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A B S T R A C T

In this study, we present a global database of ten parameters, which include measurements of rock index
properties, strength stiffness and dynamic properties. Hoek–Brown constant mi, is included, and was estimated,
using Hoek and Brown proposed guidelines for determining mi values for different rock types that can be
used for preliminary design when triaxial tests are not available. This broad database is compiled from 96
studies and is labelled as ‘‘ROCK/10/4025’’, to describe the type of geomaterial, the number of the parameters,
and the number of the data samples included. It consists of 35.4 % igneous, 54.8 % sedimentary, and 9.2%
metamorphic rocks. The purpose of this paper is to propose a generic soft computing model applicable to
multiple lithologies, that can become more reliable and perhaps more suitable for a specific site study when
used in order to densify often limited similar site-specific data. To this end four broad samples of data
were selected, and served as training data sets for developed machine learning models, to develop a generic
compression strength prediction model applicable to multiple lithologies. The suggested algorithms in this study
are Back-Propagation Artificial Neural Networks, Artificial Neuro-Fuzzy Inference Systems, Support Vector
Machines, Nearest Neighbour classifiers and Ensemble Bagged Trees. According to the findings of this study,
Artificial Neuro-Fuzzy Inference Systems model performance was found to be marginally superior, while Back
Propagation Artificial Neural Networks, Support Vector Machines and Ensemble Bagged Trees models were
found to have good performance. Constant mi seems to be an important training parameter when training
predictive models centred on data from multiple lithologies. As a result, we can suggest that these models
are powerful tools that allow for a reliable estimation of compressive strength, based on the performance
indicators. The performance was found to be 70%–82% when the problem of compressive strength prediction
was approached as a classification problem (that is successful prediction of class from very weak to very
strong), and 80%–96% when solved as a function approximation problem.
. Introduction

The mechanical properties of intact rock, compressive strength (𝜎c)
nd Young’s modulus (E), are essential parameters required for most
eotechnical projects. However, it is not always possible for direct
etermination of these parameters. Although the uniaxial compressive
trength 𝜎c, of intact rock is a significant parameter in rock engineering
rojects, it is challenging to obtain a representative value due to the
eed for high-quality core samples, and/or limited budget, especially
uring the preliminary design stage of a project. There are in addi-
ion, many uncertainties associated with the sampling of data when
redicting 𝜎c. Consequently, established transformation models need to
e constantly updated when applied to multiple lithologies, or sites.
ence, the numerous empirical equations that are proposed in the

iterature seem to be inadequate in estimating the 𝜎c reliably, in a large
pplication range, since the material properties are affected by many

∗ Corresponding author.
E-mail address: M.Ferentinou@ljmu.ac.uk (M. Ferentinou).

factors namely (the crystal particle size, the degree of interlock and
angularity, the fabric that infers the degree of anisotropy, the porosity),
and several site-specific ground conditions. There is, therefore, a need
to propose a data-centred intelligent system supported by a broad data
set, to allow for a more representative compressive strength estimation.
Laboratory based direct compressive strength measurements may be
problematic, as obtaining fresh samples is not always feasible. Since
determination of such a parameter in the laboratory is not always cost
and time effective, a plethora of empirical equations, were proposed in
the literature to estimate a reliable and representative value for a spe-
cific project. These models are referred to as ‘transformation models’,
in the geotechnical literature [1]. Table 1 presents, the transformation
models that were proposed in the studies that were used to compile the
compiled database for the purposes of the current study and Table 2
presents a data map of the data base.
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Table 1
Transformation models for 𝜎c in the case studies from the literature used to compile ROCK/10/4025.

Authors Input Nr of
samples

Size of
specimens

Lithology Rock type Model Country

1 Abdi et al. [2] n, 𝛾, 𝐴b, Vp 40 core samples no
specific detail

sandstone,
conglomerate,
limestone, marl

Sedimentary 𝜎c = 15.36Vp +
29.62𝛾d+1.435Ab
−1.763n−45.339
E = 1.95Vp + 8:07𝛾d+
0.584Ab−0.249n−15.44
MLP - ANN

Iran

2 Afolagboye et al.
[3]

RN, Is(50) 50 40 mm x 40 mm
x 60 mm

gneiss, granite,
charnokite,
quartzite

Metamorphic MLP Nigeria

3 Aggistalis et al.
[4]

RN, Is(50) 93 Cylindrical
D=62.2 mm

basalt, gabbro Igneous MLP
analysis, 𝜎c =− 1.18 RN −
22.37 WEATH + 25.9 (basalt)
𝜎c = 8.63 Is(50) + 0.599RN

Greece

4 Akram and
Bakar [5]

Is(50) 8 Cylindrical sandstone,
limestone,
siltstone,
dolomite, marl

Sedimentary 𝜎c = 11.076Is50 Pakistan

5 Aliyu et al. [6] 𝜌, Vp, Vs, Shore
hardness, CAI

7 cylindrical,
cuboidal

cryptocrystalline
flint

Sedimentary 𝜎c = 17.6 Is(50)+13.5,
𝜎c = 10.4𝜎t+18.2, 𝜎c =
−47454.4+35905.6𝜌−6716.8𝜌2,
𝜎c = 0.91Vp −4500.6

UK,
France,
Denmark

6 Jahed Ar-
maghani et al.
[7]

𝜌dry , Vp, Qtz,
Kpr, Plg, Chl,
Mica

45 core samples no
specific detail

granite Igneous 𝜎c = 69.505𝜌dry + 0.025Vp
−0.479Qtz
−1.439Plg−158.796;
E= −34.519𝜌dry + 0:019Vp +
1.217Qtz − 0.612Plg −
22.681, ANFIS

Malaysia

7 Jahed Ar-
maghani et al.
[7]

RL, Vp, Is(50) 124 core samples no
specific detail

granitic rocks Igneous NLMR
ANN, ANFIS,

Malaysia

8 Armaghani et al.
[8]

n, RN, Vp, Is(50) 71 core samples no
specific detail

granite Igneous ANN - ICA
𝜎c = −153.616n + 0.010VP +
7.111Is50 +0.541Rn + 63.655
E = 16.573n + 0.011Vp +
4.560 Is(50) +2.332Rn−110.968

Malaysia

9 Aydin and Basu
[9]

ne, nt, 𝜌, RL, RN 40 core samples granite Igneous SLP, MLP
𝜎c = 1.4459e0.0706RL,
𝜎c = 0.9165e0.0669RN
E = 1.0405e0.058RL
E = 0.7225e0.0548RN

Hong
Kong

10 Azimian [10] RL, Vp, Is(50) 30 Cylindrical
D=54 mm

limestone Sedimentary SLP, MLP
𝜎c = 0.009V1.105

p ,
𝜎c = 2.664 Is(50) − 35.22,
𝜎c = 1.530 Is(50) − 0.011(Vp)
+ 24.673

Iran

11 Basu and
Kamran [11]

Is(50) 15 Cylindrical
D=54 mm

schist Metamorphic 𝜎c = 11.103 Is(50) + 37.659 Pakistan

12 Basu et al. [12] 𝜌, Vp, RL, RN 20 Cylindrical
D=75 mm

granite Igneous E = 0.1888𝜎c + 30.234 Brazil

13 Bell and Lindsay
[13]

𝜎bt , Is(50), Shore
scleroscope
hardness, RL, E,
𝜈

27 Cylindrical sandstone Sedimentary Relationships between index,
strength, hardness and elastic
properties correlation

South
Africa

(continued on next page)
The proposed models usually suffer from an inherent weakness, that
they can be suitable only for the range of the conditions that exist in
the calibration dataset and therefore could be dataset specific or site
specific [96]. These models may not perform in a satisfactory way, if
applied in another dataset originated from a different site. Most of these
models are univariate or multivariate regression equations, but there
are also several models based on soft computing methods. These models
could not be characterized as generic since their performance beyond
the calibration range is somehow questionable.

Dataset specific or site-specific models have their advantages when
applied during the preliminary design stage, for a project, and adopted
to estimate 𝜎c or E. They can serve as tools that allow, for initial es-
timations at preliminary design stage, but suffer from inherent limited
2

and questionable application, outside the calibration range. Therefore,
a generic transformation model, calibrated by a global rock database
maybe necessary.

In this study a global dataset named ROCK/10/4025 is proposed
which comprises 4025 data for ten rock parameters, namely: porosity
(n), unit weight (𝛾), Schmidt hammer hardness (L-type), Block Punch
Index (BPI), Brazilian tensile strength (𝜎bt), Point Load strength in-
dex, (Is50), P-Wave velocity (Vp), uniaxial compressive strength, (𝜎c),
Young’s modulus, (E) and Hoek–Brown constant mi.

Ching et al. [96], compiled a global rock database, labelled as
ROCK/9/4069 which has a wider coverage than existing previously
proposed transformation models. 14 out of 96 case studies, are common
in both databases. These are original contributions that are presented
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Table 1 (continued).
Authors Input Nr of

samples
Size of
specimens

Lithology Rock type Model Country

14 Bieniawski [14] Is(50) 12 Cylindrical
54mm, 42mm,
21.5 mm

sandstone,
quartzite, norite

Mixed 𝜎c = 24Is(50) 54 mm sample South
Africa

15 Bilgin et al. [15] 𝜌, Vp, Sv, Edyn,
v, RL(10), RL(3)

24 Cubic coal Sedimentary 𝜎c = 0.9346e0.062RL Highest 3
Schmidt Hammer Values
(SH3)

Turkey

16 Briševac et al.
[16]

𝜌, n, Is(50), RL,
Vp

30 Cylindrical mudstone and
Whakestone
carbonates

Sedimentary 𝜎c = −106.2093 −0.04868 𝜌
+ 11.5110 Is(50) + 0.052 Vp
𝜎c = −240.0109 + 1.5087 n +
11.5916 Is(50)+ 0.0522 Vp,
Bagging, random forests,
regression forests variable
importance Vp

Croatia

17 Bruno et al. [17] RL 95 carbonate rocks Sedimentary 𝜎c = 1/(−0.022+1.41/RL)
𝜎c = exp(−4.04+2.29 ln(RL)

Italy

18 Cargill and
Shakoor [18]

Is(50), 𝜌 , RL, L.A
Abrasion, Slake
D Index

14 Cylindrical sandstone,
limestones,
dolomite, syenite
gneiss

Sedimentary 𝜎c = 23Is(54) + 13 ln 𝜎c = 4.3 *
10−2(R x 𝜌d) + 1.2 sandstones
ln 𝜎c = 1.8 * 10−2 (R x 𝜌d) +
2.9 carbonates

USA

19 Çelik [19] n, 𝛾d Vp, RL 90 Cubic, 7, 9,
11 cm

carbonate rocks Sedimentary 𝜎c = 2.683e0.549Vp,
𝜎c = 15.14𝛾d + 2.88RL−446.3,
𝜎c = −6.53L + 3.63Vp
+ 3.45RL−50.68,
LS-SVM

Turkey

20 Ceryan et al.
[20]

n, ne, Id, Vp, Vm 55 cubic carbonate rocks Sedimentary ANN Turkey

21 Cheshomi et al.
[21]

SCI (single
compression
strength index)
D particle
diameter

10 cylindrical sandstone Sedimentary 𝜎c = (−0.31.92) SCSI +
1.24D6.72)

Iran

22 Çobanoğlu and
Çelik [22]

w, Is(50), Vp, RL 75 cylindrical sandstone,
limestone,
cement mortar

Sedimentary 𝜎c = 4.14 Is(50) + 29.8 Vp +
0.54 RL −116

Turkey

23 Dehghan et al.
[23]

n, Is(50), Vp, RL 30 travertine Sedimentary MLP, ANN, GRNN Iran

24 Demirdag et al.
[24]

RL 59 Cubic metamorphic,
sedimentary, and
igneous rock
samples

Mixed For low-porous sedimentary
rocks: 𝜎c/RL = 6.6333D−0.428
For high-porous sedimentary
rocks: 𝜎c/RL = 9.0233D−0.708
For metamorphic rocks: 𝜎c/RL
= 6.9364D−0.554 For igneous
rocks: 𝜎c/RL = 6.52
88D−0.434

Turkey

25 Diamantis et al.
[25]

𝛽, 𝛾dry , 𝛾sat , WA,
n, Vp, Vs, Is(50)

32 Cylindrical
D = (50–55)

serpentine Igneous 𝜎c = 10.61(Is(50)) + 6.87(10−2)
−339.48

Greece

26 Dinçer et al.
[26]

n, 𝛾dry , RN,SH,
Vp, Is(50)

24 Cubic
(0.25*0.25*0.2)

basalts, tuffs Igneous 𝜎c = 2.75 RL−36.83,
E=0.47RL−6.25

Turkey

27 Dinçer et al.
[27]

n, 𝛾dry , RN, Vp,
Is(50)

21 Cylindrical caliche Sedimentary 𝜎c = −6.319 + 4.418 9
10−3Vp + 0.427𝛾 E𝑎v = 0.944
+ 5.899 9 10−4 Vp −3.17 9
10−2n

Turkey

28 Ersoy and Acar
[28]

n, 𝛾dry , 𝛾sat , Vp,
Vs

9 Cylindrical granitic rocks Igneous 𝜎c = 116 −33.8Vp Turkey

29 Fakir et al. [29] n, 𝛾dry , Vp, 𝜎bt ,
Is(50),

29 Cylindrical granitoid rocks Igneous 𝜎c = 15.939 Is(50) + 37.235
𝜎c = 0.0673Vp −257.39
𝜎c = 11.564𝜎t −13.1
𝜎c = 0.0142(RL)2.3559

South
Africa

30 Fener et al. [30] Is(50), RL, ISI 11 Cylindrical D =
38 mm

igneous,
metamorphic

Mixed 𝜎c =
9.08 Is(50) + 39:32,
𝜎c = 4.24e0∶059Rn, 𝜎c = 4.26ISI
−204.33

Turkey

(continued on next page)
for the first time in the current paper. The proposed database was
compared to other transformation models and was adopted to calibrate
the bias and variability of proposed transformation models. The in-
vestigation of the named database suggested that most probably the
proposed in literature transformation models were not dependent on
3

the rock type, and that the models predicting E as opposed to the
models that predict 𝜎c suffer from smaller transformation uncertainties.
It was also found that the Is(50) is the most effective parameter into
predicting the 𝜎c while Sh (shore scleroscope hardness) and Vp (shear
wave velocity) are the most effective at estimating E.
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Table 1 (continued).
Authors Input Nr of

samples
Size of
specimens

Lithology Rock type Model Country

31 Ferentinou and
Fakir [31]

𝛾dry , 𝜎t , Is(50) 56 Cylindrical granitoid,
granite,
sandstone,
dolerite

Mixed ANN South
Africa

32 Ghasemi et al.
[32]

n, 𝛾, RL, Vp, SD 10 Cubic mixed Mixed model tree approach, MLP
algorithm

Turkey

33 Gomez-Heras
et al. [33]

n, 𝜌,Vp, LHD 29 Cubic/
Cylindrical
samples

carbonate
porous, siliceous
sandstone
porous, siliceous
crystalline,
carbonate
crystalline

Sedimentary 𝜎c = 10 −3.945LHD 2.126,
𝜎c = 10−5.376LHD 2.050

Vp
0.450, 𝜎c = 10−1.833 ⋅1.396⋅

e−3.138⋅n, 𝜎c =
10−2.604LHD1.444V0.172

p e−2.807⋅n

Spain

34 Gonz’lez et al.
[34]

n, 𝜌dry , 𝜌 sat,
Vp(dry), Vp(sat),
Vs(dry), Vs(sat)

13 Cylindrical
D=30.9 mm

saturated
limestone

Sedimentary 𝜎c = −185 + 55.8Vp − 24.87n,
𝜎c = 2.0137e0.794Vp −0.401n

Chile

35 Guney and
Altindag [35]

Is(50), Bending
Str, RN, Vp

7 Cubic sedimentary,
igneous

Mixed 𝜎c = 4 124AM34 33 Turkey

36 Hebib et al. [36] n, 𝜌, RL 19 Cubic sedimentary Sedimentary 𝜎c = 32.904ln(d/n) + 85.268 Algeria

37 Heidari et al.
[37]

Is(50) 15 Cylindrical gypsum Sedimentary 𝜎c = 7.56 Is(50) + 23.68 Iran

38 Heidari et al.
[38]

RL, BPI, Is(50), Vp 98 Cylindrical grainstone,
wackestone-
mudstone,
boundstone,
gypsum, silty
marl

Sedimentary 𝜎c = 43.898IS(50) −57.134,
𝜎c = 8.9217BPI −1.2334,
𝜎c = 5.3466RN −99.878,
Sugeno-type fuzzy algorithm

Iran

39 Ince and Fener
[39]

n, 𝜌, Vp, Is(50),
𝜎t , Abrasion R,
Slake durability

10 Cylindrical
D=42 mm

pyroclastic Sedimentary % loss in 𝜎c = 39.91 +
42.25Vp −12.50 Is(50)+
95.29𝜌d + 2.76Id4

Turkey

40 İnce et al. [40] n, Is(50), 𝜌dry , 𝜌sat , 50 Cylindrical
D=38 mm

pyroclastic Sedimentary (MRA), gene expression
programming (GEP)

Turkey

41 Jalali et al.
(2017)

Is(50), RL, BPI,
Is(50), Vp

106 Cylindrical Grain-stone,
wacke-stone,
mudstone,
bound-stone,
gypsum, silty
marl

Sedimentary 𝜎c = 1.277 SHN + 2.86 BPI +
16.41(IS(50)) + 0.011Vp
−82.436 ANN, ANFIS, FIS

Iran

42 Jamshidi et al.
[41]

𝜎bt , RL 22 Cylindrical
D=54 mm

sandstone Sedimentary 𝜎c = 70.417 ln(RL) −206.04 Iran

43 Kahraman and
Gunaydin [42]

Is(50) 52 Cylindrical D = andesite, granite,
limestone,
marble,
travertine,
serpentine,
quartzite,
metagabbro,
anhydrite,
gneiss,
granodiorite

Mixed 𝜎c = 8.20 (Is(50)) + 36.43
igneous,
𝜎c = 18.45 (Is(50)) −13.63
metamorphic, 𝜎c = 29.77Is
−51.49 sedimentary

Turkey

44 Kahraman [43] Is(50), RL, Vp,
Impact str

48 Cylindrical
D=33 mm

dolomite,
sandstone,
limestone, marl,
diabase,
serpentine,
haematite

Mixed 𝜎c = 4 * 10−10 Is(50) 5.87 Turkey

45 Kahraman et al.
[44]

𝜌, 𝜎bt , RL,
Impact pen rate,
Is(50), Vp

27 Cylindrical marl, clay, tuff,
sandstone

Sedimentary regression conical and
spherical bit-tooth and rock
properties

Turkey

46 Kahraman [45] n, 𝜌dry , 𝜌sat , Is(50)
dry, Is(50) sat

32 pyroclastic rocks Igneous 𝜎c = 2.27e1.04IS(50) Turkey

47 Kahraman et al.
[46]

n, 𝛾dry ,𝛾sat , n,
BPI

28 Cylindrical
D =38 mm

pyroclastic rocks Igneous 𝜎c = 2.8 BPI1.02 Turkey

(continued on next page)
Engineers were traditionally screening data from previous studies
on similar or adjacent sites, to support geotechnical analysis on a new
site. This practice was more common, in the case of limited ground
investigation. It is not rare for geotechnical practitioners to inform
4

their analysis based on experience and knowledge of the regional and
site geology and engineering geological ground conditions, as well-
informed assumptions. It is interesting to refer to [97] suggestion on
characteristic value selection. ‘‘Parameter values are gathered in statistical
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Table 1 (continued).
Authors Input Nr of

samples
Size of
specimens

Lithology Rock type Model Country

48 Kahraman et al.
[47]

𝜌, n, 𝜎bt 9 Cylindrical
D = 47.6 mm

granites Igneous Turkey

49 Kainthola et al.
[48]

Vp, 𝛾, 𝜎bt 199 Cylindrical
D=54 mm

limestone,
quartzite, slate,
quartz

Mixed 𝜎c = 0.032(Vp) −19.78,
limestone,
𝜎c = 0.077(Vp) −241.2,
quartzite,
𝜎c = 0.037(Vp) −36.12 slate,
𝜎c = 0.021(Vp) −4.911 Quartz

India

50 Kamani and
Ajalloeian [49]

Is(50) 40 Cylindrical
D=54 mm

carbonate
aggregates

Sedimentary Aggregate degradation tests
AIV = 0.763Is(50)−10.67PLI
+ 54.248

Iran

51 Karakus et al.
[50]

n, 𝜌, Is(50), RL, Vp 10 Cylindrical limestone Sedimentary Et = −12.766
−((4.06*10−7)exp(n) +
(29.055 ln (Is(50) + 29.055
ln(Is(50))−(7.48 *
10−5RL)−(6.44 * 10−3𝜎cnV p)
−(1.19 * 10−9 𝜎c)

Turkey

52 Karakus [51] n, Vp, Is(50), RL 19 Cylindrical granitic rocks Igneous genetic programming Turkey

53 Karaman et al.
[52]

𝜎bt , Is(50), RL 37 Cylindrical
D=38 mm

pyroclastic rocks Igneous 𝜎bt = 3.34 Is(50) −3.4,
𝜎bt = 0.72 R −16.6,
𝜎c = 33.3e3 𝜎t/R, 𝜎bt = 10.8
𝜎c/RL −8.85

Turkey

54 Karaman and
Kesimal [53]

RL 47 Cylindrical sedimentary,
igneous,
metamorphic

Mixed 𝜎c = 0.044R2.0043,
𝜎c = 0.1383RT11.743

Turkey

55 Kasim and
Shakoor [54]

Gs, w, 𝜌, LA 22 Cylindrical limestone,
dolomite,
sandstone,
granite, marble

Mixed 𝜎c = 246.6 + (−2.8)(DE) Turkey

56 Khandelwal and
Singh [55]

Vp, 𝜎bt , RL, 𝜌 12 Cylindrical coal, shale,
sandstone

Mixed 𝜎c = 0.1333Vp − 227.19,
E=4.9718Vp−7151

India

57 Kılıç and
Teymen [56]

n, 𝜎bt , Is(50),
SHR, RL, Vp,

19 Cylindrical
D=42 mm

diorite,
quartzite,
limestone,
sandstone, tuff,
marble

Mixed 𝜎c = 2.304Vp2.4315,
𝜎c = 0.159SHR0.6269,
𝜎c = 100ln(Is50) + 13.9,
𝜎c = 0,0137R2.2721

L ,
𝜎c = 147.16e−0.0835n

Turkey

58 Korkanç and
Solak [57]

𝛾dry , 𝛾sat , n, SDI,
Vp, Is(50), NPI

20 Cylindrical tuffs Igneous 𝜎c = 96.255xGMR−6.3669,
𝜎c = −187.87GMR + 103.42

Turkey

59 Mahdiabadi and
Khanlari [58]

BPI, CPI, Is(50) 80 Cylindrical calcareous
mudstones

Sedimentary 𝜎c = −6.479 + 3.425BPI +
0.639 CPI + 7.889 Is(50),
𝐸 = 0.709 + 0.202 BPI −0.066
CPI + 0.579 Is(50)
ANN, ANFIS

Iran

60 Madhubabu
et al. [59]

𝜌, n, Vp,Is(50) 19 Cubic
(0.2*0.2*0.2)

carbonate Sedimentary E = −43.214−2.867n+ 1.384
Is(50)−127.411 𝜈 + 18.251𝜌 −
0.0162 Vp, 𝜎c = −11.813 −
2.572n + 23.665 Is(50)+
41.654 v
12.197𝜌 − 0.001Vp

61 Mahmoodzadeh
et al. [60]

n, RL, Vp,Is(50) 170 Cylindrical limestone, slate,
quartzite,
dolomite,
granite, schist

Mixed Soft computing models: long
short-term memory (LSTM),
deep neural networks (DNN),
nearest neighbour (KNN),
Gaussian process regression
(GPR), support vector
regression (SVR), decision tree
(DT)

Iraq

62 Ludovico-
Marques et al.
[61]

n, 𝜀 35 Cylindrical
D=75 mm

granite,
sandstone

Mixed analytical
model to describe 𝜎c with 𝜀,
and n

Portugal

(continued on next page)
populations of ‘samples’. Different types of statistical population are dis-
tinguished depending on the way the populations are built up. In a local
population, the sample test results, or the derived values are obtained from
tests at the site of or very close to the geotechnical structure being designed.
In the case of regional populations, the sample test results are obtained
from tests on the same ground formation extending over a large area and
5

collected, for example in a data bank. If a sufficiently large local population
is available, it will be used primarily to select the characteristic value of
the parameter considered; however, if no or only little local information is
available, the selection of the characteristic value may be mainly based on
results of regional sampling or other relevant experience’’. This challenge
is called ‘‘site challenge’’ [98] or site recognition challenge [99].
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Table 1 (continued).
Authors Input Nr of

samples
Size of
specimens

Lithology Rock type Model Country

63 Martins et al.
[62]

n, 𝜌, Vp 55 Cylindrical granite Begonha
(1997) and
Begonha and
Sequeira Braga
(2002)

Igneous ANN, SVM Portugal

64 Mehrabi Mazidi
et al. [63]

𝜌, qu 23 Cylindrical limestone Sedimentary 𝜎c = 280 (qu)2−152 qu + 64.25 Iran

65 Mishra and Basu
[64]

n, 𝜌, BPI, Is(50),
RL, Vp

20 Cylindrical granite, schist,
sandstone

Mixed 𝜎c = EXP(0.0066) BPI+ 0.030
Is(50) + 0.01SRH
0.00019Vp + 2:807,
𝜎c = EXP 0.0029 BPI + 0.161
Is(50) + 0.013 SRH + 0.00018
Vp + 1.469),
𝜎c = EXP(0.024BPI + 0.047
Is(50) + 0.032 SRH + 0.00043
Vp + 0.872),
𝜎c = EXP (0.011 BPI + 0.065
Is(50) + 0.029 SRH + 0.000012
Vp + 2.157, FIS

India

66 Mohamad et al.
[65]

𝜌, 𝜎bt , Is(50), Vp 40 Cylindrical shale, old
alluvium, iron
pan

Mixed 𝜎c = 0.032Vp + 44.227,
𝜎c = 12.291 Is(50) + 5.892,
𝜎c = 15.361 𝜎bt + 10.303

Malaysia

67 Momeni et al.
[66]

𝜌, Vp, RL, Is(50) 66 Cylindrical granite,
limestone

Mixed Particle swarm optimization-
ANN

Malaysia

68 Naijib et al.
(2015)

Vp, Vs, 𝜌 45 Cylindrical limestone Sedimentary 𝜎c=11.05E0.66
S ; 𝜎c=12.8

(Ed/10) 1.32𝜎c = 3.67Vp2.14
Iran

69 Nefeslioglu [67] w, 𝛾, Vp 66 Cylindrical claystone,
mudstone

Sedimentary 𝜎c = 0.499138e1.575529(Vp),
E = 0.006272e 2.979848(Vp)

Turkey

70 Ng et al. [68] Gs, 𝜌d, n, Vp,
Is(50), RL

145 Cylindrical
D=54 mm

granite Grade III Igneous 𝜎c = a1(Is50) + a2 (e0.0386RL)
+ a3(e0.0004Vp) + a4 (ln(ne))
+a5(Gs),
𝜎c = 5.01(Is50) + 5.52
e0.0004Vp+ 3.53

China

71 Palchik and
Hatzor [69]

E, c, d, n 12 Cylindrical
D=52 mm

porous chalk Sedimentary 𝜎c = ae−bn Israel

72 [70] n, RN 33 Cylindrical carbonate rocks Sedimentary N = (𝜎c) 0.2329 + 15.7244,
N = (Et) 0.5155 + 17.4880,
Et = (𝜎c) 0.3752 + 4.479

Greece

73 Saldaña et al.
[71]

n, 𝛾, Vp, Vs 29 Cylindrical travertine Sedimentary 𝜎c = 115.32n−0.2116,

𝜎c = −13648 + 2407Vp
+ 5623𝜌 + 322n
−982Vp 𝜌 − 10Vp −115𝜌d

Chile

74 Salehin et al.
[72]

𝜌, Is(50), 𝜎bt , Vp,
Vs, v,

39 Cylindrical marl Sedimentary Adaptive boosting algorithm Iran

75 Sarkar et al.
[73]

Vp, Is(50), 𝜌 , SDI 40 Cylindrical limestone, slate,
quartzite, quartz,
mica schist

Mixed ANN Iran

76 Sengun et al.
[74]

n, Vp, RL, SHR 11 Cubic
(11*11*11)

limestone,
marble, onyx
travertine

Sedimentary – Turkey

77 Shalabi et al.
[75]

𝛾,v, RL, SHR 58 Cylindrical
D=54 mm

dolomite,
dolomitic
limestone, and
shale rocks

Sedimentary 𝜎c = 2.23HT + 7.23,
𝜎c = 3.201HR−46.59,
𝜎c = 97.221HA + 15.031,
𝜎c = 3.326Sh−79.76

USA

78 [76] Vp, ISI, SDI 48 cylindrical sandstone,
limestone shale,
basalt, schist,
coal, phyllite

Mixed 𝜎c = 0.0642Vp + 117.99 India

79 Sharo and
Al-Shorman [77]

Is(50) 85 Cylindrical Sandstone,
limestone shale,
Basalt, Schist,
coal, phyllite

Sedimentary 𝜎c = 8.86+14.45 Is(50), chalky
limestone,
𝜎c = 24.32+7.63 Is(50) basalt

Jordan

(continued on next page)
In the current study we want to develop a model that can reliably
predict 𝜎c applicable in multiple lithologies. We believe that this is
a first step towards exploring further the idea of densifying a limited
local or site-specific population, with a larger more generic but similar
population, to augment the available sample population and estimate
6

reliably the compressional strength or the Young’s modulus of intact
rocks on a specific site. To this end we compiled a new generic database
and applied intelligent bioinspired computational algorithms: Back-
Propagation Artificial Neural Networks (BP-ANN), Artificial Neuro-
Fuzzy Inference Systems (ANFIS), Support Vector Machines (SVM),
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Table 1 (continued).
Authors Input Nr of

samples
Size of
specimens

Lithology Rock type Model Country

80 [78] Is(50) 11 Cylindrical D =
54 mm

quartzite,
sandstone,
amphibolite,
gabbro,
khondalite,
epidiorite,
limestone,
dolomite, shale,
rock salt

Mixed 𝜎c = (21–24) PLI harder rocks,
𝜎c = (14–16) PLI softer rocks

India

81 Sulukcu and
Ulusay [79]

𝜎bt , BPI, Is(50) disc
specimens
were
tested

Cylindrical
D=50 mm

Mixed Mixed 𝜎c = 5.1BPI − 3.3,
𝜎c = 15.31Is(50)

Turkey

82 Tandon and
Gupta [80]

RL, Is(50), Vp 60 Cylindrical quartzites,
granites, granitic
gneiss,
meta-basic
(meta-
amphibolite,
meta-dolerite)

Metamorphic 𝜎c = 1.910SHR−10.30,
𝜎c = 3125PLI + 40.08

India/
Himalaya

83 Teymen [81] 𝜌, n,Is(50), Vp 28 Cubic
(71*71*71)

tuffs Igneous 𝜎c = 19.5Is(50),
𝜎c = 4.53Vp2.23

Turkey

84 Teymen and
Mengüç [82]

𝜌, Is(50), Vp, 𝜎bt ,
RL, SRL

94 Cylindrical Mixed Mixed Simple regression, multiple
regression, ANN, ANFIS
Genetic expression
programming

Turkey

85 Tiryaki [83] n, d 44 Cylindrical Mixed Mixed 𝜎c = 0.88 + 𝜌2.24 + SHR0.
22+CI0.8,
E = 0.01 + 𝜌5.72+ SHR0.29 +
CI0.67, regression trees, ANN

Turkey

86 Torabi M. Ataei
M. Javanshir
[84]

RL 41 Cubic
(0.2*0.2*0.2)

coal Sedimentary 𝜎c = 0.0465R2
L −0.1756RL +

27.682
Iran

87 Tumac and
Hojjati [85]

RQD, RL, IBR 21 Cylindrical Mixed Mixed IBR = (0.763 RQDr) + (0.649
𝜎cr) − 6.183

Turkey

88 Ulusay et al.
[86]

𝛾, n, Is(50), v 15 Cylindrical Mixed Mixed 𝜎c = 19.5IS(50) + 12.7 Turkey

89 Vasanelli et al.
[87]

Vp, RL 23 microcores and
standard cubic
samples

fine-grained
calcarenite

Sedimentary 𝜎c = 0.0159x −27 Italy

90 Wang and Wan
[88]

RL 20 Cylindrical Mixed Mixed 𝜎c = (6222/ (88.15−RL))
−70.38, simulated
annealing-gene expression
programming (SA-GEP)

China

91 Wen et al. [89] 𝜌, Is(50), Vp, 𝜈 40 Cylindrical dolomitic
limestone

Sedimentary 𝜎c = 0.034Vp −86.36,
E = 0.013Vp −30.71,
𝜎c = 20.91 Is −4.79

China

92 Yagiz [90] 𝜎c, 𝜎bt , PSI, DPW 138 Cylindrical granitoid Igneous ROP = 1.19 + 0.0247 Is 50,
ROP = 1.413 + 0.0042 𝜎c,
ROP = 1.66 + 0.040 𝜎bt

USA

93 Yarali and Soyer
[91]

𝜎bt , RN, SRL,
Is(50)

32 Cylindrical sedimentary,
igneous,
metamorphic
rock samples

Mixed DRI = −0.2641UCS +87.049,
DRI = −5.872Is(50) +86.297

Turkey

94 Yavuz et al. [92] n, 𝜌, Vp, RL 12 Cubic
(0.7*0.7*0.7)

carbonate rocks Sedimentary I = 𝛽o+B1Io+𝛽2n Turkey

95 Yavuz et al. [93] n, 𝜌, RL, 𝜎bt , Vp,
K

11 Cubic
(0.5*0.5*0.5)

carbonate rocks Sedimentary K = 0.560∕𝜎0.604
c Turkey
Nearest Neighbour classifiers (KNN) and Ensemble Bagged Trees Model
(EBTM) to develop models that can learn from existing paradigms and
subsequently make reliable predictions of rock compressive strength
for a site of concern. Based on the developed model’s performance
indicators on testing data, we could present some confidence, that the
applied machine learning (ML) algorithms, generalize successfully and
can be used to predict successfully in future the 𝜎c for multiple rock
types. As far as we are concerned there are no studies that propose
a common regression equation or a soft computing algorithm that
7

can predict the compressional strength of intact rock 𝜎c based on
physical and index properties for multiple rock types. Rahman and
Sarkar [100] concluded that a common regression equation cannot be
used to predict the 𝜎c from for multiple rock types, based on their study
for 𝜎c prediction from P-wave velocity values of 12 different rocks.
This paper further investigates the performance of machine learning
algorithms (BP-ANN, ANFIS, SVM, KNN, EBGM), that can predict 𝜎c
and in future can be adopted to develop quasi-specific models [101].



H. Muzamhindo and M. Ferentinou Probabilistic Engineering Mechanics 71 (2023) 103400
Table 2
Data map for ROCK/10/4025 and available in the literature.

Authors Nr of data groups 𝛾 n Vp RL Is (50) 𝜎bt BPI 𝜎c E

Abdi et al. [2] 40 x x x x x
Afolagboye et al. [3] 50 x x x
Aggistalis et al. [4] 93 x x x x
Akram and Bakar [5] 9 x x
Aliyu et al. [6] 7 x x x x x x
Armaghani et al. [8] 124 x x x x
Jahed Armaghani et al. [7] 45 x x x
Jahed Armaghani et al. [94] 71 x x x x x
Aydin and Basu [9] 40 x x x x x x
Azmian (2017) 30 x x x
Basu and Kamran [11] 15 x x
Basu et al. [12] 20 x x x x x
Bieniawski [14] 12 x x
Bilgin et al. [15] 23 x x x x
Bell and Lindsay [13] 27 x x x x x x
Briševac et al. [16] 30 x x x x x x
Bruno et al. [17] 97 x x
Cargill and Shakoor [18] 14 x x x x x
Çelik [19] 90 x x x x x
Ceryan et al. (2012) 55 x x x x
Cheshomi et al. [21] 10 x x x
Çobanoğlu and Çelik [22] 75 x x x x
Dehghan et al. [23] 30 x x x x x
Demirdag et al. [24] 59 x x x
Diamantis et al. [25] 32 x x x x x
Dinçer et al. [26] 24 x x x x
Dinçer et al. [27] 19 x x x x x x x
Ersoy and Acar [28] 9 x x x
Fakir et al. [29] 29 x x x x x x x
Fener et al. [30] 11 x x x
Ferentinou and Fakir [31] 47 x x x x
Ghasemi et al. [32] 10 x x x x x x
Gomez-Heras et al. [33] 29 x x x x
Gonz’lez et al. [34] 13 x x x x
Guney and Altindag [35] 7 x x x x
Hebib et al. [36] 19 x x x x
Heidari et al. [37] 30 x x x
Heidari et al. [95] 15 x x
Heidari et al. [38] 98 x x x x x
Ince and Fener [39] 10 x x x x x x
İnce et al. [40] 50 x x x x
Jamshidi et al. [41] 22 x x x
Jalali et al. (2017) 106 x x x x x
Kahraman and Gunaydin [42] 52 x x
Kahraman [43] 48 x x x x
Kahraman [45] 32 x x x x
Kahraman et al. [44] 22 x x x x x x x
Kahraman et al. [46] 28 x x x x
Kahraman et al. [47] 9 x x x x
Kainthola et al. [48] 199 x x x
Kamani and Ajalloeian [49] 40 x x
Karakus [51] 19 x x x x x
Karakus et al. [50] 9 x x x x x x
Karaman and Kesimal [53] 47 x x
Karaman et al. [52] 37 x x x x
Kasim and Shakoor [54] 22 x x
Khandelwal and Singh [55] 12 x x x x x
Kılıç and Teymen [56] 19 x x x x x x
Korkanç and Solak [57] 20 x x x x x
Madhubabu et al. [59] 13 x x x x x x
Mahdiabadi and Khanlari [58] 80 x x x x
Mahmoodzadeh et al. [60] 170 x x x x x
Ludovico-Marques et al. [61] 35 x x
Martins et al. [62] 55 x x x x x
Mehrabi Mazidi et al. [63] 23 x x
Mishra and Basu [64] 60 x x x x x x x x
Mohamad et al. [65] 40 x x x x x
Momeni et al. [66] 66 x x x x x
Naijib et al. (2015) 45 x x x x
Nefeslioglu [67] 66 x x x
(continued on next page)
2. Database ROCK/10/4025

A generic global database ROCK/10/4025 is compiled from pub-
lished case studies, in the literature, and includes 9 measured intact
8

rock parameters, and a 10th parameter Hoek–Brown constant mi, which
was estimated for all the data, to indirectly include the lithology in
the database. The current database is labelled, (material type)/(number
of parameters of interest)/(number of data points) following generic
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Table 2 (continued).
Authors Nr of data groups 𝛾 n Vp RL Is (50) 𝜎bt BPI 𝜎c E

Ng et al. [68] 145 x x x x x x
Palchik and Hatzor [69] 12 x x x x
Sachpazis [70] 33 x x x
Saldaña et al. [71] 29 x x x
Salehin et al. [72] 39 x x x x x x
Sarkar et al. [73] 40 x x x x
Sengun et al. [74] 11 x x x x
Shalabi et al. [75] 58 x x x x
Sharma and Singh [76] 48 x x
Sharo and Al-Shorman [77] 85 x x
Singh et al. [78] 12 x x
Sulukcu and Ulusay [79] 23 x x x x
Tandon and Gupta [80] 60 x x x x
Teymen and Mengüç [82] 93 x x x x x x
Teymen [81] 27 x x x x x
Tiryaki [83] 44 x x x x
Torabi M. Ataei M. Javanshir [84] 41 x x
Tumac and Hojjati [85] 21 x x
Ulusay et al. [86] 15 x x x x x
Vasanelli et al. [87] 23 x x x
Wang and Wan [88] 20 x x
Wen et al. [89] 40 x x x x x
Yagiz [90] 138 x x
Yarali and Soyer [91] 32 x x x x
Yavuz et al. [92] 12 x x x x x
Yavuz et al. [93] 11 x x x x x
databases compiled for clays [102–105], sands [106], rocks [96], and
rock mass [101].

The rock database comprises igneous, metamorphic, and sedimen-
tary rock classes with 40 various lithologies. The geographical extend
of the database covers 23 countries, including Algeria, Brazil, Chile,
Croatia, Denmark, Egypt, France, Greece, India, Iran, Iraq, Israel, Italy,
Jordan, Malaysia, Nigeria, Pakistan, Portugal, South Africa, Spain,
Turkey, Ukraine, USA and expands, across five continents.

ROCK/10/4025 is populated with 54.8% sedimentary, 35.4% ig-
neous, 9.2% metamorphic and 0.6% unclassified samples. The index pa-
rameters of intact rock samples are unit weight (𝛾; 4.41–35.41 kN/m3),
porosities (n; 0.06%–37.8%), Schmidt Hammer Hardness (RL: 10.0–
72.0), Point Load Index (Is50: 0.05–30.55) MPa, P-wave velocity (Vp;
0.38–9.91 km/s), Brazilian tensile strength (𝜎bt ; 0.48–49.24 MPa),
Block Punch index (BPI: 1.89–38.98 MPa), Hoek–Brown constant (𝑚i;
–33), Young’s modulus (E; 0.03–183.30 GPa), and (𝜎c;0.27–560.31
Pa). The values of 𝜎c cover the full range of weak to (𝜎c < 20 MPa),
edium (20< 𝜎c<100 MPa), and strong rocks, (𝜎c>100 MPa), based

n classification by [107]. Most of the samples have 𝜎c ranging from
0 MPa–250 MPa, corresponding to strong and very strong. Only a few
amples have 𝜎c <5 MPa and 𝜎c > 250 MPa, which are the very weak,
xtremely weak, and extremely strong samples. Most of the test samples
re cylindrical of diameter in the range (30–75) mm, and some are
ubical (253–753) mm3.

There are 4025 records in the database. Each data set is stored in
xcel worksheet that consists of a set of values measured for the same
ntact rock sample. The resulting database is not a genuine multivariate
atabase in the way that all the 10 parameters are populated for all
he rows in the worksheet, (i.e each row is not in full, completed
ith values). The percentage of completeness, of the data base defined
s ‘‘(number of filled values)/[(number of parameters) × (number of
ows)]. The percentage of completeness is 50% for ROCK/10/4025,
hile the percentage of completeness for ROCK/9/4069 is 34.2% [101]

Ten parameters commonly measured and identified in the literature
o indirectly estimate 𝜎c and E, are included in the data base. The
arameters of interest are 𝛾, n, RL, BPI, IS50, 𝜎bt , 𝜎c, E, Vp, mi. They
an be categorized in the following groups:

1. Index properties: porosity (n), unit weight (𝛾), L-type Schmidt
hammer hardness (RL), and Block Bunch Index (BPI). The
Schmidt rebound hammer is a practical non-destructive test
9

method for the evaluation initially of rock strength and, sub-
sequently, rock quality [108]. The surface hardness of rock
is measured using a portable device with a non-destructive
application called the Schmidt rebound hammer [109]. The
ISRM has standardized the recommended test procedure for
the Schmidt rebound hammer test. Researchers have indicated
that the Schmidt rebound hammer could be a good indicator
for determining the 𝜎c of rock [108,109]. There are two types
of Schmidt hammer: L-type and N-type. In ROCK/10/4025, RL
data dominate (96% are RL) because the L-type hammer is
recommended for rocks as per [110]. There are studies where
both RL and RN were measured Aydin and Basu [9], Basu et al.
[12], Bilgin et al. [15], but in ROCK/10/4025, only RLwas
included.

2. Strengths: Brazilian tensile strength (𝜎bt), point load strength
index (Is50), and uniaxial compressive strength (𝜎c) strengths.
Index tests like the Is50, 𝜎bt , have helped researchers develop
models to predict the 𝜎c of rocks because index tests require
relatively small data set samples. Grasso et al. [111] state that
despite the limitations associated with index tests, when coupled
with experienced judgement, they provide initial estimates of
rock properties required at the feasibility and preliminary design
stage. The point load index has long been used as the most
suitable intermediary for the 𝜎c. It is evident from published
research that the equations exhibit a wide range varying from
linear to quadratic and power laws, but the issue is that there is
no agreement between authors on a specific conversion factor
[31]. The strength parameters of rock depend on specimen
size, sample geometry, loading rate. Is50 is size dependent, it
is customary to correct Is50 to a standard diameter of 50 mm
[112], because point load testing can be conducted over a wide
range of diameters. Prakoso [113] did not observe an effect of
sample diameter on the coefficient of variation (COV) of rock
strengths (𝜎c, 𝜎bt , and Is(50)), therefore sample size correction is
not adopted for 𝜎c parameter or 𝜎bt in the compiled data base
ROCK/10/4025.

3. Stiffness: Young modulus (E), the database contains average
values of E as reported in the various case studies. ISRM sug-
gested methods could be determined using tangent, secant, and
average modulus. Ching et al. [96], report that the difference
between (tangent modulus at 50% (E ) and average modulus
t50
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for the linear portion of the stress strain curve (Eav) is not
significant compared to the transformation uncertainty. Thus,
average values of Young’s modulus are recorded in the database.

4. Dynamic property: P-wave velocity (Vp). Determination of dy-
namic properties of rock using ultrasonic pulse or sound tests,
also known as P-wave velocity. It is regarded as a non-destructive
test as it emits low-amplitude waves whose stress is below that of
the yield stress of rock [64]. Ferentinou and Fakir [31] mention
that P-wave velocity is an important parameter that should
be measured for reliable 𝜎c prediction. The P-wave velocity of
rock is affected by lithology, formation porosity, pore pressure,
matrix, and temperature, rock mass weathering and alteration
zones, bedding planes, and joint properties [114].

.1. Hoek–Brown constant mi estimation

The constant mi is a fundamental parameter essential for the Hoek–
rown (HB) failure criterion developed for estimating the strength of
ock mass properties. Hoek–Brown constant parameter mi is estimated
rom a series of triaxial compression tests [115]. The constant mi de-

pends on the frictional characteristics of the component minerals in the
intact rock, and it has a significant influence on rock strength, depends
on, grain size, and cementation of rocks, [116]. Based on the general
pattern of the correlations between mi and rock types, Hoek and Brown
[117] proposed guidelines for determining mi values for different rock
types that can be used for preliminary design when triaxial tests are not
available. An updated version of these guidelines was proposed by Hoek
[118] based on a more complete and detailed lithologic classification
of rocks, and the range of mi values depended on the accuracy of the
geologic description of rock types. These guidelines were adopted in the
current study, for the estimation of mi. There are alternative methods
suggested in the literature for the estimation of mi in the absence of
laboratory triaxial tests, which can be useful at the early stages of
various design applications. An alternative way to estimate mi values
in the absence of triaxial tests is the R index, [117,119–121]. R index,
is the ratio of 𝜎c to tensile strength 𝜎bt . Research by Read and Richards
[122] investigated the relation between mi and R values that were
calculated from direct and Brazilian tensile tests which indicated that
the use of direct tensile tests does not improve the ability to predict
mi values compared with Brazilian tests. R index was not adopted in
the current study due to the non-completeness of the data base in
terms of tensile and uniaxial and compressive strength. Another method
proposed by Cai [120], Peng et al. [123], for the prediction of mi is
directly from the 𝜎c of the intact rock in which the mi values depend
on the ratio of crack-initiation stress obtained using acoustic emission
techniques to the peak strength. Crack-initiation stress of rock samples
data were not included in the studies that were used for the compilation
of the ROCK/10/4025 database. As a result, the model was not used.

Shen and Karakus [124], proposed a simplified method for mi values
estimation directly from 𝜎c values for specific rock types in the absence
of triaxial test data. They considered, correlations for five common
rock types (sandstone, limestone, marble, granite, coal), and proposed
a simplified method Eq. (1) together with the rock-specific relations
that can estimate mi (or normalized 𝑚𝑖𝑛) values using only 𝜎c and rock
types. They used 112 groups of data for five common rock types in an
existing database together with laboratory tests.

The proposed regression equation is

𝑚𝑖𝑛 = 𝑎𝜎𝑏𝑐𝑖 (1)

where min is a normalized mi∕𝜎c where a and b, are constants, and their
values depend on rock types, Shen and Karakus (2014). The results
revealed that there is a close agreement between estimated and exper-
imental rock strength values. The reliability of the proposed method
was evaluated and compared with existing methods ([125] guidelines
and R index) that are commonly used for estimating mi values when

triaxial test data are not accessible. According to their results, the
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simplified method could be used reliably in the HB criterion to estimate
intact rock strength with small discrepancies between estimated and
experimental strengths. This simplified method was used in this study
to develop machine learning (ML) models that can predict 𝜎c and was
included in the database only for the common type of rocks (sandstone,
limestone, marble, granite and coal).

The basic statistics for the ten parameters in the ROCK/9/4069
database are listed in Table 3. The statistics are the mean value, coef-
ficient of variation (COV), minimum value (min), and maximum value
(max). It should be noticed that the mean and COV are not for a specific
site, but for the entire ROCK/10/4025 database that covers numerous
sites. They should not be used for design, which requires statistics at
the site level. The number of data points is further subdivided into the
number of igneous, sedimentary, and metamorphic data points.

2.2. Basic statistics

The number of cases is shown in the third column in the format
of ‘‘number of tests, (number of igneous + sedimentary and metamor-
phic). The COV and range are large in the global database and are
comparable to the ROCK/9/4069 [96]. In ROCK/10/4025 the range
of n, 𝜎bt and 𝜎c is higher, which is well illustrated in the series of
correlations in Fig. 1. The COV value is broadly in agreement in the
two databases. Tables 4,5,6 show the site level statistics for the igneous,
sedimentary, and metamorphic rock intact rock properties. The site
level statistics are broadly consistent with those in ROCK/9/4069. COV
values and range for the specific sedimentary igneous and metamorphic
groups of rocks is narrower than at global level, yet the site-specific
range is larger in ROCK/10/4025 than in ROCK/9/4069. It was found
that unit weight) generally exhibit low variability while porosity ex-
hibit high variability across the three types of rocks considered for both
data bases. There is high variability in strength properties across the
three rock types, with upper COV values greater than 30%. Young’s
modulus is found to be highly variable, with high COV values across
the three types of rock, with the lowest value at metamorphic rocks.
In general, deformation and strength properties are more variable rock
properties than index properties. Also, properties of sedimentary rocks
tend to have higher COV values in most of the properties considered.
Indicating that possibly sedimentary rocks exhibit greater variability
than other types of rocks.

Fig. 1 presents the correlations between the index properties of the
behaviour of intact rock properties as measured for both ROCK/9/2069
and ROCK/10/4025. The general trends are in agreement, and
ROCK/10/4025 seems to be broader in terms of range. We could also
suggest agreeing with [96] that there is not strong evidence indicat-
ing that the transformation relationship exhibited by the data points
depend on the rock classes (i.e sedimentary, igneous or metamorphic).

3. Generic prediction models for the prediction of 𝝈𝐜

3.1. Data preparation

Several, machine learning techniques, including artificial neural
networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and
classification learner algorithms (SVM, KNN, EBGM) were utilized,
to predict the value of 𝜎c in this study. The use of these soft com-
putational techniques enabled the comparison of different machine
learning models in 𝜎c estimation from rock index properties, included
in the ROCK/10/4025. The data samples were normalized with respect
to maximum and minimum values to adapt to the interval [0, 1].
Normalization is conducted to ensure that all variables receive equal
attention, soften the training procedure, and improve the accuracy of
the results according to the linear mapping function [20,31]. The data
were separated into training and testing data sets before the model was
built. The training data set is used to create the model, and the testing

dataset is used to validate the model.



H. Muzamhindo and M. Ferentinou Probabilistic Engineering Mechanics 71 (2023) 103400
Table 3
Summary statistics of the 10 parameters in the ROCK/10/4025 database at global level.

Nr Parameter Nr of data Mean COV Min Max

1 𝛾 (kN/m3) 1918 (1288) 23.85 (24.6) 0.16 (0.12) 4.41 (15.0) 35.41 (34.7)
2 n(%) 1371 (1371) 7.55 (11.0) 1.26 (1.02) 0.06 (0.01) 37.8 (55.0)
3 RL 2157 (812) 42.78 (41.4) 0.27 (0.29) 10 (8.1) 72 (81.6)
4 𝜎bt (MPa) 582 (854) 8.69 (8.2) 0.73 (0.61) 0.48 (0.07) 49.24 (34.4)
5 Is(50) (MPa) 2348 (1303) 4.05 (4.2) 0.80 (0.69) 0.05 (0.05) 30.55 (17.4)
6 BPI (MPa) 380 8.64 0.84 1.89 38.98
7 mi 3994 17.25 0.54 6.00 32.00
8 𝜎c (MPa) 3997 (3226) 78.81 (72.3) 0.73 (0.77) 0.27(0.68) 560.31 (379.0)
9 E (GPa) 953 (1495) 68.95 (26.5) 1.24 (0.99) 0.03(0.03) 183.30 (116.3)
10 Vp (km/s) 2366 (1858) 4.30 (4.0) 0.36 (0.39) 0.375 (0.44) 9.814 (8.0)
Table 4
Summary statistics of ROCK/10/4025 for igneous intact rocks.

Nr Parameter Nr of data Mean COV Min Max

1 𝛾 (kN/m3) 709 (17) 22.7 (24.55) 0.17 (0.03) 7.95 (16.98) 29.43 (30.07)
2 n(%) 645 (9) 8.63 (7.11) 1.33 (0.45) 0.01 (0.15) 41.80 (41.80)
3 RL 841(14) 44.90 (45.76) 0.25 (0.12) 16.80 (16.80) 87.40 (65.76)
4 𝜎bt (MPa) 312(10) 5.93 (11.59) 0.50 (0.23) 0.90 (1.9) 34.40 (16.75)
5 Is(50) (MPa) 946 (11) 4.43 (5.22) 0.76 (0.41) 0.05 (1.85) 12.53 (10.78)
6 BPI (MPa) 63 14.54 0.77 1.30 38.98
7 mi 1417 27.82 0.20 8.00 33.00
8 𝜎c (MPa) 1402 (33) 90.77 (112.42) 0.66 (0.33) 2.09 (17.63) 459.17 (246)
9 E (GPa) 380 (22) 35.30 (34.26) 1.05 (0.30) 0.19 (0.96) 183.3 (7.98)
10 Vp (km/s) 753 (22) 4.62 (4.53) 0.32 (0.13) 0.85 (2.88) 9.81 (7.55)
Table 5
Summary statistics of ROCK/10/4025 for sedimentary intact rocks.

Nr Parameter Nr of data Mean COV Min Max

1 𝛾 (kN/m3) 1028 (42) 23.88 (24.04) 0.16 (0.05) 4.46 (18.17) 26.56 (29.04)
2 n(%) 647 (43) 7.28 (13.51) 1.01 (0.33) 0.06 (0.43) 34.79 (38.40)
3 RL 1123 (19) 40.67 (33.31) 0.29 (0.16) 11.80 (20.40) 70.70 (57.35)
4 𝜎bt (MPa) 252 (21) 7.03 (7.03) 1.05 (0.28) 0.48 (1.25) 49.24 (14.85)
5 Is(50) (MPa) 1180 (34) 3.43 (3.47) 0.84 (0.30) 0.02 (0.17) 30.55 (9.69)
6 BPI (MPa) 301 7.17 0.57 1.75 20.79
7 mi 2207 10.81 0.33 6.00 32.00
8 𝜎c (MPa) 2201 (112) 68.46 (61.39) 0.78 (0.32) 0.27 (1.92) 560.31(159.13)
9 E (GPa) 555 (55) 15.91 (25.88) 1.28 (0.40) 0.03 (0.14) 99.9 (62.47)
10 Vp (km/s) 1339 (56) 4.11 (3.41) 0.39 (0.13) 0.38 (0.81) 7.84 (6.27)
Table 6
Summary statistics of ROCK/10/4025 for metamorphic intact rocks.

Nr Parameter Nr of data Mean COV Min Max

1 𝛾 (kN/m3) 181 (10) 26.38 (27.18) 0.14 (0.02) 23.64 (25.70) 30.31 (30.69)
2 n(%) 79 (7) 0.85 (2.25) 1.96 (0.54) 0.10 (0.03) 9.22 (6.67)
3 RL 193 (3) 45.94 (49.78) 0.23 (0.09) 10.38 (39.9) 72.00 (51.60)
4 𝜎bt (MPa) 18 (8) 8.76 (10.89) 0.59 (0.27) 2.41 (3.45) 19.70 (18.12)
5 Is(50) (MPa) 197 (12) 6.01 (4.04) 0.64 (0.30) 1.03 (1.03) 23.10 (6.92)
6 BPI (MPa) 16 13.08 0.46 4.61 27.05
7 mi 370 15.73 0.48 9.00 33.00
8 𝜎c (MPa) 369 (21) 97.83 (79.62) 0.60 (0.28) 8.00 (3) 288.20 (200.43)
9 E (GPa) 18 (7) 38.88 (54.59) 0.37 (0.21) 12.80 (1) 64.80 (102.33)
10 Vp (km/s) 259 (16) 4.58 (4.32) 0.32 (0.10) 1.47 (1.48) 7.94 (6.27)
3.2. Combination summary of generic data sets

Four combinations of parameters included in the ROCK/10/4025
were selected to develop and train predictive models. The selection of
the four combinations of input parameters was based on four criteria.
Predominantly, on the completeness of the database, incorporation of a
physical property, strength, preferably through indexes resulting from
non-destructive test methods, inclusion of lithology through mi in the
training. The authors selected one physical property as essential to be
represented in the ML models, the intention was to investigate whether
ML trained with a physical property as an input parameter, would have
a better performance as opposed to the ML models that would not
include a physical property as an input parameter. The second criterion
was to comprise a non-destructive, easy, and cost-effective method
like V and R which are present in all combinations. Point load
p L
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index has long been regarded as the best intermediary for the 𝜎c, and
therefore was comprised as a training parameter in all combinations.
The constant mi is incorporated as input parameter in all models as the
purpose of the study is to propose a method that would allow to include
qualitative properties such as lithology in the training of an ML model
towards 𝜎c prediction for multiple lithologies.

1. The completeness of the data base: The intention of the authors
was to compile a large representative database with typical
ranges of rock properties that could be used as an approximation
of rock property variability, when rock property data are not
available or are very limited. The aim is to use ML algorithms
and train with many representative educational examples which
serve to build prior knowledge in the ML models. The authors
performed a thorough check in the database to examine which

combinations would allow for the larger data sets and concluded
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Fig. 1. Correlations behaviours among intact rocks in database ROCK/10/4025 and ROCK/9/4069.
Table 7
Selected parameter combinations for soft computing modelling.

Combination No of data Training set Validation/ Test set 𝝈c class range

RL-Is(50)- 𝝈bt 227 (118i +92s +17 m) 159 34 2–6
RL-Is(50)- 𝝈bt -mi 227 159 34 2–6
RL-Is(50)- 𝝈bt -miab 97 68 14 2–6
Vp- Is(50)-mi 1454 1018 218 0–6
Vp- Is(50)-mi 1454 (564i + 752s + 123 m + mx) 1193 218 0–6
Vp- Is(50)-miab 741 519 111 0–6
n-Vp- RL - Is(50) 575 402 85 1–5
n-Vp- RL - Is(50)-mi 575 (282i + 251s + 41 m) 402 86 1–5
n-Vp- RL - Is(50)-miab 380 265 57 1–5
Vp- RL - Is(50) 1192 834 179 1–6
Vp- RL - Is(50)- mi 1192 (511i+ 574s + 102m+ 5mx) 834 179 1–6
Vp- RL - Is(50)- miab 658 460 99 1–6
into the selected presented in Table 7. This strategy, of sample
and parameter selection, allowed us to investigate the impor-
tance of sample data in comparison to the selected parameters
in the generalization capacity of the proposed ML models.

2. Inclusion of the physical properties: Porosity n was selected
representing the physical property of the intact rock sample. Unit
weight 𝛾 has the lowest COV value of 0.12% and low variability
and therefore was not selected. Porosity n, on the other hand
is found on the upper bound of COV values greater than 60%
which are considered with high variability, and therefore would
allow for adequate representative educational examples included
in ML models.

3. Inclusion of non-destructive test methods: The P-wave velocity
has been successful as a non-destructive test for the prediction of
mechanical properties of rocks easy and cost effective, the COV
value is 0.30 which shows average variability. The relationship
between 𝜎c and Vp has been investigated by many of researchers
and a high correlation is identified. The Schmidt hammer is a
hand-held portable device which is commonly used to assess
the strength of rocks and concrete. It is a non-destructive cost-
effective method used to assess the mechanical properties and
12
therefore RL index is included as an input parameter although
the COV value is close to 30% which is considered low to
medium.

4. Inclusion of strength index: Point load index Is50 has long been
regarded as the best intermediary for the 𝜎c. It is relatively easy
to conduct and economical, and thus widely applied both in
the field and laboratory. It is evident from literature that the
equations published exhibit a wide range, varying from linear to
quadratic, and power laws. COV value is 0.80 which shows high
variability and therefore adequate representation of a variability
in the model. Ching et al. [96] report that Is50 is the most
effective parameter into predicting the 𝜎c. The Brazilian tensile
strength has been widely used as an indirect test to measure
tensile strength (𝜎bt). It has also been employed to produce
estimates of 𝜎c strength as these two parameters are commonly
required and determined in most geotechnical projects. As 𝜎bt
can be easily determined from the Brazilian tensile strength,
it is useful to find strong conversion factors between the two
parameters. Brazilian tensile strength test is also associated to
the constant m .
i
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The selected combinations are the following four RL-Is(50)-𝜎bt -mi,
p-RL-Is(50)-mi, n-Vp-RL-Is(50)-mi, Vp-Is(50)-mi. Combinations of physical
nd index strength parameters of rock are developed from the data
vailable in the database. Table 7 presents the different combinations
nd number of samples used for testing and validating.

The models were trained with and without the inclusion of mi
onstant as an input parameter to verify the importance of mi constant
n the convergence and prediction capability of ML models. To further
ompare the effect of mi estimation method on the generalization
erformance of ML models, four additional models were developed, mi
stimation was based on Shen and Karakus (2014), for the common
ype of rocks (sandstone, limestone, marble, granite and coal), in the
ata base, summarized in Table 7. The training data sets in this case
ere smaller.
RL-Is(50)-𝜎bt -mi: This combination includes a total of 227 rock sam-

les. Many of the samples are from Turkey, and some are from South
frica. The combination contains 118 igneous, 92 sedimentary, and 17
etamorphic rock type samples.

Vp-RL-Is(50)-mi: This combination includes 1192 intact rock samples.
he set contains 511 igneous rocks, 102 metamorphic, 574 sedimen-
ary and 5 unclassified. The samples are from Malaysia, Croatia, Iran,
urkey, India, and China.

n-Vp-RL-Is(50)-mi: This combination includes 575 intact rock sam-
les. The set contains 282 igneous rocks, 41 metamorphic and 251 sed-
mentary intact rock samples. The samples are from Malaysia, Croatia,
ran, Turkey, India, and China.

Vp-Is(50)-mi: This combination includes a total of 1454 intact rock
amples. The set contains 564 igneous, 752 sedimentary, 123 metamor-
hic, and 15 non classified. This combination contains samples from
rance, Iran, Greece, Malaysia, Turkey, the United Kingdom, Denmark,
ndia, Croatia, and China.

.3. Machine learning methods

During the last two decades ML have been successfully applied to
olve various problems in geotechnical engineering applications. In a
urvey of 444 papers by ISSMGE TC304/309 in 2021, both supervised
nd unsupervised algorithms are used with ANN, Support vector ma-
hines, nearest neighbour classifiers and Bayesian networks, being the
ost popular amongst them employed to solve problems such as site

haracterization, geomaterial behaviour modelling, foundations, retain-
ng structures, slope stability, landslides, tunnels and underground
penings, liquefaction assessment, etc, [126].

ML methods have also proven to be very effective in solving nonlin-
ar and complicated problems in geotechnical engineering, such as the
ettlement of shallow foundations on cohesionless soils [127], thermo-
ydromechanical behaviour of hydrate reservoirs [128], non-stationary
nd non-Gaussian geotechnical properties [129], soil constitutive mod-
lling [130] suction distribution in shallow soil layers [131] and soils’
ir entry value [132].

Some of the advantages of ML methods that guided the authors to
evelop a generic compressional strength prediction model for multiple
ithologies is that they conserve the complexity of the systems they
odel because they have complex structures themselves, they recognize
ifferent sets of data within a whole data set, they do not require
re-existing knowledge or experience, they do not require a statistical
re-existing model in order to train data and they give reasonable
esults even when data are inaccurate and incomplete which is typ-
cal for geotechnical data. Phoon et al. [99] presented a successful
nemonic, MUSIC-X (Multivariate, Uncertain and Unique, Sparse, In-

omplete, and potentially Corrupted with ‘‘X’’ denoting the spatial/
emporal dimension) to highlight seven common ugly attributes in real
ite geotechnical data.

In this study compressional strength 𝜎c prediction using a generic

atabase was approached as a function approximation problem and as a
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lassification problem. For the function approximation problem, Back-
ropagation Artificial Neural Networks (BP-ANN) and Artificial Neuro-
uzzy Inference Systems (ANFIS), were employed whereas to solve the
lassification problem binary and multiclass classification algorithms,
uch as decision trees, nearest neighbour classifiers (KNN), support vec-
or machines, (SVM), ensemble classifiers (EBGM) and neural networks
lassifiers algorithms were selected based on their accuracy.

Artificial Neural Networks (ANNs) are supervised machine learning
echniques that evaluate the relationships between a known set of
bservations (thus the training data) to predict unknown data sets.
NN consists of multiple interconnected processors, called neurons
hich are inspired by biological neurons. The neurons are logically ar-

anged in two or more layers and interact with each other via multiple
eighted connections. The links that connect neurons carry a numerical
eight that is associated with the neuron. These weights express the

trength, thus the importance of input neurons. A neural network learns
hrough the constant/regular adjustment of these weights. Training of a
etwork is modifying the network input/output behaviour to align with
he external stimulus. An ANN learns through the process of reducing
nd minimizing the difference between the actual output and the de-
ired output through adjusting the weights/synapses of the network. A
idely used type of activation function is the continuous one designed

o respond to the magnitude of the received excitation. The sigmoid
unction is one of the continuous transfer functions typically used in
odelling the activity of neurons. (Eq. (2))

(𝑥) = 1
𝑒−𝑎𝑥

(2)

where f is the amount of activation, x is the net excitation and ‘‘a’’ is the
slope function. These functions are also known as squashing functions
since their output is limited in a finite range of values.

A simple BP-ANN consists of three layers: the input layer, the hidden
layer, and the output layer, as illustrated in Fig. 2. BP-ANN is usually
layered, with each layer fully connected to the layers below and above.
The first layer is the input layer, the only layer in the network that can
receive external input. The second layer is the hidden layer in which
the processing units are interconnected to layers below and above. The
third layer is the output layer. Each unit of the second hidden layer is
interconnected to the units in the output layer. Units are not connected
to other units in the same layer. Each interconnection has associative
connection strength, depicted as weight in Fig. 2. When an output array
is presented the error vector, which represents the difference between
the desired value and the actual output, is calculated. Using a ‘‘wide
range’’ and ‘‘representative data sets’’, allows for a better representation
of the input space and therefore, better generalization capability. A
network is said to generalize when it appropriately classifies vectors
not included in the training set. The generalization ability is measured
by the accuracy of these classifications. It is important for the number
of training input vectors to be greater than the number of degrees of
freedom (the number of variable weights) of the network. The basic
mathematical concepts of the backpropagation algorithm are found in
literature [133].

The main hyperparameters of a multi-layer perceptron (BP-ANN)
are the learning rule, the number of neurons in the hidden layer, and
the transfer function. An optimum ANN architecture selection is an
essential step in building a model that is ideal for prediction purposes.

For this study, a trial and error, approach is adopted to select
the number of neurons in the hidden layer starting from a small
number and increasing gradually according to the received accuracy
index for the 12 developed ANNs. The size of the BP-ANN model was
verified following Baum and Haussler [134], who suggest the bounds
on appropriate sample vs. network size, for a feedforward network of
linear threshold, with 𝑁 nodes and W weights. The tangent sigmoid
nonlinear transfer function is used between the input and hidden layer
and the purelin transfer function between the hidden and output layer.
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Fig. 2. Typical BP-ANN architecture of a generalized multilayer perceptron. Simulation is applied to the inputs of the first layer, and signals propagate through the middle (hidden)
layer to the output layer. Each link between the neurons has a unique weighting value.
3.4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The artificial neural networks learning ability is combined with the
fuzzy logic’s decision-making mechanism in ANFIS. It is a hybrid soft
computing technique that combines the best of ANN and fuzzy infer-
ence system (FIS). Fuzzy inference is the process of mapping a given
set of inputs to an output using fuzzy logic [135]. ANFIS eliminates the
primary problem in FIS defining membership function (MF) parameters
and obtaining the fuzzy if–then rules through the effective use of ANN
learning capability for automated fuzzy rule generation and parameter
optimization, Maiti and Tiwari [136]. This method’s innovation is
derived from the fact that it does not require expert knowledge for
the assignment of parameters of the FIS but utilizes neural network
algorithms to adjust parameters. This method uses representative sets of
input and output to generate a FIS whose parameters are adjusted using
backpropagation or a combination with the least-squares method. A
FIS develops ‘‘if. . . then. . . ’’ fuzzy rules and determines MFs to map the
input and output data of the system. ANFIS automatically transforms
a training set into a set of fuzzy rules, thus reducing the dependence
on expert knowledge for building intelligent models. The linguistic
variables are subdivided into a specified number of sets during the
initialization step of ANFIS.

The structure of an ANFIS model is similar to that of a multilayer
perceptron neural network, Fig. 3. In general, a neuro-fuzzy system
has five layers, thus with one input, one output, and hidden layers
representing the membership functions and fuzzy rules. The Takagi and
Sugeno [137] type FIS is employed in this research as it uses a system-
atic proposition to generate fuzzy rules from the given input/output
sets.

Details on the mathematical formulation of ANFIS can be found
in [138]. A trial and error approach is taken to select whether grid
partition or subtractive clustering is used to generate the FIS structure.
In the current study Subtractive clustering first introduced by Chiu
[139], was applied. To build an ANFIS model for this combination of
parameters, a trial and error approach was applied to select the best
model features.

To obtain an optimum Adaptive Neuro-Fuzzy Inference System,
34 models are developed. All the input membership functions are of
Gaussian type, and the subtractive clustering method was applied for
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the proposition of fuzzy rules and to generate the desired training
architecture. In the FIS, five descriptive linguistic labels (i.e., very
low, low, moderate, high, and very high) were assigned to the input
membership functions. The hybrid rule was employed in the learning
procedure, and training was conducted until the error measure of
the output was tolerant. Testing and checking data pairs were used
to characterize the model. The range of influence (ROI) and squash
factor (SF) is varied until the optimum Artificial Neuro-Fuzzy Inference
System is obtained to develop the models. The ROI and SF influence the
number of fuzzy rules and membership functions, thus affect the ANFIS
network structure. The structure details of the models is presented in
Table 8.

A total number of five rules show the best performance in predicting
𝜎c. An example of one of the ‘‘IF–THEN’’ rules is illustrated in linguistic
terms is as follows:

1. ‘‘IF (𝜎c is low) and (Is(50) is low) and (𝜎bt is low) and (mi is low)
THEN (is cluster4) (1)’’.

2. ‘‘IF (RL is very_high) and (Is(50) is very_high) and (𝜎bt is
very_high) and (𝑚i is very_high) THEN (𝜎c is cluster5) (1)’’.

3.5. Classification models

Classification is a supervised machine learning method that allows
for the prediction of discrete responses or cluster generation according
to common features. The models are trained to classify data into
categories. For the specific problem, the data outputs are first turned
into categorical data. The 𝜎c value is translated into seven classes from
0 to 6 as per Hoek and Brown (2007)). The values of 𝜎c in the Rock-
96/10/4025 range from 0.27 MPa<UCS<560.31 MPa, from extremely
weak to extremely strong rock, Table 9, according to field estimates of
uniaxial compressive strength [117]

As can per frequency distribution, 25% of the samples have 𝜎c
ranging from 50 MPa–250 MPa, corresponding to strong and very
strong. A 20% of samples have 𝜎c in the range 5 MPa–50 MPa, which
are weak and medium-strong rocks. whereas 10% samples have 𝜎c of
0 MPa–5 MPa and 8% 𝜎c of greater than 250 MPa.

The ML models simulate multiclass classification problems since
there are seven desired output categories for all datasets to be classi-
fied. Determining which classification algorithm to use is often very
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Fig. 3. A typical structure of first order Takagi and Sugeno model.
Table 8
Structure details for the ANFIS models developed.

RL-Is(50)-𝜎bt -mi Vp-RL-Is(50)mi n-Vp-RL- Is(50)-mi Vp-Is(50)-mi

Number of nodes 57 47 56 22
Number of linear
parameters

25 20 4 8

Number of nonlinear
parameters

40 32 40 12

Total number of
parameters

65 52 44 20

Number of training
data pairs

182 954 460 1193

Number of checking
data pairs

23 119 57 149

Number of testing
data pairs

22 119 57 149

Number of fuzzy rules 5 4 4 2
Input MF: Gaussian Gaussian Gaussian Gaussian

Output MF Linear Linear Linear Linear
Table 9
Field estimates of uniaxial compressive strength (Brown, 1981).

UCS range (MPa) Class Grade

0.25–1 0 Extremely weak
1–5 1 Very Weak
5–25 2 Weak
25–50 3 Medium Strong
50–100 4 Strong
100–250 5 Very Strong
250+ 6 Extremely Strong

challenging. These ML algorithms were used in other classification
problems and have proved to achieve high performance. A typical
work-flow followed when building a classification model can include
Selection of classification method, training the classifier, measure the
accuracy of the classifier, simplify the model. The used classifiers that
we experimented with are: Naïve Bayes Classifiers, Support Vector
Machines, Nearest Neighbour Classifiers, Ensemble Classifiers which
were compared to single Neural Network Classifiers.

Naïve Bayes Classifiers (NB) are used for classification where the
observations are differentiated using specified features. This model is
a probabilistic classifier based on strong independence assumptions
between features. In this study kernel naïve bayes variant is applied.

Support Vector Machine (SVM), Cortes and Vapnik [140] is a type
of supervised learning ML technique. The supervised learning algorithm
selects the hyper-plane or the decision boundary defined by the solution
vector w to determine the maximum margins between the training data
samples and the test data. The variants of SVM used in the current
research are medium Gaussian SVM, Linear SVM, Cubic SVM, Quadratic
SVM.

Nearest Neighbour classifiers (KNN), the K-Nearest neighbour model
is successfully used in previous studies in solving non-linear problems.
15
KNN is used to assign a class label using the smallest Euclidean distance
between the target point and the training point in the feature space.
The variants of KNN used in the current training are Weighted KNN,
Medium KNN, Cubic KNN, and Fine KNN.

Ensemble classifiers is a ML approach in which numerous models
(called ‘‘weak learners’’) are trained to tackle the same problem and
then combined to achieve superior results [141]. Usually, these base
models do not perform well individually, either because they contain
too much bias or too much variation to be robust. Ensemble techniques
are used to try to reduce then bias and variance of weak learners
by stacking many of them to generate a strong learner. Base models
and a meta-learner (or a second-stage model) that uses base-model
predictions are used to design a stacking ensemble model. Variants of
ensemble models used in the classification process are Bagged Trees
and subspace KNN.

4. Statistic performance evaluation – Model performance indica-
tors

In order to check the overall performance of the developed predic-
tive ML models, some statistical performance indices were calculated
for each model according to the Eqs. (3)–(4) given below. Root mean
square error (RMSE) which evaluates the residual between desired and
output data, and R2 which evaluates the linear relation between desired
and output data.

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1
(𝑑𝑡 − 𝑦𝑡)2 (3)

𝑅2 =

⎡

⎢

⎢

⎢

∑𝑛
𝑡=1

(

𝑑𝑡 − 𝑑𝑚𝑒𝑎𝑛
)

(𝑦𝑡 − 𝑦𝑚𝑒𝑎𝑛)
√

∑𝑛 (

𝑑 − 𝑑
)2
√

∑𝑛 (𝑦 − 𝑦 )2

⎤

⎥

⎥

⎥

2

(4)
⎣ 𝑡=1 𝑡 𝑚𝑒𝑎𝑛 𝑡=1 𝑡 𝑚𝑒𝑎𝑛
⎦
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Fig. 4. Left: Performance of the ANN algorithm, parity plots showing the ANN predictions against the corresponding measured values for training, validation, target and all data.
Right: Performance of all models measured through R2 index performance indicators in relation to mi impact (without mi), with mi estimated through [118] guidelines, mi ab
stimated through (Shen and Karakus, 2014).
m
here n is the number of training or testing samples, dt and yt are the
easured and predicted values, respectively.

The performance of all the 12 ANN models is presented through
ig. 4a and 4b and in Table 8.

In classification algorithms accuracy is the statistical indicator used
o quantify the performance of the four compression strength class
lassifiers. It is the total number of classes correctly predicted. The
athematical expression of accuracy is given in Eq. (5):

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

(5)

here TP is the true positive and TN is the true negative.

. Results

.1. ANN model validation

.1.1. 𝑅L-Is(50)-𝜎bt -mi
The network topology adopted in this model is 4:5:1, corresponding

o four predictors input neurons, five neurons in the hidden layer, and
ne output layer node. The training parameter used was 1000 epochs.
he MSE for training is 0.0037 at epoch 52. The regression plots Fig. 4a
how that the model is a good fit as for all data the R values are above
.87, meaning the ANN model accurately represents more than 87% of
he data.

.1.2. 𝑉p-𝑅L-𝐼s(50)-mi
The network topology adopted in this model is 4:4:1, corresponding

o four predictors input neurons, four neurons in the hidden layer,
nd one output layer node. The training process stopped when the
16
inimum gradient was reached (8.22e−08) at epoch 74. The regression
plot shows that the model is a good fit as for all data the R values are
0.81, meaning the ANN model accurately represents more than 81% of
the data, as shown in Fig. 4a.

5.1.3. n-𝑉p-𝑅L-Is(50)-mi
The network topology adopted in this model is 5:4:1, corresponding

to four predictors input neurons, four neurons in the hidden layer,
and one output layer node. The training process stopped when the
maximum epoch number was reached at 10,000. The regression plot
shows that the model is a good fit as all the R values are above 0.88,
meaning the ANN model accurately represents more than 88% of the
data, Fig. 4a.

5.1.4. 𝑉p- Is(50)-mi
For this combination of parameters, the network topology adopted

in this model is 3:5:1. The training process stopped when the minimum
gradient was reached (9.80e−08) at epoch 338. The MSE for training is
0.0027 at epoch 29. The regression plots Fig. 4a shows that the model
is a good fit as for all data the R values are 0.90, meaning the ANN
model accurately represents more than 90% of the data.

In order to investigate the importance of mi constant as a training
parameter, and therefore verify if models that included mi constant as
input parameter outperform the models that do not include mi as an
input parameter 8 additional models were developed.

The models that were trained with the inclusion of mi constant in
the input parameters seem to have systematically higher performance
than the models that did not include mi parameter as an input pa-
rameter as summarized in Fig. 4b (R2), and Table 10, for all the four
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Fig. 4. (continued).
selected combinations. This applies to training validation and test data,
with the exception of Vp-Is(50)-mi combination, where no significant
improvement is recorded. To further compare the effect of mi esti-
mation method on the generalization, minab was estimated according
to simplified method proposed by Shen and Karakus (2014), for the
common type of rocks (sandstone, limestone, marble, granite and coal),
in the data sets, and therefore four more models were developed. These
models presented a clearly higher performance four all the selected
combinations in above 85% for broadly all the models.

RL-Is(50)−𝜎bt -mi predictive model and n-Vp-RL- Is(50)−mi based on
the performance indicators seem to have higher performance, than
VpRL-Is(50)-mi.

5.1.5. Ranking of the training parameters
A powerful feature of neural networks is their ability to perform

parametric analysis through manipulation of the connection weights.
The developed ANN model can also provide the parameter relative im-
portance by partitioning the hidden output neuron connection weights
into components connected with each input neuron [142–144]. This
parametric analysis evaluates which parameters are more important in
the prediction of 𝜎c. Fig. 5 shows the parametric analysis and relative
importance of the input variables for the neural network models. The
results indicate that the most important parameters that affect the
compression strength prediction are the P-wave velocity (Vp), and
Schmidt hammer rebound index, (RL). According to the same analysis
he point load index Is(50), and constant mi are equally important.

The MRMR algorithm [145] which finds an optimal set of features
hat is mutually and maximally dissimilar and can represent the re-
ponse variable effectively was also applied to assess the importance
f the parameters in the classification problem. The algorithm min-

mizes the redundancy of a feature set and maximizes the relevance
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of a feature set to the response variable. MRMR algorithm was found
to broadly produce similar ranking with partitioning of connection
weights method as illustrated in Fig. 5.

5.2. ANFIS model validation

Fig. 5 presents a complete constructed fuzzy model for RL-Is(50)-𝜎bt -
mi combination. The yellow plots show the antecedent part, which are
the input membership functions representing the IF-part of the rule. The
consequent part is shown by the blue plots and defines the membership
functions are referenced as the THEN part of the rule. All the plots are
filled since these correspond to the characterization of ‘none’ for the
variable for that rule. The aggregate weighted decision for the FIS is
plotted on the final plot of the last column. The bold red line on this
plot represents the defuzzified output.

Training is a process of adjusting the pre-set membership functions
and fuzzy rules to model the training dataset. The epoch number is set
to 1000, and the error tolerance is set to 0.01 to allow the network to
train until the error tolerance of the training is to acceptable limits and
there is no overfitting. The graph in Fig. 6 presents the plot of a trained
data set, for n-Vp-RL-Is(50)-mi combination the blue circles represent the
training data while the red asterisks the output data after training. The
plot shows that the training pattern is comparable to the desired output
pattern.

The testing data set is used to validate FIS structure. After the model
is trained, a set of data points which were not used for training are
used for data validation. The trained model is used for simulation of
the testing datasets. Table 11 presents the testing error which is an
indication of the ability of the model to predict 𝜎c. According to the
obtained results RL-Is(50)-𝜎bt -mi predictive model seems to yield the
higher performance of 0.089502, followed by n-Vp-RL-Is(50)-mi with

0.076215.
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Fig. 5. Parametric analysis for the importance of input variables to the prediction of compressive strength 𝜎c.
Table 10
Performance indicators for the predictive ANN models.

Combination No of data RMSE R2 Combination No of data RMSE R2

RL-Is(50)- 𝜎bt n-Vp- RL - Is(50)
Training 159 0.0708 0.4567 Training 402 0.0086 0.8971
Validation 34 0.0558 0.4002 Validation 86 0.0106 0.8703
Test 34 0.0741 0.3088 Test 86 0.0152 0.8502

RL-Is(50)- 𝜎bt -mi n-Vp- RL - Is(50)−mi

Training 159 0.006 0.9138 Training 402 0.0088 0.8979
Validation 34 0.0078 0.8315 Validation 86 0.0116 0.8444
Test 34 0.0096 0.8926 Test 86 0.0083 0.9198

RL-Is(50)- 𝜎bt -miab n-Vp- RL - Is(50)-miab

Training 68 0.0091 0.8718 Training 265 0.0052 0.9548
Validation 14 0.0159 0.86 Validation 57 0.0055 0.9586
Test 14 0.0162 0.7743 Test 57 0.0077 0.9348

Vp- Is(50) Vp- RL - Is(50)
Training 1018 0.0032 0.8276 Training 834 0.0828 0.5815
Validation 218 0.0028 0.7725 Validation 179 0.0992 0.438
Test 218 0.0033 0.8005 Test 179 0.1157 0.3716

Vp- Is(50)-mi Vp- RL - Is(50)- mi

Training 1018 0.0025 0.8703 Training 834 0.0072 0.8525
Validation 218 0.0024 0.8142 Validation 179 0.0088 0.7752
Test 218 0.0024 0.8087 Test 179 0.0069 0.8586

Vp- Is(50)-miab Vp- RL - Is(50)- miab 658

Training 519 0.0113 0.846 Training 460 0.0081 0.8948
Validation 111 0.012 0.8484 Validation 99 0.0098 0.8818
Test 111 0.0095 0.8293 Test 99 0.015 0.8068
O
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5.3. Classification models

The 28 models were arranged in order of accuracy of validation.
The predictive networks are then made to simulate the test data sets
so as to validate the models prediction capability. The model with
the highest accuracy on testing data classification is selected as the
best algorithm for this combination of parameters. The overall clas-
sification performance results for the tested classification algorithms
are presented in Fig. 7 and Table 12. Linear SVM shows the higher
performance (80%) based on the testing data set accuracy for the
model including RL-Is(50)-𝜎bt -mi as predictors. Cubic SVM is the most
ccurate (81.60%) classifier for the model including n-Vp-RL-Is(50)-mi
s predictors. Bagged trees present the highest performance 73.50%
oth for the model including Vp-RL-Is(50)-mi as predictors, and for the
odel including V -I -m as predictors with an accuracy of 69.10%.
p s(50) i p
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verall the models with the highest performance are n-Vp-RL-Is(50)-mi
nd RL-Is(50)-𝜎bt -mi.

Fig. 8 illustrates the confusion matrix which is a measure of ac-
uracy of the classification models. This kind of validation allows
or further insight into the successful classification at class level. The
iagonal elements indicate the number of correctly classified instances
f a given class. The off-diagonal elements are instances of misclassified
bservations. The figure shows the true positives rates and false posi-
ive rates for the classified data. For example, Linear SVM, correctly
lassified 80% of test data, originally belonging to class 1 (Very weak)
nd misclassified 20% of them to class 2 (Weak). Looking at all four
onfusion matrices resulting from the four combinations, we notice that
he classifiers have a problem to classify accurately Class 3 (Medium
trong) that is 𝜎c in the range 25–50 MPa and Class 2 (Weak) 𝜎c in the
ange of 5–25 MPa only for the combination (n-Vp-RL-Is(50)mi), which is
erhaps justified by the limited sample data falling in these categories.
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Fig. 6. ANFIS results for training, checking and testing data for n-Vp-RL- Is(50)-mi combination.
6. Discussion

In this paper, a global intact rock database is compiled
(ROCK/10/4025) and used to train generic predictive models for 𝜎c
prediction for multiple lithologies. The database includes samples from
igneous, sedimentary and metamorphic intact rocks with a wide range
of characteristics from a wide range of geographical regions.

According to the findings of this paper the lithology seems to be
an important factor contributing to the estimation of 𝜎c. Based on
the study of this data base and the associated transformation models
presented in the cases that included these results, there seems to be
agreement with the findings of [96] that suggest that there is no
strong evidence that the transformation relationships among intact
rock properties exhibited by ROCK/10/4025 data points depend on
rock classes (igneous, sedimentary, and metamorphic) or the degree of
weathering and metamorphism.

Analysis of partitioning of connection weights and analysis mini-
mum redundancy maximum relevance algorithm, indicate that RL, and
Vp parameters seem to be the most significant in terms of estimating
𝜎 , while m parameter is equally important as I .
c i s(50)
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Computational intelligence algorithms were employed to predict 𝜎c
of intact rock, and classify rock samples to a reliable grade of strength
from extremely weak to extremely strong. Regression and classifica-
tion machine learning techniques including artificial neural networks
(ANN), artificial neuro-fuzzy inference systems (ANFIS), support vec-
tor machines (SVM) and ensemble bagged tress models (EBTM) were
tested. Multiple statistical evaluation criteria were used to assess the
performance of the machine learning algorithms on prediction results.

For the performance evaluation of the prediction models, 𝜎c values
were estimated from different constructed combinations of physical
and mechanical rock properties by the machine learning algorithms. A
comparison of the performance of the results for all suggested models
are summarized in Table 13. The R2 value of 0.85–0.96 shows a
good prediction performance of the ANFIS model for all combinations.
ANN shows an equally satisfactory performance with RMSE values
of 0.80–0.96, while the classifiers, seem to be less adequate with
0.70–0.82.

A qualitative analysis of the results suggests that certain combi-
nations of parameters resulted in predictive models of higher perfor-

mance.
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Fig. 7. Comparing the training and testing performance of for the applied classifiers, for the four selected combinations of parameters.

Fig. 8. Confusion matrix, of linear SVM, Cubic SVM, and Bagged Trees.

20
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Table 11
ANFIS training results.

Nr Model ROI SF Testing data
error

Training data
error

Network

RL-Is(50)-𝜎bt -mi

1 i 0.5 1.2 0.076082 0.059052 Good
2 ii 0.5 1.3 0.075723 0.058672 Good
3 iii 0.5 1.4 0.072524 0.058966 Good
4 iv 0.5 1.5 0.057036 0.069115 Good
5 v 0.6 1.25 0.081682 0.062799 Good
6 vi 0.7 1.25 0.089339 0.063073 Good
7 vii 0.8 1.25 0.084677 0.062057 Good
8 viii 0.9 1.25 0.089502 0.08222 Good

Vp-RL-Is(50)-mi

9 i 0.5 1.2 0.063801 0.079464 Poor
10 ii 0.5 1.3 0.067232 0.08016 Poor
11 iii 0.5 1.4 0.064704 0.081719 Good
12 iv 0.5 1.5 0.065504 0.082955 Good
13 v 0.5 1.6 0.06763 0.087915 Good
14 vi 0.6 1.25 0.064931 0.083956 Poor
15 vii 0.7 1.25 0.066352 0.089601 Good
16 viii 0.8 1.25 0.066577 0.089459 Good
17 ix 0.9 1.25 0.066517 0.089438 Good

n-Vp-RL-Is(50)-mi

18 i 0.5 1.2 0.076215 0.08106 Good
19 ii 0.5 1.3 0.076471 0.07863 Good
20 iii 0.5 1.4 0.080227 0.083866 Good
21 iv 0.5 1.5 0.082032 0.086613 Good
22 v 0.6 1.25 0.071893 0.081752 Good
23 vi 0.7 1.25 0.074205 0.088143 Good
24 vii 0.8 1.25 0.07362 0.088447 Good
25 viii 0.9 1.25 0.069552 0.085715 Good

Vp-Is(50)-mi

27 i 0.5 1.2 0.072323 0.055964 Good
28 ii 0.5 1.3 0.072323 0.055964 Good
29 iii 0.5 1.4 0.071863 0.054258 Poor
30 iv 0.5 1.5 0.071956 0.056368 Good
31 v 0.5 1.6 0.070917 0.060226 Poor
32 vi 0.6 1.25 0.066594 0.055454 Poor
33 vii 0.7 1.25 0.068336 0.054695 Poor
34 viii 0.8 1.25 0.071812 0.055403 Good
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RL-Is(50)-𝜎bt − 𝑚i combination has the highest performance, and
ncludes index properties and strength properties (non-destructive RL
ndex-Point load index Is50, Brazilian indirect tensional strength 𝜎bt , and
onstant mi). The model systematically outperformed, both in function
pproximation, with ANN, ANFIS algorithms, and in classification prob-
em with Linear SVM. The specific combination has the smallest data
et 227 no of sets. The number of data satisfies the lower bound of
umber of samples vs. net size needed such that valid generalization
an be expected.

Next high performer model/combination includes n-Vp-RL-Is(50)-mi
index property n porosity, and RL Schmidt rebound index, dynamic
roperty Vp, and constant mi). This model is systematically ranked high
n terms of performance capability when ANN, ANFIS or Cubic SVM
lgorithms are used. This combination includes 575 number of sets. It
oes not seem however that inclusion of physical properties in training
ffect the performance of the ML models.

The other two combinations Vp-RL-Is(50)-mi and Vp-Is(50)mi in de-
cending order, show a lower prediction capability according to the
tatistic metrics, for ANN, ANFIS, KNN, ensemble classifiers and Bagged
rees. It is interesting though to underline that these classification
odels performed in a more balanced level, similar prediction accuracy

or all the classes showing less false misclassifications. It is also of note
hat the number of sample data was higher almost double or triple than
he latter models. This perhaps suggests that the performance capability
s not necessarily associated to the sample of data, but to the quality
f data, and the inclusion of specific parameters in the predictive
odels. This links to what Phoon and Zhang [126] suggest that a deep

ppreciation of the geotechnical context is critical to the development
 d

21
f novel ML methods that can lead to ‘data-centric geotechnics’ as a
istinctive field that can transform practice.

. Conclusions

In this paper, a global intact rock database (ROCK/10/4025) is
eveloped and compared with ROCK/9/4069 database. This global
atabase contains igneous, sedimentary, and metamorphic intact rocks
hich cover a wide range of lithologies and selected from a wide range
f geographical locales. The database includes rock index properties,
trength stiffness and dynamic properties. For the compiled data sets,
oek–Brown constant mi, was estimated, using Hoek and Brown pro-
osed guidelines for determining mi values for different rock types that
an be used for preliminary design when triaxial tests are not available.

The main objective of this paper is to produce generic model
hat can estimate a reliable value for 𝜎c, for multiple lithologies.
he proposed models used a function approximation approach and
classification approach. The results of the analysis indicate that

he function approximation approach yields more reliable results with
NFIS algorithm to appear marginally superior. The classification ap-
roach suggests that support vector machines, nearest neighbour and
nsemble classifiers performed better. The details of performance index
ndicators suggest the highest 90% performance for ANN model and
6% performance for ANFIS. The classifiers’ accuracy was 82% for the
est performer Cubic SVM.

The selected parameters and sample data suggest that for the se-
ected combinations, and training data sets, the model that includes
ata on a physical parameter n, P-wave velocity, R , I and m ,
L s(50) i
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Table 12
Performance of classification models.

RL-Is(50)-𝜎bt -mi

No Model Model type Training accuracy Testing accuracy

1 SVM Medium Gaussian SVM 77.50% 68.90%
2 SVM Linear SVM 74.20% 80.00%
3 KNN Weighted KNN 76.40% 77.80%
4 Naïve Bayes Kernel Naïve Bayes 75.80% 64.40%
5 KNN Medium KNN 75.80% 73.30%
6 KNN Cubic KNN 75.80% 71.10%
7 Ensemble Bagged Trees 75.80% 73.30%

n-Vp-RL-Is(50)-mi

1 SVM Cubic SVM 72.40% 81.60%
2 Ensemble Boosted Trees 75.90% 77.20%
3 SVM Quadratic SVM 75.40% 76.30%
4 Naïve Bayes Kernel Naïve Bayes 74.60% 73.70%
5 Ensemble Subspace KNN 73.70% 74.60%
6 SVM Linear SVM 73.30% 76.30%
7 Ensemble Bagged Trees 72.80% 74.60%

Vp-RL-Is(50)-mi

1 Ensemble Bagged Trees 72.20% 73.50%
2 KNN Weighted KNN 70.50% 71.40%
3 KNN Medium KNN 68.90% 68.90%
4 SVM Fine Gaussian SVM 68.70% 72.70%
5 KNN Cubic KNN 73.70% 68.10%
6 Neural Network Bi-layered Neural Networks 68.40% 67.60%
7 KNN Fine KNN 68.20% 69.70%

Vp-Is(50)-mi

1 Ensemble Bagged Trees 68.10% 69.10%
2 KNN Weighted KNN 66.50% 68.50%
3 SVM Fine Gaussian SVM 65.50% 68.50%
4 KNN Cubic KNN 65.30% 67.40%
5 Neural Network Tri-layered Neural Network 64.60% 65.80%
6 KNN Medium KNN 64.30% 68.10%
7 Neural Network Wide Neural Network 64.30% 67.10%
Table 13
Performance of predictive models for the four selected
combinations.

Method R2 RMSE

RL-Is(50)-𝜎bt -mi

ANN 0.89 16.72
ANFIS 0.96 10.65
L.SVM 0.81 0.39

Vp-Is(50)-mi

ANN 0.84 19.08
ANFIS 0.85 22.89
Ensemble 0.81 0.48

n-Vp-RL-Is(50)-mi

ANN 0.90 23.33
ANFIS 0.91 19.09
C.SVM 0.76 0.50

Vp-RL-Is(50)-mi

ANN 0.82 23.33
ANFIS 0.91 19.09
Ensemble 0.77 0.50

has a higher generalization capability although trained with a smaller
sample.

The ranking of the parameters suggests that RL, and Vp are impor-
ant and mi and Is(50) are mutually important.

The models developed in this study are applicable to a plethora of
ock types (more than forty) lithologies were included in the data base.
hese models could prove to be powerful tools that allow for a reliable
stimation of the 𝜎c for any such data set including the ten parameters
ound in the data base. These models are not classified as decision or
esign support tools but provide a method that allows for a generic
odel, calibrated by a global broad rock database that allow for an

stimate of 𝜎 value or classification of 𝜎 .
c c

22
These models may be extended in various ways. One may be to
refine and/or densify it for a given rock group by inclusion of other
site specific samples. Another extension could be to form more com-
prehensive sets that include specific rock group similarities. This could
allow possible ways to analyse the strength data of different classes or
groups of, igneous rock material assuming strength parameters that are
similar (supposing they are all igneous) but not identical (in that they
are different igneous materials). Nonetheless, this kind of analysis will
require further campaigns of data gathering from the literature, and
further research is required to investigate the feasible extent of such
expansions.

Details of the global database can be found in supplementary mate-
rial.
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