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A B S T R A C T   

Sulfur dioxide (SO2) emissions have been a great challenge in China over the last few decades due to their serious 
impact on the environment and human health. In this paper, a random effect eigenvector spatial filtering (RE- 
ESF) approach without and with non-spatially varying coefficients (SNVC) is identified to examine spatial het
erogeneity and economic driving factors of SO2 emissions in China from 2011 to 2017. Using the Moran ei
genvectors to extract information on spatial dependence, the main findings of the RE-ESF approach are as 
follows: First, after comparing different approaches for dealing with spatial dependence, it is found that the RE- 
ESF approach demonstrates the best fit to the dataset. Second, the global investigation shows that SO2 emissions 
are negatively determined by economic growth and government expenditure for environment protection, but are 
positively determined by road freight transport, coal consumption and oil consumption. Third, the local inves
tigation indicates that the spatially varying coefficients of economic growth and coal consumption range from 
0.1401 to 0.2732 with the median value of 0.2478 and from 0.2406 to 0.3611 with the median value of 0.3210, 
respectively, revealing significant spatial heterogeneity of SO2 emissions driven by economic growth and coal 
consumption. These findings provide meaningful insights into centralized and province-specific policies for 
reducing SO2 emissions.   

1. Introduction 

Over the last few decades, China’s rapid economic growth has relied 
heavily on coal and oil consumption, which makes China one of the 
largest sulfur dioxide (SO2) emitters (Ling et al., 2017). According to the 
report by Greenpeace Environment Trust (GET, 2019), China, as the 
third largest SO2 emitter in 2018, contributed about 8% of global 
anthropogenic SO2 emissions with 2,578 kilotonnes per year (kt/yr), 
following India (4,586 kt/yr) and Russia (3,683 kt/yr). The huge 
amount of SO2 emissions in China causes not only severe environmental 
damages in terms of deforestation, soil and water acidification, corro
sion on building materials and air pollution, but also serious health 
problems such as cardiovascular abnormalities, nose and throat irrita
tion, and bronchoconstriction and dyspnea (Liu and Wang, 2013; Li 
et al., 2019; Liu et al., 2019). As a result, these SO2 emissions have 
challenged environmental sustainability in China, reducing the 

possibility of providing abundant natural resources, clean air, and fresh 
water for future generations to live a life equal to current generations. 

To improve environmental sustainability, the Chinese government 
has enforced more stringent SO2 emission standards and implemented a 
series of emission control measures since 2005 (Ling et al., 2017). 
Nevertheless, the fact that China remains the third largest SO2 emitter in 
the world requires further attention to SO2 emission reduction (GET, 
2019). An ever-deepening understanding of the role of economic ac
tivities in influencing SO2 emissions attracts more researcher attention 
to identify economic driving factors of SO2 emissions due to their pro
found policy implications. Previously, the Environmental Kuznets Curve 
(EKC) hypothesis (Kuznets, 1955) and the impacts of population, 
affluence and technology (IPAT) model (Ehrlich and Holdren, 1971) 
have been extensively applied to identify factors of pollution emissions. 
As suggested by the EKC hypothesis, economic growth plays a funda
mental role in influencing pollution emissions, which leads to increased 
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pollution in its early stages but leads to environmental improvement at 
high income levels. Two more fundamental factors (i.e., population and 
technology) and additional factors have also been identified, which will 
be discussed in Section 2. 

Considering the diffusion and transport effects, SO2 emissions in a 
region inevitably influence its neighbors’ environmental quality. 
Although ecological and meteorological conditions (e.g., forest 
coverage, wind speed, atmospheric pressure) can influence this process, 
they are usually beyond policymakers’ control in the short run, shifting 
policymakers’ attention to the aforementioned economic driving factors 
of SO2 emissions from a spatial perspective. To examine factors of air 
pollutant emissions across regions in China, a common way is to divide 
the whole provincial dataset into western China, eastern China and 
central China for a comparison purpose (Zhou and Liu, 2016; Wang 
et al., 2017; Ahmad et al., 2021a). However, this cannot investigate the 
global and local relationships between factors and emissions simulta
neously. Moreover, previous studies mainly employed the number of 
registered vehicles to measure the vehicle population (Zhao et al., 2018; 
Zhang et al., 2019). It is widely recognized that vehicular exhaust 
emissions are more closely related to actual road transportation activ
ities which can be measured by the road turnover rather than by the 
number of registered vehicles. 

The above two gaps motivate us to re-examine spatial heterogeneity 
and economic driving factors of SO2 emissions by employing the random 
effect eigenvector spatial filtering (RE-ESF) without and with non- 
spatially varying coefficients (SNVC) models due to their best 
goodness-of-fit performance. After filling these gaps, this paper can 
make contributions in the following two aspects. First, to better repre
sent the actual road transportation activities, the road freight turnover 
and the road passenger turnover are chosen to replace the vehicle 
density, deepening the understanding of how road transport affects SO2 
emissions. Second, an empirical investigation of both the global and 
local relationships between economic driving factors and SO2 emissions 
provides us with profound basis for developing appropriate centralized 
and province-specific policies for reducing SO2 emissions in China. 

The rest of this paper is organized as follows. Section 2 reviews 
economic driving factors of SO2 emissions. Section 3 introduces the 
dataset and the empirical model addressing spatial dependence. Section 
4 presents empirical results and discussions. Section 5 concludes this 
paper. 

2. Literature review 

A fundamental issue for developing appropriate SO2 emission 
reduction policies is to identify economic driving factors of SO2 emis
sions, which has been commonly addressed under the EKC and IPAT 
frameworks. Considering the potential spatial dependence of SO2 
emissions, a further step is to investigate how factors affect SO2 emis
sions spatially. 

2.1. Economic driving factors of SO2 emissions 

The EKC hypothesis has traditionally been employed to analyze the 
relationship between pollutants and economic growth. Inspired by 
Kuznets (1955) who suggested an inverted U-shaped relationship be
tween income inequality and economic growth, Grossman and Krueger 
(1991); Grossman and Krueger (1995) found a similar relationship be
tween a country’s per capita income and its air and water pollution 
concentrations. A few studies have further supported the inverted U- 
shaped relation, including Roca et al. (2001); Stern (2004); Poon et al. 
(2006); Fodha and Zaghdoud (2010); Fosten et al. (2012); Wang et al. 
(2016); Sinha and Bhattacharya (2017); Yang et al. (2018). Neverthe
less, evidence against the EKC hypothesis has also been provided. For 
example, a U-shaped relation between income and SO2 concentrations 
was suggested by Kaufmann et al. (1998); Shen (2006); Ye et al. (2018). 
An N-shaped relationship between gross domestic product (GDP) per 

capita and SO2 emissions was found by Llorca and Meunié (2009) and 
Huang (2018). In addition, Zhang et al. (2019) concluded that the 
relationship between SO2 emissions and GDP per capita did not follow 
the EKC hypothesis. 

Apart from economic growth, there is also a huge body of literature 
identifying additional emission factors with energy consumption being 
the most popular one in recent studies. For example, Irfan et al. (2019) 
found that CO2 emissions could be reduced considerably by using the 
solar photovoltaic system to replace fossil fuels. Ahmad et al. (2020) 
supported a positive and unilateral causal impact of the intensity of 
energy use on CO2 emissions in China. Findings of Li and Li (2020) 
indicated an emission promotion impact resulting from the energy- 
industry investment and Ahmad et al. (2021b) further suggested that 
the transformation of China’s energy-industry structures should focus 
more on renewable energy technologies and more energy-efficient 
technological setup. Similar suggestions were provided by Alvarado 
et al. (2021) for alleviating global warming and Yang et al. (2021) for 
reducing PM2.5 concentrations. Other factors mainly include population 
(Sinha and Bhattacharya, 2017), industrial structure (Llorca and 
Meunié, 2009), vehicle population (Zhang et al., 2019), trade activity 
(Harbaugh et al., 2002), race and education (Khanna and Plassmann, 
2004), foreign direct investment (FDI; Llorca and Meunié, 2009), ur
banization (Wang et al., 2016), environmental regulation (Yang et al., 
2018), expenditure on environmental protection (Huang, 2018), and 
technology investment (Zhang et al., 2019). 

On the other hand, the IPAT model together with its stochastic 

Table 1 
Previously identified economic driving factors of SO2 emissions.  

Determinants Representative indicators and references 

Economic growth or 
Affluence 

per capita GDP (Grossman and Krueger, 1991; 
Grossman and Krueger, 1995; Wang et al. 2016) 

Population Population density (Selden and Song, 1994; Khanna 
and Plassmann, 2004; Sinha and Bhattacharya, 
2017) 

Technology Number of university faculty and number of 
employees in the science and technology industry ( 
He et al., 2017) 
Ratio of science and technology investment to the 
total investment (Zhang et al., 2019) 
Patent counts granted (Su and Yu, 2020) 

Industrial structure Share of the secondary industry sector (He et al., 
2017; He and Lin, 2019) 
Tertiary industry GDP and secondary industry GDP ( 
Zhao et al., 2018) 

Urbanization Ratio of non-agricultural population (He et al., 2017) 
Energy consumption and 

energy structure 
Electricity consumption (He et al., 2017) 
Energy intensity expressed as the ratio of total 
energy consumption to regional real GDP (He and 
Lin, 2019) 
Ratio of coal consumption to total energy 
consumption (Zhang et al., 2019) 
Combustion of petroleum products (Sinha and 
Bhattacharya, 2017) 

Vehicle population Proportion of the number of civilian vehicles to the 
total length of roads (Zhao et al., 2018; Zhang et al., 
2019) 

Trade and investment FDI (Llorca and Meunié, 2009; Huang, 2018; Zhang 
et al., 2019) 
Trade intensity measured by the ratio of the sum of 
exports and imports to total GDP (Huang, 2018) 
Urban transportation investment (Yang et al., 2018) 

Environmental expenditure Governmental expenditure on environmental 
protection (Huang, 2018) 

Environmental regulation 
and tax policy 

Ratio of completed investments in waste gas control 
to total industrial SO2 emissions (He and Lin, 2019) 
SO2 tax (Xie et al., 2018) 
Sewage treatment (Yang et al., 2018) 

Heat Urban heated area (Zhao et al., 2018) 
Quantity of heat supplied (Huang, 2018) 

Forest coverage Forest coverage rate (Zhang et al., 2019) 

Notes: Data were collected and summarized by authors. 
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version (i.e., STIRPAT model) is also commonly used to reveal how a 
country’s population size, affluence, and technology drive the environ
mental impact (Ehrlich and Holdren, 1971). However, previous studies 
have focused mainly on carbon dioxide (CO2) and particulate matter 
(PM) emissions, paying insufficient attention to SO2 emissions. For 

example, using a semi-parametric panel data analysis in the STIRPAT 
model, Wang et al. (2016) found evidence supporting an inverted U- 
shaped relation between economic growth and SO2 emissions in China, 
but found no evidence supporting such relation between urbanization 
and SO2 emissions. He et al. (2017) found that a higher urbanization 
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Fig. 1. Spatial distribution of provincial SO2 emissions (10,000 tons) in China in 2017.  
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level tended to increase SO2 emissions and claimed that industrialization 
was a key driving factor of SO2 emissions in China. As a result, the most 
frequently used economic driving factors of SO2 emissions can be 
identified and reported in Table 1. 

2.2. Approaches for dealing with spatial dependence 

As noted earlier, the potential spatial dependence of SO2 emissions 
create profound implications for province-specific policies for reducing 
SO2 emissions. To capture potential spatial dependence adequately, 
extant studies have made tremendous efforts to identify the most 
appropriate spatial model. First, with the aim of identifying different 
sources of spatial dependence, the spatial lag model (SLM), spatial error 
model (SEM) and spatial Durbin model (SDM) have been proposed and 
extensively applied (LeSage and Pace, 2009; Elhorst, 2014). More spe
cifically, the SLM indicates that SO2 emissions in a province depend not 
only on its own driving factors but also on its neighbors’ SO2 emissions. 
That is, the observed spatial dependence is from the spatially lagged SO2 
emissions. Compared with the SLM, the SEM has advantages in 
capturing different sources of spatial dependence which relate to shocks 
to a wider range of driving factors not just shocks to SO2 emissions. As an 
extension of the SLM and SEM, the SDM identifies sources of spatial 
dependence of SO2 emissions as the combination of the spatially lagged 
SO2 emissions and the spatially lagged driving factors (Shi et al., 2020). 
Despite their advantages in identifying sources of spatial dependence, 
the SLM, SEM and SDM are essentially global models describing a spatial 
equilibrium state, making them disadvantageous in capturing the local 
relationships between SO2 emissions and driving factors (Xu and Lee, 
2019; Yu et al., 2020). 

The second commonly used approach for dealing with spatial 
dependence is the geographically weighted regression (GWR) model. By 
viewing the dependent variable (i.e., SO2 emissions) in each location (i. 
e., province) as a linear function of independent variables (i.e., driving 
factors), the GWR model generates spatially varying coefficients (SVC) 
and reveals the local relationships between SO2 emissions and driving 
factors (Wu et al., 2014; Murakami et al., 2017). To capture temporal 
effects as well, the GWR model can be further extended to the 
geographically and temporally weighted regression (GTWR) model 
which deals with both spatial and temporal non-stationarity simulta
neously in SO2 emissions (Huang et al., 2010). However, the problems of 
multicollinearity and uniform smoothers make the GWR and GTWR 
models less attractive in empirical studies (Páez et al., 2011; Murakami 
et al., 2017). 

Third, to overcome the above computational problems, the ESF 
model, especially the RE-ESF approach, has gained ever-increasing 
attention in the literature on dealing with spatial dependence. As 
proved by Murakami and Griffith (2015) and Murakami et al. (2017), 
the RE-ESF approach without and with SNVC demonstrated advantages 
in overcoming multicollinearity, improving computational efficiency, 
and increasing estimation accuracy. Moreover, both the global and local 
relationships between dependent variable and independent variables 
can be captured simultaneously, making it more popular in empirical 
studies (Yu et al., 2020). Then, the RE-ESF approach is identified in this 
paper to investigate spatial heterogeneity and economic driving factors 

of SO2 emissions in China. 

3. Data and methodology 

3.1. Economic driving factors and data sources 

As previously discussed, the IPAT and STIRPAT models can be 
formulated as Eqs. (1) and (2), respectively (Ehrlich and Holdren, 1971; 
Dietz and Rosa, 1997). 

I = P⋅A⋅T (1)  

It = a0Pa1
t Aa2

t Ta3
t et (2)  

where I indicates the environmental impact and it depends on a coun
try’s population size (P), affluence (A), and technology (T). t denotes the 
time, a0, a1, a2, a3 indicate parameters, and e is the error term. 

Referring to the STIRPAT framework and previous studies, three 
fundamental factors and seven additional economic driving factors of 
SO2 emissions are identified in this paper. Fig. 1 displays the spatial 
distribution of the total annual volume of SO2 emissions in China in 
2017. Three fundamental factors (i.e., affluence, population and tech
nology) are represented by per capita gross regional product (pgrp), 
population density (pd) measured by the number of people per square 
kilometer, and the number of patent counts granted (tech), respectively. 
Seven additional factors are industrial structure (is), urbanization (urb), 
road freight turnover (rft), road passenger turnover (rpt), coal and coke 
consumption (coal), oil consumption (oil), and governmental expendi
ture for environmental protection (eep). 

Notably, pgrp is calculated by dividing the gross regional product by 
the population size, is is measured by the share of the secondary industry 
in GDP, pd is measured by the number of people per square kilometer, 
and urb is expressed as the ratio of urban population to the total popu
lation. rft (rpt) refers to the sum of the product of the volume of trans
ported cargo (passengers) multiplied by the transport distance. For 
further empirical analysis, a balanced panel dataset of 29 Chinese 
provinces, autonomous regions, and municipalities from 2011 to 2017 
was collected from the China Statistical Yearbook (2012–2018)1, 
yielding 203 observations. In addition, to eliminate the impact of 
inflation, the consumer price index, with the year 2011 being the base 
year, was used to convert pgrp and eep from nominal values to real 
values. To further examine spatial heterogeneity of SO2 emissions, the 
collected data will be processed as follows: 1) Using Moran’s I to pre
liminarily test the presence of spatial dependence of SO2 emissions; 2) 
Estimating a pooled panel data model without consideration of spatial 
dependence as a benchmark for comparison; 3) Identifying the most 
appropriate spatial model by comparing their goodness-of-fit; 4) Inves
tigating the global and local relationship between different economic 
driving factors and SO2 emissions. 

3.2. Moran’s I 

Prior to presenting the empirical spatial model, a preliminary step is 
to test the presence of spatial dependence of SO2 emissions in China over 
2011–2017, which can be achieved by calculating Moran’s I (Moran, 
1950). 

I =
∑N

i=1
∑N

j=1wij(SO2,i − SO2)(SO2,j − SO2)
∑N

i=1(SO2,i − SO2)
2 (3)  

where N is the number of provinces. SO2,i and SO2,j are the SO2 emissions 
in provinces i and j, respectively. SO2 denotes the mean of SO2, and wij is 

Table 2 
Test for spatial dependence Moran’s I.  

Year Moran’s I p-value 

2011  0.136*  0.057 
2012  0.131*  0.063 
2013  0.127*  0.067 
2014  0.122*  0.073 
2015  0.132*  0.060 
2016  0.100  0.105 
2017  0.098  0.103 

Note: * indicates statistical significance at 10% level. 

1 http://www.stats.gov.cn/tjsj/ndsj/; Tibet and Hainan were excluded due to 
their poor data availability. 
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the row ith-column jth element of the spatial weight matrix W which 
quantifies the spatial relation among provinces. Due to the diffusion and 
transport effects of SO2 emissions, it is more likely to observe that 
contiguous provinces affect each other. As a result, the binary contiguity 
weights with the Queen rule are used to construct W (Anselin and 
Griffith, 1988). 

As shown in Eq. (3), Moran’s I lies within the range [-1, 1]. A positive 
value indicates that provinces with high or low SO2 emissions tend to 
spatially cluster, while a negative value implies that provinces with high 
and low SO2 emissions tend to spatially disperse. Table 2 reports the 
results of Moran’s I. As observed, the calculated Moran’s I for SO2 
emissions were positive and exhibited an overall downward trend over 
2011–2017. Moreover, at the 10% level, significant spatial dependence 
was found in five out of seven years, indicating that provincial SO2 
emissions might be positively spatially autocorrelated. This provides 
preliminary evidence supporting the consideration of spatial 
dependence. 

3.3. Empirical spatial model addressing spatial dependence 

By taking the logarithmic transformation, Eq. (2) can be expressed 
as: 

lnIt = lna0 + a1lnPt + a2lnAt + a3lnTt + lnet (4)  

where It represents provincial SO2 emissions in year t. Three funda
mental factors (i.e., Pt , At , Tt) are represented by pdt , pgrpt and techt, 
respectively. As a result, Eq. (4) is rewritten as Eq. (5) for panel data 
analysis. 

lnSO2,it = lna0 + a1lnpdit + a2lnpgrpit + a3lntechit + lneit (5) 

To examine impacts of additional factors on SO2 emissions, Eq. (5) is 
extended as: 

lnSO2,it = b0 + b1lnpdit + b2lnpgrpit + b3lntechit + c1lnisit + c2lnurbit + c3lnrftit  

+ c4lnrptit + c5lncoalit + c6lnoilit + c7lneepit + εit (6)  

where bk(k = 0, 1,2, 3) and cq(q = 1,⋯,7) are the estimated parameters 
of factors, and εit are error terms. 

The further issue is to address the potential spatial dependence of 
SO2 emissions by using an appropriate spatial model. To this end, this 
paper estimates the most frequently used spatial models (i.e., SDM, 
GTWR, RE-ESF, RE-ESF-SNVC), compares their goodness-of-fit perfor
mance, and eventually identifies the RE-ESF approach as the most 
appropriate model. According to Tiefelsdorf and Griffith (2007), the ESF 
approach can be written as: 

lnSO2,i =
∑10

k=1
xikβk + fMC(si) + εi

εi ∼ N(0, σ2)

(7)  

where xik is the k-th economic driving factor of SO2 emissions and βk is 
the corresponding parameter to be estimated. As shown in Eq. (6), to 
capture the potential spatial dependence in εit , fMC(si) is used which is 
fixed and step-wisely selected based on the Moran eigenvectors (Moran, 
1950). As noted, the Moran coefficient (MC) of SO2 emissions, expressed 
in Eq. (3), can be eigen-decomposed as Eq. (8) to obtain fMC(si) in Eq. (7). 

MC(SO2) =
N

∑N
i=1

∑N
j=1wij

=
N

1′W1
SO′

2MWMSO2

SO′

2WSO2
(8)  

where 1 is an N by 1 vector of ones and ’denotes the matrix transposition 
operation. Other notations are the same as above. Using the eigenvector- 
based spatial filtering, MWM is decomposed as EΛE′ with E being the 
eigenvector matrix and Λ being the diagonal matrix taking the corre
sponding eigenvalues. The MC for the ith eigenvector is expressed as: 

MC(ei) =
N

1′ W1
e′

iMWMei

e′

iWei
=

N
1′ W1

e′

iEΛE′ ei

e′

iei
= (

N
1′W1′ )λi (9) 

Then, eigenvectors corresponding to large positive eigenvalues 
capture higher spatial dependence, which should be selected first 
(Griffith, 2003; Griffith, 2009). Consequently, spatial dependence 
observed in Eq. (6) is removed by using the Moran eigenvectors to 
extract information on spatial dependence, generating normal distrib
uted residuals in Eq. (7). 

Due to more stable and higher estimation performance, regression 
coefficients of Moran eigenvectors in Eq. (7) are usually extended to a 
Gaussian process whose variance depends on the scale of the spatial 
dependence and the Moran eigenvalues, which is the RE-ESF model 
(Murakami and Griffith, 2015; Murakami et al., 2017). To further 
investigate the local relationships between economic driving factors and 
SO2 emissions, Eq. (7) can be extended to the RE-ESF-SNVC model for 
panel data analysis (Murakami and Griffith, 2020a; Murakami and 
Griffith, 2020b; Yu et al., 2020). 

lnSO2,i =
∑10

k=1
xikβik + fMC(gI(0)) +

∑H

h=1
η(gI(h))+εi

βik = bk + fMC,k(gi(0)) + fxi ,k(gi(0))

εi ∼ N(0, σ2)

(10)  

where gI(h)(h = 0,1,⋯,H) is the group variable consisting of province I 
and year H in this paper. fMC(gI(0)) indicates spatially dependent group 
effects and η(gI(h)) indicates spatially independent h-th group effects. βik 
represents the regression coefficient and consists of the constant mean 
bk, the spatially varying component fMC,k(gi(0)), and the non-spatially 

Table 3 
Estimation results of the pooled panel date regression 
model.   

lnSO2  

Intercept − 1.886* 
(0.079) 

lnpgrp  − 0.211* 
(0.082) 

lnpd  0.019 
(0.560) 

lntech  − 0.189*** 
(0.000) 

lnis  0.668*** 
(0.000) 

lnurb  − 0.326 
(0.308) 

lnrft  − 0.249*** 
(0.000) 

lnrpt  0.399*** 
(0.000) 

lncoal  0.737*** 
(0.000) 

lnoil  0.095* 
(0.055) 

lneep  0.070 
(0.373) 

F-statistic 93.149*** 
(0.000) 

Adjusted R2 0.820 
LM (lag) 22.668*** 

(0.000) 
Robust LM (lag) 36.718*** 

(0.000) 
LM (error) 58.685*** 

(0.000) 
Robust LM (error) 0.700 

(0.402) 

Notes: LM indicates Lagrange multiplier test. P-values are 
in the parentheses. *** and * indicate statistical signifi
cance at the 1% and 10% level, respectively. 
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varying component fxi ,k(gi(0)). Other variables are the same as before. 
The above three spatial models are estimated in R. 

4. Empirical results and discussions 

4.1. Estimation results without consideration of spatial dependence 

To provide a benchmark for comparison, we start by estimating a 
pooled panel data model without consideration of spatial dependence 
and report the estimation results in Table 3. As seen, lnis, lnrpt, lncoal, 
and lnoil significantly increase SO2 emissions, whereas lnpgrp, lntech, and 
lnrft tend to decrease SO2 emissions. There is no evidence supporting the 
roles of lnpd, lnurb, and lneep in influencing SO2 emissions. To further 
examine the potential positive spatial dependence of SO2 emissions, 
previously detected by Moran’s I, the Lagrange multiplier (LM) test and 
robust LM test for both spatial lag and spatial error effects are reported 
in Table 3 (LeSage and Pace, 2009). As observed, all tests except the 
robust LM test for spatial error effect are significant at the 1% level, 
indicating that spatial dependence should not be ignored. The presence 
of spatial dependence of air emissions has also been observed in previ
ous studies, including Wang and Fang (2016) for analyzing the spatio
temporal distribution and determinants of PM2.5 concentrations, Ye 
et al. (2018) for examining spatiotemporal patterns and spatial clus
tering characteristics of six air pollutants, Li et al. (2019) for illustrating 
the spatiotemporal variation and key factors of SO2 concentrations, and 
Wang and Zhou (2021) for demonstrating spatial agglomeration and 
driving factors of SO2 emissions and solid waste. 

4.2. Estimation results with consideration of spatial dependence 

We take spatial dependence into account and estimate different 
spatial econometric models including the SDM, the global and varying 
coefficients of the GTWR models, and RE-ESF without and with SNVC 
models. Tables 4, 5 and 6 present the estimation results and diagnostics 
tests. Compared with the non-spatial panel data regression model, the 
SDM performs worse due to its lower adjusted R-squared value of 0.741, 
while the global and the varying coefficients of the GTWR models ach
ieve the adjusted R-squared values of 0.820 and 0.848, respectively. 
Notably, the RE-ESF without and with SNVC models have increased the 
adjusted R-squared value from 0.820 to 0.969 and 0.978, respectively, 
implying a better fit to the collected dataset. That is, using the RE-ESF 
approach, over 95% of variation in the transformed SO2 emissions can 
be explained by the identified factors together with the extracted spatial 
filters. As a result, the RE-ESF without and with SNVC models are 
identified as the most appropriate spatial model dealing with spatial 
dependence of SO2 emissions in China over the sample period. The su
periority of the RE-ESF model has also been previously supported by Tan 
et al. (2020) for capturing PM2.5 concentration distribution character
istics, Yu et al. (2020) for investigating the impact of high-speed rail 
construction on economic growth, Yang et al. (2021) for examining the 
role of financial deepening in driving spatial heterogeneity of PM2.5 
concentrations, and Sun et al. (2021) for estimating electricity energy 
consumption with consideration of demographic, remote sensing, and 
social sensing data. This finding provides methodological implications 
for other emissions such as CO2, nitrogen oxides (NOX), PM, and 
methane (CH4) by examining the global and local impacts of economic 
driving factors on these emissions. 

Table 4 
Estimation results of different spatial econometric models.   

SDM GTWR-Global RE-ESF 

Intercept − 3.237** 
(0.026) 

− 1.886* 
(0.079) 

− 0.715 
(0.545) 

lnpgrp  − 0.174** 
(0.018) 

− 0.211* 
(0.082) 

− 0.144** 
(0.025) 

lnpd  − 0.061 
(0.256) 

0.019 
(0.560) 

− 0.111* 
(0.076) 

lntech  − 0.062 
(0.311) 

− 0.189*** 
(0.000) 

− 0.027 
(0.605) 

lnis  0.772*** 
(0.000) 

0.668*** 
(0.000) 

0.221 
(0.222) 

lnurb  − 0.026 
(0.943) 

− 0.326 
(0.308) 

− 0.083* 
(0.076) 

lnrft  0.047 
(0.510) 

− 0.249*** 
(0.000) 

0.131** 
(0.035) 

lnrpt  0.127* 
(0.097) 

0.399*** 
(0.000) 

0.074 
(0.271) 

lncoal  0.411*** 
(0.000) 

0.737*** 
(0.000) 

0.474*** 
(0.000) 

lnoil  0.170** 
(0.034) 

0.096* 
(0.055) 

0.184*** 
(0.005) 

lneep  − 0.128* 
(0.064) 

0.070 
(0.373) 

− 0.175*** 
(0.001) 

w× lntech  0.222*** 
(0.005)   

w× lnis  0.430* 
(0.051)   

w× lnrpt  − 0.170* 
(0.061)   

w× lnoil  − 0.549*** 
(0.000)   

ρ  0.684*** 
(0.000)   

Adjusted R2 0.741 0.820 0.969 

Notes: The Hausman statistics is − 12.93, indicating the appropriateness of the 
SDM with random effects. p-values are in the parentheses. ***, ** and * indicate 
statistical significance at the 1%, 5% and 10% level, respectively. 

Table 5 
Summary of the varying coefficients of the GTWR model.   

Minimum Q1 Median Q3 Maximum 

Intercept − 8.401 − 2.374 − 1.425 − 0.693  1.908 
lnpgrp  − 1.273 − 0.401 − 0.271 − 0.157  1.605 
lnpd  − 0.466 − 0.072 0.008 0.065  0.184 
lntech  − 0.552 − 0.257 − 0.173 − 0.104  0.357 
lnis  − 0.673 0.299 0.695 0.962  1.730 
lnurb  − 4.690 − 0.512 − 0.207 0.187  2.382 
lnrft  − 0.448 − 0.321 − 0.280 − 0.215  0.114 
lnrpt  − 0.164 0.263 0.391 0.461  0.836 
lncoal  0.347 0.714 0.781 0.826  0.958 
lnoil  − 0.272 0.063 0.134 0.176  0.390 
lneep  − 0.436 − 0.062 0.103 0.201  0.606 
Adjusted R2 0.848     

Notes: Q1 indicates the first quartile and Q3 indicates the third quartile. 

Table 6 
Summary of the spatially varying coefficients of the RE-ESF-SNVC model.   

Minimum Q1 Median Q3 Maximum 

Intercept − 0.972 − 0.908 − 0.841 − 0.811 − 0.777 
lnpgrp  0.140 0.247 0.255 0.259 0.273 
lnpd  0.010 0.010 0.010 0.010 0.010 
lntech  − 0.110 − 0.110 − 0.110 − 0.110 − 0.110 
lnis  0.105 0.105 0.105 0.105 0.105 
lnurb  − 0.483 − 0.483 − 0.483 − 0.483 − 0.483 
lnrft  − 0.023 − 0.023 − 0.023 − 0.023 − 0.023 
lnrpt  0.172 0.172 0.172 0.172 0.172 
lncoal  0.240 0.319 0.321 0.328 0.361 
lnoil  0.154 0.154 0.154 0.154 0.154 
lneep  − 0.090 − 0.090 − 0.090 − 0.090 − 0.090 
Adjusted R2 0.978     

Notes: Q1 indicates the first quartile and Q3 indicates the third quartile. 
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4.2.1. Global investigation using the RE-ESF model 
By modifying the spmoran package in R, four eigenvectors corre

sponding to the largest four positive eigenvalues can be extracted among 
the 29 potential eigenvectors, which are further used as spatial filters for 
explaining spatial dependence of SO2 emissions. As an averaging process 
of multiple local relationships, the global investigation helps us to better 
understand the overall relationship between driving factors and SO2 
emissions (Murakami and Griffith, 2019). According to the global esti
mation results of the RE-ESF model with two-way random effects in 
Table 4, the coefficients of lnpgrp (p-value = 0.025), lnpd (p-value =
0.076), lnurb (p-value = 0.076) and lneep (p-value = 0.001) are − 0.144, 
− 0.111, − 0.083 and − 0.175, respectively, which are statistically sig
nificant at the 10% level. This indicates that, given other factors and 
spatial filters, every 1% increase in pgrp, pd, urb and eep could result in 
approximately 0.144%, 0.111%, 0.083% and 0.175% decrease in SO2 
emissions, respectively. It reveals that higher population density and 
urbanization level will likely promote the development of tertiary in
dustry and reduce the economy’s reliance on secondary industry, lead
ing to declined SO2 emissions. According to China Statistical Yearbook 
(2018), the proportion of tertiary industry in GDP has increased from 
44.2% in 2011, to 47.8% in 2014, and 51.6% in 2017, which confirms 
the above finding. Meanwhile, the roles of economic growth and 
governmental expenditure for environment protection in reducing SO2 
emissions can be explained by China’s energy consumption structure 
(Huang, 2018; Li et al., 2019). In recent years, China has gradually used 
more clean energy to replace fossil fuels. Specifically, the consumption 
of natural gas, primary electricity and other energy accounted for about 
13% of the total energy consumption in 2011, and this share rose up to 
17% in 2014, and 20.8% in 2017 (China Statistical Yearbook, 2018). In 
addition, the ever-increasing environmental awareness has promoted 
the application of SO2 abatement technologies by increasing govern
mental expenditures for environment protection (Huang, 2018). 

On the other hand, lnrft (p-value = 0.035), lncoal (p-value = 0.000) 
and lnoil (p-value = 0.005) show significant and positive relationships 
with SO2 emissions, enjoying elasticities of 0.131, 0.474 and 0.184, 
respectively. Since SO2 emissions are largely from coal and oil burning, 
higher coal and oil consumptions are expected to cause more emissions 
and deteriorate air quality (Cherniwchan, 2012; He et al., 2017). Not 
surprisingly, a higher road freight turnover is associated with more 
transport activities, which likely increases SO2 emissions. 

As indicated by the above global results, appropriate policies should 
be implemented to promote economic growth, population density, ur
banization, and government expenditure for environment protection 
and to reduce economy’s reliance on road freight transportation and 
consumptions of coal and oil. For example, by deepening household 
registration reform, labor mobility can be enhanced, which likely in
creases population density and urbanization. The focus of energy policy 
should be shifted from coal and oil to clean energy to promote economic 

growth in a more sustainable manner. Government expenditure for 
environment protection can be better utilized by developing appropriate 
incentive policies for reducing SO2 emissions, such as financial subsidies 
towards using energy conservation and emission reduction products, tax 
relief and concession on clean energy investment, preferential bank 
loans and diverse financing channels for energy conservation and 
emission reduction projects. In addition, the promotion and develop
ment of intermodal transport not only reduces the economy’s reliance 
on road freight transport but also contributes to energy savings and SO2 
emission reduction. 

4.2.2. Local investigation using the RE-ESF-SNVC model 
After providing an overall picture of the global relationship between 

different factors and SO2 emissions, we further investigate the local 
relationship which depends on the geographical location. For this 
reason, the RE-ESF-SNVC model is estimated and summarized in 
Table 6. 

First, as indicated by the adjusted R-squared values of the RE-ESF 
(0.969) and RE-ESF-SNVC (0.978) models, the inclusion of local re
lationships can fit the collected dataset better and explain approximate 
97.8% variations in the transformed SO2 emissions. Second, it is found 
that lnpd, lntech, lnis, lnurb, lnrft, lnrpt, lnoil and lneep display non- 
spatially varying impacts on SO2 emissions, reflected by constant co
efficients of 0.010, − 0.110, 0.105, − 0.483, − 0.023, 0.172, 0.154, and 
− 0.090, respectively. Interestingly, intercept, lnpgrp and lncoal demon
strate spatially varying characteristics, achieving the median values of 
− 0.841, 0.255, and 0.321, respectively. Third, to identify the underlying 
spatial patterns, the median values of provincial spatially varying co
efficients of lnpgrp and lncoal are presented in Table 7 and Fig. 2. As 
observed, local impacts of economic growth on SO2 emissions are 
strongest in Guangxi (0.261), Shanxi (0.261), and Sichuan (0.261), 
which, however, are much weaker in Beijing (0.199) and Tianjin 
(0.182). As for coal consumption, Shandong (0.359), Shanxi (0.353), 
Hebei (0.352), and Inner Mongolia (0.352) exhibit much stronger local 
impacts on SO2 emissions, while Beijing (0.254) and Qinghai (0.242) 
demonstrate weaker local impacts. 

Results of the local investigation support spatially varying charac
teristics of economic growth and coal consumption, suggesting the dif
ferentiation between centralized and decentralized policies for reducing 
SO2 emissions. That is, the centralized policymaking process is expected 
to develop national emission reduction policies for driving factors with 
non-spatially varying coefficients, which aims to control their overall 
impacts on SO2 emissions. For economic growth and coal consumption, 
the decentralized policymaking process is encouraged to develop 
province-specific emission reduction policies by considering their 
spatial heterogeneity. For example, greater efforts are required for 
provinces (e.g., Guangxi, Shanxi, Sichuan) with larger spatially varying 
coefficients of economic growth to increase their respective per capita 

Table 7 
Median values of the spatially varying coefficients for each province.  

Province Intercept lnpgrp lncoal Province Intercept lnpgrp lncoal 

Anhui − 0.925  0.260  0.324 Jiangxi − 0.910  0.260  0.319 
Beijing − 0.833  0.199  0.254 Jilin − 0.907  0.247  0.319 
Chongqing − 0.779  0.248  0.315 Liaoning − 0.889  0.247  0.329 
Fujian − 0.939  0.247  0.319 Ningxia − 0.801  0.255  0.319 
Gansu − 0.836  0.256  0.318 Qinghai − 0.859  0.259  0.242 
Guangdong − 0.867  0.247  0.324 Shaanxi − 0.792  0.250  0.326 
Guangxi − 0.807  0.261  0.319 Shandong − 0.880  0.248  0.359 
Guizhou − 0.777  0.259  0.321 Shanghai − 0.973  0.213  0.310 
Hebei − 0.831  0.257  0.352 Shanxi − 0.811  0.261  0.353 
Heilongjiang − 0.909  0.258  0.321 Sichuan − 0.783  0.261  0.320 
Henan − 0.842  0.260  0.337 Tianjin − 0.842  0.182  0.313 
Hubei − 0.833  0.249  0.320 Xinjiang − 0.924  0.259  0.324 
Hunan − 0.831  0.257  0.320 Yunnan − 0.793  0.257  0.319 
Inner Mongolia − 0.841  0.249  0.352 Zhejiang − 0.971  0.247  0.321 
Jiangsu − 0.944  0.238  0.343      
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Fig. 2. Median values of the estimated spatially varying coefficients.  
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gross regional product rapidly, which can be achieved by efficiently 
redistributing incomes to individuals and providing direct financial 
subsidies. For provinces and municipalities (e.g., Jiangsu, Shanghai, 
Beijing, Tianjin) with smaller spatially varying coefficients of economic 
growth, it is suggested that, given a certain rate of economic growth, 
more attention can be paid to promote economic equality among in
dividuals by implementing various income redistribution policies. On 
the other hand, compared with provinces and municipalities (e.g., Bei
jing, Qinghai) with smaller spatially varying coefficients of coal con
sumption, Shandong, Shanxi, Hebei, and Inner Mongolia should 
implement more stricter restrictions on coal consumption, encourage 
the use of clean energies, and promotes emission reduction technologies 
to reduce SO2 emissions significantly. 

5. Conclusions 

Using a Chinese provincial panel dataset from 2011 to 2017, this 
paper finds that the RE-ESF and RE-ESF-SNVC models are the most 
appropriate models due to the highest goodness-of-fit, which confirms 
the hypothesis about the presence of spatial heterogeneity of SO2 
emissions in China. The main findings are as follows. First, the higher 
adjusted R-squared values of the RE-ESF and RE-ESF-SNVC models 
suggest that they can investigate how driving factors spatially affect SO2 
emissions. Second, as indicated by the global results, appropriate pol
icies should be implemented to promote economic growth, population 
density, urbanization, and government expenditure for environment 
protection but to reduce economy’s reliance on road freight trans
portation and consumptions of coal and oil. Third, results of the local 
investigation support spatially varying characteristics of economic 
growth and coal consumption, suggesting the differentiation between 
centralized and decentralized policies for reducing SO2 emissions. 

The results provide both methodological and managerial implica
tions for policymakers to develop emission reduction policies from a 
spatial perspective. As suggested, more efforts should be made to in
crease population density and urbanization by deepening household 
registration reform, promote economic growth by shifting energy policy 
from coal and oil to clean energy, better use government expenditure for 
environment protection by offering various financial incentives, and 
promote intermodal transport. Particularly, the decentralized policy
making process is encouraged to develop province-specific emission 
reduction policies for economic growth and coal consumption due to 
their spatial heterogeneity. 

Despite these profound implications, this paper can still be extended 
in different aspects. One extension is to use a city-level dataset when it is 
available in the future. In so doing, more details regarding spatial dis
parities can be revealed, which may validate the findings in this paper. 
Another extension is to focus on economic performance of different 
emission reduction approaches, allowing us to identify the most cost- 
efficient approach. 
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