold difference by the third tri-
mester. When looking at EV number, they found this 
increased ~5-fold between first and second trimesters, 
and ~13-fold by the third trimester. The same group 
showed that EV numbers increase progressively during 
weeks 6–12 of the first trimester [83]. Sabapatha et al. 
[85] found ~13-fold increase in blood plasma EV pro-
tein content between third trimester pregnant women and 
non-pregnant controls. Finally, these results were fur-
ther supported by Pillay et al. [86] who showed that total 
CD63+ EV numbers increase between early (<33 weeks) 
and late (>34 weeks) third trimester pregnancies.

Evidence for placental EVs in maternal circulation

The studies described above demonstrate that maternal 
blood EV concentration increases during pregnancy, but 
do not determine the origin of these EVs. The origin 
could be maternal tissue (secreted directly into maternal 
blood) or foetal tissue (secreted into foetal blood and hav-
ing crossed the placenta into maternal blood) or might be  
produced by the placenta itself. In order to differentiate 
between these possibilities, specific endogenous mark-
ers for the placenta or other foetal tissues are needed to 
identify foetal-origin EVs within the maternal blood. 
Fortuitously, a number of proteins and miRNAs demon-
strate a placental-specific expression and can be used to 
identify EVs released by the placenta. Many of these are 
found only in humans and other primates and therefore 
cannot be used in rodent studies. It is important to note 
that it is currently unclear precisely how foetal EVs are 
trafficked across the placenta and it is conceivable that 
these foetal EVs acquire placental biomarkers during this 
process. Here, we will focus on the best known endog-
enous placental markers: placental alkaline phosphatase 
(PLAP), syncytin, human leukocyte antigen-G (HLA-G) 
and placental-specific miRNA (Fig. 5).

Placental alkaline phosphatase (PLAP) Placental alkaline 
phosphatase (PLAP, gene name ALPP) is a glycosylphos-
phatidylinositol (GPI)–anchored membrane protein, which 
is secreted by the syncytiotrophoblast [87]. PLAP is a 
member of the human alkaline phosphatase family, which 
is a multigene family composed of four alkaline phos-
phatase isoenzymes [88]. A number of studies have dem-
onstrated PLAP+ EVs in maternal blood. PLAP is present 
both in small EVs of a size consistent with exosomes and 
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microvesicles [83, 84, 86, 89, 90], and in larger SNAs 
[91–96].

In order to measure the proportion of EVs within the mater-
nal circulation derived from the placenta, most studies have 
combined a measurement of PLAP protein (such as ELISA 
[83, 84, 86] or flow cytometry [89]) with a measurement of 
total EV number (either determined directly by nanoparticle 
tracking analysis (NTA) [83, 84, 89, 90] or determined by 
measuring the amount of the general EV marker CD63 [86]). 
The data show that whilst the levels of PLAP+ EVs increase 
throughout pregnancy, this reflects a more general increase 
in EVs in the maternal circulation and the ratio of PLAP+ to 
PLAP− EVs remains constant during the first and second tri-
mesters before increasing dramatically at the start of the third 
[84, 86]. Thus, the increase in EVs during pregnancy may 
result from both foetal and maternal sources.

PLAP expression is restricted to humans and great apes [97, 
98]. Mice do not possess a placental isoform [97]. However, a 
transgenic mouse has been generated expressing human PLAP 
and this appears to be expressed in all embryonic tissues [97]. 
There are no studies to date reporting its use for EV tracking, 
and this would be useful to investigate in the future.

Syncytin The membrane-expressed glycoproteins syncytin-1 
and syncytin-2 (gene names ERVW1 and ERVW2) mediate 

membrane fusion events leading to the formation of the syn-
cytiotrophoblast, hence the name [99, 100]. They may also 
play a role in membrane fusion events related to EV uptake 
[101]. The mouse genome has two homologues, syncytin-A 
and syncytin-B [102]. Loss of function of either syncytin or 
its receptor lymphocyte antigen 6 family member E (LY6E) 
causes embryonic lethality in mice [103, 104].

The presence of syncytin-1 in human placental EVs was 
first demonstrated in vitro using ex vivo placental explant 
cultures [105]. Syncytin-1 co-localises with PLAP in both 
small and large placental explant EVs [106]. Syncytin+ EVs 
are also produced by the placental cell line BeWo in vitro 
[105, 107]. Syncytin-1+ and syncytin-2+ EVs have been 
isolated from the blood of pregnant women [101, 107] and 
shown to co-localise with PLAP [101]. In mice, syncy-
tin + EV levels in the blood peak just before birth (E17–E18) 
before returning to baseline postpartum [98]. This has not 
been demonstrated in humans but it is known that levels 
of synctin-2 + EVs are lower in women with pre-eclampsia 
[108].

Human leukocyte antigen‑G (HLA‑G) Mechanisms have 
evolved to prevent immune rejection of the foetus by the 
mother during pregnancy. One of these is the expres-
sion of inhibitory molecules by the invading extravillous 

Fig. 5  Endogenous markers 
of placental EVs. EVs express 
various proteins, glycoproteins 
and lipid-associated molecules 
at or near the membrane. These 
include tetraspanins (CD9, 
CD63, CD81), antigen-presenting 
molecules (MHC class I and class 
II) and ESCRT complex proteins. 
EVs also carry a cargo including 
nucleic acids (DNA, miRNA, 
mRNA). Placental-specific EV 
markers are shown in red and 
include HLA-G, syncytin, the 
lipid-anchored phosphatase 
PLAP and miRNA expressed 
from the C19MC and C14MC 
clusters
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trophoblast, which serves to dampen the maternal immune 
response to foreign (paternal-derived) antigens (reviewed in 
[13, 109]). Human leukocyte antigens (HLAs) are antigen-
presenting cell-surface glycoproteins recognised by T cell 
receptors expressed by both T cells and NK cells, which 
function to distinguish self from nonself [110, 111]. The 
role of EVs in this process has recently been reviewed by 
Bai [13]. EVs either stimulate or suppress the response of 
the immune cells depending on receptors expressed by the 
EV membrane. There are two major classes of HLA genes. 
Class II genes are expressed only by antigen-presenting cells 
and recognised by helper T cells  (TH)) whilst class I genes 
are expressed by all cells and recognised by cytotoxic T cells 
 (Tc) [110]. Syncytiotrophoblasts lack classical class I HLAs 
but express the non-classical HLA-G which binds to inhibi-
tory receptors expressed by NK cells and thus prevents them 
from attacking foetal-derived cells [112].

HLA-G is present in EVs isolated from placental explant 
cultures, but is more abundant in EVs from first trimester 
explants and nearly undetected in term explant-derived EVs 
[113]. This is consistent with the role of HLA-G in dampen-
ing the maternal immune response early in pregnancy. Both 
small and large HLA-G+ EVs have been isolated from the 
blood of pregnant women, and levels of these have simi-
larly been found to decrease as pregnancy progresses [96, 
114]. However, it should be noted that some tumour-derived 
EVs also express HLA-G [115]; therefore, HLA-G may be 
unsuitable as an endogenous placenta biomarker.

miRNA The placenta expresses unique placental-specific 
miRNAs derived from two clusters, one on chromosome 19 
(C19MC), which is primate-specific, and the other on chro-
mosome 14 (C14MC), found in a wider range of mammals 
including mice [116–118]. Interestingly, these clusters are 
imprinted, with C14MC miRNA expressed only from the 
maternal chromosome and C19MC from the paternal [117]. 
The precise roles of C19MC and C14MC miRNA remain 
poorly understood; however, it has been noted that they 
appear to have an antagonistic effect on placental growth. 
Mice expressing either the ectopic human C19MC paternal-
imprinted cluster [119] or with a knockout of the maternal-
imprinted C14MC cluster [120] show increased placental 
growth [121]. A number of studies have suggested that these 
miRNAs may be present in EVs released by the placenta 
and that levels increase in maternal blood during pregnancy, 
before decreasing following birth [122–126]. They have also 
been detected in umbilical cord blood, suggesting commu-
nication from placenta to foetus [127].

Evidence for foetal EVs in maternal circulation

The discovery that placental-specific proteins are expressed 
on the surface of EVs facilitated the antibody-based or 

immune-based detection and isolation of placental-origin 
EVs as a sub-population in maternal circulation. As the pla-
centa is a transient organ of pregnancy, such biomarkers are 
not expressed in adult tissue. It is more difficult to defini-
tively identify EVs originating from the foetus proper within 
the maternal circulation due to a lack of specific biomarkers. 
Whilst biomarkers of particular organs can be identified, 
most are also expressed in the adult. One way around this 
problem is to search for differences in pregnancies affected 
by congenital disease. This provides indirect evidence for the 
transfer of foetal EVs; however, to draw conclusions from 
these studies one must assume that there are no changes in 
the mother’s physiology in such cases.

Evidence from ex vivo studies for transport across the pla‑
centa In vitro studies of ex vivo placentas derived from term 
pregnancies have demonstrated that particles of the size of 
EVs can be transported bidirectionally across the human 
placenta (reviewed in [128]). In one study, Grafmueller 
et al. [129] showed that polystyrene beads in the size range 
50–300 nm could be transported in both directions across 
the placenta. The rate of transfer was higher in the foetal-
maternal direction. In another study, Wick et al. [130] dem-
onstrated that 240-nm particles could be transported across 
whilst 500-nm particles could not. Thus, the potential for 
foetal to maternal transfer exists.

Evidence for EVs from the foetal nervous and cardiovascular 
systems in maternal circulation There is some evidence that 
EVs expressing markers reported to be of foetal brain tis-
sue origin can be detected in maternal blood. Marell et al. 
[131] demonstrated that umbilical cord blood EVs express 
the glycosylphosphatidylinositol (GPI)–anchored neuronal 
membrane protein CNTN2 and the neural growth factor 
brain-derived neurotrophic factor (BDNF), suggesting that 
foetal blood contains EVs derived from the developing brain. 
Goetzl et al. [132, 133] demonstrated that CNTN2+ EVs can 
be purified from maternal plasma as early as 10–19 weeks 
of gestation and are ~tenfold more abundant in the blood of 
pregnant women (first and second trimester) compared to 
non-pregnant controls. Together, this work suggests foetal-
maternal transfer, but it should be noted that both biomark-
ers are also expressed in the adult, whilst CNTN2 is highly 
expressed in the Purkinje fibres of the heart [134], and is 
therefore not neural-specific.

The evidence for transfer of cardiovascular EVs comes 
from two studies reporting changes in cargo expression 
within EVs isolated in congenital disease. Both studies iso-
lated EVs from maternal blood before profiling RNA expres-
sion. Jin et al. [135] identified miRNAs that were differen-
tially expressed in pregnant women carrying a child with 
ventricular septal defects compared to the control group, 
whilst Huang et al. [136] identified differences in long 
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non-coding RNA (lncRNA) expression in pregnant women 
carrying a child with pulmonary stenosis. In another study, 
Gu et al. [137] identified differentially expressed lncRNA 
in maternal blood from a mixed cohort of CHD cases 
(including both ventricular and atrial septal defects as well 
as Tetralogy of Fallot) versus healthy controls. Although 
the authors did not isolate EVs from blood, lncRNA are 
not believed to exist in blood outside of EVs. These studies 
together provide indirect evidence for foetal EV transfer if 
we assume no changes in the mother.

Evidence for foetal miRNA within maternal circulation There 
are a number of studies suggesting a change in miRNA 
expression in maternal blood associated with the presence 
of a specific congenital disease. Most studies do not isolate 
EVs and are therefore analysing both the miRNA loaded into 
EVs and that which is freely circulating. Examples include 
changes in congenital heart disease [65, 138], Down’s syn-
drome [139] and those subsequently shown to have a low 
birth weight [66]. These changed miRNAs may or may not 
originate from the foetus.

Prospects for diagnosis of congenital disease

The most common severe congenital diseases worldwide 
are congenital heart diseases (CHD, 0.8%) [140], neural 
tube defects (NTD, 0.1%) [141] and Down’s syndrome 
(DS, 0.1%) [142]. At present, the most widely used screen-
ing tool for congenital diseases is the anomaly ultrasound 
scan, performed at around 18–22 weeks of pregnancy 
[143]. Whilst most NTDs can be reliably detected on  
an ultrasound, heart defects are more difficult to see and 
despite improvements in technology the detection rate for 
CHD is only around 50%, with many not detected until 
birth [3, 143]. Invasive diagnostic tests, such as amniocen-
tesis or chorionic villi sampling, can be useful to screen 
for genetic diseases such as DS, but these carry a small 
but significant risk of miscarriage (0.35%) [144] and so 
are not routinely offered. Over the last 10 years, efforts 
have been focused on development of non-invasive pre-
natal tests (NIPT) based on the analysis of maternal blood 
which minimise risk to the foetus. A NIPT test for DS 
based on copy number variant analysis of foetal DNA in 
the maternal blood is now offered to patients on the NHS 
[145]. These tests are limited to genetic diseases which  
can be detected by analysis of DNA; however, only a minor-
ity of CHD cases have a known genetic cause [146]. There  
is a clinical need for a NIPT to detect CHD. Rather than 
detecting DNA, a more sophisticated real-time test that 
provides information on the health of the developing foe-
tus is needed. Such a test would detect signals produced 
by the developing foetus that cross the placenta and can 

be detected in maternal blood. EVs appear to be good 
candidates for such a test as they have a complex cargo 
and can be traced to their cell of origin by surface marker 
expression.

Challenges in development of a non‑invasive 
prenatal EV test

Biomarker discovery

The first challenge is to identify which part of the EV to 
focus the search for biomarkers on. Both the surface mole-
cules and cargo are potential sources of biomarkers. Surface 
markers include general EV biomarkers such as CD63, as 
well as tissue-specific markers such as PLAP. Many stud-
ies have shown that placental-derived EVs are altered in 
diseases such as pre-eclampsia, gestational diabetes melli-
tus and intrauterine growth restrictions [86, 89, 90, 92–95], 
but it is more difficult to convincingly demonstrate changes 
in foetal-derived EVs in disease. Post-translational modi-
fications such as glycosylation increase diversity of these 
markers. The cargo also holds potential biomarkers. RNA 
in particular is highly dynamic, with the potential to reflect 
subtle and real-time changes in health, and thus has been 
 the focus of several diagnostic biomarker studies. Despite 
the identification of several EV biomarkers, to date none has 
been translated into clinical practice.

Biomarker specificity dictates their overall utility as a 
diagnostic tool. Most studies to date have applied “omic-
like” approaches to perform unbiased global screens for 
changes in biomarkers without any a priori assumptions. 
An alternative approach might be to focus on specific signal-
ling pathways known to act during foetal development and 
believed to be downregulated in the adult. A challenge here 
is that it is known that certain developmentally regulated 
pathways are reactivated during cancer [147] and this may 
limit their foetal specificity.

Improving the signal:noise ratio

Given that maternal blood is a complex mixture comprised 
of maternal, placental and foetal EVs as well as other pro-
teins and RNA, a lack of host specificity may limit the 
detection levels of certain biomarkers. The purification 
of foetal EVs would reduce the complexity of the sam-
ple allowing for an improved signal:noise ratio. This may 
therefore be a necessary step in any protocol. It may be, 
for example, that an EV tissue-specific surface biomarker 
could be used to purify a test sample from maternal blood, 
followed by an analysis of cargo biomarkers within this 
simplified test substrate.



 Journal of Molecular Medicine

1 3

Assay development and validation

Whereas in rare cases it may be possible to identify a “yes/
no” marker (presence/absence of the molecule in the disease 
state and not in the healthy controls), it seems likely that in 
most complex diseases changes may involve more subtle 
changes across a panel of biomarkers. Here, researchers may 
need to identify a “disease signature”. Such signatures will 
need to be carefully validated to establish robustness.

Translation into clinic

Once a suitable purification and assay protocol has been 
developed, the last challenge is the translation from the 
laboratory into the clinic. One challenge will be whether a 
simple in-house test can be developed for use in the clinic 
itself, or whether samples will need to be sent off to a spe-
cialist facility for processing. An example of a commonly 
used technique for the quantification of protein biomarkers 
in bodily fluids in a clinical setting is an immunoassay [148]. 
Immunoassays are cost-effective, require limited equipment 
and can be performed by staff in-house, making it the ideal 
biomarker detection platform especially in the develop-
ing world. The existing NHS NIPT for Down’s syndrome 
involves genomics analysis performed at a central facility, 
indicating such a procedure would be feasible, but the isola-
tion and analysis of EV samples would likely require a more 
complex multiple step protocol.

Conclusion

EVs represent an emerging and previously unappreciated 
mechanism of maternal-foetal crosstalk during gestation. 
In this review, we have discussed various clinical, in vitro 
and animal studies which suggest that EVs released from 
both the foetus and the mother are able to cross the placenta 
to facilitate this communication. There is a clinical need 
for a reliable non-invasive maternal blood diagnostic test 
for congenital disease. The presence of foetal-derived EVs 
in maternal blood raises the possibility that these could in 
the future be utilised as diagnostic biomarkers for congeni-
tal disease. To date, most studies of maternal blood EVs 
are limited to a small number of diseases closely linked to 
placentation problems such as pre-eclampsia and pre-term 
birth, in which a clear link to trophoblast-derived EVs has 
been established (reviewed in [11, 149]). However, the evi-
dence presented here suggests that foetal EVs are trafficked 
across the placenta carrying “disease-specific” cargo and 
surface epitopes, which could perhaps be harnessed for diag-
nostic purposes.
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