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Chapter 1

The cardiovascular system

The circulation of blood through the human body as we know it today, with the heart as
a central pump that propels the blood through the body and ultimately returns in the
heart, was described first by the English Physician Sir William Harvey (1578-1657).1n 1628,
Sir William Harvey published the book exercitatio anatomica de motu cordis et sanguinis in
animalibus (“On the motion of the heart and blood in animals”) where he described his
research and experiments.! Before publication of this landmark book, the Ancient Greeks
including Hippocrates and Galenus viewed the cardiovascular system as comprising
two distinct networks of arteries and veins.? A long-adhered view was introduced by
Claudius Galenus around 160 AC, who hypothesised that the liver produced blood that
was transported through the body, whereas air was absorbed from the lung into the
pulmonary veins and carried by arteries to the various tissues of the body (Figure 1A).
The arteries also contained blood, whereas the blood passes from the venous side via
invisible pores in the interventricular septum. Blood was not seen to circulate but rather
to slowly ebb and flow. This hypothesis was acknowledged for over fifteen centuries until
Sir William Harvey provided evidence for his hypothesis, using simple calculations and
non-invasive experiments that only required a ligature.' His description of the “motion
of the heart and blood” is still considered valid nowadays. Harvey described, based on
his experiments, that blood circulates through a closed loop system consisting of a
pulmonary and systemic circulation where the heart acts as mechanical force to foresee

the movement of blood (Figure 1B).

As introduced by Harvey, the primary function of the cardiovascular system is to deliver
nutrients and oxygen to tissues and removing carbon dioxide and other wastes.? The
heart consists of a right and a left side, each consisting of an atrium and ventricle, which
serves the pulmonary and systemic circulation of blood respectively.>* Once the nutrients
and oxygen are delivered to peripheral tissues and organs, and when carbon dioxide
and other wastes are taken up from the tissues via the capillaries, deoxygenated blood
flows back to the heart via the venous system and enters the right atrium (RA) via the
vena cava inferior and superior. During the diastolic phase, the right ventricle (RV) relaxes,
causing the pressure in the RV to become lower than the RA, which leads to opening of

the tricuspid valve and blood flows into the RV. During the systolic phase, the RV contracts
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A) Galen’s open-ended B) Harvey'’s closed
vascular system circulatory system

Figure 1. Schematic overview of the circulation hypothesis by Galenus (A) and Harvey (B) (source:
Aird etal. (2011)?)

causing the pressure to increase and exceed the pressure in the pulmonary artery, which
leads to opening of the pulmonary valve and blood flows to the lung where it becomes
oxygenated. The oxygenated blood is then carried to the left atrium (LA) by the pulmonary
veins. During the diastolic phase, blood enters the left ventricle (LV) by passing through
the mitral valve. During the systolic phase, the LV contracts to overcome the pressure in

the systemic circulation to deliver the oxygenated blood to the tissues.>*
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Figure 2. Schematic overview of the circulation as it is seen nowadays with the heart highlighted in
the upper right panel (source: Betts et al. (2013))

The heart: a tale of two sides

The heart is located within the thoracic cavity in the middle mediastinum with the dorsal
surface near to the bodies of the vertebrae and the anterior surface close to the sternum
and ribs.? The base of heart is located at the level of the third rib and the apex lies just
to the left of the sternum between the fifth intercostal space. The right side of the heart

is deflected anteriorly, and the left side is deflected posteriorly. The size of the heart is
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about that of a fist and weighs approximately 250-350 grams (250-300 grams for females,
300-350 grams for males). The shape similar to a pinecone, broad at the base and tapered
to the apex, and it is enclosed with the pericardium, a double-walled sac consisting of a

serious and a fibrous layer.?

The heart consists of four compartments: the right and left atria and ventricles. For a
long time, it was assumed that the RV was not a significant contributor to maintain the
circulation and therefore its importance has been neglected for decades.” Studies have
strongly focused on the LA and LV, and their ability to acutely and chronically adjust
and adapt to physiological and pathological stimuli.*® However, over time, increasing
evidence supports a separate view and interest on the right side of the heart.® It became
increasingly clear to scientists and clinicians that the RV is anatomically and functionally
different from the LV.>° The direct consequence is that this insight rejected the concept to
extrapolate physiological and pathophysiological knowledge of the LV to the RV, which
was routinely done in the past. In this thesis, a strong focus is placed on the ability of the
right ventricle to acutely and chronically adapt to (patho)physiological stimuli. For this

reason, a short introduction into the RV is provided below.

The RV is crescent-shaped and is wrapped-around the LV.® The RV has a thinner wall
(3-5 mm), is 1/3 to 1/6 smaller in mass, but the cavity has 10-15% larger volume than
the LV (Figure 3A)."" 2 The RV is uniformly trabeculated, has multiple papillary muscles,
a moderator band and a full muscular outflow tract. Thereby is the myoarchitecture
between both ventricles different.®" Where the LV has three distinct layers of aggregated
cardiomyocytes, the RV only has two. The RV wall consists of longitudinal, transverse and
oblique oriented muscle fibers.”” The superficial layer of the RV free wall is composed
of predominantly transverse fibers with the subendocardial layer composed of scanty
longitudinal fibers, while the septal wall consists of oblique helical fibers.'* In contrast,
the whole LV (free wall and septal wall) consists of oblique helical fibers.” Coiling
and shortening of the longitudinal and helical-shaped oblique fibers determine the
shortening of the RV, producing 80% of RV systolic function. In contrast, contraction of the
transverse fibers accounts for just 20% of RV systolic function. In a healthy RV, contraction
is therefore predominantly driven by shortening of the RV in the longitudinal direction,

highlighting the importance of examining longitudinal function in clinical and research

15
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scenarios.'’These anatomical differences between ventricles originate from embryological

development and the substantially different haemodynamic loading conditions faced.

In addition to anatomical differences, function of the left and right side may differ. Function
of the ventricles is defined as the ability of the heart to meet the metabolic demands of
the body which is reflected by the cardiac output (CO). The CO is defined by the volume
of blood which is pumped out per minute by the ventricles and can be calculated by
multiplying stroke volume (SV) (the amount of blood ejected by each ventricle every
contraction (end-diastolic volume [EDV] minus end-systolic volume [ESV])) by heart rate

(HR). Mathematically is this represented by following equations:

Cardiac output (CO) = Stroke volume (SV) x Heart rate (HR)
Stroke volume (SV) = End-diastolic volume (EDV) — end-systolic volume (ESV)

Both ventricles, left and right, serve as the primary pumping chambers of the heart
serving both separate, but linked circulations. Under resting conditions, both the RV and
LV pump out 5-6 L blood per minute. The RV serves as pump for the pulmonary circulation
where it transports blood to and from the lungs to deliver carbon dioxide for exhalation
and to pick up oxygen. The LV serves as a pump for the systemic circulation to deliver
oxygenated blood to all tissues of the body. Despite the fact that pulmonary and systemic
are separate circulations, both RV and LV pump the same amount of blood since both are
serially linked. As mentioned above, the CO is the product of HR and SV. The major factors

who are influencing SV, and so cardiac function, are preload, afterload and contractility.

Preload is defined as end-diastolic ventricular wall stress or stretch which is directly
proportional to EDV. The higher EDV, the more cardiac muscle sarcomeres will stretch
resulting in proportional increase in contractility until a certain optimum. The relationship
between ventricular stretch and contraction is also known as the Frank-Starling
mechanism. Preload is mainly driven by the venous return. Although both RV and LV
receive the same amount of blood, as the pulmonary and systemic circulation are serially
linked, their preload differs due to their different geometry and mass resulting in different

end-diastolic wall stress per unit area myocardium.
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Afterload is defined as ventricular wall stress during ventricular ejection which is
proportional to the mean pressure that the ventricle must develop to eject blood during
systole. The LV and RV need to generate the pressure to overcome the vascular resistance
in the respective circulations. For the systemic circulation this is the mean arterial pressure
(MAP) and for the pulmonary circulation the mean pulmonary arterial pressure (mPAP).

Both are proportionate with vascular resistance and cardiac output.

systemic vascular resistance (SVR) =

80 - (mean arterial pressure — mean pulmonary artery wedge pressure)

cardiac output
pulmonary vascular resistance (PVR) =

80 - (mean pulmonary arterial pressure — mean right atrial pressure)

cardiac output

In general, any decrease (e.g. vasodilation) or increase (e.g. vasoconstriction) in vascular
resistance will lead to a lower or higher afterload, respectively. A higher afterload will lead
to alower SV (due to an increase in ESV) and a lower afterload will lead to a higher SV (due

to a decrease in ESV).

Contractility refers to the ability of the myocardium to contract. The more forceful the
contraction, the smaller ESV and the greater the SV. Less forceful contractions result in

smaller SVs and larger ESVs.

Where the pulmonary circulation is a low-pressure system, the systemic circulation is a
high-pressure system. As these circumstances (i.e. afterload) differ in both circulations, it's
understandable that the RV and LV behave functionally different as is outlined in Figure
3B. As is demonstrated, during the cardiac cycle the pressure variation in the RV is much
lower, whereas both ventricles have the same SV. The above described haemodynamic

differences results in different function between both ventricles to generate the same CO.

During exercise, CO can increase 4- to 5-fold up to 20-30 L/min. When exercise performed
under demanding conditions, a temporary reduction in cardiac function post-exercise
lasting for hours to days has been observed.”>' This transient decline in cardiac function

is typically referred to as exercise-induced cardiac fatigue (EICF). Several hypotheses
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have been proposed as possible mechanisms for EICF, including -adrenergic receptor
desensitization, oxidative stress and altered post-exercise loading.’>2%2? Interestingly, the
RV appears to be affected to a greater magnitude than the LV."® % A possible explanation
for this observation may be the disproportionately higher wall stress experienced by
the RV relative to the LV during exercise.?* However, no studies have directly examined
this concept. Hypoxic exposure induces altered loading conditions for the RV and could
therefore be an important substrate to investigate the direct relation between EICF and
wall stress experienced during exercise. Specifically, acute exposure to hypoxia induces
an increase in PVR and subsequently in PAP2* Accordingly, exercise under hypoxia may
exaggerate RV wall stress and increase the workload of the RV to maintain CO. Therefore,
exercise under hypoxia versus exercise under normoxia provides the possibility to examine
the direct relationship between changes in RV afterload as a contributing factor to the
magnitude of EICF. In this thesis, we will examine this potential relationship between RV
afterload and EICF.

A) B)
P systolic ejection
isovolumic isovolumic
relaxation contraction
LV ESPVR
m _____ _EDPVR
diastolic filling Vv

Figure 3. A) Differences between right and left ventricular structure (i.e. cavity size and wall
thickness) (source: Betts et al.’) and B) function (source: Bellofiore et al.®).

Cardiac plasticity

The adulthuman heart has an exceptional ability to alter its phenotype to adapt to changes

in environmental demand. This response involves metabolic, mechanical, electrical, and
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structural alterations, and is known as cardiac plasticity.® 22’ The process of these changes
is also referred to as cardiac remodelling or cardiac adaptation and can be distinguished
into a physiological and pathophysiological variant. A variety or stimuli can induce this

remodelling through alterations in preload, afterload and contractility.>2¢

Physiological remodelling

Cardiac remodelling to exercise is a form of physiological adaptation. During recreational
or competitive exercise, the repetitive participation in vigorous physical exercise
stimulates adaptive changes in cardiac structure and function.5 2 These changes vary
among individuals and is based on a number of factors, including type (static versus
dynamic), duration and intensity of exercise, but also differ between ethnicities, genetics
and sex.”® All these factors influence the haemodynamic challenges to the heart and the

subsequent nature and magnitude of cardiac remodelling.

In the past, research examining exercise-induced cardiac remodelling was primarily
focused on the LV. In 1975, the Morganroth hypothesis stated that resistance and
endurance training cause divergent patterns of remodelling.? *® The assumption was
that resistance and endurance exercise would lead to a concentric (increase in LV mass,
equal EDV) and eccentric (increase in LV mass and EDV) type of remodelling, respectively.
Over years, more research has been undertaken and this hypothesis has become obsolete
with the paradigm shifting towards a dose-dependent relation between the amount of
haemodynamic stress exposure (time x intensity) and cardiac remodelling.’ Importantly,
the Morganroth hypothesis did not consider the RV. As a result, the RV has been neglected
for many years regarding exercise-induce cardiac remodelling. For obvious reasons, the
RV and LV are strongly coupled and are ultimately exposed to the same volume of cardiac
output. As a result, traditionally it has been supposed that RV follows the LV adaption
pathway, however, important differences exist between both ventricles for other haemo-
and cardiodynamic stimuli. For example, the acute haemodynamic response during
exercise appeared to induce a relative higher increase in wall stress compared to the LV,
which possible underly a rationale for the side-specific cardiac remodelling hypothesis
(Figure 4).2* La Gerche et al. demonstrated that during rest the end-systolic wall stress is
higher in the LV compared to the RV, but that during exercise the relative increase in wall

stress is higher in the RV compared to the LV (Figure 4).>* Therefore, a central hypothesis

19
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in this thesis is that the RV remodels differently compared to the LV to physiological
stimuli, including regular exercise. However, prospective longitudinal evaluation of this
hypothesis is lacking. Also, the RV has been under increasing attention as previous studies
have linked exercise-induced RV cardiomyopathy to high volumes of exercise training in
elite athletes.’® ' Insight into the physiological remodelling of the RV might therefore be
helpful to contribute in the challenging preparticipation screening for the detection of

heart diseases associated with risk for sudden cardiac death.?

Left vs. Right Ventricle

“©- RV - all subjects T
t? b “©- LV -all subjects
"
]
£ 3004
2%
S %
=g 200 i
2= *p < 0.0001
»
_é 100-
w p < 0.0001 p = 0.083
0 T ;
Baseline Peak Exercise

Figure 4. End-systolic wall stress during rest is lower in the RV compared to the LV but the relative
increase is higher during exercise (source: La Gerche et al.?*).

Pathophysiological remodelling

Hypertension in the systemic circulation could lead to a continuous pressure overload
of the LV resulting in hypertrophic remodelling.?* Hypertension can also occur in the
pulmonary circulation which is referred to as pulmonary hypertension (PH).3* PH is defined
as an increase in mean pulmonary arterial pressure (mPAP) >25 mmHg at rest assessed by
right heart catheterization (RHC).>* PH can be classified into five groups according to their
similar clinical presentation, pathological findings, haemodynamic characteristics and

treatment strategy**:

20
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- Group 1: Pulmonary arterial hypertension
- Group 2: Pulmonary hypertension due to left heart disease
- Group 3. Pulmonary hypertension due to lung diseases and/or hypoxia

- Group 4: Chronic thromboembolic pulmonary hypertension and other
pulmonary artery obstructions

- Group 5: Pulmonary hypertension with unclear and/or multifactorial
mechanisms

Pulmonary arterial hypertension (PAH) is a clinical condition characterized by the presence
of pre-capillary PH and pulmonary vascular resistance >3 Wood units, in the absence of
other causes of pre-capillary PH such as PH due to lung diseases, chronic thromboembolic
PH, or other rare diseases.>* In PAH, as a consequence of an increased resistance in the
pulmonary artery there is a greater drive for the RV to produce an increased pressure to
circulate the same amount of blood. Facing this continuous pressure-overload, the RV will
remodel. As a consequence, the RV becomes hypertrophied and dilated, whilst in a later

stage dysfunction occurs which might lead to RV heart failure.>3¢

The gold standard for diagnosis of PH is a RHC.2* RHC is an invasive, time-consuming and
expensive procedure with a relative risk of complications. Since the previous decade,
vasodilators have been introduced into the treatment of PH and have improved life-
expectancy.’” Although RV function may be the most important factor with regards to
prognosis, direct measures of RV function are not routinely used into the follow-up of
the patients’ condition and/or risk stratification.>* Currently, risk assessment in PH is based
on clinical signs of right heart failure, progression of symptoms, functional classification,
6-minute walk test, cardiopulmonary exercise testing, NT-proBNP and invasively obtained
haemodynamic characteristics. These current guidelines utilise only right atrial size and
the presence of pericardial effusion into account as determined by echocardiography.**
Due to the complex RV geometry and load dependency of RV functional parameters,
traditional echocardiographic indices such as RV fractional area change (RVFAC) and
tricuspid annular plane systolic excursion (TAPSE) have limited prognostic power in

patients with PAH.3®
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The introduction of speckle tracking has allowed for the measurement of ventricular
longitudinal strain, a measure of ventricular deformation to assess specific local and global
function.® Several studies have examined the prognostic value of RV longitudinal strain
in patients with PH, however, these studies report a broad range of outcomes, ranging
from no significant predictive capacity to a high predictive capacity.*** These differences
may relate to the heterogeneity between the studies such as study design, included study
population, treatment used etcetera. Therefore, one of the aims of this thesis is to perform
a meta-analysis to determine the independent prognostic value of RV longitudinal strain

in patients with PH.

Echocardiography

Echocardiography represents the central technique in this thesis to better understand
RV changes and remodelling to (patho)physiological stimuli. It is based on ultrasound
technology and can be used to evaluate cardiac structure and function. Structures such
as cavities can be quantified in linear measurements, areas or volumes whereas wall
thickness can be quantified with linear measurements (Figure 5). RV wall thickness can
be linearly measured in the subcostal view at end-diastole (Figure 5A). Linear dimensions
of the RV cavity are obtained in the RV-focused view (Figure 5B) whilst RV outflow tract
linear dimensions can be measured in the parasternal short-axis (Figures 5C) and the

parasternal long-axis view (not shown).

Contemporary methods to assess RV function by echocardiography are the tricuspid
annular plane systolic excursion (TAPSE), right ventricular fractional area change (RVFAC)
and tissue doppler imaging (TDI) (Figure 5).” TAPSE represents the displacement of
the annulus as a measure of RV longitudinal function and is obtained in the apical four-
chamber view (Figure 5D). RVFAC provides a global estimation of the global RV function
and is calculated by 100*(end-diastolic area — end-systolic area)/end-diastolic area with
end-diastolic and -systolic areas obtained in the RV focused apical four-chamber view
(Figure 5E). TDI measures velocity of the myocardium and represents a useful estimation
of global RV function (Figure 5F). However, these measures of RV function have inherent
limitations related to angle and load dependency secondary to the complex geometry,

heterogenous morphology and function of the RV.*-* Novel echocardiography such as
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speckle tracking echocardiography may overcome some of these limitations (Figure 5G).
Therefore, this novel technique will be applied in this thesis and further introduced below.
The contemporary methods to assess RV function are limited to display peak values only
whereas speckle tracking echocardiography has the ability to analyse RV function over
time. In order to utilise these technical advances, our group has introduced the strain-area
loop which combines structure and function into one echocardiographic measurement
and provides the RV structure-function relationship which will be further introduced

below (Figure 5H).*

Figure 5. Diagram representing echocardiographic RV structure (red circles) and function (green)
measurements. The black circle (H) represents the novel strain-area loop introduced by our research
group. A) RV wall thickness; B) RV linear dimensions; C) RV outflow tract (RVOT) linear dimensions;
D) tricuspid annular plane systolic excursion (TAPSE); E) RV fractional area change (RVFAC); F) tissue
Doppler imaging (TDI); G) Speckling tracking echocardiography; H) Strain-area loop.
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Speckle tracking echocardiography

Speckle tracking echocardiography (STE) is a relatively novel method to assess ventricular
function and was first described by Kaluzynski et al.*° and D'Hooge et al.’’ in 2001. Speckles
are small areas of increased echogenicity caused by reflections, refraction and scattering of
ultrasound waves. Each region of the myocardium has a unique speckle pattern that allows
the region to be traced from one frame to the next, and therefore allows the calculation of
deformation, also referred to as strain, of the myocardium. Deformation in the myocardial
wall can be calculated in three directions; radial, circumferential and longitudinal. Because
of the complex geometry and the alignment of muscle fibers in the RV, longitudinal
lateral / free wall strain is commonly used to assess RV function using speckle tracking
echocardiography.> Strain imaging has shown to be a valuable measurement of RV
function and has the advantage that it is less angle and load dependent compared to the
conventional indices.”® More specifically, RV strain imaging provides both diagnostic and
prognostic information on cardiac diseases including RV focused diseases as pulmonary
hypertension.>*** In line with a majority of work in the heart, most studies have strongly
focused on the potential role of speckle tracking in the LV. Especially for the RV this
measure may be of added value, supported by the relatively poor ability of currently used
measures of RV function to detect abnormalities in the RV (such as with PAH). Therefore,
one of the aims of this thesis is to explore the potential role for RV longitudinal strain in

prediction disease progression of pulmonary artery hypertension.

Strain-area loop

Recent innovation in echocardiography provided novel and improved opportunities
to assess RV function. In that speckle tracking echocardiography allows for evaluation
of myocardial deformation, it also provides the ability to detect subclinical groups and
hence greater prognostic value compared to conventional echocardiography.>* Recently,
a novel method, developed by our group at the Liverpool John Moores University, United
Kingdom, was introduced to assess the interaction between deformation (i.e. related
to pressure generation) and area (i.e. related to volume) across the cardiac cycle.*’ This
novel method, the strain-area loop, provides simultaneous temporal relationships of the
RV structure and longitudinal function. In other words, it elucidates, non-invasively, the

structure function relationship throughout systole and diastole and provides estimates of
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the relative contribution of longitudinal mechanics to area change, and so provides novel
haemodynamic insights into RV function (Figure 6). The RV strain-area loop has been
applied in cross-sectional studies to describe and demonstrate different characteristics
among different type of sports*, however, it has not been used in demonstrating RV
mechanical adaption in training studies. Previously, our group has demonstrated that the
is associated with changes in afterload in PAH patients.>> In summary, the RV strain-area
loop may provide additional insight into physiology as well as pathophysiology, which
will both be further explored in this thesis.

40% of 100% of
EDA RYV area (cm?) EDA
0 4 : 2 25
0 | | | | | | | | | | | 1 & | ]

a. ESslope

b. Sslope

c. Peak strain

d. Uncoupling ED
e. Uncoupling LD

RV longitudinal strain (%)

c g. EDslope
| ‘ h. LDslope
21- : g
—a} o
ESA EDA

Figure 6. Example of a RV strain-area loop. The thick black line represents the systolic strain area
relation whilst the thin black line represents the diastolic strain-volume relation. Several loop
related parameters can be derived: (a) early linear slope during first 5% of volume ejection in systole
(ESslope), (b) the overall linear slope during systole (Sslope) and (c) end-systolic peak longitudinal
strain (peak strain). Furthermore, (d) early, (e) late diastolic and (f) overall (un)coupling which is
defined as the relationship between systolic and diastolic strain (difference in strain) for any given
area. Lastly, (g) the early linear slope during first 5% (EDslope) and (h) late linear slope (LDslope)
during last 5% of volume increase in diastole.

25



Chapter 1

General aims of this thesis

Using echocardiography and adopting novel techniques such as speckle tracking
echocardiography and the strain-area loop, we aimed to investigate acute and chronic
effects of load challenges on right ventricular structure, function and mechanics. In the
first part, we focused on the physiological cardiovascular effects of acute and chronic
exercise in healthy individuals and elite athletes. Thereby, we explored whether acute
effects were related to chronic cardiovascular adaptations. In the second part, we focused

on altered haemodynamics and exercise in patients with PH.

Outline of this thesis

Acute and long-term responses to exercise have traditionally focused on changes in the
LV. To better understand adaptation of the RV, the focus of the first part of this thesis is
the impact of acute exercise bouts and regular exercise training on the RV in healthy
individuals and elite athletes. In Chapter 2, we first examined the effects of acute exercise
on RV function. Using a randomized cross-over design, we tested the hypothesis whether
exercise under hypoxia vs. normoxia induced EICF to a greater magnitude during and
following relatively short duration, high-intensity exercise. As hypoxia induces pulmonary
vasoconstriction resulting in a higher afterload and therefore higher workload of the RV,
the influence of afterload on EICF could be investigated. Secondly, these observations
in relation to acute exercise were extended to regular exercise training. In Chapter 3,
we examined the impact of a 12-week hypoxic endurance exercise training program on
right- and left-sided cardiac structure, function and mechanics in healthy individuals. In
addition, we explored if pre-training changes in cardiac responses to acute exercise are
related to structural adaptation after 12 weeks of hypoxic endurance exercise training. In
Chapter 4, we examined the impact of an increase in training volume across 9-months in
Olympic rowers on left- and right-sided cardiac structure, function and mechanics, and
explored potential sex differences. In addition to the direct effect of (acute) exercise on
cardiac remodelling, we also linked (acute) exercise to blood pressure. In Chapter 5, we
examined the acute and chronic effects of high-intensity exercise in hypoxia on blood

pressure and post-exercise hypotension.
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In the second part of this thesis, the focus is on the impact of altered haemodynamics
and exercise on the RV in patients with PH. In Chapter 6, we performed a systematic
review and meta-analysis to determine the independent prognostic value of RV global
longitudinal strain for a combined endpoint of mortality and PH-related events or all-
cause mortality in patients with pulmonary hypertension. In Chapter 7, we elaborated on
previous observations from our group, as we have demonstrated that the strain-area loop
is able to detect afterload changes in PH patients. To better understand this observation,
we assessed whether the strain-area loop is able to detect changes in preload and whether
these lead to comparable changes in the invasive pressure-area loop. Furthermore, we
investigated whether the strain-area loop would be valuable in the follow-up of PH
patients. In Chapter 8, we examined the impact of Selexipag, a drug prescribed to lower
pulmonary vascular resistance, on the RV strain-area loop in PAH patients and how these
effects translate to clinical benefits (at group level and within individuals). In Chapter
9, we compared 1-year mortality rates between patients with patients with primary PH
who were prescribed cardiac rehabilitation or exercise programmes versus a propensity-

matched control group of primary PH without prescription for CR or exercise programmes.

In the third part of this thesis, in Chapter 10, we will integrate findings of this thesis with

insight from other studies and we will discuss potential future directions for research.
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Chapter 2

ABSTRACT

Background. Acute exercise promotes transient exercise-induced cardiac fatigue (EICF),
which affects the right ventricle (RV) and to a lesser extent the left ventricle (LV). Hypoxic
exposure induces an additional increase in RV afterload. Therefore, exercise in hypoxia
may differently affect both ventricles. The aim of this study was to investigate the acute
effects of a bout of high-intensity exercise under hypoxia versus normoxia in healthy

individuals on right- and left-sided cardiac function and mechanics.

Methods. 21 healthy individuals (22.2+0.6 years, fourteen men) performed a 45-minute
high-intensity running exercise, under hypoxia (fraction of inspired oxygen [FiO,]
14.5%) and normoxia (FiO, 20.9%) in a randomized order. Pre- and post-exercise
echocardiography, at rest and during low-to-moderate intensity recumbent exercise
(‘stress’), was performed to assess RV and LV cardiac function and mechanics. RV structure,
function and mechanics were assessed using conventional 2D, Doppler, tissue Doppler,

speckle tracking echocardiography and novel strain-area loops.

Results. Indices for RV systolic function (RVFAC, TAPSE, RVS;, RV free wall strain) as well as
LV function (LV ejection fraction, LV global longitudinal strain)) significantly reduced after
high-intensity running exercise (p<0.01). These exercise-induced changes were more
pronounced when echocardiography was examined during stress compared to baseline.

These responses in RV or LV were not altered under hypoxia (p>0.05).

Conclusion. There was no impact of hypoxia on the magnitude of EICF in the RV and LV
after a bout of 45-minute high-intensity exercise. This finding suggests that any potential

increase in loading conditions does not automatically exacerbate EICF in this setting.
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INTRODUCTION

It is well established that exercise is associated with potent cardioprotective effects'3,
but acute exercise can lead to a paradoxical short-term increase in cardiac events.*®
One potential explanation is that exercise performed under demanding conditions
(i.e. exercise at high-intensity and/or during prolonged duration) may lead to an acute
reduction in cardiac function.”'®* This transient decline in cardiac function after strenuous
exercise is typically referred to as exercise-induced cardiac fatigue (EICF). EICF may affect
both left (LV) and right ventricles (RV), with possibly a larger impact on the RV due to
the disproportionately higher wall stress experienced by the RV relative to the LV during

exercise ! 1415

Previous studies have demonstrated that hypoxia increases the demands on the
cardiovascular system.'® Specifically, acute exposure to hypoxia induces a decrease in
systemic vascular resistance at rest, which may contribute to a decrease in LV afterload.’”
'® In contrast, hypoxia leads to a resting increase in pulmonary artery resistance, and
subsequently to an increase in pulmonary vascular resistance (PVR) and pulmonary artery
pressure (PAP).” Exercise in normoxic conditions results in additional load challenges and
an increased PAP secondary to the mismatch of elevated stroke volume to inadequate
pulmonary vascular distension.® This is exacerbated when exercising in hypoxic
conditions, leading to an even greater PAP and RV wall stress and potentially further
increasing the risk of RV EICF.'*2

To non-invasively examine right heart haemodynamics, studies have examined
conventional and Doppler based echocardiographicindices at rest and during exercise.?*2
Recently, the strain-area loop has been introduced assessing simultaneous structure and
strain across the cardiac cycle.® Previously, we found that RV loop characteristics relate
to PVR in patients with pulmonary arterial hypertension (PAH) whilst also demonstrating
value in the assessment of EICF.?” 2 Therefore, these non-invasive characteristics may

provide additional insight in understanding exercise-induced changes in hypoxia.

In view of this, the aim of this study, was to investigate the acute effects of a bout of
high-intensity exercise under hypoxia versus normoxia in healthy individuals on right-

and left-sided cardiac function and mechanics (i.e. longitudinal strain and strain-area
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loops). Based on the presumed higher workload of the RV during hypoxic versus normoxic
exercise, we hypothesize that exercise under hypoxia exaggerates RV to a greater extent
than LV compared to exercise under normoxia. To investigate EICF, we examined pre- and
post-exercise echocardiography at rest, but also during a standardized low-to-moderate-
intensity recumbent exercise challenge (‘stress’). As the post-exercise recovery period is
associated with persistent sympathoexcitation and peripheral vasodilation'” '8, evaluation
of EICF could be confounded when evaluated solely at rest. Therefore, evaluation during
stress echocardiography may better reflect cardiac function during exercise and offsets
the key limitation of (para)sympathetic imbalance associated with echocardiographic

assessment in recovery.'

METHODS

Study population

Twenty-one participants (mean age , 22.2+0.6 years; 14 men; mean body mass index,
24.0+0.6 kg/m? mean maximal oxygen consumption [VO,max] per kilogram, 52.4+1.8
mL/min/kg) completed the study. Baseline characteristics are shown in Table 1.
Participants were eligible to take part in this study if they were able to run on a treadmill
and if they trained <2 hours a week at moderate to high intensity for the last six months.
Exclusion criteria were a body mass index (BMI) <18 or >30 kg/m?, active smoker, any
possibility of pregnancy, personal history of cardiovascular disease, positive family
history of cardiovascular death (<55y), exercise-limiting respiratory disease, physical (i.e.
musculoskeletal) complaints making completion of a bout of high-intensity running
exercise impossible, abnormal resting 12-lead electrocardiogram (ECG) and abnormalities
observed on resting transthoracic echocardiography. The procedures were in accordance
with institutional guidelines and conformed to the declaration of Helsinki. The study was
approved by the ethics research committee of Liverpool John Moores University (18/

SPS/065). Participants gave full written and verbal informed consent before participation.
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Table 1. Subject characteristics

Sex (m/f) 14/7
Age (yr) 22.2+0.6
Height (cm) 1702
Body Mass (kg) 70+2
BMI (kg/m2) 24.0+0.6
BSA (m2) 1.8+0.04
Resting HR (bpm) 6512
Resting SBP (mmHg) 119+1
Resting DBP (mmHg) 69+2
Resting MAP (mmHg) 85+1
resting SpO2 (%) 98.4+0.3
VO,max (L/min) 3.6+0.1
VO,max/kg (mL/min/kg) 52+2

VE (L/min) 13816
HRmax (bpm) 19942

Data are expressed as means+SEM. m, male. f, female. BMI, body mass index. BSA, body surface
area. HR, heart rate. SBP, systolic blood pressure. DBP, diastolic blood pressure. MAP, mean arterial
pressure. SpO2, oxygen saturation. VO,max, maximal oxygen uptake. VE, ventilation.

Study design

In this randomized crossover trial, participants attended the laboratory on three separate
occasions (Figure 1). During the first visit, a medical screening was performed to
determine eligibility of the potential participants. After signing informed consent, baseline
measurements were performed. Visits two and three included performance of a bout of
45-minute high-intensity running exercise under normobaric hypoxia or normoxia, which
were performed in a randomized order. Participants were blinded for the order of test days
and abstained from exercise for a minimum of 48 hours, and from alcohol and caffeine

consumption 24 hours before the test days.
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Baseline measurements | ‘ Test days

Group 1—  Height, body mass, Normoxia Hypoxia
SpO2, resting HR,
resting BP and

Group2—|  VO2max Hypoxia Normoxia
1 2 3
Visits (days)
Acclimation Exercise Recovery
(45 min 85% max HR)
Time (min) 0 30 75 90 105 120 135
Rest echo f T
Stress echo f T

Figure 1. Overview of study design, where the dotted panel is highlighting visit 2 and 3 (test days).

Baseline measurements. Participants were examined for height (SECA stadiometer, SECA
GmbH, Germany), weight (SECA scale, SECA GmbH, Germany), oxygen saturation (SpO,,
pulse oximetry; Ana Pulse 100, Ana Wiz Ltd., UK), 12-lead ECG (Cardiovit MS-2010, Schiller,
Switzerland) and maximal oxygen consumption (VO,max). Resting heart rate (HR, Polar,
Kempele, Finland) and resting blood pressure (BP, Dinamap V100, GE Medical, Norway)
were determined at the end of ten minutes of quiet rest in a supine position. A standardized
maximal cardiopulmonary exercise test (CPET, Oxycon pro, CareFusion, VS) for VO,max
assessment was conducted on a motorized treadmill (HP Cosmos, Nussdorf, Germany)
after a 10-min warm-up and familiarization. VO,max was defined as the highest value of a

30-s average?, and attainment was verified according to previous recommended criteria.*®

Test days. Figure 1 outlines the details of a single test day. One of the test days was
performed at normoxia (sea level, equivalent to fraction of inspired oxygen [Fi0,]120.9%)
and the other at normobaric hypoxia (FiO, 14.5%; equivalent to a simulated altitude of
3,000m), separated by at least 48 hours of rest. Participants were subjected to 30 minutes
of acclimation in a seated position followed by 45-minute of high-intensity (85% of

maximum achieved HR during CPET) endurance running exercise on a motorized treadmill
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(HP Cosmos, Nussdorf, Germany) and 60 minutes of recovery in seated position. HR was
measured continuously throughout (Polar, Kempele, Finland), and rate of perceived

exertion (RPE) was monitored during the 45-minutes high-intensity running exercise.’’

In total four echocardiographic assessments were performed per test day. After
acclimation and prior to the 45-minute exercise, echocardiography was performed
under resting conditions (‘rest’) and during recumbent cycling to elevate heart rate to
directly assess cardiac function during exercise (‘stress, target HR 110-120 bpm). The
‘stress’ echocardiogram was repeated directly after the 45-minute exercise, to prevent
sympathetic withdrawal (i.e. a drop in BP and HR).3? Finally, images were obtained at
the end of the 60 minutes of recovery in a resting state. During every echocardiography
assessment, BP measurements were performed. Measurements were performed at the
same time on both days to control for diurnal variation. Fluid intake was controlled by

providing the same amount of water to participants during both testing days.

Environmental chamber and safety. All exercise tests were conducted in an environmental
chamber (TISS, Alton, UK; Sportingedge, Basingstoke, UK). Normobaric hypoxia was
achieved by a nitrogen dilution technique. Ambient temperature, carbon dioxide (CO)
and oxygen ©,) levels were controlled in all sessions (20°C; FiO, 14.5%; CO, 0.03%), whilst
a Servomex gas analysis system (Servomex MiniMP 5200, Servomex Group Ltd., UK) was
used inside the chamber to provide the researcher continuous information regarding O,
and CO, levels. Acute mountain sickness symptoms (AMS, measured by Lake Louise Score*
(LLS)) were monitored during testing and training sessions every 20 minutes. The subject
was removed from the environmental chamber if oxygen saturation levels dropped below

80% or severe AMS was suspected (LLS>6).

Echocardiographic measurements

Rest and stress echocardiography were performed in the left lateral decubitus position
on a supine cycle ergometer (Lode B.V.; Groningen, The Netherlands) by one highly
experienced sonographer (DO) using a Vivid E95 ultrasound machine (GE Medical, Horton,
Norway), equipped with a 1.5-4.5 MHz transducer. Images were stored in raw digital
imaging and communication in medicine (DICOM) format and were exported to an offline

workstation (EchoPac, version 203, GE Medical, Horton, Norway). Data-analysis, from three
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stored cycles, was performed by a single observer with experience in echocardiography
(GK) using commercially available software (EchoPac, version 203, GE Medical, Horton,
Norway). The observer was blinded for the timing (pre vs. post) and condition (normoxia
vs. hypoxia) under which echocardiography was performed. For stress echocardiography,
low-to-moderate-intensity (target HR 110-120 bpm) exercise consisted of recumbent
cycling at a cadence of ~60 revolutions per minute with watts manually adjusted to

stabilise at target HR.

Conventional measurements. Cardiac structural and functional measurements were made
according to the current guidelines for cardiac chamber quantification.>* Regarding the
right heart, we examined the following structural and functional indices: basal and mid-
cavity end-diastolic diameters, RV end-diastolic area (RVEDA), RV end-systolicarea (RVESA),
RV outflow tract (RVOT) diameter at the proximal level in the parasternal long-axis (PLAX)
and parasternal short-axis (PSAX) view, right atrial (RA) area, RV fractional area change
(RVFAQ), tricuspid annular plane systolic excursion (TAPSE), tissue Doppler imaging (TDI)
of the tricuspid annulus (RV's, €} a’) and pulmonary artery Doppler acceleration time (PAT).
Tricuspid regurgitation velocity was not obtainable in the major part of the participants

and therefore was unable to be utilized in this study.

Regarding the left heart, the following structural and functional indices were determined:
LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LA diameter, LA volume,
modified Simpson’s left ventricular ejection fraction (LVEF), tissue Doppler imaging (TDI)
of the mitral annulus (LV, €’and a’) and trans-mitral Doppler (E, A and E/A ratio). Doppler A
and RV and LV TDI a’ were not measurable on account of e'/a"and E/A fusion during stress

echocardiography at higher heart rates.

Mechanics. Images were acquired and optimized for STE. This involved maintaining frame
rates between 40 and 90 frames s, depth to ensure adequate imaging of the chamber
of interest and compression and reject to ensure endocardial delineation. The RV focused
and the apical two-chamber, four-chamber and long-axis view were utilized for the RV
and LV global longitudinal strain, respectively. Pulmonary and aortic valve closure times
were determined from the respective pulsed wave Doppler signals. For both the RV and

LV views the myocardium was manually traced to include the septum and adjusted so
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that the region of interest (ROI) incorporated all of the wall thickness while avoiding
the pericardium.?® 3¢ The region of interest was divided into six myocardial segments,
providing segmental strain curves and a longitudinal strain curve as an average of all six
segments for the LV views and as an average of the 3 segments of the RV free wall. LV global
longitudinal strain (LVGLS) was obtained by averaging the single strain measurements of
the three separate apical LV views. If inappropriate tracking of segments was observed
visually or detected by the system, retracing was performed until all segments were

considered acceptable.

RV strain-area loops. The longitudinal strain-area relationship (detailed methods of
derivation see, Supplemental 1, Oxborough et al.> and Hulshof et al.*”) was assessed using
the following parameters (Figure 2): (1) the linear strain-area slope (Sslope) and early
strain-area slope during first 5% of volume ejection in systole (ESslope); (Il) end-systolic
peak longitudinal strain (peak strain); (lll) the early linear strain-area slope during first 5%
(EDslope) and late linear strain-area slope (LDslope) during last 5% of volume increase
in diastole; and (IV) diastolic uncoupling (i.e. difference in strain between systole and
diastole at any given area), divided into uncoupling during early (Uncoupling ED) and
late diastole (Uncoupling LD).>?® Based on previous work from our laboratory, we found
that PAH patients with higher PVR have a lower Sslope and a decreased Uncoupling LD.

Therefore, these may serve as markers of an increased PVR and consequently PAP2
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Figure 2. Schematic overview of the RV strain-area loop and the derived characteristics. The black
line represents the strain-area loop, the thick part represents the systolic phase and the thin line the
systolic phase. EDA, end-diastolic area. ESA, end-systolic area. ESslope, early systolic slope. Sslope,
systolic slope. Uncoupling ED, uncoupling end-diastolic. Uncoupling LD, uncoupling late diastolic.

In order to obtain intra-observer variability, strain-area loops were re-analysed in 20
randomly selected echocardiograms (n=10 rest, n=10 stress). For all strain-area loop
characteristics intra-class correlation coefficient (ICC) and Bland-Altman limits of

agreement (LOA) analysis were performed.®®

Statistical analysis

Statistical analysis was performed using SPSS Statistics 25 (SPSS Inc., Chicago, IL, VS). All
parameters were visually inspected for normality and tested with Shapiro-Wilk normality
tests. Continuous variables were reported as mean * standard error of the mean (SEM)

and categorical variables were presented as proportions. Linear mixed models analysis for
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repeated measurements were performed to test the acute effects of a bout of 45-minutes
high-intensity exercise on cardiac function and mechanics (Exercise), and whether this
effect was influenced when echocardiography was performed at rest or during stress
(Exercise*Stress). Furthermore, linear mixed models were used to test the effect of hypoxia
versus normoxia (Hypoxia) and the effect of rest versus stress echocardiography (Stress)
on cardiac structure and function. To examine our primary objective, linear mixed models
analysis was used to examine whether hypoxia impacted the effect of exercise on cardiac
function (Exercise*Hypoxia), and how this was affected by testing condition rest versus

stress (Exercise*Hypoxia*Stress). For all tests, we assumed statistical significance at p<0.05.

RESULTS

Both the right and left heart had normal geometry and all structural measurements were

within normal ranges (Table 2). There were no abnormal 12-lead ECG findings.

Exercise characteristics. HR during exercise was matched between exercise under hypoxia
and normoxia (1721 bpm, 173+2 bpm respectively, p=0.23). Body mass loss (hypoxia
-410+70g vs. normoxia -410+43g p=0.99) and water intake (hypoxia 373+60ml vs.
normoxia 336+44ml, p=0.24) during exercise did not differ between testing sessions.
Mean distance covered during exercise was significantly higher in normoxia (6,655+351m)
compared to hypoxia (5,797+308m, p<0.001), whilst there was no significant difference in
subjective ratings of perceived exertion (RPE normoxia 12.5+0.3, RPE hypoxia 13.3+0.3;
p=0.07). SpO, during exercise was significantly lower in hypoxia (82+0.8) compared to

normoxia (95+0.4).

Right ventricular structure, function and mechanics

All RV structural, functional and mechanicals indices pre- and post- 45-minute high-
intensity running exercise are displayed in Table 2. Indices of RV systolic function (RVFAC,
TAPSE, RVS; RV free wall strain (Figure 3A)) significantly reduced following 45-minute high-
intensity exercise (Exercise: p<0.01). The decline in indices of RV function and mechanics
after exercise were not different between rest and stress echocardiography, except for a
more pronounced reduction in RV free wall strain during stress (Exercise*Stress: p=0.01,

Table 2, Figure 3A)). Related to the strain-area loop, following 45-minute high-intensity
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exercise there was a reduction in RV longitudinal strain, uncoupling and uncoupling LD
(Exercise: p<0.05) without a rightward shift (RVEDA Exercise: p>0.05) (Table 2 Figure
4A,B).

A)  Rest echocardiography Stress echocardiography B) Rest echocardiography Stress echocardiography
o OTm — T 0 T
e 1 !
£ [} —~ |
o [} X [}
®» -104 [} = |
= 1 £ [
[ [} s " [}
= | @ ]
£ 204 | g |
T [} 3 |
g | 5 |
f=4
% -30- : = 0.068 :
c > p=0. p<0.001
K] | o I peoot
> I p=0.001 =0.005 ] <0.001
& .40 r — ; 30 T —L— T
Normoxia  Hypoxia ~ Normoxia  Hypoxia Normoxia  Hypoxia  Normoxia Hypoxia
E: p<0.001; H: p=0.90; S: p<0.001; E: p<0.001; H: p=0.01; S: p<0.001; .
H*E: 0.58; E*S: 0.01; E*H*S: p=0.86 H*E: 0.08; E*S: p=0.05; E*H*S: p=0.86 Pre exercise

[ Post exercise

Figure 3. Right ventricular longitudinal strain (A) and left ventricular longitudinal strain (B) prior
to and post 45-minutes high intensity running exercise. Error bars reflect the standard error of the
mean.

Linear mixed models factors: E, Exercise: Comparison between all echocardiographic measurements
performed pre vs. post 45-minutes high intensity exercise. H, Hypoxia: Comparison between all
echocardiographic measurements performed under hypoxic vs. normoxic conditions. S, Stress:
Comparison between all echocardiographic measurements performed during rest vs. during
stress. H*E, Hypoxia*Exercise: Comparison whether the change pre- vs. post-exercise (EICF) is
different during hypoxic vs. normoxic conditions. E*S, Exercise*Stress: Comparison whether the
change pre- vs. post-exercise is different measured during rest vs. stress echocardiography. E*H*S,
Exercise*Hypoxia*Stress: comparison whether the change pre- vs. post-exercise under hypoxic vs.
normoxic conditions was different when observed using rest vs. stress echocardiography.

Exercise under hypoxia. Under hypoxia, PAT was significantly shorter, RA size significantly
larger, late diastolic uncoupling (Uncoupling LD) significantly lower, and a trend was found
for a lower systolic slope (Sslope) compared to normoxic conditions (Hypoxia: p=0.04,
p=0.04, p<0.001, p=0.07, respectively, Table 2, Figure 4A,B). Importantly, hypoxia did not
alter the impact of exercise and/or stress on indices of RV function (Hypoxia*Exercise and

Exercise*Hypoxia*Stress: all p>0.05, Table 2).
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RV longitudinal strain (%)

—— Pre stress normoxia
Post stress normoxia

Pre stress hypoxia
Post stress hypoxia

RV area (cm?) RV area (cm?)

Figure 4. Right ventricular strain-area loops prior to and post 45-minute high intensity running
exercise during rest (A) and stress (B). Red and blue lines indicating normoxic and hypoxic exercise,
respectively. Solid and dotted lines reflecting pre- and post-exercise, respectively.

Intra-observer variability.|ICCand LOA for RV strain-area loop characteristics were as follows:
RV free wall strain ICC 0.95 (0.89-0.98), LOA 0.33 (-1.55, 2.21); Sslope ICC 0.91 (0.80-0.97),
LOA -0.05 (-0.30, 0.20); ESslope ICC 0.60 (0.23-0.82), LOA 0.60 -0.17 (-1.20, 0.86); EDslope
ICC 0.93 (0.84-0.97), LOA 0.19 (-0.37, 0.75); LDslope ICC 0.95 (0.87-0.98), LOA -0.30 (-0.93,
0.32); Uncoupling ICC 0.88 (0.73-0.95), LOA -0.27 (-2.36, 1.81); Uncoupling_ED ICC 0.86
(0.68-0.94), LOA -0.31 (-2.63, 2.01); Uncoupling_LD ICC 0.88 (0.72-0.95), LOA -0.20 (-2.25,
1.86).
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Left ventricular structure, function and mechanics

All LV structural, functional and mechanicals indices pre- and post- 45-minute high-
intensity running exercise are displayed in Table 3. With the exception of LVS’ (Exercise:
p=0.78), indices of LV systolic function (LVEF, LVGLS) significantly reduced following
high-intensity exercise (Exercise: p<0.001). The reduction in LVEF and LVGLS was more
pronounced in stress versus rest echocardiography (Exercise*Stress: both p<0.05, Figure
3B).

Exercise under hypoxia. Changes in LV indices in response to exercise, either examined at
rest and/or during stress, were not different when performed under hypoxic conditions
(Hypoxia*Exercise and Exercise*Hypoxia*Stress: p>0.05, Table 3). Blood pressure response
patterns did not significantly differ between hypoxic and normoxic conditions (Hypoxia

and Hypoxia*Exercise: all p>0.05, Table 3).
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DISCUSSION

The aim of our study was to investigate the impact of a bout of high-intensity exercise
under hypoxia versus normoxia on EICF on both ventricles. The main findings were 1) a
bout of 45-minute high-intensity exercise induced a reduction in functional indices of
right- and left-sided cardiac function and mechanicsin healthy individuals, 2) the reduction
in right- and left-sided cardiac function was more pronounced when echocardiography
was performed during a standardized low-to-moderate-intensity recumbent exercise
challenge and 3) there was no impact of hypoxia on exercise-induced reduction in
right- or left-sided cardiac function and mechanics, either under rest or under stress.
Taken together, these data indicate that EICF after short-term high-intensity exercise is
not exaggerated under hypoxia, suggesting that an additional cardiac load (induced by

hypoxia) on the RV does not necessarily relate to an exaggerated EICF in this setting.

High-intensity exercise-induced cardiac fatigue

A bout of 45-minute high-intensity running exercise induced a reduction of both RV and
LV function indicative for EICF, which was mainly expressed during a low-to-moderate-
intensity exercise challenge (‘stress’) compared to resting conditions. Earlier studies
primarily investigated EICF after prolonged exercise (>180minutes)* %, however, recent
research has revealed a dose-response relationship between EICF and the duration and
intensity of exercise." 3? Our study adds the novel knowledge that EICF also occurs after
relatively short periods of high-intensity exercise in both the RV and LV. Interestingly, in
contrast to other short-term high-intensity EICF studies' ' *°, we showed also marked
reductions in LV function which may be due to the different type of exercise (running
vs. cycling). An explanation for our ability to detect EICF after a relatively short duration
of exercise may relate to the post-exercise assessment of cardiac function during ‘stress,
i.e. low-to-moderate-intensity exercise-Indeed, some of the indices for systolic function
were primarily/only reduced when echocardiography was performed during the low-to-
moderate-intensity exercise challenge. For example, a reduction in RVLS post-exercise
was only apparent during the low-to-moderate-intensity exercise challenge (Figure 4A).
We believe the echocardiography assessment under low-to-moderate-intensity exercise

is more likely to detect EICF. The recovery phase post-exercise is associated with a change
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in autonomic tone and vasodilation, which may result in post-exercise tachycardia and
hypotension, respectively. These (para)sympathetic imbalance factors likely influence
cardiac function measurements such as strain, and therefore potentially mask the presence
of EICF. Evaluation of cardiac function during the high-intensity exercise, therefore, is
preferred. However, one should consider the practical aspects (e.g. echocardiography is
impossible during running) and that reliable speckle tracking is extremely challenging
with higher heart rates (i.e. 70% of maximum HR).* Low-to-moderate intensity cycling
exercise at a semi-recumbent bike is both feasible and reliable, and allows to examine
cardiac function during exercise. Utilising this approach, our data indicates that, with short
durations of high-intensity exercise, EICF occurs when assessment of cardiac function is

performed during an exercise challenge.

Impact of exercise under hypoxia

Under hypoxic conditions, less oxygen is bound to haemoglobin, and will, therefore,
increase the demand on the cardiovascular system. In our population, this was reflected
by a higher resting HR under hypoxia versus normoxia and the less distance covered
under hypoxia versus normoxia during the exercise despite it being matched for relative
intensity. More importantly, hypoxia has been shown to induce vasoconstriction of the
pulmonary vasculature, leading to higher relative PVR resulting in a higher PAP, and
consequently a higher RV wall stress. Elevated PAP has been previously demonstrated
at conditions at 3000m altitude.” Although we were unable to directly measure PAP, we
demonstrated shorter PAT and a larger RA size which indirectly supports the presence of
an increase in PAP and, therefore potentially wall stress. Also, the strain-area loop showed
less uncoupling in late diastole and a trend for a less steep systolic slope under hypoxia.
In line with a previous study in PAH patients, these changes are associated with a higher
PVR at rest.® Although we adopted a non-invasive approach and one should consider
alternative explanations (i.e. related to the assessment), these findings support the
presence of an elevated wall stress in our study under hypoxia. That aside, our hypothesis
was rejected as the 45-minute high-intensity running exercise under hypoxia did not
exaggerate RV EICF compared to exercise under normoxia. This suggests that changing
cardiac workload does not necessarily change the magnitude of RV EICF and may not be

the principle mechanism for RV EICF. One potential explanation for the lack of an impact
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of hypoxia on EICF may be that the exaggerated loading conditions under hypoxia were
not sufficient enough at 3000m of simulated altitude, and/or the exposure time to the
raised afterload of the RV was not long enough to contribute to the EICF magnitude. There
are also indications that hypoxia itself may induce cardiac dysfunction due to sustained

low oxygen availability, however, this seems mainly during prolonged exposure.*

Our hypothesis originated from the accepted phenomenon of disproportionately higher
relative wall stress in the RV compared to the LV during exercise, but also based on
observations suggesting a larger magnitude of EICF in the RV compared to the LV.""- 5 For
example, Stewart et al. examined the influence of high-intensity exercise on RV free wall
and segmental LV strain EICF following 90 minutes cycling'®, and found that the reduction
in strain was more profound in the RV than in the LV. In their study they demonstrated a
relative reduction in RV strain of -17.5% compared to -9.8% in our study, which supports
a dose-response relationship. Our study is the first to our knowledge to directly compare
normoxic and hypoxic conditions on EICF, and demonstrated similar changes in both
RV and the LV. Although mechanical changes in the RV and LV are independent of each
other?, and likely differ during exercise, our work suggests that (after)load dependency
may be a less contributing factor to EICF as previously suggested. Alternatively, intrinsic
myocardial factors such as -adrenergic receptor desensitization”*? and oxidative stress*
may play a more substantial role. Our study, however, is unable to provide further insight

into these other possible mechanisms.

Itis also of interest that following the 45-minute high-intensity exercise, this study showed
a lack of any RV dilation (no rightward shift strain-area loop, Figure 4) as previously
demonstrated following prolonged exercise.” Previous studies have demonstrated
a serial and parallel impact from ventricular interdependence on LV filling secondary
to RV volume / pressure overload.” * This finding is consistent with other studies of
high-intensity exercise of relative short durations rather than is seen in EICF studies of
prolonged exercise highlighting a possible dose response related to both intensity and
duration.’® 27 In the shorter duration exercise intervention studies, the reduction in LV
size occurs irrespective of changes in RV size which provides additional support for an
intrinsic mechanism independent to both the right and left side of the heart. Moreover,

the decreased uncoupling in the strain-area loop (Figure 4), indicating less longitudinal
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contribution to area change, in combination with a lack of RV dilatation, supports that the
reduction in peak longitudinal strain post-exercise (i.e. EICF) is more likely representative

of intrinsic dysfunction.

Perspectives

The mechanisms underlying EICF are likely multifactorial, and importantly may differ
between the RV and LV. Previous research has proposed several influencing factors
varying from {-adrenergic receptor desensitization, oxidative stress, impaired calcium
metabolism to altered post-exercise loading. The influence of afterload conditions on RV
EICF have rarely been explored. This study demonstrated that, under hypoxic conditions at
3000m altitude (FiO, 14.5%), the magnitude of EICF is not augmented and thus it may be
less likely that a role for elevated RV wall stress is relevant. Although knowledge about the
clinical long-term consequences of these temporary post-exercise reductions in cardiac
function is lacking, it has been hypothesized that this may be associated with myocardial
damage and worse clinical outcome. The absence of an effect in EICF between exercising
at sea level (normoxia) and 3000m altitude (hypoxia) is interesting, but long-term studies
that link these findings to prolonged follow-up is needed to better understand these
findings. The novel strain-area loop, introduced to assess haemodynamics non-invasively,
provided substantial added value in this study where it was sensitive enough to detect
changes due to hypoxia. This novel technique seems promising in providing physiological

and pathophysiological insight and might be of added value in clinical practice.>%"2837.45-48

Limitations

This study implemented a standardized exercise challenge to prevent a pre- and post-
exercise (para)sympathetic imbalance during echocardiographic evaluation. Instead of
the methodology of Stewart et al.'* (aiming at 100 bpm), we set our target HR at 110-
120 bpm during the exercise challenge, to better mimic cardiac function during exercise.
This higher HR may impede speckle tracking quality. With current frame rates used, we
experienced that tracking was still good to excellent for LV global longitudinal strain and
RV free wall strain. A further limitation is that we did not obtain direct measures of RV
wall stress as this would require invasive procedures. Alternatively, we used only non-

invasive echocardiographic, indirect measures to estimate any potential difference in
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RV wall stress under hypoxia versus normoxia. When considering these indirect indices,
some studies have demonstrated value of PAT during stress to estimate PAP in PAH
patients whilst others have questioned the outside of the normal heart rate range (<60
or >100 bpm).2* % |t is clear that a more robust assessment of PAP would provide added
support to the well-established physiological concepts and understanding of hypoxia
and pulmonary haemodynamics. Previous studies have applied strain-area loops to PAH
patients and demonstrated an association between PVR and the late diastolic uncoupling
and the Sslope during rest only.” Further work should aim to validate the strain-area loops
during stress. Finally, for technical reasons we only evaluated right heart function and
haemodynamics during low-to-moderate stress echocardiography rather than during the

high-intensity running exercise.

CONCLUSION

There was no impact of hypoxia on the magnitude of EICF in the RV and LV after a bout
of 45-minute high-intensity exercise. This finding suggests that any potential increase in

loading conditions does not automatically exacerbate EICF in this setting.
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APPENDICES

Supplemental 1. Strain-Area Loop - methods of derivation

To calculate right ventricular (RV) strain-area loops the following steps have been taken.
Temporal longitudinal strain values were exported to a spreadsheet (Excel; Microsoft Corp.,
Redmond, WA, USA). Using cubic spline interpolation, the global temporal longitudinal
strain values were divided into 300 points for systole and 300 points for diastole in order
to correct for variable heart rates. For both systole and diastole, the 300 strain values were
then split into 5% increments of the cardiac cycle, providing longitudinal strain values at
10 time points in systole and 10 time points in diastole. Concomitant time points for the
strain values were used in the same image and cardiac cycle to trace RV monoplane areas

to provide simultaneous strain and area values.

Using the individual strain—area loop, a linear regression line and a polynomial of two
orders was applied to both diastolic and systolic parts of the loop. This derived polynomial
equation allowed the derivation of strain at percentage increments of RV end-diastolic
area (RVEDA). The longitudinal strain—area loop was assessed using the following
parameters (Figure 2 manuscript): (a) early linear slope during first 5% of volume ejection
in systole (ESslope), (b) the overall linear slope during systole (Sslope) and (c) end-systolic
peak longitudinal strain (peak strain). In addition (un)coupling was termed to describe
the relationship between systolic and diastolic strain for any given area/volume and was
assessed during (d) early (Uncoupling ED), (e) late diastole (Uncoupling LD) and (f) overall.
Furthermore, (g) the early linear slope during first 5% (EDslope) and (h) late linear slope

(LDslope) during last 5% of volume increase in diastole.

The Sslope was derived as the gradient of the linear regression line over the systolic phase
of the strain—area loop. Longitudinal peak strain was derived as the raw peak strain value
from the longitudinal strain data. The Uncoupling ED and Uncoupling LD were calculated
across the area between the systolic and diastolic polynomial curves. Using the equations
of the polynomial regression lines, strain at % increments of RVEDA were calculated. By
subtracting diastolic from systolic strain, the difference at each point was calculated.

Based on individual RV fractional area change (RVFAC), the working range of the heart
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was determined, after which Uncoupling ED was calculated as the sum of the differences
at the lowest two-thirds of increments of EDA in the working range of the heart, and
Uncoupling LD was calculated as the sum of the differences at the highest one-third of

increments of EDA in the working range of the heart.’
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Cardiac Function Relates to Right

Ventricular Remodelling Following
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Chapter 3

ABSTRACT

Repeated ventricular exposure to alterations in workload may relate to subsequent
cardiac remodelling. We examined whether baseline acute changes in right (RV) and
left ventricular (LV) function relate to chronic cardiac adaptation to 12-week exercise
training. Twenty-one healthy individuals performed 12-week high-intensity endurance
running training under hypoxia (fraction of inspired oxygen: 14.5%). Resting transthoracic
echocardiography was performed before and after the training programme to assess
ventricular structure, function and mechanics (including strain-area/volume loops). In
addition, we examined systolic cardiac function during recumbent exercise under hypoxia
at baseline (heart rate of 110-120 bpm, ‘stress echocardiography’). Fifteen individuals
completed training (22.0+2.4y, 10 male). Hypoxic exercise training increased RV size,
including diameter and area (all p<0.05). With exception of an increase in RV fractional area
change (p=0.03), RV function did not change post-training (all p>0.05). Regarding the RV
strain-area loop, lower systolic and diastolic slopes were found post-training (p<0.05). No
adaptation in LV structure, function or mechanics were observed (all p>0.05). To answer
our primary aim, we found that a greater increase in RV fractional area change during
baseline stress echocardiography (r=-0.67, P=0.01) inversely correlated with adaptation
in RV basal diameter following 12-week training. In conclusion, 12-week high-intensity
running hypoxic exercise training induced right-sided structural remodelling, which
was, in part, related to baseline increase in RV fractional area change to acute exercise.
These data suggest that acute cardiac responses to exercise may relate to subsequent RV

remodelling after exercise training in healthy individuals.
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INTRODUCTION

Exercise training results in remodelling of the heart, including chamber enlargement and
hypertrophy.' Studies examining the impact of exercise training on cardiac remodelling
have predominantly focused on left ventricular (LV) adaptation, with few studies revealing
right ventricle (RV) changes to training.>* To better understand the effects of exercise on
RV and LV function, recent studies suggest a relative larger increase in wall stress for the
RV versus LV during exercise.® These acute effects of exercise on cardiac function may be
of importance. Indeed, cardiac remodelling seems mechanistically related to the repeated
exposure to acute changes in wall stress. Therefore, in-exercise echocardiographic indices
of cardiac function may (partly) relate to the presence of subsequent cardiac remodelling.
However, no study directly examined this hypothesis in relation to exercise training and

remodelling in humans.

Recently, the strain-area/volume loop has been introduced to allow for the assessment of
simultaneous structure and strain across the cardiac cycle providing mechanical insight
into cardiac function.® We found that post-surgery changes in LV strain-volume loop
characteristics relate to subsequent cardiac remodelling in patients with aortic stenosis.”
Therefore, these changes may serve as a proxy of changes in wall stress. Furthermore,
we observed different RV loop characteristics in the ‘four cornerstones’ of the Mitchell
classification of sports potentially due to their difference in cardiac structure and function.®
Possibly, these differences in strain-area/volume loops may relate to cardiac remodelling
to exercise training. Therefore, the strain-area loop, in conjunction with other measures of

cardiac function, may provide insight into cardiac adaptation to exercise training.

The aim of this study was to relate pre-training changes in cardiac function during low-to-
moderate-intensity exercise to subsequent adaptations to a 12-week hypoxic endurance
exercise training program on cardiac structure, function and mechanics (i.e. longitudinal
strain and strain-area/volume loops) in healthy individuals. We specifically choose hypoxic
exercise since, due to a smaller reduction in pulmonary vascular resistance compared
to normoxic exercise?, this type of exercise causes a higher RV afterload.*'? Indeed, we
showed that 45 minutes high-intensity running exercise under hypoxia lowers pulmonary

acceleration time, increases right atrial size and lowers the late diastolic uncoupling of
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the RV strain-area loop compared to exercise under normoxia.'* These echocardiographic
markers support indirectly the presence of an increase in pulmonary artery pressure, and
therefore, RV afterload. Accordingly, hypoxic exercise may exaggerate the disproportionate
elevation in wall stress for the RV versus LV during exercise and may therefore lead to
more rapid adaptations in the RV to exercise training allowing us to further explore our

hypothesis.

METHODS

Study population

Twenty-one healthy individuals (fourteen males) were recruited for the study. Participants
were eligible to take part in this study if they were able to run on a treadmill and that they
did not engage in sport-related exercise for more than two hours a week at moderate-
to-high intensity for the last six months. Exclusion criteria were a body mass index (BMI)
<18 or >30 kg/m?, any possibility of pregnancy, personal history of cardiovascular disease,
a family history of cardiovascular death (<55y), exercise-limiting respiratory disease,
physical (i.e. musculoskeletal) complaints making completion of the 12-week training
program impossible, abnormal resting 12-lead electrocardiogram (ECG) and abnormalities
observed on resting transthoracic echocardiography. The procedures were performed in
accordance with institutional guidelines and conformed to the declaration of Helsinki.
The study was approved by the Ethics Research Committee of the Liverpool John Moores
University (18/SPS/065). Participants gave full written and verbal informed consent before

participation.

Study design

In this prospective study, participants attended the laboratory on 35 separate occasions,
see Figure 1. During the first visit, a medical screening was performed to determine
eligibility of the potential participants. After signing informed consent, baseline
measurements including echocardiographic assessment at rest were performed
under normoxic conditions (FiO, 20.9%). During visit 2, after 30 minutes of acclimation
echocardiographic assessments at rest and during stress under hypoxic conditions

(FiO, 14.5%) were performed. These assessments were obtained in order to relate acute
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RV functional responses to exercise to chronic RV adaptation after 12 weeks of hypoxic
training. Visit 3 to 34 comprised the individual sessions of the hypoxic training program.
Visit 35 comprised follow-up measurements, including echocardiographic assessment at

rest and were performed under normoxic conditions.

Hypoxic training program

Baseline measurements Test day pre-training program (Simulated altitude 3,000m; Follow-up measurements
(Normoxia) (Hypoxia) FiO2 14.5%) (Normoxia)
Height, body mass, .
SpO02, resting HR, Rest Stress 2x 45 min per week Body mass, resting HR,
resting BP, ECG, VO2max and Echocardiogram | Echocardiogram the first four weeks resting BP, VO2max and
rest echocardiogram and 3x the last eight weeks rest echocardiogram
1 2 3-34 35
Visits (days)

Figure 1. Overview of study design. Longitudinal data assessment (baseline and follow-up
measurements including echocardiography) were performed under normoxic conditions whereas
the training program was performed under hypoxic conditions. Additionally, during visit 2, an
echocardiographic assessment was performed (after 30 minutes of acclimation) to obtain acute
exercise induced changes in cardiac function to relate to chronic structural remodelling to hypoxic
training.

Baseline and follow-up measurements. Participants were examined for height (SECA
stadiometer, SECA GmbH, Germany), weight (SECA scale, SECA GmbH, Germany),
oxygen saturation (SpO,, pulse oximetry; Ana Pulse 100, Ana Wiz Ltd., UK), 12-lead ECG
(Cardiovit MS-2010, Schiller, Switzerland) and maximal oxygen consumption (VO,max).
Resting heart rate (HR, Polar, Kempele, Finland) and resting blood pressure (BP, Dinamap
V100, GE Medical, Norway) were determined at the end of ten minutes of quiet rest in
supine position. A standardized maximal cardiopulmonary exercise test (CPET, Oxycon
pro, CareFusion, VS) forVOzmax assessment was conducted on a motorized treadmill (HP
Cosmos, Nussdorf, Germany) after familiarization and a 10-min warm-up. VO,max was
defined as the highest value of a 30-s average', and attainment was verified according to

previous recommend criteria.”

Training program. Participants took part in a 12-week normobaric hypoxic endurance
exercise training program consisting of 2x45 minute sessions a week in the first four weeks

and 3x45 minute sessions in the last eight weeks. This running exercise was performed on
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a motorized treadmill at 3,000m simulated altitude (equivalent to FiO, 14.5%) at high-

intensity (85% of maximal heart rate).

Environmentalchamberandsafety.Alltraining sessionswere conductedinanenvironmental
chamber (TISS, Alton, UK; Sportingedge, Bastingstoke, UK), which was set-up by a qualified
technician. Normobaric hypoxia was achieved by a nitrogen dilution technique. Ambient
temperature, carbon dioxide (CO,) and oxygen (O,) levels were controlled in all sessions
(20°C; FiO, 14.5%; CO, 0.03%), whilst a Servomex gas analysis system (Servomex MiniMP
5200, Servomex Group Ltd., UK) was used inside the chamber to provide the researcher
continuous information regarding O, and CO, levels. Acute mountain sickness symptoms
(AMS, measured by Lake Louise Score (LLS)') were monitored during testing and training
sessions every 20 minutes. Subjects were removed from the environmental chamber if

oxygen saturation levels dropped below 75% or severe AMS was suspected (LLS>6).

Echocardiographic measurements

Echocardiographic assessments, prior to and post training program, were performed at
rest (‘rest’) and during recumbent cycling to elevate heart rate allowing direct assessment
of cardiac function during exercise (‘stress, target HR 110-120 bpm). Rest and stress
echocardiography were performed in the left lateral decubitus position on a supine
cycle ergometer (Lode B.V.; Groningen, The Netherlands). For stress echocardiography,
low-to-moderate-intensity exercise consisted of recumbent cycling at a cadence of ~60
revolutions per minute. All examinations were performed by one highly experienced
sonographer (DO) using a Vivid E95 ultrasound machine (GE Medical, Horton, Norway),
equipped with a 1.5-4.5 MHz transducer. Images were stored in raw digital imaging and
communication in medicine (DICOM) format and were exported to an offline workstation
(EchoPAC, version 203, GE Medical, Horton, Norway). Data-analysis was performed by a
single observer with experience in echocardiography (GK) using three consecutive stored
cycles with exception of strain-volume loops which were analyzed from a single cardiac
cycle.The observer was blinded for the timing (pre vs. post) under which echocardiography

was performed.

Conventional measurements. Cardiac structural and functional measurements at rest and

during low-to-moderate exercise were made according to the current guidelines for cardiac
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chamber quantification.'” Regarding the right heart, we examined the following structural
and functional indices: basal and mid-cavity end-diastolic diameters, RV end-diastolic area
(RVEDA), RV end-systolic area (RVESA), RV outflow tract (RVOT) diameter at the proximal
level in the parasternal long-axis (RVOT PLAX) and the proximal and distal portion in the
parasternal short-axis (PSAX) view (RVOT1 and RVOT?2, respectively), right atrial (RA) area,
RV fractional area change (RVFAQ), tricuspid annular plane systolic excursion (TAPSE) and
tissue doppler imaging (TDI) of the tricuspid annulus ('s, €] a'). Regarding the left heart,
the following structural and functional indices were determined: biplane LV end-diastolic
volume (LVEDV), biplane LV end-systolic volume (LVESV), LV mass, relative wall thickness
(RWT), LV wall thickness (IVSd, septal; PWd, posterior), LV internal diameter (LVIDd), LA
diameter, LA volume, modified Simpson’s left ventricular ejection fraction (LVEF), tissue
Dopplerimaging (TDI) of the mitral annulus (s, e'and a’), trans-mitral Doppler (E, Aand E/A
ratio). AllRV and LV structural indices were allometrically scaled to body surface area (BSA)

according to the laws of geometric similarity.'

Mechanics. Images were acquired specifically for offline speckle tracking analysis. This
involved the optimization of frame rates between 40 and 90 frames s™', depth to ensure
adequate imaging of the chamber of interest and compression and reject to ensure
endocardial delineation. The RV focused and the apical two-chamber, four-chamber and
long-axis view were utilized for the RV free wall (RVFWS) and LV global longitudinal strain
(LVGLS), respectively. Valve closure times were determined from the respective pulsed
wave Doppler signals. For both the RV and LV the myocardium was manually traced to
include the septum and adjusted so that the region of interest (ROI) incorporated all of the
wall thickness, while avoiding the pericardium.'2° The region of interest was divided into
six myocardial segments, providing segmental strain curves. LV global longitudinal strain
was obtained by averaging the 18 segments of the three separate apical LV views and
global RV strain from three segments of the RV free wall. Where inappropriate tracking of
segments was observed visually or detected by the system, retracing was performed until

all segments were considered acceptable.

RV strain-area and LV strain-volume loops. The longitudinal strain-area/volume relationship
(for methodology of derivation, see Supplemental 1, Oxborough et al.® and Hulshof et

al.?') was assessed using the following parameters (Figure 2): (a) early linear slope during
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first 5% of volume ejection in systole (ESslope), (b) the overall linear slope during systole
(Sslope) and (c) end-systolic peak global longitudinal strain (peak strain). In addition (un)
coupling was termed to describe the relationship between systolic and diastolic strain for
any given area/volume. By subtracting diastolic from systolic strain, the difference at any
given area/volume was calculated. Uncoupling was assessed as the mean of the differences
during (d) early diastole (early 2/3 of diastole [Uncoupling ED]), (e) late diastole (late 1/3
of diastole [Uncoupling LD]) and (f) overall (complete cardiac cycle). Furthermore, (g) the
early linear slope during first 5% (EDslope) and (h) late linear slope (LDslope) during last

5% of volume increase in diastole.

40% of 100% of
EDA RV area (cm?) EDA
0 4 2 25
0 | | | | | | | | | | | L2y | J

. EarlySslope
b. Sslope

. Peak strain
. Uncoupling EarlyD
. Uncoupling LateD

o Qo0

. EarlyDslope
. LateDslope

RV longitudinal strain (%)

j=xlije}

—a} —
ESA EDA

Figure 2. Schematic overview of the RV strain-area loop and the derived characteristics. The black
line represents the strain-area loop; the thick part represents the systolic phase and the thin part the
systolic phase. ED, End-diastolic, EDA, end-diastolic area; ESA, end-systolic area; LD, late diastolic.

In order to obtain intra-observer variability, 10 randomly selected echocardiograms
were re-analyzed. Intra-class correlation coefficient (ICC) analysis was performed for the
following measures: RV strain-area loop characteristics, RVEDA, RVESA, RVFAC, RV basal
diameter, RV mid-cavity diameter, RVOT PLAX, RA area, IVSd, PWd, LVIDd.
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Statistical measurements

Statistical analysis was performed using SPSS Statistics 25 (SPSS Inc., Chicago, IL, VS). All
parameters were visually inspected for normality and tested with Shapiro-Wilk normality
tests. Continuous variables were reported as mean * standard deviation (SD) and
categorical variables were presented as proportions. Paired-sampled T-tests were used
to compare baseline and follow-up measurements, including echocardiographic indices,
and to determine acute RV functional responses to exercise (augmentation in cardiac
function between stress and rest echocardiography). Associations between acute RV
functional responses to exercise (TDI s, RVFWS, TAPSE, RVFAC) and chronic RV adaptation
(RV basal diameter, RV mid-cavity diameter, RVEDA) were analysed by Pearson’s correlation
coefficient, in which ‘acute’ is defined as the change in RV function from rest to exercise
and ‘chronic’ as change in structure pre- versus post-training program. For all tests, we

assumed statistical significance at p<0.05.

RESULTS

Twenty-one participants were initially included in the study, of which six dropped-out
(motivational issues n=4; health problems unrelated to the study n=2). Participants
completed on average 30+2 training sessions (94% adherence) at an average 83.5% of
their maximum HR. The fifteen participants who completed the study (22.0+2.4 years, ten
men, 24.0+3.0 kg/m?) showed a significant increase in VO,max/kg (52+7 to 567 mL/min/
kg, p<0.001) (Table 1). BMI and BSA did not significantly change (p>0.05) (Table 1). Mean
SpO, during the individual 45 minutes high-intensity running exercise sessions of the
hypoxic training program was 81+4%. At baseline, both right and left heart had normal
geometry and all structural measurements were within normal ranges (Table 2). There

were no abnormal 12-lead ECG findings.
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Table 1. Subject characteristics: prior to and post-training program

Pre Post p-value
Sex (m/f) 10/5
Age (yr) 22.0+£2.4
Height (cm) 172+11
Body Mass (kg) 71.2+11.7 70.3%x12.3 0.17
BMI (kg/m2) 24.0+3.0 23.6+2.7 0.14
BSA (kg) 1.84+0.19 1.83£0.20 0.18
Resting HR (bpm) 7710 66+6 <0.001
Resting SBP (mmHg) 118+4 11349 0.02
Resting DBP (mmHg) 67+8 63+5 0.07
Resting MAP (mmHg) 84+6 80+6 0.03
VO2max (L/min) 3.7+£0.7 3.9+0.8 <0.001
VO2max/kg (mL/min/kg) 5247 56+7 <0.001
VE (L/min) 138+29 145+34 0.002
HRmax (bpm) 199+8 195+7 0.008

Data are expressed as means+SD. m, male. f, female. BMI, body mass index. BSA, body surface
area. HR, heart rate. SBP, systolic blood pressure. DBP, diastolic blood pressure. MAP, mean arterial
pressure. VO,max, maximal oxygen uptake. VE, ventilation.

Cardiac adaptations to hypoxic exercise training

There was a significant increase in RV and RA size following the training intervention (all
p<0.05) (Table 2). Exercise training caused an increase in RVFAC (p=0.03), whilst no other
significant changes in RV function were observed (all p>0.05) (Table 2). In addition to a
rightward shift of the strain-area loop (increased RVEDA), exercise training significantly
decreased uncoupling and slopes of the RV strain-area loop (Table 2, Figure 3A). In
contrast to the structural adaptation of the RV, exercise training did not alter LV structure
(Table 2). Systolic LV function and mechanics, including LV loops, did not change following
training (all p>0.05) (Figure 3B). Regarding diastolic function, A velocity decreased
(p=0.002), resulting in an increased E/A ratio (p=0.005).
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Figure 3. A) mean RV strain-area loops and B) mean LV strain-volume loops prior to (‘Pre Systolic”:
black lines, ‘Pre Diastolic”: black dotted lines) and post (‘Post Systolic”: red lines, ‘Post Diastolic”: red
dotted lines) 12-week hypoxic high-intensity running exercise training program. Error bars represent
means=SE.

Acute exercise-induced changes in cardiac responses versus structural adaptation

Prior to training, all systolic indices for RV function (RVFWS, TDI s, RVFAC, TAPSE)
significantly increased with acute exercise (all p<0.05) (Table 3). The RV strain-area loop
characteristics did not significantly change with acute exercise (all p>0.05) (Table 3).
The change in RVFAC with acute exercise showed a significant inverse correlation with
changes in basal diameter post-training (r=-0.66, p=0.01) (Figure 4). The inverse relation
indicates that a lesser increase in RVFAC with acute exercise is associated with greater RV
structural adaptation to training. Changes in RVFWS, TDI s’and TAPSE with acute exercise
did not correlate with RV structural indices (data in Supplemental 2). As strain-area loop
characteristics did not significantly change with acute exercise, we did not perform

correlations analysis on these data.

Intra-observer variability. ICC were as follows: RV free wall strain 0.96 (0.84-0.99), Sslope
0.92 (0.70-0.98), ESslope 0.84 (0.48-0.96), EDslope 0.94 (0.79-0.99), LDslope 0.95 (0.80-
0.99), Uncoupling 0.87 (0.56-0.97), Uncoupling_ED 0.86 (0.52-0.96), Uncoupling_LD 0.88
(0.58-0.97), RVEDA 0.96 (0.87-0.99), RVESA 0.94 (0.78-0.99), RVFAC 0.92 (0.72-0.98), RV
basal diameter 0.91 (0.68-0.98), RV mid-cavity diameter 0.80 (0.38-0.95), RVOT PLAX 0.75
(0.27-0.93), RA area 0.99 (0.97-0.99), IVSd 0.67 (0.12-91), PWd 0.74 (0.25-0.93), LVIDd 0.79
(0.35-0.94).
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Table 3. Right ventricular acute functional responses to exercise pre-training program

Rest Stress delta p-value
HR (bpm) 759 11345 38+9 <0.001
RVFAC (%) 46.9+2.3 52.0+4.9 5.1+4.7 0.002
.§ TAPSE (mm) 27.3+2.6 30.7+3.4 34+34 0.002
E TDI s’ (cm/s) 15.8+2.2 20.1+£2.6 4.3+2.9 <0.001
RV free wall strain (%) -27.5+2.5 -32.0+3.1 -4.5+3.8 0.001
Uncoupling (%) 1.5+1.2 0.8+1.8 -0.7+2.1 0.25
a Uncoupling ED (%) 1.6+1.3 0.7+2.0 -0.8+2.4 0.25
‘_gu Uncoupling LD (%) 1.4+0.9 0.9+1.6 -0.5+1.8 0.30
g Sslope (%/cm?2) 24+04 2.5+04 0.1+0.4 0.20
E ESslope (%/cm2) 2.4+0.6 3.0+0.7 0.6+1.1 0.07
7z EDslope (%/cm2) 1.6+0.5 1.5+0.5 -0.1+0.5 0.38
LDslope (%/cm2) 3.1+£0.8 3.4+1.1 0.4+0.7 0.11

Data are expressed as means=SD. HR, Heart rate. RVFAC, RV fractional area change. TAPSE, tricuspid
annular plane systolic excursion. TDI, tissue doppler imaging. Uncoupling ED, Uncoupling early
diastole. Uncoupling LD, Uncoupling late diastole.
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Figure 4. Correlation between acute increase in RV fractional area change during first exercise
session under hypoxia (visit 2) and increase in resting RV basal diameter at completion of the
training protocol
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DISCUSSION

The aim of our study was to relate pre-training changes in cardiac function during
acute hypoxic exercise to subsequent adaptations to a 12-week hypoxic endurance
exercise training program on RV cardiac structure, function and mechanics in healthy
individuals. We present the following findings. First, hypoxic exercise training increased
RV size, including diameter and area. Whereas measures of RV function remained largely
unchanged, exercise training resulted in adaptations in RV mechanics, with less uncoupling
and lessening of the systolic and diastolic slopes of the RV strain-area loop. Second, no
adaptation in LV structure, function or mechanics were observed. Third, pre-training
augmentation in RV fractional area change to acute hypoxic exercise was inversely related
to cardiac remodelling of the RV following 12 weeks of hypoxic endurance training in
healthy individuals. Taken together, our results demonstrate that acute cardiac responses
of the RV to hypoxic exercise are related to subsequent RV remodelling upon 12-weeks of

hypoxic exercise training in healthy, relatively untrained individuals.

Acute exercise-induced changes in cardiac responses versus structural adaptation

In this study, we tested the assumption that any potential disproportionate ventricular
wall stress contributes to RV remodelling. Since assessment of cardiac wall stress during
exercise is highly challenging and invasive, we examined cardiac (systolic) function during
hypoxic exercise and explored whether these changes related to structural adaptation
post-training. We found that augmentation in RV fractional area change to acute exercise
is inversely related to RV size following exercise training. In other words, small-to-modest
(but not moderate-to-large) increases in RV systolic function during acute exercise relate
to subsequent increases in RV structure post-training. One potential explanation for this
observation may be that those individuals who had a blunted exercise-induced increase
in RV fractional area change, were working at a higher afterload and hence received a
greater stimulus for cardiac adaptation. Another potential explanation for this observation
may relate to the structure of the RV. A smaller sized RV is less able to elevate measures of
systolic RV function during exercise, and are therefore more susceptible for subsequent
adaptation. Somewhat in line with this assumption, additional analysis revealed a positive

relation between exercise-induced increases in RV fractional area change and RV size at
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baseline (r=0.52, p=0.03), indicating that individuals with smaller RV cavity size show
a smaller elevations in RV systolic function during exercise. In contrast to RVFAC, other
measures did not significantly correlate with adaptation to exercise training. A possible
explanation for this may be that RVFWS, TAPSE and TDI s’ respond differently to alterations
in load compared to RVFAC.?2 These elevations in load may be central as a stimulus for
subsequent cardiac adaptation to exercise. Moreover, RVFAC takes into account both
radial and longitudinal functional whereas the other systolic functional indices only take
the latter into account. The stress received by the RV may therefore better reflected by the

augmentation in RVFAC to acute exercise compared to RVFWS, TAPSE and TDI s,

Right ventricular adaptations to hypoxic exercise training

After 12 weeks of hypoxic exercise training, the right side of the heart showed structural
adaptation concomitant with altered mechanics in the strain-area loop. Our observation
of RV remodelling contrasts with others, who report the absence of RV adaption after
an increase in training volume.?* 2* Importantly, the lack of structural RV remodelling
observed in these previous studies is mainly observed when examining elite athlete
populations, who already had a high level of training at baseline evaluation (e.g. they were
not detrained for example during pre-season evaluation). Interestingly, the LV showed no
evidence for adaptation after training. This agrees with a study by Arbab-Zadeh et al.?®
where they showed that after 12 months progressive and intensive marathon training in
12 previously sedentary subjects (mean age, 29+6 years), that RV size increased during
the initial 3-month training period, but the LV only started to remodel after 6 months of
training. The hypoxic exercise stimulus mainly effects RV afterload, and to a lesser extent
LV afterload.®'> Moreover, it may be that LV afterload is reduced during hypoxic exercise
as a result of hypoxic induced peripheral vasodilation.?® 2’ This may have amplified the
disproportionate RV remodelling. However, due to the lack of a control group this remains
speculative. Based on the lack of structural adaptation in the LV in this study, this may
suggest that RV remodelling precedes LV remodelling in relatively untrained individuals.

Future work, however, is required to better understand this phenomenon.

Previously, we have demonstrated changes in the strain-area loop in acute exercise

settings® ' but also marked differences in pulmonary hypertension populations?®° likely
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due to variation in loading conditions. We also demonstrated that 24-weeks of endurance
exercise induced a modest rightward shift with a somewhat stronger coupling of the LV
strain-volume loop.3' This is the first study, to our knowledge, that assessed RV strain-
area loops following an exercise training in humans. We showed that training induced
changes in RV mechanics concomitant to right-side structural adaptions. Specifically,
lessening of the systolic and diastolic slope of the RV strain-area loop fits with the change
in geometry of the RV, where the cavity size became larger. This is challenging to interpret
but may be explained by the larger RV having greater unit area of myocardium requiring
less deformation/contractility to facilitate the same stroke volume. Furthermore, we
observed stronger coupling following training, potentially suggesting the presence of a
more dominant longitudinal contribution to area change in diastole compared to systole.
This adaptation fits with previous cross-sectional findings, in that we previously observed
that athletes with a sports discipline with low-static and high-dynamic components (IlIA
Mitchell classification®?; e.g. high-intensity exercise as adopted in our study), showed
more coupling in RV strain-area loops compared to other Mitchell classifications sports.®
This could be suggestive for a sport discipline specific adaptation and the significant
influence of variable loading conditions across disciplines on RV physiology. Moreover,
the resemblance between the improved systolic-diastolic coupling following endurance
training in the RV (this study) and LV (study by Oxborough et al®') with increasing cavity
sizes may indicate that a change in cardiac mechanics is not an isolated process but merely
a consequence of cardiac structural remodelling due to exercise training. Future work, in

larger cohorts assessing both RV and LV, is required to better understand this topic.

Perspectives

Challenging the cardiac system, e.g. through exercise, may be relevant in better
understanding (patho)physiology. Indeed, exercise-induced troponin | elevation,
independent from resting troponin |, predicts mortality and cardiovascular morbidity.3
3 |n the present study, we found that exercise-induced changes in RV function relate to
chronic RV adaptation. This concept, i.e. exploring cardiac responses to exercise, may
be a potential strategy for future studies aiming to better understand cardiac (patho)

physiology.
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Limitations. We did not include a control group(s) who either; did not perform exercise or
performed exercise under normoxic conditions. Whilst this may have provided additional
insight into the role of hypoxia in mediating cardiovascular adaptations, we believe this
does not impact the primary finding of our study, that exercise training may lead to RV
structural adaptation, which seems to relate, at least partly, to acute baseline exercise-
induced changes in cardiac function. A further limitation is that we did not collect
blood samples to assess haematocrit and haemoglobin. Although, the participants
were exposed to very short durations of intermittent hypoxic exercise training session
(maximum of 1 hour including acclimation), this may have led to a change in haematocrit
and haemoglobin.* In addition, the RV loop is based on area while volume would be
more suitable given the complex RV geometry. However, the technique to derive the RV
volume loops is not yet validated and will require 3D echocardiography. Finally, LV strain-
volume loops were only constructed from an A4C view and not in the A2C and APLAX

views.

CONCLUSION

12-week high-intensity running hypoxic exercise training induced right-sided structural
remodelling, which was, in part, related to baseline cardiac increase in RV fractional area
change to acute exercise. These data suggest that acute RV responses to exercise are
related to subsequent right ventricular remodelling in healthy individuals upon hypoxic

training.
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APPENDICES

Supplemental 1. Strain-Area Loop - methods of derivation

To calculate right ventricular (RV) strain-area loops the following steps have been taken.
Temporal longitudinal strain values were exported to a spreadsheet (Excel; Microsoft Corp.,
Redmond, WA, USA). Using cubic spline interpolation, the global temporal longitudinal
strain values were divided into 300 points for systole and 300 points for diastole in order
to correct for variable heart rates. For both systole and diastole, the 300 strain values were
then split into 5% increments of the cardiac cycle, providing longitudinal strain values at
10 time points in systole and 10 time points in diastole. Concomitant time points for the
strain values were used in the same image and cardiac cycle to trace RV monoplane areas

to provide simultaneous strain and area values.

Using the individual strain-area loop, a linear regression line and a polynomial of two
orders was applied to both diastolic and systolic parts of the loop. This derived polynomial
equation allowed the derivation of strain at percentage increments of RV end-diastolic area
(RVEDA). The longitudinal strain—area loop was assessed using the following parameters
(Figure 2): (a) early linear slope during first 5% of volume ejection in systole (ESslope),
(b) the overall linear slope during systole (Sslope) and (c) end-systolic peak longitudinal
strain (peak strain). In addition (un)coupling was termed to describe the relationship
between systolic and diastolic strain for any given area/volume and was assessed during
(d) early (Uncoupling ED), (e) late diastole (Uncoupling LD) and (f) overall. Furthermore, (g)
the early linear slope during first 5% (EDslope) and (h) late linear slope (LDslope) during

last 5% of volume increase in diastole.

The Sslope was derived as the gradient of the linear regression line over the systolic phase
of the strain-area loop. Longitudinal peak strain was derived as the raw peak strain value
from the longitudinal strain data. The Uncoupling ED and Uncoupling LD were calculated
across the area between the systolic and diastolic polynomial curves. Using the equations
of the polynomial regression lines, strain at % increments of RVEDA were calculated. By
subtracting diastolic from systolic strain, the difference at each point was calculated.
Based on individual RV fractional area change (RVFAC), the working range of the heart

was determined, after which Uncoupling ED was calculated as the sum of the differences
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at the lowest two-thirds of increments of EDA in the working range of the heart, and
Uncoupling LD was calculated as the sum of the differences at the highest one-third of

increments of EDA in the working range of the heart.

Supplemental 2. Table 1 - Associations between acute functional responses to
exercise and chronic RV adaption

Delta RVFAC (%) Delta TAPSE (mm) Delta RV s’ (cm/s) Delta RVFWS (%)

Delta RV basal  Pearson -0.66 -0.36 -0.27 -0.38
diameter (mm)  Correlation
Sig. 0.01 0.18 0.32 0.18
(2-tailed)
Delta RV Pearson -0.12 -0.24 -0.30 -0.28
mid-cavity Correlation
diameter (mm)
Sig. 0.70 0.40 0.28 0.33
(2-tailed)
Delta RV Pearson -0.09 -0.47 -0.45 -0.19
end-diastolic Correlation
area (mm)
Sig. 0.77 0.09 0.11 0.52
(2-tailed)

RV, Right ventricle. RVFAC, RV fractional area change. TAPSE, tricuspid annular plane systolic
excursion. TDI, tissue doppler imaging. RVFWS, RV free wall strain.
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Chapter 4

ABSTRACT

Whilst the athlete’s heart has been extensively described, less work has focused on the
potential for elite athletes to demonstrate further cardiac remodelling upon an increase in
training volume. Moreover, little work explored potential side-specific cardiac remodelling.
Therefore, we examined the impact of an increase in training volume across 9-months
in elite rowers on left- and right-sided cardiac structure, function and mechanics (i.e.
longitudinal, radial and circumferential strain, twist and strain-volume loops). As part of
the preparations to the 2012 Olympic Games, twenty-seven elite rowers (26.4+3.7years, 19
male) underwent echocardiography prior to and post (9-months) an increase in training
volume (24 to 30-35h weekly). Training increased left ventricular structure, including wall
thickness, diameter, volume, mass and LV twist (all p<0.05). Female rowers demonstrated
larger adaptation in left ventricular diameter and mass compared to male rowers (both
p<0.05). No changes were observed in other measures of left ventricular function in
both sexes (all p>0.05). The 9-month intervention showed no change in right ventricular/
atrial structure, function or mechanics (all p>0.05). In conclusion, our data revealed that
9-month increased training volume in elite rowers induced left-sided (but not right-sided)
structural remodelling, concomitant with an increase in left ventricular twist, with some

changes larger in women.
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INTRODUCTION

Exercise training represents a potent stimulus for remodelling of the heart. Recent
prospective and long-term intervention studies support the presence of predominant
eccentric ventricular adaptation in response to exercise training."? In other words, regular
exercise training leads to a balanced increase in both volume and mass, whilst function
seems largely preserved.' Previous work largely focused on either adaptation of the left
side or adaptation of the right side of the heart in response to exercise training. As such,
there is an important gap in the literature pertaining to the lack of knowledge whether

exercise training differentially affects the left versus right ventricle in elite athletes.

Both ventricles receive a similar amount of blood. Due to their distinct geometry and mass,
with the right ventricle (RV) being larger in volume but smaller in wall thickness than
the left ventricle (LV), both ventricles may be exposed to distinct hemodynamic stimuli,
potentially leading to different patterns of adaptation in both structure and function.?
Indeed, exercise leads to distinctly different changes in afterload for both ventricles, with
relatively larger increases in afterload for the RV.* This supports the potential for different
adaptation between ventricles. Better insight into differences in remodelling between
ventricles is highly relevant, especially since previous studies have linked exercise-
induced RV cardiomyopathy to high volumes of exercise training in elite athletes.> ¢
Insight into the potential presence of side-specific physiological remodelling of the heart
will also contribute to improved interpretation of pre-participation screening for high-risk

cardiovascular conditions associated with sudden cardiac arrest in athletes.

The aim of this study, therefore, was to examine the impact of an increase in volume
(across 9-months) in elite rowers on left- and right-sided cardiac structure, function and
mechanics (i.e. longitudinal, radial and circumferential strain, twist and strain-volume/
area loops). Based on the higher relative workload for the RV*, we expect larger structural
cardiac adaptation in the RV (whilst preserving function) compared to the LV in elite

rowers.

Previous work suggested that sex may differently affect cardiovascular function during
physiological stimuli.”-® Based on cross-sectional comparisons, similar patterns of cardiac

remodelling have been observed with static and mixed exercise between men and
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women, whilst greater LV adaptation may be present in women during dynamic exercise.”
"Therefore, as an explorative aim, we evaluate the impact of sex on the impact of exercise

in elite rowers on left- and right-sided cardiac structure, function and mechanics.

METHODS

Study population and study design

In this prospective, longitudinal study, as part of the work-up to the 2012 Olympic Games,
twenty-seven elite level rowers (male and female, all Caucasian) underwent baseline
echocardiography prior to and post (9-months) a planned increase in training volume.
Baseline echocardiograms were performed immediately after the 2011 World Rowing
Championships (i.e. when all athletes were in a highly trained status), and 3 months before
the 2012 Olympic Games. After the baseline echocardiograms, the rowers, both male and
female, increased their training volume gradually from 24 hours to 30-35 hours per week
(20% strength, 80% rowing training consisting of high-intensity interval and endurance
training). Height and weight were obtained before echocardiography was performed
(SECA scale and stadiometer, SECA GmbH, Hamburg, Germany). This study was conducted
in accordance to with the ethical standards in sport and exercise science research and

approved by the Radboud University Medical Center ethics committee.

Echocardiographic measurements

The echocardiographic examinations were performed in the left lateral decubitus position
by one highly experienced cardiologist (AvD) using a Vivid-Q ultrasound machine (GE
Medical, Horton, Norway), equipped with a 1.5-4 MHz phased array transducer. Heart
rate was calculated from a single lead ECG inherent to the ultrasound system. Images
were stored in raw digital imaging and communication in medicine (DICOM) format
and were exported to an offline workstation (EchoPac, version 113, GE Medical, Horton,
Norway). Data-analysis, from three stored cycles, was performed by a single observer with
experience in echocardiography (GK) using commercially available software (EchoPac,
version 113, GE Medical, Horton, Norway). The echocardiograms were all coded so the

observer was blinded for the timing (pre vs. post) and for sex (male vs. female).
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Conventional measurements. Cardiac structural and functional measurements were made
according to the current guidelines for cardiac chamber quantification.'? Regarding the
left heart, we examined the following structural and functional indices: wall thickness
of the septum (IVSd) and posterior wall (PWd), internal cavity diameter at end-diastole
(LVIDd), LV mass (LVM), anteroposterior diameter of the left atrium (LA), LA volume by the
disk summations technique in apical 4-chamber (A4C) and apical 2-chamber (A2C) view,
modified Simpson’s left ventricular ejection fraction (LVEF), tissue Doppler imaging (TDI)
of the mitral annulus (s, e’ and a’) and trans-mitral Doppler (E, A and E/A ratio). Regarding
the right heart, following structural and functional indices were determined: basal and
mid-cavity end-diastolic diameters, RV end-diastolic area (RVEDA), RV end-systolic area
(RVESA), RV outflow tract (RVOT) diameter at the proximal level in the parasternal long-
axis (PLAX) and parasternal short-axis (PSAX) view, right atrial (RA) area, RV fractional area
change (RVFAQ), tricuspid annular plane systolic excursion (TAPSE), TDI of the tricuspid
annulus. All LV and RV structural indices were allometrically scaled to body surface area

(BSA) according to the laws of geometric similarity.'

Mechanics. Images were acquired specifically for speckle tracking. This involved the
optimization of frame rates between 40 and 90 frames s', depth to ensure adequate
imaging of the chamber of interest, a focal zone at mid-cavity to reduce the impact of

beam divergence and gain, compression and reject to ensure endocardial delineation.

Ventricular and atrial mechanics. The A4C view was utilized for LV, LA and RA global
longitudinal strain and the RV focused view for the RV longitudinal strain. The LV short-axis
(SAX) views (basal, mid and apical) were utilized for radial, circumferential strain and twist.

Valve closure times were determined from the respective pulsed wave Doppler signals.

For all compartments (LV, LA, RV, RA), the myocardium was manually traced and adjusted
so that the region of interest (ROI) incorporated all of the wall thickness, while avoiding
the pericardium. The region of interest was divided into six myocardial segments,
providing segmental strain curves and a global longitudinal strain curve as an average
of all six segments. In order to obtain peak LV circumferential strain, peak LV radial strain
and peak apical and basal rotation, a full-thickness ROI of the mid-, basal- and apical-SAX

views, which was divided into six segments, was selected. In addition, raw strain values
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were exported and a cubic spline was applied to normalize for heart rate. This allowed the

presentation of temporal strain and rotation across the cardiac cycle.

Strain-volume/area loops. The longitudinal strain-volume/area relationship (for
methodology of derivation, see Supplemental 1 and Oxborough et al.'*) was assessed
using the following parameters: (I) the linear strain-area slope (Sslope) and early strain-
area slope during first 5% of volume ejection in systole (ESslope); (Il) end-systolic peak
longitudinal strain (peak strain); (lll) the early linear strain-area slope during first 5%
(EDslope) and late linear strain-area slope (LDslope) during last 5% of volume increase
in diastole; and (IV) diastolic uncoupling (i.e. difference in strain between systole and
diastole at any given area), divided into uncoupling during early (Uncoupling ED) and late

diastole (Uncoupling LD)."* "

Statistical analysis

Statistical analyses were performed using SPSS Statistics 24 (SPSS, Inc., Chicago,
Illinois). All parameters were visually inspected for normality and tested with Shapiro-
Wilk normality tests. Continuous variables were reported as mean+SD and categorical
variables were presented as proportions. Paired-Samples T-tests were used to compare
echocardiographic continuous variables between the baseline and follow-up evaluation.
Comparison of sex differences was performed using repeated measurements ANOVA with

Bonferroni post hoc correction for multiple comparisons.

Consistency of intra-observer measurements of selected measurements were verified
through the intra-class correlation coefficient (ICC). Therefore, both echocardiographs of
15 randomly chosen subjects were analysed by the same operator blinded from earlier
results. ICC coefficients were as follows: RVOT-PLAX 0.96 (0.91-0.98), LVISd 0.91 (0.81-0.96),
LVPWd 0.90 (0.80-0.95), LVIDd 0.97 (0.93-0.98), RV basal diameter 0.98 (0.96-0.99), RVEDA
0.98 (0.95-0.99), RA area 0.99 (0.97-0.99), LA volume 0.98 (0.95-0.99). In previous studies,
we showed that strain measurements and both right and left ventricular loops have a

good to excellent inter-observer variability."*"
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RESULTS

Baseline characteristics

All 27 rowers participated in the 2012 Olympic games. Mean age of the study population
was 26.4+3.7 years, consisting of 19 males (70%, 26.3+4.3y) and eight females (30%, 26.6
+1.9y). All rowers were Caucasian. Male rowers were significantly taller (193.7+6.6 versus
181.5+8.8 cm, p=0.001), heavier (88.0+12.0 versus 72.9+8.6 kg, p=0.003) and had greater
BSA (2.2£0.2 versus 1.9£0.2 m?, p=0.002), but had a similar BMI (23.3+2.1 versus 22.2+1.0,
p=0.08) compared to female rowers. Weight, body surface area (BSA) and body mass index
(BMI) did not significantly change over time (83.9+13.0 to 84.3+13.0 kg, p=0.10; 2.1+0.2 to
2.1+0.2 m?, p=0.10; 23.0+£1.9 to 23.1£1.9 kg/m?, p=0.11, respectively). Resting heart rate
was higher at follow-up compared to baseline 54+7 to 58+8 bpm (p=0.02).

Exercise training and cardiac remodelling: comparison between sides

Left ventricle and atrium. There was a significant increase in LV wall thickness, diameter,
volume and mass (all p<0.01), which remained significant after correction for BSA (all
p<0.05) (Table 1, Figure 1). Similarly, there was a significant increase in LA diameter and
volume (both p<0.01), which remained significant after correction for BSA (both p<0.01).
Exercise training increased LV twist, whilst no other changes in functional or mechanical

indices were found (Table 1, Figure 1, Figure 2).

Right ventricle and atrium. We found no significant changes in right ventricular and atrial

structure, function and mechanics (Table 2, Figure 1, Figure 2).

Exercise training and cardiac remodelling: comparison between sexes

Baseline characteristics. At baseline, female rowers had smaller LV and RV cardiac
dimensions compared to male rowers (all p<0.05, Table 1-2), which was not present after
correcting for BSA (all p>0.05). Absolute RVOT dimensions did not differ between sexes
(Table 2). Female rowers had a smaller LV mass compared to male rowers (p<0.01), which
remained significant after correction for BSA (p<0.05, Table 1). Except for a lower TAPSE
and a higher E velocity in female rowers (both p=0.02), no significant differences were
found in conventional measurements of left- or right-sided cardiac function (Table 1-2).

Female rowers demonstrated significantly higher LV apical circumferential strain, lower
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peak systolic apical rotation (both p<0.05) and steeper slopes of the left- and right-sided
strain-volume/area loop compared to male rowers (LV — Sslope, LDslope, both p<0.05; RV

- Sslope, ESlope, LDslope, all p<0.05) (Table 1-2, Figure 2).

Training-induced remodelling. Females demonstrated a significantly larger increase in
absolute and scaled LV diameter and LV mass compared with male rowers (Table 1, Figure

3). No differences were found between sexes in the right ventricle or atrium (Table 2).
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Figure 1. Change in right (A-C-E) and left (B-D-F) sided cardiac structure and function in elite rowers
(n=27) before ('Pre”: blue bars with striped lines) and after (‘Post”: red bars with dots) a 9-month
training volume increase. Error bars represent SD. * significantly different from pre (p<0.05).
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Figure 3. Change in (A) LV mass index and (B) LV diameter index in elite rowers before (‘Pre”: blue
bars with striped lines) and after (‘Post”: red bars with dots) a 9-month training period distributed to
sex. Error bars represent SD.

DISCUSSION

The aim of our study was to examine the impact of an increase in volume (across 9-months)
in elite rowers on left- and right-sided cardiac structure, function and mechanics. We
present the following findings. First, an increased training volume in elite rowers across
9-months resulted in significant structural adaptation of the left ventricle and atrium, with
no adaptations observed on the right side. Second, left-sided structural cardiac adaptation
was accompanied by an increase in LV twist, but no other left- or right-sided functional
adaptations. This highlights the plasticity of the heart for remodelling in response to
exercise training, even in elite athletes. Taken together, our results demonstrate cardiac
side-, and possibly also sex-specific adaptation, which is relevant for future studies that
should acknowledge that cardiac remodelling does not simply follow the same path

between and within individuals.

After an increase in training volume across 9-months, the left heart of this cohort of
elite rowers showed mild structural (eccentric) adaptation with an increased LV twist,
whilst there was no significant remodelling in the right heart. This left-sided structural

adaptation is in line with several previous longitudinal training studies including

104



Cardiac Remodelling in Olympic Athletes

sedentary, moderately- and highly-trained individuals.> '*2' Interestingly, concomitant
to left-sided structural adaptation, elite rowers also demonstrated augmented LV twist
after the increase in training volume. The higher heart rate post-training may partially
explain the increase in twist. However, this seems unlikely since no correlation was found
between heart rate and twist (r=0.02, p=0.94). Moreover, other functional parameters
(also susceptible for differences in heart rate) did not change over time. Although we
found adaptation in functional and structural characteristics, both may demonstrate
a distinct pattern and are not similarly present. Indeed, the increase in twist was not
correlated with changes in LV cardiac morphology (data not shown). Moreover, Weiner et
al. observed that exercise training may initially (i.e. 90 days) lead to increases in LV twist,
which subsequently disappeared during the chronic training phase (i.e. 39 months).?2 Our
finding provides some support for this concept, in that an increase in volume of exercise
initially resulted in both functional and structural adaptations, where functional changes
may ultimately normalize during the chronic phase when volume of exercise remains the
same. Future work is required to better understand these time-dependent adaptations in

cardiac remodelling.

Despite the disproportionate load on the right versus left ventricle during exercise®,
we found no adaptation of the right ventricle or atrium. This finding contrasts with
our hypothesis, but also with others who addressed right-sided cardiac remodelling
in elite athletes.?> 2* D'Ascenzi et al. reported seasonal variation in RV size in a cohort of
top-level basketball and volleyball players.?®* Across three consecutive Olympic Games,
Aengevaeren et al. noted that RV remodelling occurred between the first two Olympics
Games, followed by a plateau during the subsequent 4 years in a heterogeneous group of
athletes (n=50, 17 different sports).* These studies, however, are limited by the impact of
ageing (i.e. 8-year cycle), large variations in training status across the season, and/or the
heterogeneous group of athletes included. The lack of RV remodelling in our study may
be explained by achieving a physiological limit for further adaptation prior to the start
of the increase in training volume in highly trained rowers due to pericardial constraint.
At least, our observations support the presence of distinct remodelling between the left
and right side of the athlete’s heart. Future work is required to better understand these
differences, specifically focusing on the distinct load placed on both ventricles during

exercise, possibly underlying distinct remodelling to (high) volumes of exercise training.
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Following the explorative analysis, this study examined the impact of sex on cardiac
adaptation to training using a longitudinal design. This design markedly differs from most
previous studies that have adopted a cross-sectional design, including a heterogeneous
groups of athletes, and generally not using allometric scaling.’® *2° Our data showed
larger LV structural adaptation in female rowers, which remained present upon allometric
scaling. These distinct adaptations cannot relate to differences in lifetime exposure to
elite athlete level training, since both groups do not differ in age (males 26.3+4.3y versus
females 26.6+1.9y, p=0.84). Alternative explanations for the distinct remodelling might
be hormonal, molecular and/or genetic mechanisms. However, these mechanisms are not
fully understood yet and represent topics for future research.® An important limitation
is the relatively low sample size for female rowers within this analysis. Nonetheless, our
study was sufficiently powered to detect a significant effect between sexes in adaptation.
We performed post hoc calculations and found that our study has a statistical power
of 0.51-0.64 to detect sex differences in LV mass and LV diameter. At least, our findings
highlight the importance for future research to better understand and establish potential

sex differences in cardiac adaptation in response to exercise training.

Clinical relevance. The observation of no further adjustment in RV remodelling seems
relevant as RV enlargement may overlap with the pathological dilation of the RV in
patients with an arrhythmogenic RV cardiomyopathy. Previous studies have related
RV remodelling in the already highly trained athlete to potential clinical problems.
Our work suggests that even high volumes of exercise does not automatically lead to
further remodelling of the RV, despite structural changes in the LV. However, a potential
limitation is that subjects followed an individually determined exercise training protocol
to increase training volume, which makes it difficult to relate cardiac remodelling to
specific determinants of the exercise training protocol and at a cohort level. Also, we did
not perform cardiopulmonary exercise testing to examine the level of fitness following
exercise training. However, all individuals significantly increased their training volume,
highlighting that additional cardiac remodelling is possible upon increases in training
volume. Our study may have further clinical relevance, since we specifically explored
remodelling in female elite athletes. Participation of females in elite sports has increased

significantly over the past decades. Current work on the athlete’s heart, leading to insight
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into (ab)normal levels of adaptation, largely originate from studies performed in males.
Our work supports performing specific studies in women, examining the geometry and

potential pathological relevance of the female athlete’s heart.

CONCLUSION

In conclusion, our data suggest that an increased exercise training volume in elite rowers
across 9-months induced side-specific cardiac remodelling. Specifically, we found left-
sided (but not right-sided) structural adaptations, with concomitant increase in LV twist
in already highly trained rowers. Interestingly, these adaptations were significantly larger
in women compared to men, a finding that warrants further exploration in future work.
Taken together, our work suggests that examining the athlete’s heart should go beyond
the single-sided approach most previous studies adopted, and should explore both left

and right-sided adaptation.
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APPENDICES

Supplemental 1. Strain-Area Loop - methods of derivation

To calculate right ventricular (RV) strain-area loops the following steps have been taken.
Temporal longitudinal strain values were exported to a spreadsheet (Excel; Microsoft Corp.,
Redmond, WA, USA). Using cubic spline interpolation, the global temporal longitudinal
strain values were divided into 300 points for systole and 300 points for diastole in order
to correct for variable heart rates. For both systole and diastole, the 300 strain values were
then split into 5% increments of the cardiac cycle, providing longitudinal strain values at
10 time points in systole and 10 time points in diastole. Concomitant time points for the
strain values were used in the same image and cardiac cycle to trace RV monoplane areas

to provide simultaneous strain and area values.

Using the individual strain—area loop, a linear regression line and a polynomial of two
orders was applied to both diastolic and systolic parts of the loop. This derived polynomial
equation allowed the derivation of strain at percentage increments of RV end-diastolicarea
(RVEDA). The longitudinal strain—-area loop was assessed using the following parameters
(Figure 1): (a) early linear slope during first 5% of volume ejection in systole (ESslope), (b)
the overall linear slope during systole (Sslope) and (c) end-systolic peak longitudinal strain
(peak strain). In addition (un)coupling was termed to describe the relationship between
systolic and diastolic strain for any given area/volume and was assessed during (d) early
(Uncoupling ED), (e) late diastole (Uncoupling LD) and (f) overall. Furthermore, (g) the
early linear slope during first 5% (EDslope) and (h) late linear slope (LDslope) during last

5% of volume increase in diastole.

The Sslope was derived as the gradient of the linear regression line over the systolic phase
of the strain—area loop. Longitudinal peak strain was derived as the raw peak strain value
from the longitudinal strain data. The Uncoupling ED and Uncoupling LD were calculated
across the area between the systolic and diastolic polynomial curves. Using the equations
of the polynomial regression lines, strain at % increments of RVEDA were calculated. By
subtracting diastolic from systolic strain, the difference at each point was calculated.

Based on individual RV fractional area change (RVFAC), the working range of the heart
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was determined, after which Uncoupling ED was calculated as the sum of the differences
at the lowest two-thirds of increments of EDA in the working range of the heart, and
Uncoupling LD was calculated as the sum of the differences at the highest one-third of

increments of EDA in the working range of the heart.

40% of 100% of
EDA RYV area (cm?) EDA
0 : 2 4 25
0 | | | | | | | | | | | L a | J

. EarlySslope
. Sslope

. Peak strain
. Uncoupling EarlyD
. Uncoupling LateD

o Q0 o

. EarlyDslope
. LateDslope

RYV longitudinal strain (%)

=i}

ESA EDA

Figure 1. Strain-area loop. The linear strain-area slope (b. Sslope) and early strain-area slope during
first 5% of volume ejection in systole (a. ESslope); (Il) end-systolic peak longitudinal strain (c. peak
strain); (Il) the early linear strain-area slope during first 5% (g. EDslope) and late linear strain-area
slope (h. LDslope) during last 5% of volume increase in diastole; and (IV) diastolic uncoupling (f.) (i.e.
difference in strain between systole and diastole at any given area), divided into uncoupling during
early (d. Uncoupling ED) and late diastole (e. Uncoupling LD).
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ABSTRACT

Background and objectives. Acute exercise leads to an immediate drop in blood
pressure (BP), also called post-exercise hypotension (PEH). Exercise in hypoxia is related
to additional vasodilation, potentially contributing to more profound PEH. Therefore, we
investigated the impact of hypoxia versus normoxia on the magnitude of PEH. Secondly,
we examined whether these changes in PEH relate to the BP-lowering effects of 12-week

exercise training under hypoxia.

Methods. In this prospective study, twenty-one healthy individuals (age 22.2+3.0 years,
fourteen male) performed a 45-minute high-intensity running exercise on two different
days in a random order, under hypoxia (fraction of inspired oxygen (FiO,) 14.5%) and
normoxia (FiO, 20.9%). BP was examined pre-exercise (t=0) and at t=15, t=30, t=45 and
t=60min post-exercise. Afterwards, subjects took part in a 12-week hypoxic running
exercise training program. Resting BP was measured before and after the 12-week training

program.

Results. Acute exercise induced a significant decrease in systolic BP (SBP, P=0.001), but not
in diastolic BP (DBP, P=0.113). No significant differences were observed in post-exercise BP
between hypoxic and normoxic conditions (SBP, P=0.324 and DBP, P=0.204). Post-exercise
changes in SBP, DBP and MAP significantly correlated to the 12-week exercise training-
induced changes in SBP (r=0.557, P=0.001), DBP (r=0.615, P<0.001), and MAP (r=0.458,
P=0.011).

Conclusion. Our findings show that hypoxia does not alter the magnitude of PEH in
healthy individuals, whilst PEH relates to the BP-lowering effects of exercise. These data

highlight the strong link between acute and chronic changes in BP.
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INTRODUCTION

Post-exercise hypotension (PEH) is a reduction in systolic and/or diastolic arterial blood
pressure (BP) below resting BP levels following a single bout of exercise and is usually
observed minutes to hours after exercise." The decline in BP after exercise relates to a
marked decrease in total peripheral resistance (TPR)** due to sustained post-exercise
local vasodilator mechanisms® ¢, with unmatched elevations in cardiac output.” The
potential clinical relevance of PEH is that the magnitude of PEH relates to the BP-lowering
effect of exercise training.#'° Enhancing the magnitude of PEH may, therefore, have the

potential to increase the anti-hypertensive effects of exercise training.

Previous research revealed that several factors, including exercise intensity' '3, duration
4 mode (interval or continuous'®), time of day'® and body position'’, may influence the
magnitude of PEH. Relatively little work has examined the impact of hypoxia on PEH. This
is relevant since previous work revealed that hypoxia contributes to a higher decrease
in TPR post-exercise'®?® potentially contributing to a larger PEH. Indeed, one previous
study found a more profound PEH in response to resistance exercise under hypoxia
versus normoxia.”' Therefore, hypoxia may elicit a larger magnitude of PEH compared to
normoxia. This is potentially relevant, since acute changes in BP with (hypoxic) exercise
may relate to long-term changes in resting BP after regular exercise training.®'® A larger
PEH in hypoxia may therefore translate into a larger decrease in resting BP, as previously

suggested for normoxic exercise.’

The aim of this study was 1) to investigate the influence of hypoxia versus normoxia on
the PEH magnitude of post-endurance exercise (high-intensity) in healthy individuals, and
2) whether the magnitude of PEH relates to the reduction in BP after a 12-week hypoxic
endurance exercise-training program. According to previous research, we hypothesized
that 1) high-intensity endurance exercise under hypoxia would elicit greater reductions in
post-exercise BP compared to normoxia, and that 2) the magnitude of PEH would relate

to the training-induced BP reduction.
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METHODS

Study Population

Twenty-one healthy normotensive individuals (fourteen males) were recruited for the
study. Participants were eligible to take part in this study if they were able to run on a
treadmill and that they did not train for more than two hours a week at moderate-to-high
intensity for the last six months. Exclusion criteria were a body mass index (BMI) <18 or
>30 kg/m?, a possibility of pregnancy, personal history of cardiovascular disease, positive
family history of cardiovascular death (<55y), exercise-limiting respiratory disease and
physical (i.e. musculoskeletal) complaints making completion of the 12-week training

program impossible.

The procedures were in accordance with institutional guidelines and conformed to the
declaration of Helsinki. The study was approved by the Ethics Research Committee of the
Liverpool John Moores University (18/SPS/065). Participants gave full written and verbal

informed consent before participation.

Study design

In this prospective randomized cross-over study, participants attended the laboratory on
36 separated occasions divided into four parts, see Figure 1. During the first visit, baseline
measurements were performed. Visits 2 and 3 included the actual test days to study the
acute effects of hypoxia versus normoxia on PEH. Visits 4 to 35 (training program) and
visit 36 (follow-up measurements) comprised the chronic part to study; the relationship

between PEH during the first visit versus the long-term changes in BP.
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Baseline and follow-up measurements. The measurements included determination of
height (SECA stadiometer, SECA GmbH, Germany), weight (SECA scale, SECA GmbH,
Germany), oxygen saturation (SpO,, pulse oximetry; Ana Pulse 100, Ana Wiz Ltd., UK) and
maximal oxygen consumption (VO,max). Resting heart rate (HR, Polar, Kempele, Finland)
and resting BP (Dinamap V100, GE Medical, Norway) were determined at the end of
ten minutes of quiet rest in a supine position. Resting HR was averaged over 1 minute
of continuous recording. Resting BP determination involved three serial measurements
from the right arm taken 30 seconds apart. Cuff size was adjusted to arm circumference.
A standardized maximal cardiopulmonary exercise test (CPET) for VO,max assessment
was conducted on a motorized treadmill (HP Cosmos, Nussdorf, Germany) after a 10-min
warm-up and familiarisation. The test started at a speed of 7 km/h for 3 minutes followed
by speed increments of 1 km/h every minute until subjects’ volitional exhaustion. Careful
calibration of flow sensors and gas analysers was performed before each measurement
according to the manufacturer’s instructions (Oxycon pro, CareFusion, VS). VO,max was
defined as the highest value of a 30-s average?, and attainment was verified according to

previous recommend criteria.?

Test days. Figure 1 gives an overview of the test days described below. Participants were
randomly allocated to one of two groups in a counterbalanced design and blinded for
the order of testing days. One test day was performed at normoxia (sea level, equivalent
to FiO,20.9%)) and the other test day at normobaric hypoxia (3,000m simulated altitude,
equivalent to FiO, 14.5%), separated by at least 48 hours and maximal 72 hours of rest.
Participants were subjected to 30 minutes of acclimation in seated position followed by
45-minute of high-intensity endurance running exercise on a motorized treadmill (HP
Cosmos, Nussdorf, Germany) and 60 minutes of recovery in seated position. Exercise
intensity was set by using 85% of maximal heart rate for both hypoxia and normoxia
sessions. HR, SpO, and BP measurements were performed at the end of acclimation
(baseline) and at 15, 30, 45 and 60 minutes during post-exercise recovery in the seated
position. HR was averaged over 1 minute of continuous recording. BP determination
involved three serial measurements from the right arm taken 30 seconds apart. To assess
PEH, post-exercise BP measurements were averaged to calculate the decline in BP from

baseline. Participants remained in a seated upright position with back support and BP
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measurements were obtained using an appropriately sized cuff. HR was measured
continuously throughout (Polar, Kempele, Finland), and rate of perceived exertion (RPE)
was monitored during exercise.?* Echocardiography (Vivid E9; GE Medical; Horten, Norway)
was performed at baseline and at 60 min of recovery to obtain cardiac haemodynamic
parameters (stroke volume (SV), cardiac output (CO)). Estimated TPR (TPR_) was calculated
from the echocardiography-derived estimate of CO and mean arterial pressure (MAP) at
baseline and at 60 min of recovery (TPRestzMAP/CO). Measurements were performed at
the same time at both days to control for diurnal variation, and fluid intake was controlled

by providing the same amount of water to participants during both testing days.

Training program. Following the test days, subjects took part in a 12-week normobaric
hypoxic exercise endurance-training program consisting of 2x45 minute sessions a week
in the first four weeks and 3x45 minute sessions in the last eight weeks. This running
exercise was performed on a motorized treadmill at 3,000m simulated altitude (equivalent

to FiO, 14.5%) at high-intensity (85% of maximal heart rate).

Environmental chamber and safety. All exercise tests and training sessions were conducted
in an environmental chamber (TISS, Alton, UK; Sportingedge, Bastingstoke, UK), which
was set-up by a qualified technician. Normobaric hypoxia was achieved by a nitrogen
dilution technique. Ambient temperature, carbon dioxide (CO,) and oxygen (O,) levels
were controlled in all sessions (20°C; FiO, 14.5%; CO, 0.03%), whilst a Servomex gas
analysis system (Servomex MiniMP 5200, Servomex Group Ltd., UK) was used inside
the chamber to provide the researcher continuous information regarding O, and CO,
levels. Acute mountain sickness symptoms (AMS, measured by Lake Louise Score (LLS)*)
were monitored during testing and training sessions every 20 minutes. The subject was
removed from the environmental chamber if oxygen saturation levels dropped below

80% or severe AMS was suspected (LLS>6).

Statistical analysis

Statistical analysis was performed using SPSS Statistics 24 (SPSS Inc., VS). All parameters
were visually inspected for normality and tested with Shapiro-Wilk normality tests.
Categorical variables were presented as proportions and continuous variables were

reported as mean=SD, unless indicated otherwise. A two-way repeated measures ANOVA
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was conducted to compare 1) pre- and post-exercise training data and 2) conditions.
A Greenhouse-Geisser correction was used for estimating P-values if the sphericity
assumption was violated (P>0.05, tested with Mauchly’s test). A Sidak post-hoc correction

was used to account for multiple testing.

Associations between acute PEH and chronic BP lowering effects were analysed by
Pearson’s correlation coefficient and compared using Fisher Z-transform, in which acute is
defined as the BP response to a single bout of high intensity hypoxic exercise and chronic
as the change in post-acclimated resting BP following a 12-week training program. An

alpha level of p<0.05 was accepted a priori for significance.

RESULTS

Participants were aged 22.2+3.0 years, had a body mass of 69.5£10.7 kg, a VO,max/kg of
52.4+8.1 mL/min/kg and were all normotensive (<140/90mmHg). All participants were
non-smokers. Baseline characteristics are shown in Table 1. Fifteen of the 21 included

participants completed the chronic part of the study (Table 2).

Table 1. Subject characteristics: baseline

Sex (m/f) 14/7
Age (yr) 22.2+3.0
Height (cm) 170.3+£10.4
Body Mass (kg) 69.5+10.7
BMI (kg/m2) 24.0+2.7
BSA (kg) 1.81+0.18
Resting HR (bpm) 65+8
Resting SBP (mmHg) 119+5
Resting DBP (mmHg) 69+8
Resting MAP (mmHg) 85+6
SpO2 (%) 98.4+1.2
VO,max (L/min) 3.6%0.7
VO2max/kg (mL/min/kg) 52.4+48.1
VE (L/min) 138+28
Hrmax (bpm) 199+8

Data are expressed as means+SD. m, male. f, female. BMI, body mass index. BSA, body surface
area. HR, heart rate. SBP, systolic blood pressure. DBP, diastolic blood pressure. MAP, mean arterial
pressure. SpO2, oxygen saturation. VO,max, maximal oxygen uptake. VE, ventilation.
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Table 2. Subject characteristics: baseline and post-training program

Pre Post p-value
Sex (m/f) 10/5
Age (yr) 22.0+2.4
Height (cm) 172+11
Body Mass (kg) 71.2+11.7 70.3+12.3 0.17
BMI (kg/m2) 24.0+3.0 23.6+2.7 0.14
BSA (kg) 1.84+0.19 1.83+£0.20 0.18
Resting HR (bpm) 77+10 6616 <0.001
Resting SBP (mmHg) 118+4 1139 0.02
Resting DBP (mmHg) 67+8 63+5 0.07
Resting MAP (mmHg) 84+6 80+6 0.03
VO2max (L/min) 3.7+0.7 3.9+0.8 <0.001
VO2max/kg (mL/min/kg) 52.1+£7.1 55.7+7.3 <0.001
VE (L/min) 138+29 145+34 0.002
Hrmax (bpm) 199+8 195+6 0.008

Data are expressed as means+SD. m, male. f, female. BMI, body mass index. BSA, body surface
area. HR, heart rate. SBP, systolic blood pressure. DBP, diastolic blood pressure. MAP, mean arterial
pressure. VO,max, maximal oxygen uptake. VE, ventilation.

Post-exercise blood pressure response in normoxia and hypoxia (acute study)

HR during exercise was matched in exercise sessions in normoxia and in hypoxia (173+7
bpm, 172+7 bpm respectively, p=0.23). Body mass loss (hypoxia -410+320g vs. normoxia
-410£199g, p=0.99) and water intake (hypoxia 373+228ml vs. normoxia 336+196ml,
p=0.24) during exercise did not differ between both testing sessions. Mean distance
covered during exercise was significantly higher in normoxia (6,655+1,266m) compared
to hypoxia (5,797+1,112m, p<0.001), whilst there was no significant difference in
subjective ratings of perceived exertion (RPE normoxia 12.5+1.3, RPE hypoxia 13.3+1.5;
p=0.07). SV was significantly decreased during recovery (p<0.01), whilst this decline
did not differ between hypoxia and normoxia (p=0.54) (Table 3)). Echocardiography
showed a significantly higher CO during hypoxia compared to normoxia (P<0.01), whilst
no differences were found between rest and post-exercise (p=0.09) (Table 3). TPR_ was
significantly lower during hypoxia compared to normoxia (P<0.01), whilst no difference

was found between baseline and recovery (P=0.83).
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SBP and MAP significantly decreased over time during recovery (p<0.01), while DBP did
not change (p=0.11) (Figure 2, Table 3). The mean PEH response for SBP, DBP and MAP
in normoxia were -2.6+8.5, -2.5+5.0 and -2.6+4.9 mmHg respectively, and in hypoxia
-6.2+8.4, -1.9+5.4 and -3.4+5.4 respectively. SBP, DBP and MAP did not differ between
conditions at any time point (all p>0.05) (Figure 2, Table 3). For all BP responses, there
were no significant interactions between condition and time (all p>0.05). Similar findings
were observed when post-exercise BP responses were presented as relative changes (data

not shown).
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Correlation of acute and chronic BP response (chronic study)

During the prospective intervention part of our study, 6 participants dropped-out
(motivational issues n=4; health problems unrelated to the study n=2). Participants
completed on average 30+2 training sessions (94% adherence) at an average 83.5% of
their maximum HR. These fifteen participants showed a significant increase in VO2max/kg
(52.1 to 55.7 mL/min/kg, p<0.001) (Table 2). Resting SBP, MAP and resting HR significantly
decreased (118 to 113 mmHg, 84 to 80 mmHg and 78 to 66 bpm, respectively, p<0.05)
(Table 2). Resting DBP did not significantly change (67 to 63 mmHg, p=0.067) (Table 2).
Pooled data derived from the experiments under normoxia and hypoxia indicate that the
magnitude of PEH significantly correlated with the decrease in BP after 12-week of exercise
training for DBP, SBP and MAP (Figure 3). When comparing data derived under normoxia
versus hypoxia, no significant differences were observed in the correlation between PEH
and resting BP (Fisher Z: SBP, p=0.22; DBP, p=0.35; MAP, p=0.65.
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Post-Exercise Hypotension in Hypoxia

DISCUSSION

The aim of this study was to investigate the impact of hypoxia on PEH, and whether the
magnitude of PEH relates to the BP-lowering effect of 12-week hypoxic endurance exercise-
training. We present the following findings. First, the magnitude of PEH does not differ
when exercise, matched at relative intensity, is performed under hypoxia or normoxia.
Second, the magnitude of PEH during the first exercise bout was positively related to the
magnitude of the BP-lowering effect of 12-weeks high-intensity running exercise training
under hypoxia. Taken together, our results demonstrate that hypoxia does not alter the
PEH response, whilst we reveal the close relationship between acute and chronic changes

in BP in response to high-intensity running exercise in healthy individuals.

Post-exercise hypotension in normoxia and hypoxia

Our study showed that a 45-minute high intensity running exercise bout leads to a
decrease in mean arterial blood pressure of ~3 mmHg after exercise in healthy individuals,
supporting the presence of PEH. This observation confirms findings from several previous
studies that demonstrated the presence of PEH after a variety of types, durations
and intensities of endurance exercise."" > 1> 2 However, in contrast to our hypothesis,
the magnitude of PEH was not altered by hypoxia (FiO, 14.5%). Under physiological
conditions, changes in CO and TPR lead to alterations in BP.?” After exercise, PEH seems
to be largely explained by a decrease in TPR, likely due to a combination of centrally (i.e.
arterial baroreflex resetting with inhibition of sympathetic outflow) and locally mediated
vasodilator mechanisms, which is not compensated by adequate elevations in CO.? Several
previous studies have shown that hypoxia represents a powerful vasodilator signal for
cerebral and peripheral arteries, subsequently leading to a decrease in TPR.'’*?° Despite
the decrease in TPR under hypoxia, BP and PEH did not differ between normoxia and
hypoxia, possibly because of a compensatory increase in HR and CO under hypoxia. The
elevated HR and CO under hypoxia may be explained by a preserved and well-functioning
baroreflex sensitivity in healthy young individuals under hypoxia?, or the hypoxia-induced
chemoreceptors stimulation promoting greater sympathetic activation.?*3° Interestingly,
HR recovery tend to be slower under hypoxia (Table 3), while total work done was lower
under hypoxia. These differences in HR recovery and total work may also have contributed

to the preserved PEH response under normoxia versus hypoxia.' 3! 32
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Our finding contrasts with a previous study that investigated PEH in hypoxia following
resistance exercise.?' In this study, healthy young males showed significantly lower SBP and
DBP levels 10,20 and 30 minutes post-resistance exercise in hypoxia (FiO2 13.0%) compared
to normoxia.?' A key difference with our study is that they examined resistance exercise,
compared to endurance exercise in our study. Whilst this difference in exercise mode may
explain cross-study findings, former within-subject comparisons support the hypothesis
that the mode of exercise (resistance vs endurance) does not alter the magnitude of
PEH.>33* However, none of these previous comparisons have taken hypoxia into account.
In addition, in the study of Horiuchi et al. post-exercise recovery was performed under
normoxia, making any comparisons with the previous investigations difficult, due to the
persistent influence of hypoxic stress on autonomic and haemodynamic post-exercise
responses. Future work is required to better understand the potential difference in effect

size of PEH between the different modes of exercise under hypoxia and recovery modalities.

Correlation post-exercise hypotension versus BP changes to training

The anti-hypertensive effects of regular exercise training for the general population are
well known. This study further explored the relation between PEH and the long-term
benefits of regular exercise training. The decrease of ~5mmHg in mean BP after 12-weeks
of exercise training may seem marginal, but actually exceeds that of most previous studies
examining the benefits of exercise training on BP in healthy individuals.>> Within this
context, it is important to realize that larger anti-hypertensive effects may be observed in
those with (borderline) hypertension.* Importantly, we were able to link PEH, observed
during the first session of high-intensity running exercise, to changes in resting BP after
12-weeks of exercise training. This observation provides further support that acute
changes in BP after exercise ultimately relate to long-term changes®'® An important
addition to this knowledge, is that the correlation disappeared when we related PEH (taken
after hypoxic exercise) to post-training BP assessed under normoxia. This suggests that
the BP responses to acute and chronic exercise training, despite the similar magnitude of
PEH, are related through distinct pathways. From a personalised exercise perspective, this
observation means that those with the largest decline in PEH under normoxia, even when
exercise training is performed under hypoxia, can expect the largest decline in resting BP

(under normoxia). This may contribute to further personalise strategies to lower BP.
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Limitations. A limitation is that we did not include a control group who either did not
perform exercise or performed exercise under normoxic conditions across a 12-week
period. Whilst this may have provided additional insight, this does not impact our primary
finding of our study, in that PEH is strongly related to long-term declines in resting BP. In
addition, our findings on PEH in hypoxia relate to a group of healthy young normotensive
individuals and cannot be directly extrapolated to pre-hypertensive and hypertensive

individuals, where PEH magnitude may be different.?

Perspectives

Hypoxia represents a relatively common stimulus that importantly alters the physiological
demands of the cardiovascular system during exercise compared to normoxia.
Nonetheless, we found that acute, high-intensity exercise under normoxia and hypoxia
leads to a comparable post-exercise decline in BP in healthy volunteers (i.e. post-exercise
hypotension), whilst the magnitude of post-exercise hypotension strongly relates to
the anti-hypertensive effects of exercise training. Whilst this provides novel insight into
the acute and chronic regulation of BP, the comparable effects of hypoxic and normoxic
exercise may have potential clinical relevance. Whilst both types of exercise are linked to
a similar subjective level of effort, absolute workloads with hypoxic endurance exercise
are significantly lower. This makes hypoxic exercise a suitable alternative for sedentary
and frail individuals as a non-drug antihypertensive treatment, since lower workloads
will be linked to fewer injuries and risks of exercise." 3”3 Hypoxic exercise has already
been used effectively to enhance vascular structure and function® “°, adaptive responses
in metabolic capacity’’ and glucose tolerance®, highlighting the potential of hypoxic

exercise for health improvement.

CONCLUSION

Our findings show that hypoxia does not alter the magnitude of PEH in healthy individuals,
whilst PEH relates to the BP-lowering effects of exercise. These data highlight the strong

link between acute and chronic changes in BP.
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ABSTRACT

Background.Pulmonaryhypertension (PH)is associated with high morbidity and mortality
and the predictive capacity of traditional functional echocardiographic measures is poor.
Recent studies assessed the predictive capacity of right ventricular longitudinal strain
(RVLS). Diversity in methods between these studies resulted in conflicting outcomes. The
purpose of this systematic review and meta-analysis was to determine the independent

prognostic value of RVLS for PH-related events and all-cause mortality.

Methods. A systematic search in Pubmed (MEDLINE), Embase, the Cochrane Library and
Web of Science was performed to identify studies that examined the prognostic value
of RVLS in patients with PH. Studies reporting Cox regression based Hazard Ratios (HR)
for a combined endpoint of mortality and PH-related events or all-cause mortality for
echocardiographic derived RVLS were included. A weighted mean of the multivariate HR

was used to determine the independent predictive value of RVLS.

Results. Eleven studies met our criteria, including 1,169 patients with PH (67% female, 0.6-
3.8 years follow-up). PH patients with a relative reduction of RVLS of 19% had a significantly
higher risk for the combined endpoint (HR: 1.22, 95%Cl: 1.07-1.40), while patients with a
relative reduction of RVLS of 22% had a significantly higher risk for all-cause mortality (HR:
2.96, 95%Cl: 2.00-4.38).

Conclusion. This systematic review and meta-analysis showed that RVLS has independent
prognostic value for a combined endpoint and all-cause mortality in patients with PH.
Collectively, these findings emphasize that RVLS may have value for optimizing current

predictive models for clinical events or mortality in patients with PH.
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INTRODUCTION

Pulmonary hypertension (PH) is a progressive disease with a 5-year survival rate of
approximately 50%, depending on aetiology and disease severity.' Although the aetiology
of PHrelatestoanincreased pulmonary arteryresistance, the primary cause of death relates
to right ventricular (RV) failure since the RV has to overcome the increased pulmonary
resistance in order to maintain cardiac output.? Consequently, echocardiographic
measurements of RV structure and function are routinely performed during follow-up
of patients with PH.>* Due to complex RV geometry and load dependency of the RV
functional parameters, traditional echocardiographic indices such as RV fractional area
change (RVFAC) and tricuspid annular plane systolic excursion (TAPSE), have limited

prognostic power in patients with PH.?

The introduction of speckle tracking echocardiography has allowed for the measurement
of ventricular longitudinal strain, a measure of ventricular deformation to assess specific
local and global function.® In heart failure, valvular heart disease, cardiomyopathy and
ischaemic heart disease, left ventricular longitudinal strain independently predicts future
events.® Patients with PH demonstrate a reduced RV longitudinal strain (RVLS) compared
to healthy controls, whilst several studies have examined the prognostic value of RVLS
in patients with PH.”3° These studies report a broad range of outcomes, ranging from no
significant predictive capacity to a high predictive capacity. These differences in outcome
may relate to differences in methodology between studies, such as variation in aetiology
(PH vs pulmonary arterial hypertension (PAH)), included population for HR calculation
(inclusion of healthy controls or non PH patient vs just PH patients), patient management
at time of inclusion (treatment naive vs. single or combined therapy), follow-up duration
(0.6-5.0 years), outcome parameters (morbidity vs all-cause mortality), group size (n=17 up
to n=406) and methods in which the HRs were determined (percentile change (continuous
parameter) vs a predefined cut-off point (dichotomous parameter)).” 1" 1417:21.23,24.28,29 The
heterogeneity in study designs and outcomes provide a challenge when attempting to
establish the potential prognostic value of RVLS in patients with PH. Combining these
studies in a systematic review and meta-analysis will provide clarity on the prognostic

value of RVLS in patients with PH.
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The purpose of this systematic review and meta-analysis was to determine theindependent
prognostic value of RVLS in patients with PH on PH-related events and all-cause mortality.
We hypothesize that RVLS will have independent prognostic value in PH patients for PH-

related events and all-cause mortality.

METHODS

Search strategy

A systematic search was performed with the use of the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis statement 2015 (PRISMA).>' Pubmed (MEDLINE),
Embase, the Cochrane Library and Web of Science were systematically searched for
articles published before February 1%, 2018. The following search strategy was used, with
adaptation for each database: ((((“Hypertension, Pulmonary”[Mesh]) OR ((Pulmonary
hypertension[tiab] OR Pulmonary artery hypertension[tiab] OR Pulmonary arterial
hypertension[tiab] OR PAH[tiab] OR lung arterial hypertension[tiab] OR lung artery
hypertension[tiab] ORlung hypertension[tiab])))) AND ((strain[tiab] OR deformation[tiab])))
AND ((("Prognosis”[Mesh] OR “Survival Analysis"[Mesh] OR “Mortality”[Mesh] OR
“mortality”[Subheading] OR“Hospitalization”[Mesh])) OR (Prognos*[tiab] OR Predict*[tiab]
OR Surviv*[tiab] OR Mortalit*[tiab] OR Hazard ratio*[tiab] OR Hospitalization[tiab] OR
Hospitalisation[tiab])). References of included articles were manually checked for possible

eligible studies that were missed during the literature search.

Study selection

After the initial search, duplicates were eliminated from the database. Two authors (H.H.,
G.K.) independently screened the remaining study titles and abstracts for eligibility using
the predefined inclusion and exclusion criteria (Table 1), resulting in 42 articles from

which full text was assessed (Figure 1).
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Table 1. Inclusion and exclusion criteria

Inclusion

Exclusion

Population

Pulmonary hypertension

Outcome Echocardiography

Right ventricular strain

Outcome measures

Hazard ratio’s based on multivariate cox-regression
analysis

Other

English language
Full papers

Animal studies
Paediatric studies

Receiver operating curves
Model based prediction

Language other than English
Abstract only
Conference proceedings

We included studies in which either RV free wall longitudinal strain (RVFWS) or RV global

longitudinal strain (RVGLS) was evaluated as a predictor for a combined endpoint of

mortality and PH-related events or (all-cause) mortality. We excluded those studies,

which did not perform Cox proportional hazard ratio analysis, or if the (independent)

prognostic value of RVLS in PH patients was not reported. Additionally in order to ensure

we determine the independent prognostic value of RVLS in patients with PH only, we

excluded studies which performed Cox proportional hazard ratio analysis in a population

which included non PH patients (i.e. healthy controls or suspected patients).

143



Chapter 6

[ =
<)
k=)
<
2
e
-
[=
7]
©

Records identified (n=1558):

Pubmed (n =270)
Embase (n = 764)

Web of Science (n =516)
Cochrane (n=8)

Additional records identified
through other sources (n = 0)

[ Included J [ Eligibility J [ Screening ]

Figure 1. Flow chart of study selection
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Data extraction

Data was independently extracted by two authors (H.H. and G.K.) using a predetermined
data extraction file. Differences in data extraction were resolved by consensus and if
necessary a third author was consulted (T.E.). Since all selected studies included strain,
but only one study stain and strain rate, we focused on the prognostic value of strain only.
Univariate and multivariate HR (95%-Cl), the mean RVLS for the study population and
the RVLS cutoff value for calculation of the HR were extracted from the individual studies
(Table 2). The included studies reported HRs on either a continuous scale (i.e. change in
risk per % RVLS) and/or a dichotomous scale (i.e. below/above a cut-off point). In case of a
dichotomousscale the HR should increase with a higherabsolute value (due to the negative
nature of RVLS), but as some studies investigated the beneficial effect of a RVLS value
below a certain cut-off point, we calculated the inverse HR (1/HR - [1/95%-Cl]) to ensure
homogeneous presentation of the data. Additional information gathered consisted of:
sample size, age, sex, World Health Organisation (WHO) class, New York Heart Association
(NYHA) class, the follow-up period and the clinical endpoint of the individual studies (Table
3). For assessment of study quality, data regarding the echocardiographic assessment was
gathered consisting of manufacturer, assessment software, echocardiographic window /
image, included segments, methods of optimization and usage of the guidelines. When
viable data was missing, an attempt was made to request missing data from the authors
by email (n=4 studies). Three out of four studies with missing data provided the requested

information and were included in our meta-analysis (Figure 1).
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RV Strain in Pulmonary Hypertension

Study quality

All studies included in our meta-analysis were assessed for quality using the Quality
In Prognosis Studies (QUIPS) checklist for measuring study quality by two authors
(H.H. and G.K.).22 The QUIPS checklist exists of 31 items divided over six domains; study
participation, study attrition, prognostic factor measurement, outcome measurement,
study confounding and statistical analysis and reporting. For each domain, several items
were evaluated after which the domain was scored for the presence of low, moderate or
high risk of bias. As recommended, a predefined overall rating was applied.?? Studies with
a high risk of bias score in a single domain or >3 scores of moderate risk of bias in different
domains were rated as high risk of bias and excluded from this review (Supplementary
Table 1).

Echocardiographic assessment

To ensure high quality and consistency of the RVLS measurement we only included studies
which reported adherence to the ASE guidelines for echocardiographic assessment of the
right heart® and/or chamber quantification®, used a (focused) RV apical 4 chamber view

and traced the endocardial border for RVLS determination.

Statistical analysis

Review Manager 5.3 (Cochrane Community) was used to perform a meta-analysis of the
reported multivariate HRs. The reported HRs [95%-Cl] were converted to a log (HR) and

the complementing standard error (SE) using the formula:

B In(upper boundary (95% — CI)) — In(lower boundary (95% — CI))

SE (2 +1.96)

The resulting values were inserted in the inverse variance method for calculation of HRs
using a random effects analysis to calculate the mean weighted HR [95% Cl] for all studies.
Separate analysis were performed for 1) a combined endpoint of mortality and PH-related
events and 2) all-cause mortality. To provide further insight in the relation between
RVLS and the risk for the combined endpoint or all-cause mortality, we calculated the
relative reduction of RVLS (in %) for which the HR was determined. For this purpose, we

defined the relative reduction of RVLS as: the difference between the mean RVLS of the
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PH patients above the cut-off point and the cut-off point (for dichotomous scales) or
between the mean RVLS of the PH patients and the chosen amount of change in % strain
(for continuous scales). The weighted mean relative reduction in RVLS and follow-up time
was calculated by multiplying the relative % reduction of RVLS or months of follow-up
with the number of included patients per study, after which the cumulative value was

divided by the total number of patients included in each analysis.

RESULTS

Study selection

During our search we identified 1,558 potential articles for inclusion. After removal
of duplicates, 1,155 articles remained, from which title and abstract were screened for
potential inclusion. Finally, a total of 42 studies were considered to be eligible for inclusion
(Figure 1). After carefully reading through the full-texts, we identified 12 studies that met
our inclusion criteria.”'" 1415 21.23.26.28.29 Erom these 12 studies, six provided data on all-
cause mortality® % 14152328 from which one study did not report nor provide the results
of multivariate analysis."* This study was therefore excluded from our meta-analysis.
Seven studies reported data for the combined endpoint.”101.21.26.29 One study reported
separate data for all-cause mortality and combined endpoint and was included for both
analysis.”® The remaining 11 studies included a total number of 1,169 patients with
PH. Studies included predominantly female patients (range: 56-83%), with a mean age
varying from 39 to 66 years. Details about the patient population, WHO class, NYHA class

and study design of studies that were included are summarized in Table 3.

Study endpoints

Studies that examined the combined endpoint included 821 patients with PH, with a
follow-up time ranging from 0.6-3.8 years. PH-related events varied from hospitalizations
for worsening of PH” 8 102! Jung transplantation® '* 26, atrial septostomy®, pulmonary
endarterectomy?', balloon pulmonary angioplasty?' and intensified PH medical therapy.®
' Studies that explored all-cause mortality as the primary endpointincluded a total of 399

patients with PH, with a follow-up time ranging from 2.0-3.8 years.
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Echocardiographic assessment

All studies reported that strain was calculated from 2D or 3D grey scale apical 4-chamber
orientation, whilst one study performed both 2D and 3D-strain imaging.?® Strain was
calculated with a variety of software packages (EchoPAC, GE Medical Systems, n=8; Syngo
vector velocity imaging, Siemens, n=2; 2D cardiac performance analysis, TomTec, n=1).
10 out of 11 studies determined a multivariate HR for RVFWS, while 4 out of 11 studies
determined the multivariate HR for RVGLS. Half of the studies (6 out of 11) reported the
methods applied for image optimization (i.e. adjustment of image sector width, gain
and greyscale), while 9 out of 11 studies reported a frame-rate of >40 frames/s for strain

analysis.

Combined endpoint

Seven studies adopted a combined endpoint of mortality and PH-related events and had a
mean follow-up time of 2617 months.”810.11.21.26.29 A|| but one® study revealed a significant
HR after univariate analysis. After multivariate analysis, four studies revealed a significant HR
for mortality and PH-related events”2 %%, while HR did not achieve statistical significance
in three studies.” %" ?* Combining all multivariate HRs in our meta-analysis revealed that a
relative reduction of 19% (range -5 to -31%) of RVLS significantly increased the risk (HR: 1.22,
95%Cl: 1.07-1.40) for the combined endpoint of mortality and PH-related events (Figure
2). Studies with a relative reduction below 10% of RVLS tended to be insignificant after
multivariate analysis while studies with a relative reduction larger than 10% of RVLS did

present significantly higher HR’s after multivariate analysis (Figure 2).

All-cause mortality

Using data from univariate analysis, all five studies revealed a significant increased HR for
RVLS in the prediction for future all-cause mortality after a mean follow-up time of 30+9
months. Multivariate analysis revealed that a lower RVLS was associated with a significantly
higher HR for all-cause mortality in all studies.* 152328 Combining all multivariate HRs,
our meta-analysis revealed that a relative reduction of 22% (range -10 to -33%) of RVLS
was associated with an increased risk (HR: 2.96, 95%Cl: 2.00-4.38) for all-cause mortality
(Figure 3). No clear relation between a larger relative reduction in % of RVLS and HR was

present (Figure 3).
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DISCUSSION

The purpose of this systematic review and meta-analysis was to examine whether RVLS
has prognostic value for future events in patients with PH. The key finding was that RVLS
has independent prognostic value for all-cause mortality (Figure 3). To a lesser extent,
RVLS also demonstrated independent predictive capacity for the combined endpoint of
mortality and PH-related events (Figure 2). Collectively, these findings emphasize that
RVLS is a valuable tool with independent prognostic value for all-cause mortality in PH

patients.

Impact of PH on RVLS

The thin RV walls consist of longitudinal, circumferential and oblique oriented
muscle fibers.® The free wall predominantly consists of transverse fibers with scanty
subendocardial longitudinal oriented fibers, while in the septal wall the oblique fibers
are in a helical shape?* Coiling and shortening of the helical-shaped oblique fibers
determine the shortening of the RV, producing 80% of RV systolic function. In contrast,
contraction of the transverse fibers accounts for just 20% of RV systolic function.® In a
healthy RV, contraction is therefore predominantly driven by shortening of the RV in the
longitudinal direction®*, highlighting the importance of examining RVLS** in clinical and
research scenarios. In PH, an increase in afterload influences the mechanical function of
the RV, which subsequently leads to a decrease in longitudinal shortening®, indicating
insufficient contraction and leading to a reduction of RV stroke volume. The increased
afterload forces the RV to adapt, causing either hypertrophy and/or increased contractility
to preserve function and stroke volume.®® Ultimately, however, these processes may lead
to maladaptive remodelling, which causes dilation of the chamber and altering of the
helical orientation of the oblique fibers, leading to (progressive) attenuation of function.®
This maladaptive process ultimately contributes to clinical progression and/or mortality.
The strong relation between an increase in afterload and/or ventricular maladaptation
alongside a decrease in RVLS likely explains the strong and independent prognostic value

for RVLS for all-cause mortality in PH patients.
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All-cause mortality vs. combined endpoint

Our meta-analysis revealed a lower predictive capacity for combined endpoints versus all-
cause mortality. This difference may be explained by the fact that clinical events included
in the analysis for the combined endpoint are heterogeneous and, therefore, not all events
may directly relate to strain (hence, the lower predictive capacity). Other factors than
cardiac strain (e.g. gas transfer in the lungs®) may contribute to the occurrence of these
clinical events. In addition, several studies included intensified PH medical therapy as a
combined endpoint, whilst this unlikely relates to cardiac strain. Therefore, the diversity in
clinical events included in the combined endpoint, but also the weak link between some
of these factors and cardiac strain, lowers the discriminating capacity of RVLS to predict a

combined endpoint versus all-cause mortality.

Predictive capacity vs. a relative reduction in % of RVLS

As shown in Figure 3 there is no clear relation between the relative reduction in % of
RVLS and the HR for all-cause mortality. This may be explained by the differences across
study designs. In contrast to our expectations, the three studies with the lowest relative
reduction in RVLS presented the highest HRs in the analysis for all-cause mortality.
These three studies all used a dichotomous cut-off value (between -17% and -20%) for
RVLS® ™28 which was higher than the mean RVLS value for the PH patients in the two
remaining studies (i.e. -16.1% and -15%).'> 2 The latter two studies calculated the HR per
SD-unit change in RVLS, which resulted in a lower absolute cut-off (approximately -11.1
and -10%) value and in a higher incidence of mortality in the group above the cut-off
value. In contrast to the cut-off values in the latter two studies, additional analysis to
identify the ideal cut-off value in 4 out of these 5 studies showed that an absolute cut-off
between -12.5% and -19.1% had the highest sensitivity and specificity to detect all-cause
mortality in PH patients.” %2328 This indicates that the calculated HR per SD-unit change

underestimates the predictive value of RVLS in the latter two studies.

Future direction and clinical implications

Outcomes of the present meta-analysis supports the use of RVLS in patients with PH.
Although RVLS has independent predictive value, recent strategies for predicting

mortality and events in PH patients consists of constructing multi-parameter predictive
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models* including TAPSE and/or RFVAC to increase the predictive value in PH patients.*
41 Several studies included in our meta-analysis revealed RVLS to has superior predictive
value over RVFAC and TAPSE, indicating that RVLS may be a more sensitive predictor for
RV dysfunction.® ' '> Implementing RVLS in these multi-parameter predictive models
therefore may increase their predictive value for future events. In addition to predicting
future events, a relative reduction in RVLS might be indicative for (adjustment of)
pharmacological therapy and/or surgery. Improvement of RVLS after pharmacological
therapy and/or surgery has shown to be related to lower risks for mortality and PH-
related events.'® % These data further support the use of RVLS in clinical practice, as RVLS
changes across time are associated to clinically relevant outcomes in PH patients. Future
studies determining reference values and confirming clinically-relevant cut-off values are

warranted to improve clinical decision-making and implementation of RVLS in practice.

Limitations

The studies within this meta-analysis were non-uniform in design and varied in the
inclusion criteria, methods to measure RVLS (intervendor and technique variabilities),
follow-up periods and endpoints. We corrected for these between-study variation using
a random effects model in our meta-analysis. Additionally to minimize the impact of
intervendor and technique variability we reported the relative reduction of % of RVLS
rather than absolute values. We also included studies which used RVFWS (n=7) and RVGLS
(n=1) or both (n=3) to determine the predictive value of RVLS in PH patients. Unfortunately,
the small amount of studies investigating RVGLS did not allow for a comparison between
the predictive value of RVGLS and RVFWS. Similarly, we were not able to compare data
obtained with 2D vs. 3D echocardiography and/or machines from different vendors. Due
to differences in methodology and statistical approach, not all relevant studies could
be included in our analysis. Studies using ROC-analysis'® 2% 2% 25:3% Kaplan Meier survival
curves'®1922.25 odds ratios? or predictive models'>'* ' reported outcomes that align with

the findings of the present meta-analysis.
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CONCLUSION

This systematic review and meta-analysis showed that RVLS possess independent
prognostic value for a combined endpoint (HR: 1.22, 95%Cl: 1.07-1.40) and all-cause
mortality (HR: 2.96, 95%Cl: 2.00-4.38) in patients with PH. Collectively, these findings
emphasize that RVLS might be useful for optimizing current predictive models for morality

or clinical events in PH patients.
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Right Ventricular Contractility: Invasive
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Chapter 7

Invasive right ventricular (RV) pressure-volume loop provides the gold-standard to
evaluate cardiac contractility, but also provides insight into cardiac function as increases
in preload cause a rightward shift of the loop and elevates stroke volume (and vice
versa). Echocardiography has relevance in evaluating cardiac function but also in
mechanics, specifically regarding the dynamic relationship between RV longitudinal
strain and RV area; strain-area loop." RV strain-area loop characteristics relate to afterload,
whilst characteristics hold independent predictive capacity for morbidity/mortality in
pulmonary arterial hypertension.>* Changes in preload alter cardiac dynamics that may
induce shifts in the non-invasive RV strain-area loop (similar to shifts in RV pressure-area
loops). To better understand the potential of RV strain-area loops in assessing RV function,
we compared the impact of preload manipulation on RV strain-area loop versus pressure-
area loop, and subsequently compared invasive and non-invasive assessment of cardiac

contractility.

We recruited 7 individuals (age 54+14 year, 71% female) undergoing right heart
catheterisation (to diagnose pulmonary arterial hypertension). Participants provided
informed consent prior to procedures. Study procedures were approved by local ethics
committee (Radboudumc). During catheterisation a 24-mm AMPLATZER™ Sizing Balloon
Il (AGA Medical Corporation, Plymouth, USA) was introduced into the inferior vena cava for
manipulation in preload. For direct time-point comparison between pressure, strain and
area, we simultaneously recorded invasive RV pressure and 2D-echocardiographic images:
1) at baseline, 2) after intravenous infusion of 500ml saline (to increase preload), and 3) after
intra-balloon inflation (to reduce preload). Echocardiographic data were analysed using
QLABV10.8 (Philips, Andover, USA) to measure RVLS and area (as previously described)**,
whilst RV pressure data were retrieved from Mac-Lab (GE Medical, Horton, Norway). After
preload manipulation data were recorded within 1-minute after stabilization of the signal.
Mean strain-area loops and characteristics across the time-points were compared using
one-way ANOVA.

The increase in preload caused a rightward shift of the pressure-area loop, whilst a
decrease in preload caused a leftward shift and reduced stroke volume (Figure 1).
These characteristic shifts were also present in the strain-area loop, with an increase in

preload inducing RV longitudinal strain decline and a decrease in preload causing an
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increase in peak RV longitudinal strain. The slope of the systolic phase of the strain-area
loop (i.e. Sslope) during preload elevation was significantly smaller than during preload
reduction (-1.8+0.7%/cm? vs. -2.9+0.9%/cm?, P<0.05). A potential explanation of this
finding is that as preload and stroke volume decreases there is a larger contribution of
longitudinal fiber shortening with possible less dependency on circumferential fiber
shortening to facilitate systolic volume ejection. This also may explain the paradoxical
increase in peak longitudinal strain upon preload reduction as circumferential strain may
be disproportionally decreased. Since we were not able to measure circumferential strain,
this remains speculative. It is important to acknowledge the complexity of RV function,
with changes in stroke volume potentially impacting upon various aspects of cardiac
mechanics. This makes it difficult in our study to identify a single or most important factor

explaining our observations.

Cardiac contractility is presented as the relation between end-systolic area (or volume)
versus pressure. Using the non-invasive RV strain-area loop, we explored the ability
to assess RV contractility by presenting the relation between end-systolic area versus
strain. For this purpose, we used the data before and after balloon inflation. We found an
excellent correlation between the slopes of the end-systolic pressure area-relation versus
strain area-relation (r=0.98, P<0.001). This observation provides further support for the

ability of strain-area loops to assess RV cardiac function.
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The non-invasive nature of the RV strain-area loop and its potential in assessing RV function
and mechanics may contribute in evaluating and adjusting pharmacological therapy in
pulmonary arterial hypertension patients, whereas right heart catherization is not ideal
given its expensive, time-consuming and invasive nature. Further studies are warranted to

better understand our observations, and to explore its potential (clinical) value.

Some caution must be taken when interpreting our results. The small sample size and
limitations in deriving RV-area, further studies are warranted to explore and validate
assessment of RV strain-area loops. Furthermore, this study is limited to patients
with suspicion of PAH, therefore caution is needed in extrapolating findings to other
populations. Importantly, also changes in pulmonary vascular resistance (because of
preload manipulation) may contribute to our observations. For example, a decreased
RV afterload (or pulmonary vascular resistance) is associated with an increase in RV
longitudinal strain and vice versa. Measurement of pulmonary vascular resistance was not

performed in this study.

In conclusion, this explorative study shows that a reduction in preload leads to a larger
contribution of longitudinal myocardial strain to facilitate systolic volume ejection and vice
versa. Most importantly, following comparison of the invasive RV strain-area and pressure-
area loop, we found a strong correlation in the assessment of cardiac contractility. This
suggests that both loops provide similar information, at least related to identification of

loop shifts and cardiac contractility.
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INTRODUCTION

Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease,
characterised by an increased pulmonary artery pressure, which is associated with a
poor 5-year survival-rate.! The primary cause of death is related to deterioration of right
ventricular (RV) function, caused by the inability of the RV to overcome the increased
afterload.? For this reason, drug-induced reduction of RV afterload is the cornerstone in
the treatment of patients with PAH. Selexipag (Uptravi®), an oral prostacycline-receptor
agonist, resulted in a 30% reduction in pulmonary vascular resistance (i.e. afterload) upon
17 weeks treatment.? The GRIPHON trial showed a hazard ratio of 0.60 in time to clinical
worsening after Selexipag treatment compared to placebo.* The clinical benefits of
Selexipag may relate to improvements in RV function, given the strong relation between
RV function and disease prognosis.> Nonetheless, echocardiography is rarely used in the

follow-up of patients with PAH to evaluate the impact of (pharmacological) treatment.®

Recently, we introduced a non-invasive echocardiographic assessment of the dynamic
relationship between RV longitudinal strain and RV area across the cardiac cycle, i.e. strain-
area loop.” We demonstrated that RV strain-area loop characteristics; i. relate to increasing
levels of pulmonary vascular resistance, and ii. predict clinical outcome in PAH.2'0 In this
study, we hypothesise that Selexipag-induced changes in the RV strain-area loop relate to
clinical outcomes within individuals, which may ultimately contribute to optimal patient
management. Therefore, the aim of this exploratory study was to evaluate the impact of
17-weeks Selexipag use on strain-area loop characteristics and, subsequently, relate these

outcomes to changes in clinical status in patients with PAH.

METHODS

We recruited 12 individuals (59+18 years of age, 67% female) for the study. Participants
were eligible to take part in this study if they were diagnosed with PAH (WHO group
1), were aged >18 years or older, were in NYHA class Il or Ill and the clinical pulmonary
hypertension team decided to initiate treatment with Selexipag according to current
guidelines.® Exclusion criteria were patients with pulmonary hypertension WHO group
2 to 5, usage of another prostacyclin-analog within 1 month of inclusion, moderate or

severe obstructive lung disease, severe restrictive lung disease, moderate or severe
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hepatic impairment, significant left-sided heart disease, severe renal insufficiency, BMI
<18.5 kg/m? or had a life expectancy less than 12 months. Inclusion and exclusion criteria
were according to phase Il and Ill Selexipag trials.>* The procedures were performed in
accordance with institutional guidelines and conformed to the declaration of Helsinki.
The study was approved by the Ethics Research Committee of the Radboud University
Medical Center (2018-4036). Participants gave full written and verbal informed consent

before participation.

In this prospective exploratory study, participants attended the laboratory on two separate
occasions. During visit 1, after signing informed consent, baseline echocardiographic
assessment, 6-minute walk test (6MWT), functional New York Heart Association (NYHA)
classification and a venous blood sampling were performed. After visit 1, the participant
was prescribed Selexipag. Clinical PAH nurses (NC, EJG) contacted participants for titration
of Selexipag doses weekly. 17 weeks after start with Selexipag, the participant was invited

for follow-up measurements (visit 2), during which all measurements were repeated.

Echocardiographic assessments, prior to and 17 weeks after start with Selexipag,
were performed at rest. All examinations were performed by one highly experienced
cardiologist (AvD) using a Vivid E9 ultrasound machine (GE Medical, Horton, Norway),
equipped with a 1.5-4.5 MHz transducer. Images were stored in raw digital imaging and
communication in medicine (DICOM) format and were exported to an offline workstation
(EchoPAC, version 203, GE Medical, Horton, Norway). Data analysis was performed by a
single observer with experience in echocardiography (GK). The observer was blinded for
the timing (baseline vs. follow-up) under which echocardiography was performed. Cardiac
structural and functional measurements were made according to the current guidelines
for cardiac chamber quantification.'' We examined the following structural and functional
indices: RV basal and mid-cavity end-diastolic diameters, RV end-diastolic area (RVEDA),
RV end-systolic area (RVESA), RV outflow tract (RVOT) diameter at the proximal level in the
parasternal long-axis (PLAX) and parasternal short-axis (PSAX) view, right atrial (RA) area,
RV fractional area change (RVFAC), tricuspid annular plane systolic excursion (TAPSE),
tissue Doppler imaging (TDI) of the tricuspid annulus (RV ‘s, €] a'), pulmonary artery
Doppler acceleration time (PAT) and maximum tricuspid regurgitation velocity (TR Vmax).

The pressure gradient between the RV and RA at peak systole (TR maxPG) was estimated
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using the modified Bernoulli equation: TR maxPG = 4 x (TR Vmax).? Echocardiographic
images were acquired specifically for offline speckle tracking analysis and construction
of RV strain-area loops. This involved maintaining frame rates between 40 and 90 frames/
sec, depth to ensure adequate imaging of the chamber of interest, and compression and
reject to ensure endocardial delineation. For methodology of derivations of strain-area

loops, see Kleinnibbelink et al.'?

Statistical analysis was performed using SPSS Statistics 25 (SPSS Inc., Chicago, IL, VS). All
parameters were visually inspected for normality. Continuous variables were reported as
mean = standard deviation (SD) and categorical variables were presented as proportions.
Paired-sampled T-tests were used to compare baseline and follow-up measurements.
For all tests, we assumed statistical significance at p<0.05. Sub-analysis was performed
by stratifying to clinically responders, defined by a decrease in NYHA classification, and
clinically non-responders, defined by a similar or decreased NYHA classification, following

17 weeks of treatment with Selexipag compared to baseline.

RESULTS

Between 15t June 2018 and 31 December 2020, 12 consecutive patients with PAH started
with Selexipag and participated in this study (59+18 years, 67% females, n=5 idiopathic
PAH, n=5 PAH associated with connective tissue disease, n=2 PAH associated with
congenital heart disease). A total of 4 participants dropped out (n=2 due to side effects,
n=1 follow-up performed using non-compatible echo machine, n=1 lung transplantation).
Eight participants (60+16 years, 6 females) completed the study protocol (n=3 idiopathic
PAH, n=4 PAH associated with connective tissue disease, n=1 PAH associated with
congenital heart disease) (Table 1A). At a cohort level, NYHA classification, 6MWT, NT-
PRoBNP and MDRD-GFR did not significantly change following 17 weeks of treatment with
Selexipag. Also, conventional structural and functional indices as well as characteristics of
the RV strain-area loop did not significantly change following 17 weeks of treatment with

Selexipag (Table 1A, Figure 1A).

Atanindividual level, stratification to NYHA classification revealed three clinical responders
(65+15 years, 2 females, n=3 idiopathic PAH) and five clinical non-responders (5718

years, 4 females, n=4 PAH associated with connective tissue disease, n=1 PAH associated
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with congenital heart disease) (Table 1B, 1C). The clinical responders decreased in NYHA
classification and levels of NT-proBNP, while 6MWT increased. In contrary, the non-
responders remained in the same NYHA classification, increased in NT-proBNP levels and
decreased their 6MWT. With regards to the RV strain-area loop, RV longitudinal strain and
uncoupling increased in the clinical responder group (Table 1B, Figure 1B), while in the
clinical non-responders, RV longitudinal strain decreased, and uncoupling decreased and
a leftward shift is present (Table 1C, Figure 1C). Conventional functional and structural
(with exception of RVEDA) indices did not change in both clinical responders and non-
responders (Table 1B, 1C).
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RV Strain-Area Loop following Selexipag

DISCUSSION

The aim of the present study was to explore the impact of 17 weeks of Selexipag on the RV
strain-area loop in patients with PAH and, subsequently, relate these outcomes to changes
in clinical status. The key outcome, at group level, was that treatment with Selexipag
did not change any RV strain-area loop characteristics nor did treatment change other
measures of RV function or any clinical outcomes. When stratified to clinical responders
(change in NYHA class) and non-responders, we found that the responders showed an
increase in RV longitudinal strain and uncoupling, whilst the non-responders showed a

decrease in RV longitudinal strain and uncoupling.

This is the first study exploring the effect of 17 weeks of Selexipag on RV function in
patients with PAH. Our exploratory analysis showed that, at group level, 17 weeks of
treatment with Selexipag has no impact on characteristics of the RV strain-area loop or
other echocardiographicindices for RV function. This is likely related to the heterogeneous
effects of Selexipag i.e. it did not induce (sufficient) afterload reduction in all individuals.
To support this notion, indirect echocardiographic measures associated with RV afterload
(TR Vmax, PAT, RA size) did not change following Selexipag treatment. Although
echocardiography shows moderate relation with invasive assessment of RV afterload™ ',
we cannot rule out the presence of a small effect size of Selexipag on pulmonary vascular
resistance. Nonetheless, the effect size was too small and/or the duration of follow-up too

short to induce relevant and significant effect on RV function across the population.

To further explore the impact of Selexipag, we categorized patients into responders
and non-responders using clinical outcomes. The hypothesis being that Selexipag
successfully reduced pulmonary vascular resistance, and hence improved RV function, in
clinical responders. Indeed, the reduction of RV systolic pressure (reduced TR Vmax) in
the responders demonstrates a decrease in RV afterload. The reduction in RV afterload,
subsequently, may explain the increase in peak RV longitudinal strain and greater
uncoupling of the RV strain-area loop. Indeed, previous studies have found that reduction
in pulmonary vascular resistance is associated with improvement of RV longitudinal strain
following treatment.” The greater uncoupling (in early and late diastole) of the strain-area

loop suggests a decrease in longitudinal contribution to area change in diastole compared
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to systole. In healthy subjects, compliance of the ventricle wall contributes to RV filling,
which leads to dissociation between systolic and the diastolic phase (uncoupling). Patients
with PAH present an increased RV diastolic stiffness due to (eccentric) hypertrophic
remodelling to compensate for the increased afterload. To offset for the increased stiffness,
increased relaxation in the longitudinal plane may be required to facilitate diastolic filling.
Previously it has been shown that patients with PAH had less uncoupling, and possess
therefore an increased diastolic filling drive, compared to controls.® Therefore, the greater
uncoupling in responders following Selexipag treatment may be suggestive of increased
RV compliance secondary to a reduced afterload. In contrary, the non-responders show
opposite changesin these strain-arealoop characteristics, suggesting further deterioration
of RV function in the presence of unaltered afterload. We can speculate that a further
reduction in RV compliance has led to an increased diastolic stiffness and impaired filling,
hence increased coupling and a leftward shift. Previous work has demonstrated that
coupling (as part of the RV-loop score) has independent predictive capacity for all-cause

mortality in patients with precapillary pulmonary hypertension.

Interestingly, conventional RV functional indices did not change upon treatment at
group level or respective sub-groups. Nath et al. also addressed the relation between
improvement in clinical status (NYHA classification) and change in RV function upon
pharmacological treatment (with epoprostenol) in PAH patients (n=20, 16 females).’®
They failed to demonstrate an association between a change in NYHA classification and
RV function measured with conventional indices (while RV strain was not assessed). This
suggest a potential relation between clinical responders and improvement in RV function
measured with novel echocardiographic indices such as the strain-area loop whilst absent
when measured with conventional indices. However, given the limited sample size, this

should be further explored in larger studies.

Clinical relevance. We demonstrated a potential relationship between improvement in
clinical status and improvement in RV function measured with novel echocardiographic
indices. Risk stratification and follow-up of patients with PAH is traditionally based on
clinicalassessmentusing functional NYHA classification, 6MWT and NT-proBNP assessment
as conventional echocardiographic assessment of RV function fall short. Incorporation of

a more comprehensive assessment of RV function using the strain-area loop may improve
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risk stratification and follow-up of patients with PAH. Moreover, this may facilitate early
identification of responders and non-responders upon pharmacological treatment and
support the clinician to switch, add-on or increase dosage of a drug. However, this remain

speculative and should be investigated in larger, well-powered studies.

Limitations. Some limitations warrant consideration. First, this exploratory study is limited
by its restricted sample size of n=8 and may therefore be underpowered. Second, we did
not perform right heart catheterisation preventing us to show invasive cardiopulmonary
haemodynamic data and relate to echocardiographic RV function. Third, we did only
include patients with a treatment of Selexipag. This prevents us to extrapolate our findings

in PAH patients using other pharmacological treatment.

CONCLUSION

In conclusion, this exploratory analysis showed that 17-weeks of Selexipag does not alter
RV function in all patients with PAH. However, when stratified to clinical responders vs.
non-responders, we found opposite changes in peak longitudinal strain and uncoupling
of the RV strain-area loop. Specifically, this means that responders to 17-week Selexipag
treatment also demonstrate improvement in RV systolic and diastolic function, while such
improvements are absent (or even deteriorated) for RV function in PAH patients that do
not demonstrate clinical improvement. This suggests that improvement in RV function

may translate to a clinical benefit upon 17-week Selexipag treatment in patients with PAH.
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Chapter 9

ABSTRACT

Importance. Although exercise-based cardiac rehabilitation (CR) improves exercise
capacity, quality of life and improves symptoms in patients with primary pulmonary

hypertension (PH), little is unkown whether CR improves survival in patients with PH.

Objective. To assess the association between exercise-based CR and mortality in patients

with primary PH.

Design, Setting, and Participants. In this retrospective observational cohort studies,
patients with primary PH (aged >18 years) undergoing exercise-based CR and a propensity
score-matched controlled without exercise-based CR were identified using anonymized
data within a large electronical medical record of TriNetX, a global federated health
research network with access to EMRs from participating academic medical centres,

specialty physician practices, and community hospitals.
Exposure. Exercise-based CR versus no exercise-based CR (controls).
Main Outcomes and Measures. 1-year mortality and hospitalisation.

Results. We included 632 PH patients and 632 propensity-matched controls. Groups did
not differ in age, sex, race, comorbidities, cardiovascular medication or cardiovascular
procedures (all p>0.05). CR was associated with a significantly lower 1-year mortality
compared to controls (13.9% versus 21.0%; OR 0.60, 95% Cl 0.45-0.81). CR was not related
to different re-hospitalisation (OR 0.93, 95% Cl 0.75-1.16), with re-hospitalisations rates of
55.4% in PH patients receiving CR and 57.1% in the controls.

Conclusion and Relevance. This study, consisting of 1,264 patients with primary PH,
suggests that CR is associated with 40% lower odds of 1-year mortality, when compared

to propensity score-matched patients without CR or exercise programmes.
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INTRODUCTION

Despite introduction of pharmacological therapies to improve outcomes of pulmonary
hypertension (PH), poor long-term survival remains present.' This highlights the need
for alternative strategies to improve survival and lower morbidity, and to subsequently
improve quality of life and lower socioeconomic costs. One such strategy relates to
regular exercise training or prescription of cardiac rehabilitation (CR). A recent European
Respiratory Society (ERS) statement in this journal highlighted the potential of CR for
PH patients.? Specifically, CR improves exercise capacity, quality of life and improves
symptoms (NYHA classification) and currently holds a class lla recommendation.> 3
However, improvement of these outcomes have been observed only after relatively short
time periods (3-4 months) and, more importantly, no study has examined the association
between CR and mortality in PH patients. This latter aspect was identified as a key future
challenge in the ERS-statement.? Although prospectively designed randomized clinical
trials (RCTs) are preferred in this context, practical difficulties related to sample size,
recruitment, and prolonged follow-up are important challenges. Therefore, adopting a
retrospective observational study using a large electronic medical record (EMR) database,
the objective of this study was to compare mortality between patients with primary PH
with CR or exercise programme versus a propensity-matched control group of PH without
CR or exercise programmes. We hypothesized that primary PH patients undergoing CR or
exercise programmes are associated with lower mortality rates compared to primary PH

patients without CR or exercise programmes.

METHODS

The retrospective analysis was conducted on December 14, 2020 using anonymized data
within TriNetX, a global federated health research network with access to EMRs from
participating academic medical centres, specialty physician practices, and community
hospitals, predominantly in the United States. Patients with PH were identified via Centers
for Disease Control and Prevention (CDC) coding using ICD-10-CM code 127.0 primary
pulmonary hypertension. All patients were aged >18 years with primary PH recorded in
EMRs at least 18-months before the search date to allow for 1-year follow-up from CR.
CR was identified from ICD-10-CM code Z71.82 (Exercise counselling), HCPCS code S9472
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(CR program, non-physician provider, per diem), or CPT code 1013171 (Physician or other
qualified health care professional services for outpatient CR). Correspondingly, these CR-
related codes were excluded in the propensity score-matched controls. At the time of the
search, 27 participating healthcare organizations had data available for patients meeting
the study inclusion criteria. Thus, following propensity score matching, the cohort
consisted of patients with primary PH, who either were referred for CR or did not receive
CR (control). Information on 1-year mortality was also retrieved from the data set. As an
exploratory aim, we also compared re-hospitalisation between patients with primary PH

who were referred for CR or did not receive CR.

Baseline characteristics were compared using chi-squared tests or independent-
sample t-tests. Using logistic regression, patients with PH with an EMR of CR were 1:1
propensity score-matched with PH patients without CR for age, sex, race, diseases of
the respiratory system, disease of the circulatory system, hypertensive disease, heart
failure, diabetes mellitus, chronic kidney disease, cerebrovascular disease, cardiovascular
procedures (e.g. cardiography, echocardiography, cardiac catheterization, cardiac
devices, electrophysiological procedures), and cardiovascular medications (e.g. beta-
blockers, antiarrhythmics, diuretics, antilipemic agents, antianginals, calcium channel
blockers, ACE inhibitors). These variables were chosen because they are established risk
factors for mortality or were significantly different between the two cohorts. Logistic
regression produced odds ratios (OR) with 95% confidence intervals (Cl) for mortality and
hospitalisation at 1-year following PH diagnosis, comparing CR with propensity score-

matched controls. Statistical significance was set at p<0.05.

RESULTS

In total, 70,875 and 637 patients with primary PH met the inclusion criteria for the control
group and the CR and exercise cohort, respectively. Compared to controls, the CR and
exercise cohort were older, had less females, and reported more comorbidities (Table
1). Following propensity score-matching, cohorts were well balanced for age, race, sex,

comorbidities, cardiovascular medications and cardiovascular procedures (p>0.05; Table 1).

Using the propensity score-matched cohort, and excluding patients with outcomes

outside the measurement window, mortality at 1-year from CR was proportionally lower
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with mortality of 13.9% (n=87 of 628 patients) in the CR and exercise cohort compared
t0 21.0% (n=133 of 632 patients) in the controls (OR 0.60, 95% Cl 0.45-0.81). There was no
significant effect on re-hospitalisation (OR 0.93, 95% Cl 0.75-1.16), with re-hospitalisations
rates of 55.4% (n=350 out of 632 patients) in the CR and exercise cohort, compared to

57.1% (n=361 out of 632 patients) in the controls.

Table 1. Baseline characteristics % (n)* of the primary PH populations with and without CR before
and after propensity score matching.

Initial populations Propensity score matched
populations
Primary PH Primary  P-value PrimaryPH Primary P-value
withoutCR  PH with CR without CR PH with CR
(n=70,875) (n=637) (n=632) (n=632)
Age (years), mean (SD) 62.0 (14.5) 60.0 (20.7) 0.01 62.7 (14.5) 62.2 (14.3) 0.51
Female 62.8 (43,467) 43.9(279) <0.0001 43.5(275) 44.1 (279) 0.82
Race®
White 63.6 (43,997) 71.2(452) <0.0001 73.3(463) 71.4(451) 0.45
Black or African American 21.6 (14,961) 19.7 (125) 0.24 20.3(128) 19.8 (125) 0.83
Asian 1.8(1,214) 1.7(11) 0.97 1.6 (10) 1.7(11) 0.83
Unknown 12.7 (8,769) 5.8 (37) <0.0001 4.6 (29) 5.8(37) 0.31
Diseases of the circulatory 71.2(49,286) 99.7(633) <0.0001 99.2(627) 99.7 (630) 0.26
system
Diseases of the respiratory 46.3(32,021)  85.0(540) <0.0001 86.6(547) 85.0 (537) 0.42
system
Hypertensive Diseases 43.2 (31,959) 83.9(533) <0.0001 86.2(545) 83.9 (530) 0.24
Heart Failure 27.6(19,076)  80.0(508) <0.0001 78.6(497) 79.9 (505) 0.58
Diabetes Mellitus 21.5(14,878) 47.7 (303) <0.0001 48.9(309) 47.6 (301) 0.65
Chronic Kidney Disease 14.9(10,318) 424 (269) <0.0001 44.8(283) 42.6 (269) 0.43
Cerebrovascular Diseases 9.1 (6,291) 27.7(176) <0.0001 27.8(176) 27.5(174) 0.90
Cardiovascular Procedures® 47.1 (32,568) 97.3(617) <0.0001 97.6(617) 97.3(615) 0.72
Cardiovascular Medications® 56.3 (38,974) 95.1(604) <0.0001 94.5(597) 95.1 (601) 0.61

*Values are % (n) unless otherwise stated. Baseline characteristics were compared using a chi-
squared test for categorical variables and an independent-sample t-test for continuous variables.
Data are taken from structured fields in the electronic medical record systems of the participating
healthcare organizations, therefore, there may be regional or country-specific differences in how
race categories are defined. Cardiovascular procedures include cardiography, echocardiography,
catheterization, cardiac devices, electrophysiological procedures. “Cardiovascular medications
include beta-blockers, antiarrhythmics, diuretics, antilipemic agents, antianginals, calcium channel
blockers, ACE inhibitors. CR; cardiac rehabilitation and exercise programmes, SD; standard deviation.

189



Chapter 9

DISCUSSION

Confirming our hypothesis, we provide the first evidence that CR in patients with PH is
associated with significantly lower 1-year mortality compared to patients who did not
receive CR. Specifically, PH patients who were prescribed CR demonstrated 40% lower
odds of 1-year mortality. Previous RCTs showed improvement in exercise capacity,
symptomatology, and quality of life after a relatively short-term follow-up (3-15
weeks).*'"® However, whether these surrogate endpoints are associated with outcomes in
PH has never been demonstrated.” '? Our data suggests CR and exercise programmes
may ultimately translate to clinically meaningful improvements in mortality. The poor
long-term survival in PH, which also is demonstrated in the high 1-year mortality rate
in this cohort of 21%, stresses the urgency of adding CR and exercise to existing (non)-
pharmacological treatment to further improve survival. Facilitated through improved
digital registration, this retrospective cohort study represents a useful and feasible
alternative to the extremely challenging and demanding prospectively designed studies.
Nonetheless, our unique observations highlight the need to confirm the potential of CR

to reduce mortality, using RCTs.

Some limitations warrant consideration. First, characterization of disease states and
therapy were based on ICD-codes, which may vary between healthcare organisations.'*
Along these lines, distinction was made between primary PH (i.e., caused by disease of
the pulmonary arteries) and secondary PH (i.e., secondary to other, non-vascular causes)
rather than the current WHO-classification for PH into group 1 to 5.2 Given the complexity
of PH phenotypes, some PH patients labelled as 'secondary PH’may also have a variant of
primary PH. As CR is beneficial for secondary causes of PH, such as cardiovascular diseases
and risk factors, the exclusion of these individuals does not necessarily alter the strength
of our findings. A second limitation is that we were unable to evaluate characteristics of
CR and/or adherence to CR, which limits the ability to identify successful factors of CR
to reduce mortality. Third, although we matched patients for important co-morbidities
and demographic factors, residual confounding and the relatively modest sample size
should be considered. Finally, we were unable to evaluate the potential effect of CR on
morbidity, primarily because of too small sample sizes of subgroups that were available

forindividual co-morbidities (e.g. stroke, myocardial infarction, heart failure). The relatively
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small sample size may also explain why we could not detect a significant effect of CR on
hospitalisation, despite the lower absolute prevalence of re-hospitalisation and OR in PH

patients undergoing CR.

CONCLUSION

In conclusion, the present study of 1,264 patients with primary PH suggests that CR is
associated with 40% lower odds of 1-year mortality, when compared to propensity
score-matched patients without CR or exercise programmes. This novel data on clinical
outcomes highlights the potential of CR and urgency of appropriately powered RCTs to

investigate the causal effects of prescription of exercise as medicine for patients with PH.
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Chapter 10

During the past two decades, the right ventricle (RV) has received increasing scientific
and medical interest. Although the importance of imaging and assessing RV structure
and function is clear in multiple clinical scenarios, use of non-invasive echocardiographic
techniques to follow-up patients with pulmonary hypertension (PH) is limited. Likewise,
RV structure and function in the athlete’s heart has been studied to aid differentiation
from cardiomyopathies, such as arrhythmogenic RV cardiomyopathy, that increase the
risk of sudden cardiac death and could be identified in pre-participation screening or
secondary care. The general aim of this thesis was to investigate the acute and chronic
effects of load challenges, either induced by pathological (e.g. PH) or physiological stimuli
(e.g., exercise), on RV structure, function and mechanics. For this purpose, we have used
novel echocardiographic techniques, namely speckle tracking echocardiography and the
strain-area loop. In this final chapter, we will discuss and integrate the findings of this

thesis with the existing literature and any future directions for research.

10.1 - Relevance of evaluation during and post-acute exercise

For many decades, cardiopulmonary exercise testing has been used to evaluate
cardiovascular conditions, providing information on exercise capacity, heart rate (and
rhythm) and blood pressure during exercise.'” Exercise testing may have even further
potential for clinical use in the diagnosis or prognosis of cardiovascular disease. Indeed,
following an acute bout of exercise, a temporary increase of cardiac biomarkers is found
(e.g. troponin and natriuretic peptide [BNP])*, but also a reduction in systolic cardiac
function (i.e. exercise-induced cardiac fatigue [EICF])°> or decrease in blood pressure (post-
exercise hypotension [PEH])® (Figure 1). Interestingly, exercise-related changes in these
markers may have clinical potential as the magnitude of these exercise-induced changes
seem to relate to clinical outcomes.” To further explore the potential of exercise-induced
changes, in this thesis, we evaluated cardiac function during exercise to evaluate EICF
(Chapter 2) and further investigated the relevance of PEH (Chapter 5). Findings of these
chapters will be discussed below to support the wider use of measures of cardiovascular
function during and post-exercise for improved (patho)physiological insight and clinical

use.
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Figure 1. The relation between acute cardiac responses and chronic cardiac responses to exercise.
Acute exercise leads to (A) an increase in cardiac function, (B) exercise-induced cardiac fatigue or (C)
post-exercise hypotension. In this thesis, we investigated the acute and chronic effects of exercise
on the cardiovascular system. Specifically, we investigated (A) the associations between exercise-
induced increase in cardiac function and cardiac remodelling to exercise training (Chapter 3,
discussion paragraph 10.2), (B) the effect of hypoxic exercise on and value of stress echocardiography
in the assessment of exercise-induced cardiac fatigue (Chapter 2, discussion paragraph 10.1.1) and
speculated on its potential meaning (discussion paragraph 10.1.1) and (C) the associations between
post-exercise hypotension and chronic blood pressure reduction to exercise training (Chapter 5,
discussion paragraph 10.1.2).

199

10



Chapter 10

10.1.1 - Exercise-induced cardiac fatigue

In Chapter 2, we investigated the impact of a bout of 45 minutes high-intensity running
exercise under hypoxia versus normoxia on EICF in a randomized cross-over design in 21
healthy individuals. Interestingly, one of our observations was that EICF was only present
when measured during a low-to-moderate exercise challenge (stress echocardiography)
and not at rest (Figure 2). Similarly, several studies did not observe any signs of EICF at rest
following short duration and prolonged bouts of exercise in both the RV and LV."*'¢ In the
context of our novel finding, it could be hypothesized that these studies may have detected
EICF when using stress echocardiography. For example, researchers in our laboratory did
not detect any deterioration of RV and LV function following prolonged single and three-
day walking exercise in 10 cardiac patients and 10 age- and sex-matched healthy controls
suggesting absence of EICF."® However, close inspection of the post-exercise heart rate
and blood pressure data advocates a (para)sympatheticimbalance. Namely, a higher heart
rate and lower blood pressure was observed post-exercise compared to baseline. These
inequalities may have biased the evaluation of EICF and masked the actual presence of
EICF (if assessed during exercise). By adopting a design where evaluation during exercise is
integrated, a potential bias of (para)sympathetic imbalance could be prevented. Recently,
others proved the value of stress echocardiography in the evaluation of the athletes’
heart. Stress echocardiography has a better discriminatory capacity to differentiate
physiological from pathophysiological conditions compared to rest echocardiography

and has the ability to unmask any potential cardiac dysfunction.'”"*

These novel insights contribute to the rationale that evaluation of cardiac function
during the haemodynamic stress of exercise has additional value compared to evaluation
at resting conditions only. Namely, such evaluation would improve its sensitivity and
discriminative capacity between different types, modes or intensities of exercise. Such as
an athlete is judged by his or her performance during competition, functioning of their

hearts should also be judged during exercise.
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Figure 2. Exercise-induced cardiac fatigue after a bout of 45-minutes high-intensity running
exercise is not present when evaluating with rest echocardiography but present when evaluated
with stress echocardiography.

Meaning of exercise-induced cardiac fatigue

Itis currently unclear whether EICF is a physiological or pathophysiological phenomenon.
It has been hypothesized that excessive exercise training (training which is too intense and/
or recovery is too short) leads to repetitive occurrence of EICF that may act as a stimulus
for maladaptive remodelling (Figure 1B).> ° However, associations between these acute
exercise changes and long-term cardiovascular changes remain unknown. To understand
this link, studies need to adopt a prospective design in a large cohort of individuals.
However, besides studying the direct association between EICF and long-term outcome, it
is important to examine the direct (patho)physiological mechanism involved. In Chapter
2, we demonstrated that an additional RV afterload, induced by hypoxia (FiO2 14.5%),
did not exaggerate EICF after 45 minutes of high-intensity running exercise. This suggests
that (after)load dependency may be less important as a contributing factor to EICF in
short duration exercise as previously suggested.?" 22 Other suggested factors that may be

implicated in the development of EICF are subclinical levels of cardiomyocyte damage?*

201

10



Chapter 10

24, oxidative stress?, f-adrenergic receptor downregulation in response to sustained
elevations in circulating catecholamines?® ?” and post-exercise alterations in loading and
heart rate.® These factors may have independent or synergistic roles in the development
of EICF. These mechanisms remain poorly understood. One potential explanation is a lack
of EICF studies which specifically address this question, possibly due to the field-based
(and entirely human model) setting in which EICF was studied. This limits studies to
control for a single factor contributing to the development of EICF. Nevertheless, EICF is
highly likely to be multifactorial. This thesis shows that with use of environmental factors
(i.e. hypoxic environment), a controlled study to a specific mechanism of EICF can be
conducted. Further research should not only investigate the direct relation between EICF
and long-term outcome but also investigate these multifactorial causes, ideally per single
factor, to develop a greater understanding of the (patho)physiological mechanisms and
nature of EICF.

10.1.2 - Post-exercise hypotension

Evaluation of blood pressure during or following exercise may have clinical relevance.
Usually, blood pressure will drop temporarily post-exercise, for several hours to days, and
is typically referred to as post-exercise hypotension (PEH).5 % 2 This may be explained by a
decreasein total peripheral resistance which is not compensated by adequate elevationsin
cardiac output. In Chapter 5, we demonstrated that the magnitude of PEH during the first
bout of 45-minute high-intensity running exercise was positively related to the magnitude
of the BP-lowering effect of 12-weeks high-intensity running exercise training under
hypoxia (Figure 1C). This is in line with previous studies that showed that the magnitude
of PEH relates to the blood pressure lowering effect of exercise training in healthy and
pre-hypertension middle-aged individuals.® 33! Previously, it was demonstrated that a
hypertensive blood pressure response during exercise predicts future development of
hypertension in young athletes and predicts cardiovascular death in middle-aged men.3>
3These observations underscore that studying the cardiovascular system during and after
the haemodynamic stress of exercise provides a wealth of valuable information. Although
further work is required, presence of PEH may be used as a proxy to identify ‘responders’to
the blood pressure lowering effects of exercise training. Such approaches may contribute

to personalised healthcare and enlarges successes of treatment strategies.
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10.2 - Relation between acute cardiac responses to exercise and
subsequent cardiac remodelling

It is well established that chronic exercise will lead to physiological cardiac remodelling
such as chamber enlargement and hypertrophy.3** The substrate for cardiac remodelling
is the repetitive exposure to haemodynamic stress during acute bouts of exercise.
Therefore, by implication, the acute cardiovascular changes in haemodynamics may
be related to this chronic remodelling. Although acute and chronic exercise responses
are highly relevant research topics, relatively little research has assessed the association
between acute cardiac responses and chronic cardiac remodelling. Hulshof et al. studied
the direct relationship between acute changes in cardiac haemodynamics and chronic
remodelling.* They demonstrated that uncoupling of the LV strain-volume loop is related
to reverse LV remodelling in a cohort of 30 patients undergoing aortic valve replacement
due to a severe stenosis. In line with this work, we tested the hypothesis whether baseline
acute cardiovascular responses to exercise are related to chronic cardiac remodelling
(Chapter 3). We included 21 participants of whom 15 completed a 12-week training
programme. In order to increase RV afterload®”-3, the training programme was performed
under hypoxic conditions (FiO, 14.5%) to induce RV remodelling after a relatively short
period of training. Indeed, we succeeded in inducing RV remodelling after 12 weeks
hypoxic exercise training. At baseline, we performed stress echocardiography, at low-to-
moderate intensity exercise, to explore cardiac responses to acute exercise. Interestingly,
we found that augmentation in RV fractional area change to acute exercise was related to
the increase in RV size following exercise training (Figure 1A). This association between
the pre-training augmentation in RV fractional area change to acute hypoxic exercise
and RV remodelling after 12 weeks of hypoxic training substantiates that acute cardiac

responses of the RV to exercise are related to subsequent RV remodelling.

It has been hypothesized that repetitive exposure to high volumes of exercise may lead to
maladaptive remodelling of the RV with a phenotype similar to that seen in patients with
arrhythmogenic RV cardiomyopathy.?* 32 There is a lack of empirical, prospective data to
explore this theory. The concept explored in this thesis, i.e. exploring cardiac responses
to exercise and their relation with subsequent cardiac remodelling, may be a potential

strategy for future studies aiming to better understand this cardiac (patho)physiology.
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10.3 - Acute and chronic exercise: right does not mirror left

La Gerche et al. stated: “cardiac output is only as good as your worst ventricle”.** This means
that both ventricles, rather than just the LV, can serve as the potential Achilles’ heel, and
that both should be examined separately in relation (and in conjunction) to acute and

chronic exercise responses.

10.3.1 - Exercise-induced cardiac fatigue

EICF may affect the RV and to a lesser extent the LV. It has been hypothesized that the
disproportionate increase in end-systolic wall stress in the RV, when compared to the
LV, during exercise explains the difference in presence and magnitude of EICF in both
ventricles.?" 2 In Chapter 2, we demonstrated that EICF occurred to the same extent in
both RV and LV. One other study reported similar reductions in cardiac function post-
exercise?? while others showed reductions in cardiac function to a greater extend in the
RV compared to the LV.2* % These differences may be explained by difference in sport
discipline, participant characteristics, exercise intensity or duration. Nevertheless, the
magnitude of EICF is greater in the RV compared to the LV in the majority of the studies.
This indicates that not only in-exercise responses vary between both ventricles but also

affects both ventricles to a different extent (i.e. right does not per se mirror left).

Association of exercise-induced cardiac fatigue with level of training

A gap in the literature is the effect of the level of training on the magnitude of EICF. Whilst
some have attempted to compare participants with lower or higher cardiorespiratory
fitness (cross-sectional design) little data exists exploring prospective intervention studies
that directly alter fitness.”? The data of Chapter 2 and Chapter 3 are suited to address this
question as we performed rest and stress echocardiography prior to and post a 12-week
hypoxic training program. In this cohort, 15 individuals (N=6 drop-outs) completed the
training program and significantly increased their cardiorespiratory fitness. Both RV free
wall and LV global longitudinal strain significantly reduced post-exercise (RV: E, p<0.001;
LV: E, p<0.001) but did not differ in magnitude following the 12-week training program
compared to baseline (RV: E*T, p=0.36; LV: E*T, p=0.25) (Figure 3, Table 1). Also, when
observing with stress echocardiography, there was no difference in magnitude of the EICF

(RV: E*T*S, p=0.89; LV: E¥*T*S, p=0.28). This exploratory analysis suggests that the changing
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training status, specifically via 12-weeks of high-intensity hypoxic running exercise, does
not influence the magnitude of EICF. Future research, in larger populations, is warranted

to confirm these findings.
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Figure 3. (A) RV longitudinal free wall strain and (B) LV global longitudinal strain pre- and post
45-minute high-intensity running exercise prior to and post a 12-week hypoxic training.
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10.3.2 - Cardiac remodelling to exercise training

Based on the disproportionate end-systolic wall stress experienced by the RV during
exercise?, it has been hypothesized that chronic exercise-induced remodelling may
also disproportionally affect the RV. In Chapter 3, we studied the effect of a 12 weeks
hypoxic high-intensity running exercise programme on cardiac remodelling in healthy
individuals. Indeed, we observed RV structural remodelling (increase in RV dimensions)
but no LV remodelling, that supports previous data and theory. Another prospective study
by Arbab-Zadeh et al. showed that after 12 months progressive and intensive marathon
training in 12 previously sedentary subjects (mean age, 2946 years), the RV increased in
size during the initial 3-month training period.*® The LV, however, only started to remodel

after 6 months of training.

In contrast to these observations, in less trained individuals, an increase in training volume
in already highly-trained Olympic rowers induced LV but not RV structural remodelling
(Chapter 4). These findings contrast with other studies performed in elite athletes.* *°
D'Ascenzietal. reported seasonal variation in RV size in a cohort of top-level basketball and
volleyball players where RV remodelling occurred from pre- to mid-season but plateaued
towards the end of the season.®® Across three consecutive Olympic Games, Aengevaeren
etal noted that RV remodelling occurred between the first two Olympics Games, followed
by a plateau during the subsequent 4 years in a heterogeneous group of athletes (n=50,
17 different sports).* Data from these two studies suggests that once these athletes
reach a specific level of training, the RV does not continue to remodel having potentially
reached a plateau. This may explain why we did not find RV remodelling despite a gradual

increase of training volume over 9 months in the cohort with Olympic rowers (Chapter 4).

In combination, these data suggest that when an untrained individual starts to exercise,
the primary cardiac response will be RV remodelling, with LV remodelling occurring later
in the training exposure. Once the individual reaches a higher level of training changes
in the RV will slow or stop but the LV may continue to adapt or remodel. This hypothesis
of structural cardiac remodelling pattern suggests that the RV and LV do not mirror each

other and remodel differently to chronic exercise. This hypothesis is outlined in Figure 4.
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Cardiac structural remodelling pathway hypothesis

Highly trained individual:
The RV reaches a plateau,

. . whereas the LV continues to remodel
Untrained individual:

First the RV starts to remodel,
then the LV will follow

l LV
RV

Ventricular size ——p

Level of training =—p>

Figure 4. Structural cardiac remodelling to exercise hypothesis. When a relatively untrained
individual increases their exercise training volume, the RV start to remodel earlier than the LV.
When an individual reaches a more trained status the remodelling of the RV will flatten and finally
plateauing whereas the LV will continue to remodel.

Sex differences in cardiac remodelling to exercise training

Although some cross-sectional studies show sex differences between the female and
males athlete’s heart, prospective longitudinal studies are lacking.>">? To our knowledge,
we explored potential sex differences in cardiac remodelling to the same exercise training
for the first time in human individuals (Chapter 4). We demonstrated that an increase in
exercise training volume induced significantly larger structural LV remodelling in female
elite rowers compared to their male counter peers. Possible explanations for the distinct
remodelling may be hormonal, molecular and/or genetic mechanisms. A recent study
by Olah et al. presented similar findings in a rat model of cardiac hypertrophy.>* These
findings should be confirmed in larger prospective cohort studies in human individuals.
Female athletes are concerningly underrepresented in current sports and exercise
medicine literature.> This sex-specific publication bias of the athlete’s heart might impede
the external validity of current knowledge onto female elite athletes and thus stresses

the importance of highlighting any between-sex differences. Given the importance of
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this topic, we are currently performing a systematic review regarding sex differences in
the elite athlete’s heart titled: ‘The elite athlete’s heart - do men and women demonstrate
different cardiac adaptations?’. With this overview, we aim to pave the way for conduction

of large studies addressing sex differences in cardiac remodelling to exercise training.

Novel methods to assess cardiac remodelling

Over the years novel imaging techniques have been introduced to measure cardiac
structure and function. One such technique is the novel strain-area loop which has the
ability for comprehensive analysis of cardiac function, including mechanics.>> ¢ In this
thesis, we applied this strain-area loop to assess cardiac remodelling to exercise training
for the first time. In Chapter 3, we showed that exercise training induced a rightward shift
(increased end-diastolic area), lessening of the systolic slope and reduced uncoupling of the
RV strain-area loop. These changes suggest that with an increased RV size following exercise
training, the contribution of longitudinal strain to systolic volume ejection lowers. Thereby,
the longitudinal contribution to diastolic filling compared to systolic volume ejection will
be more dominant. In contrast to these changes, we did not observe any changes in the RV
aftera 9-month increase in training volume in Olympic rowers; neither in the strain-area loop
nor in conventional structural echocardiographic measurements (Chapter 4). This might
indicate that a change in mechanics, measured with the strain-area loop, is not an isolated
process but merely a consequence of cardiac structural remodelling due to exercise training
and may be influenced by baseline training status. These novel insights with the strain-area
loop in cardiac remodelling to exercise training substantiates its use to gain greater insight

into the (patho)physiological process of cardiac remodelling to exercise training.

10.4 - Strain-area loop and exercise-based cardiac rehabilitation in
cardiovascular disease

Monitoring patients with PH is predominantly based on subjective rather than objective
parameters. The echocardiographic RV strain-area loop may be a suitable technique to
incorporate in daily clinical practice and contribute to personalised medicine for the PH
patient. It is also relevant to say that exercise-based cardiac rehabilitation (CR) may be
beneficial in patients with cardiovascular disease and could also contribute to personalised

medicine.
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10.4.1 - Strain-area loop in pulmonary hypertension patients

In a meta-analysis in this thesis (Chapter 6), we demonstrated that peak RV longitudinal
strain has independent prognostic value for a combined end-point and all-cause mortality
in patients with PH (Figure 5). Recently, Hulshof et al. confirmed this independent
prognostic value of peak RV longitudinal strain and demonstrated that the RV strain-area
loop holds (independent) predictive capacity for all-cause mortality in pulmonary arterial
hypertension patients (Figure 5).” Moreover, they showed the ability of the RV strain-area
loop to reclassify high-risk patients to intermediate-risk.>” In another study, Hulshof et al.
demonstrated that characteristics of the strain-area loop are related to afterload in PAH
patients (Figure 5).%8 In this thesis, we continued to apply this novel echocardiographic
technique in PAH patients. We explored the acute and chronic cardiovascular responses
to haemodynamic changes induced by invasive manipulations and pharmacological
treatment. Specifically, in Chapter 7, we investigated the effect of acute preload
manipulation on seven patients with suspected PAH on the strain-area loop (Figure 5). We
showed that the non-invasive RV strain-area loop provides similar information compared
to the invasive pressure-area loop with regards to loop shifts and the assessment of
cardiac contractility. These findings show the potential of the non-invasive strain-area
loop to comprehensively assess RV cardiac function and mechanics. These abilities may
contribute to a potential clinical value in the risk assessment, evaluation and adjusting

pharmacological therapy in PAH patients.

In Chapter 8, we tested the hypothesis whether the strain-area loop is able to detect
changes after Selexipag induced afterload reduction (Figure 5). In this explorative study,
we demonstrated that Selexipag induced afterload reduction does not result in any
changes in characteristics in the RV strain-area loop. However, when stratified to clinical
responders (decreased NYHA classification) vs. non-responders (similar or decreased NYHA
classification), we found a distinct effect of Selexipag on cardiac function between the two
groups. Specifically, clinical responders showed an increase in RV longitudinal strain and
uncoupling while the non-responders showed a decrease in RV longitudinal strain and
uncoupling. Despite the low sample size, these pilot data suggest that changes in clinical
status may relate to (changes in) RV function. This highlights the potential use of non-

invasive echocardiography for patients with PAH to improve and personalise treatment.
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Obviously, the clinical relevance should be evaluated in a larger cohort consisting of PAH
patients who start with or switch afterload reducing pharmacological treatment. At least,
in combination with previous studies by Hulshof et al.>’:%8, this thesis shows the potential
of the RV strain-area loop in evaluating patients with PH (Figure 5). Currently, methods
to produce strain-area loops are based on manually drawing monoplane volumes. To
incorporate the RV strain-area loop in daily clinical practice, development of currently

used method to semi-automated strain-area loops would accelerate this process.
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General Discussion

10.4.2 - Combining exercise and cardiovascular disease

The work in my thesis has importantly contributed to a better understanding of acute and
chronic responses of the cardiovascular system to exercise. To further elaborate on this,
“exercise as medicine” has been one of the cornerstones in the (primary and) secondary
prevention in the treatment of cardiovascular disease as it improves exercise capacity,
health-related quality of life, and reductions in hospital admissions.>*' However, the
direct association between exercise-based CR and mortality disappeared in randomized
controlled trials in patients with coronary heart disease as demonstrated by the most
recent Cochrane meta-analysis.’ One possible explanation may be the heterogeneity of
the coronary heart disease populations included in most recent studies. Better insight
into these topics may clarify the impact of exercise-based CR on all-cause mortality and
contribute to a personalised approach of CR for individual patients with coronary heart
disease. Therefore, we are currently conducting a CR meta-analysis on patients with
coronary heart disease using individual-participant data.®? Adopting this approach, we are
able to determine the influence of individual patient (e.g. age, sex, risk factors) or exercise
characteristics (e.g. location, type, intensity, duration of exercise) on the effectiveness
of CR. Improved insight into whether patient or exercise characteristics affect all-cause
mortality or hospitalisation following CR, will ultimately enhance the benefits of CR. This
will increase insight and provide the potential to personalise CR for coronary heart disease
patients such that a more targeted approach to CR allows us to leave behind the simplicity
of‘one size fits all' With this project, | will continue my research career alongside my clinical

registry to become a consultant cardiologist.

Asdiscussed above, exercise-based CRis frequently explored in the primary, secondary and
tertiary prevention of cardiovascular disease. Unfortunately, few studies have examined
the impact of CR in PH. This topic is highly relevant, since long-term survival in PH remains
poor.6* % Several studies have shown that exercise-based CR in patients with PH improved
exercise capacity, quality of life and improve symptoms®~" but hard clinical endpoints on
mortality are lacking. It is debated whether improvement in these surrogate endpoints
reflect improvement in clinical outcome.”? In this thesis, we showed that exercise-based
CR in patients with primary PH was associated with significantly better 1-year survival

than those without exercise-based CR (Chapter 9). This is the first evidence that shows the
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direct link between exercise-based CR and mortality. This may suggest that the additional
“relative” load faced by the RV during exercise could have a positive effect on its function.
Furthermore, this stresses the urgency of appropriately powered randomized controlled

trials to investigate the causal effect of exercise as medicine for patients with PH.

10.5 - Conclusion and future perspectives

The present thesis provides novel insights into acute and chronic effects of load challenges
on the RV in healthy individuals, elite athletes and patient with PH. The most important

findings are;

First, cardiac function is traditionally measured under resting conditions whilst in
supine position. We showed that cardiac function measured during exercise (i.e. stress
echocardiography) yields additional information compared to resting conditions only.
Namely, EICF after short duration high-intensity exercise is only present when evaluated
with stress echocardiography. This observation fits with some recent observations of
other athletes’ heart studies, where exercise-induced responses show added (clinical)
value compared to evaluation at rest alone. Therefore, we recommend the use of stress
echocardiography in research, and to explore its potential in the diagnosis or prognosis of

cardiovascular diseases in clinical settings.

Second, acute cardiovascular responses to exercise and altered haemodynamics are
related to subsequent chronic responses (within each side of the ventricle). This highlights

the need to measure and evaluate both ventricles to understand the entire heart.

Third, following the current body of evidence, including those presented in this thesis, we
conclude that the RV does not simply mirror the LV in both acute and chronic responses
to exercise. EICF may vary between the RV and LV. Furthermore, integration of our findings
with existing literature, we hypothesize the presence of a distinct pathway of structural

remodelling for the RV and LV related to the level of training of an individual.

Fourth, evolving technology in echocardiography has led to the development of novel
strain-area loops, which provide a comprehensive overview of cardiac function. In this
thesis, we showed that the strain-area loop detects changes in RV function following

interventions to alter haemodynamics. This novel technique, therefore, may serve as a
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valuable tool to follow-up patients with PAH. Future studies should explore further its
clinical utility in this and other patient groups. Development of a semi-automated method

is key for an eventual integration into daily clinical practice.

Lastly, we showed that exercise training causes rapid right-sided cardiac adaptation
(in healthy individuals), but also that exercise-based CR reduces all-cause mortality
in patients with primary PH. Moreover, we described that exercise training in coronary
heart disease has strong inter-individual effects. Whilst our work highlights the role and
clinical benefits of exercise, further improving these benefits would require insight into
patient and exercise characteristics. Ultimately, this will enhance the benefits of CR and

will contribute to exercise as personalised medicine in cardiovascular disease.
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Chapter 11

SUMMARY

The general aim of this thesis was to investigate the acute and chronic effects of load
challenges, either induced by pathological (e.g. PH) or physiological stimuli (e.g., exercise),
on RV structure, function and mechanics. For this purpose, we performed exercise-related
studies in healthy individuals and elite athletes (Part 1: Chapters 2 - 5) and performed a
series of studies in patients with PH (Part 2: Chapters 6 — 9) using novel echocardiographic
techniques (e.g., speckle tracking echocardiography and the strain-area loop). In Chapter
1, we provided a general introduction on the background and rationale of this thesis. We
provided an overview of the history of the cardiovascular system, followed by a discussion
of the anatomical and functional differences between the RV and LV. Furthermore, we
introduced novel echocardiographic techniques (i.e. speckle tracking echocardiography

and strain-area loop) used in this thesis and provided an outline of this thesis.

Part | - Right ventricular responses to acute and chronic exercise

In Chapter 2, we compared the impact of a single bout of high-intensity exercise under
hypoxia versus normoxia on EICF on the RV and LV in healthy individuals. We demonstrated
that a bout of 45-minute high-intensity exercise induced a reduction in functional indices
of right- and left-sided cardiac function and mechanics. We found no impact of hypoxia
on exercise-induced reduction in right- or left-sided cardiac function and mechanics.
An additional, but equally important, finding was that the reduction in right- and left-
sided cardiac function was present when echocardiography was performed during a
standardized low-to-moderate-intensity recumbent exercise challenge, but not when
examined under resting conditions. Taken together, these data indicate that EICF after
short-term high-intensity exercise is not exaggerated under hypoxia, suggesting that an
additional cardiac load (induced by hypoxia) on the RV does not necessarily relate to an

exaggerated EICF in this setting.

In Chapter 3, we aimed to relate pre-training changes in cardiac function during acute
hypoxic exercise to subsequent adaptations to a 12-week hypoxic endurance exercise
training program on RV cardiac structure, function and mechanics in healthy individuals.
First, we showed that hypoxic exercise training increased RV size, including diameter and

area. Whereas measures of RV function remained largely unchanged, exercise training
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resulted in adaptations in RV mechanics, with less uncoupling and lessening of the
systolic and diastolic slopes of the RV strain-area loop. Second, we found that pre-training
augmentation in RV fractional area change to acute hypoxic exercise was inversely related
to cardiac remodelling of the RV following 12 weeks of hypoxic endurance training in
healthy individuals. Taken together, our results demonstrate that acute cardiac responses
of the RV to hypoxic exercise are related to subsequent RV remodelling upon 12-weeks of

hypoxic exercise training in healthy, relatively untrained individuals.

In Chapter 4, we evaluated the impact of an increase in Training volume (across 9-months)
in elite rowers on left- and right-sided cardiac structure, function and mechanics. We
showed that an increase training volume in elite rowers across 9-months resulted in
significant structural adaptation of the left ventricle and atrium, with no adaptations
observed on the right side. Left-sided structural cardiac adaptation was accompanied
by an increase in LV twist, but no other left- or right-sided functional adaptations. This
highlights the plasticity of the heart for remodelling in response to exercise training,
even in elite athletes. The finding that left-sided cardiac remodelling was found in elite
athletes across 9-months training, and the observation from Chapter 3 that right-sided
remodelling is present in untrained individuals, suggests a time-dependent adaptation of

the heart to exercise training (see Chapter 10).

In Chapter 5, we investigated the impact of hypoxia on PEH, and whether the magnitude
of PEH relates to the BP-lowering effect of 12-week hypoxic endurance exercise-training.
We demonstrated that the magnitude of PEH does not differ when exercise, matched at
relative intensity, is performed under hypoxia or normoxia. The magnitude of PEH during
the first exercise bout was positively related to the magnitude of the BP-lowering effect
of 12-weeks high-intensity running exercise training under hypoxia. Taken together, our
results demonstrate that hypoxia does not alter the PEH response, whilst we reveal the
close relationship between acute and chronic changes in BP in response to high-intensity

running exercise in healthy individuals.
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Part Il - Altered haemodynamics and exercise in patients with pulmonary
hypertension

In Chapter 6, we performed a systematic review and meta-analysis to examine whether
RV longitudinal strain, i.e. a relatively novel measure of RV function, has prognostic value
for future events in patients with PH. The key finding was that RV longitudinal strain has
independent prognostic value for all-cause mortality. To a lesser extent, RV longitudinal
strain also demonstrated independent predictive capacity for the combined endpoint
of mortality and PH-related events. Taken together, these findings emphasize that RV
longitudinal strain is a valuable tool with independent prognostic value for all-cause

mortality in PH patients.

In Chapter 7, we compared the impact of preload manipulation on RV strain-area loop
(another novel measure of RV function) versus pressure-area loop, and subsequently
compared invasive and non-invasive assessment of cardiac contractility. We showed that
a reduction in preload leads to a larger contribution of longitudinal myocardial strain to
facilitate systolic volume ejection and vice versa. Following comparison of the RV strain-
area and pressure-area loop, we found a strong correlation in the assessment of cardiac
contractility. This suggests that the invasive and non-invasive loops provide comparable
information, at least information related to identification of loop shifts and cardiac

contractility.

In Chapter 8, we explored the impact of 17-weeks Selexipag on strain-area loop
characteristics and, subsequently, relate these outcomes to changes in clinical status
in patients with PAH. At group level, we found that treatment with Selexipag did not
change any RV strain-area loop characteristics nor did treatment change other measures
of RV function or any clinical outcomes. When, stratified to clinical outcome, we found
that PH patients who improved their clinical status following Selexipag treatment showed
an increase in RV longitudinal strain. In contrast, PH patients that showed no benefit of
treatment revealed a decrease in RV longitudinal strain. These opposite changes in RV
longitudinal strain between PH patients who clinically improved versus deteriorated
may be coupled to successful decline or non-decline in pulmonary vascular resistance,
respectively. These changes may, subsequently, explain the clinical (non-)response to

Selexipag.
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In Chapter 9, we compared 1-year mortality rates between patients with primary PH who
were prescribed CR or exercise programmes versus a propensity-matched control group
of primary PH without prescription for CR or exercise programmes. We demonstrated that
CRin patients with PH is associated with a 40% lower odds of 1-year mortality compared

to patients who did not receive CR.

Part lll - General discussion

In Chapter 10, we integrated findings of this thesis with insights from other studies, and

discussed directions for future research. We have identified five key messages.

First, the additional value of stress echocardiography in the evaluation of cardiac
responses to exercise was discussed. Based on this thesis, and recent other studies,
stress echocardiography shows additional value in the detection of EICF after short
duration high-intensity exercise but also in the discrimination of physiological from
pathophysiological cardiac conditions. Further studies should explore its potential in the

diagnosis or prognosis of cardiovascular disease.

Second, acute cardiovascular responses to exercise seem to closely relate to adaptations
to chronic exercise training. Adopting this approach may be a potential strategy to better
understand the hypothesis that repetitive exposure to high training volumes of exercise
may lead to maladaptive remodelling of the RV in certain individuals. Furthermore, PEH
may be used as a proxy to identify responders to the blood pressure lowering effect of

exercise training.

Third, we concluded that the RV does not simply mirror the LV in both acute and chronic
responses to exercise. Not only the in-exercise response vary but also the magnitude of
EICF may differ between the RV and LV. Integrating our findings with existing literature,
we discussed the cardiac structural remodelling hypothesis suggesting the presence of
a distinct pathway of structural RV and LV remodelling to exercise related to the level of
training of an individual. Moreover, we discussed the added value of the strain-value loop

in providing insight into cardiac mechanics upon exercise training.

Fourth, we summarized and integrated our findings of the echocardiographic RV strain-

area loop in patients with PH. The strain-area loop has potential but future studies should
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assess its clinical value in monitoring PH patients. Also, development of a semi-automated

method is key for an eventual incorporation into daily clinical practice.

Fifth, we discussed the added value of exercise-based CR in patients with PH but also in
patients with cardiovascular disease in the reduction of all-cause mortality. Future studies
should encounter the influence of individual patient and exercise characteristics on the
effectiveness on CR. Ultimately, this information will contribute to exercise as personalised

medicine in cardiovascular disease.
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NEDERLANDSE SAMENVATTING

Het doel van dit proefschrift was om de acute en chronische effecten van druk- en
volumebelasting op de rechterventrikel te onderzoeken. Deze belasting kan worden
veroorzaakt door zowel fysiologisch als pathologische stimuli waardoor de structuur,
functie en mechanica van de rechterventrikel beinvloedt wordt. Voor dit doel hebben we
verschillende inspanning gerelateerde onderzoeken uitgevoerd bij gezonde individuen
en topsporters (Deel I: Hoofdstukken 2 - 5) en daarnaast een reeks onderzoeken bij
patiénten met pulmonale hypertensie (hoge bloeddruk in de longslagaderen) (Deel Il:
Hoofdstukken 6 -9).Hierbijhebben we gebruikgemaakt van nieuwe echocardiografische
technieken. In Hoofdstuk 1 hebben we een algemene inleiding gegeven over de
achtergrond en grondgedachte van dit proefschrift. We gaven een overzicht van de
geschiedenis van het cardiovasculaire systeem, gevolgd door een bespreking van de
structurele en functionele verschillen tussen de rechter- en linkerventrikel. Verder hebben
we nieuwe echocardiografische technieken beschreven, waaronder speckle-tracking-

echocardiografie en de strain-volume curve, welke in dit proefschrift zijn gebruikt.

Deel | - Reactie van de rechterventrikel op acute en chronische inspanning

Hoe hoger je komt in de bergen, des te lager is de zuurstofspanning. Deze lagere
zuurstofspanning zorgt voor een hogere bloeddruk in de longslagaders, en daardoor een
hogere drukbelasting van de rechterventrikel. Onze hypothese in Hoofdstuk 2 was dat
door de lagere zuurstofspanning op hoogte, de rechterventrikelfunctie na inspanning
meer afneemtin vergelijking met de linkerventrikelfunctie. Om dit te onderzoeken hebben
we bij gezonde individuen de verandering in de rechter- en linkerventrikelfunctie na een
hardloopsessie van 45 minuten op 3,000m gesimuleerde hoogte in de hoogtekamer
vergeleken met 45 minuten hardlopen op zeeniveau. We zagen dat er sprake was van
een afname in het functioneren van zowel de rechter- als linkerventrikel, maar dat de
grootte van deze afname niet verschillend was tussen de rechter- en linkerventrikel. We
verwierpen dan ook onze hypothese dat de afname in rechterventrikelfunctie groter
zou zijn na 45 minuten hardlopen op 3,000 meter gesimuleerde hoogte in vergelijking
met hardlopen op zeeniveau. Een aanvullende, maar minstens zo belangrijke bevinding

was dat de rechter- en linkerventrikelfunctie gemeten tijdens inspanning afnam,
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terwijl de functie gelijk bleef wanneer gemeten in rust. Concluderend, de afname van
de rechterventrikelfunctie na (kortdurende) intensive inspanning wordt niet groter
onder zuurstofarme omstandigheden. Dit suggereert dat extra drukbelasting van de

rechterventrikel niet per se leidt tot een grotere afname in functie.

In Hoofdstuk 3 bestudeerden we de relatie tussen de rechterventrikelfunctie tijdens
inspanning en de adaptatie van de rechterventrikelstructuur na een 12 weken durend
trainingsprogramma op 3,000m gesimuleerde hoogte bij gezonde individuen. Ten
eerste toonden we aan dat 12 weken training op hoogte resulteert in toename van de
rechterventrikelgrootte. De conventionele maten voor rechterventrikelfunctie bleven
onveranderd, terwijl er aanpassingen optraden in de eigenschappen van onze strain-
volume curve (d.w.z. meer systolisch-diastolische koppeling). Ten tweede vonden we dat
de toename in rechterventrikelfunctie tijdens inspanning omgekeerd evenredig was met
de toename van de rechterventrikelgrootte na 12 weken training. Met andere woorden,
een relatief kleine toename in rechterventrikelfunctie tijdens inspanning leidt tot grotere
toename in rechterventrikel grootte, en omgekeerd. Deze bevindingen suggereren een
relatie tussen de acute en chronische reacties van de rechterventrikel ten gevolge van

inspanning bij gezonde individuen.

In Hoofdstuk 4 onderzochten we de impact van een toename in trainingsvolume (over
9 maanden) bij Olympische roeiers op de linker- en rechterhartstructuur, -functie en
-mechanica. We toonden aan dat een toename van het trainingsvolume resulteerde in een
significante toename van de linkerventrikelgrootte en -atriumgrootte, zonder dat daarbij
veranderingen werden waargenomen aan de rechterzijde van het hart. De toename in
linkerventrikelgrootte ging gepaard met een toename van de linkerventrikeldraaiing.
Verder werden er geen links- of rechtszijdige functionele adaptaties gevonden. Tezamen
benadrukt dit de vormbaarheid van het hart als reactie op een toename van het
traingingsvolume, zelfs bij topsporters die reeds erg goed getraind zijn. Eerder werd in
Hoofdstuk 3 beschreven dat training leidt tot enkel rechtzijdig structurele adaptaties van
het hart bij ongetrainde individuen. Samen met de bevinding uit Hoofdstuk 4, suggereert

dit een tijdsafhankelijke adaptatie van het hart ten gevolge van training.
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In Hoofdstuk 5 onderzochten we de impact van een hardloopsessie op 3,000m
gesimuleerde hoogte in de hoogtekamer op bloeddrukverlaging, en of de mate van deze
bloeddrukverlaging gerelateerd is aan de daling van de bloeddruk na 12 weken training.
Ons onderzoek toonde aan dat de mate van bloeddrukdaling niet verschilt wanneer
er wordt hardgelopen op 3,000 gesimuleerde hoogte in vergelijking met hardlopen
op zeeniveau. De mate van bloeddrukverlaging na de eerste hardloopsessie was
evenredig met de grootte van het bloeddrukverlagende effect van een 12 weken durend
trainingsprogramma. Concluderend, onze resultaten laten zien dat sporten op hoogte het
bloeddrukverlagende effect na een enkele hardloopsessie niet verandert maar dat er wel
een nauwe relatie is tussen acute en chronische veranderingen in bloeddruk als reactie op

een trainingsprogramma bij gezonde individuen.

Deel Il - Veranderde haemodynamiek en lichamelijke inspanning bij patiénten met
pulmonale hypertensie

In Hoofdstuk 6 hebben we een systematische literatuurreview en meta-analyse
uitgevoerd om te onderzoeken of rechterventrikel strain, een relatief nieuwe maat
voor rechterventrikelfunctie, prognostische waarde heeft voor het optreden van
gezondheidsproblemen en overlijden bij patiénten met pulmonale hypertensie. De
belangrijkste bevinding was dat rechterventrikel longitudinale strain prognostische
waarde heeft voor overlijden. In mindere mate vertoonde rechterventrikel strain ook
voorspellend vermogen voor het gecombineerde eindpunt van overlijden en het

optreden van gezondheidsproblemen.

In Hoofdstuk 7 hebben we de impact van de preload (ook wel vullingsdruk genoemd) op
de eigenschappen van de niet-invasieve rechterventrikel strain-volume curve vergeleken
met de eigenschappen van de conventionele invasieve druk-volume curve. We toonden
aan dat een vermindering van de preload leidt tot een grotere bijdrage van longitudinale
myocardiale strain om de systolische volume-ejectie te faciliteren en omgekeerd.
Daarnaast vonden we een sterke correlatie tussen de strain-volume en de druk-volume
curve in de beoordeling van cardiale contractiliteit. Dit suggereert dat de invasieve en
niet-invasieve curves vergelijkbare informatie verschaffen met beiden waardevolle
informatie met betrekking tot de identificatie van verschuivingen van de curves en

cardiale contractiliteit.
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In Hoofdstuk 8 hebben we de impact van de behandeling met Selexipag gedurende
17 weken bij patiénten met pulmonale hypertensie op de eigenschappen van de
strain-volume curve onderzocht. Vervolgens hebben we de eigenschappen gerelateerd
aan de verandering in klinische symptomen gemeten middels de NYHA-classificatie.
Op groepsniveau ontdekten we dat behandeling met Selexipag de eigenschappen
van de strain-volume curve niet veranderde, evenmin andere conventionele maten
voor rechterventrikelfunctie. Stratificatie naar klinische uitkomsten liet zien dat bij
patiénten met een verbetering van klinische symptomen (afname NYHA-classificatie)
na behandeling met Selexipag een toename in rechterventrikel longitudinale strain
optrad. Daarentegen vertoonden patiénten met verergering van klinische symptomen
(toename NYHA-classificatie) een afname in rechterventrikel longitudinale strain. Deze
tegengestelde veranderingen in rechterventrikel longitudinale strain zouden mogelijk
gekoppeld kunnen worden aan, respectievelijk, een succesvolle af- of toename van de
pulmonale vasculaire vaatweerstand. Deze veranderingen zouden vervolgens de klinische
responders (patiénten met positief effect van Selexipag) en niet-responders (patiénten
zonder gunstig effect van Selexipag) kunnen verklaren. In de toekomst zou het gebruik
van de strain-volume curve een potentiéle strategie kunnen zijn bij het personaliseren

van medicamenteuze therapie bij patiénten met pulmonale hypertensie.

In Hoofdstuk 9 vergeleken we 1-jaars sterftecijfers tussen patiénten met pulmonale
hypertensie die deelnamen aan hartrevalidatie met een controlegroep van patiénten
met pulmonale hypertensie zonder deelname aan hartrevalidatie. We toonden aan dat
hartrevalidatie bij patiénten met pulmonale hypertensie geassocieerd is met een 40%
lagere kans op overlijden 1 jaar na start van hartrevalidatie in vergelijking met patiénten

die geen hartrevalidatie kregen.

Deel Il - Algemene discussie

In Hoofdstuk 10 hebben we de bevindingen van dit proefschrift geintegreerd met
inzichten uit andere studies, en hebben we richtingen voor toekomstig onderzoek

besproken. We identificeerden vijf kernboodschappen.

Ten eerste werd de toegevoegde waarde van echocardiografie tijdens inspanning

besproken. Gebaseerd op dit proefschrift en recente andere studies, laat echocardiografie
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tijdensinspanning een toegevoegde waarde zien bij de detectie van een afname in functie
van het hart na kortdurende, intensieve inspanning, maar ook bij het onderscheiden van
fysiologische en pathofysiologische hartaandoeningen (zoals aritmogene en gedilateerde
cardiomyopathie). Verdere studies moeten het potentieel diagnostische en prognostische

nut binnen de verscheidende hart- en vaatziekten onderzoeken.

Ten tweede lijken acute cardiovasculaire reacties op inspanning nauw verband te
houden met cardiovasculaire adaptatie ten gevolge van chronische training. Het
gebruik van echocardiografie tijdens inspanning is een mogelijke strategie om de
hypothese dat herhaalde blootstelling aan hoge trainingsvolumes kan leiden tot een
pathologische adaptatie van de rechterventrikel beter te begrijpen. Daarnaast kan de
mate bloeddrukverlaging na inspanning worden gebruikt als middel om personen te

identificeren die goed reageren op het bloeddrukverlagende effect van training.

Ten derde concludeerden we dat de rechterventrikel simpelweg niet de linkerventrikel
spiegelt in zowel acute als chronische reacties op training. Niet alleen de acute reactie
van beide ventrikels op inspanning varieert, maar ook de afname in ventrikelfunctie na
inspanning verschilt tussen de rechter- en linkerventrikel. Door onze bevindingen te
integreren in de bestaande literatuur, bespraken we de structurele adaptatie hypothese
van het hart. Deze hypothese suggereert de aanwezigheid van een tijdsafhankelijke
structurele rechter- en linkerventrikel adaptatie ten gevolge van training. Daarnaast
bespraken we de toegevoegde waarde van de strain-volume curve bij het verschaffen

van inzicht in de adaptatie van cardiale mechanica ten gevolge van training.

Ten vierde hebben we onze bevindingen van de echocardiografische strain-volume
curve bij patiénten met pulmonale hypertensie samengevat en geintegreerd in de
reeds bestaande literatuur. De strain-volume loop heeft potentie, maar toekomstige
studies moeten de klinische waarde ervan beoordelen bij het monitoren van patiénten
met pulmonale hypertensie. De ontwikkeling van een semi-automatische methode is

essentieel voor uiteindelijke integratie in de dagelijkse klinische praktijk.

Ten vijffde bespraken we de toegevoegde waarde van hartrevalidatie bij patiénten

met pulmonale hypertensie maar ook bij patiénten met andere hart- en vaatziekten.
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Toekomstige studieszouden deinvloed vanindividuele patiént-eninspanningskenmerken
op de effectiviteit op hartrevalidatie moeten onderzoeken. Uiteindelijk zal deze informatie

bijdragen aan het belang van lichamelijke inspanning als gepersonaliseerde geneeskunde
bij hart- en vaatziekten.
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LIST OF ABBREVIATIONS

6MWT 6-minute walk test

A2C Apical 4-chamber

A2C Apical 2-chamber

AMS Acute mountain sickness

BMI Body mass index

BP Blood pressure

Bpm Beats per minute

BSA Body size area

CHD Coronary heart disease

CR Cardiac rehabilitation

co Cardiac output

co, Carbon dioxide

CPET Cardiopulmonary exercise test

DBP Diastolic blood pressure

DICOM Digital imaging and communication in medicine

ECG Electrocardiogram

EICF Exercise-induced cardiac fatigue

EDslope The early linear strain-area slope during first 5% of volume increase in
diastole

ESslope Early strain-area slope during first 5% of volume ejection in systole

LDslope Late linear strain-area slope during first 5% of volume increase in diastole
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FiO

HR

ICC

IVSd

LLS

MAP

LA

LOA

Lv

LVEDV

LVEF

LVESV

LVGLS

LVIDd

PAH

PAP

PAT

PEH

PH

PLAX

Fraction of inspired oxygen

Heart rate

Intra-class correlation coefficient
Interventricular septum thickness end diastole
Lake Louis Score

Mean arterial pressure

Left atrium/atrial

Limits of agreement

Left ventricle/ventricular

Left ventricular end-diastolic volume

Left ventricular ejection fraction

Left ventricular end-systolic volume

Left ventricular global longitudinal strain

Left ventricular internal diameter end diastole
Oxygen

Pulmonary arterial hypertension

Pulmonary artery pressure

Pulmonary artery Doppler acceleration time
Post-exercise hypotension

Pulmonary hypertension

Parasternal long-axis
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PSAX Parasternal short-axis

PVR Pulmonary vascular resistance

PWd Posterior wall thickness end diastole
RA Right atrium/atrial

ROI Region of interest

RPE Rate of perceived exertion

RV Right ventricle/ventricular

RVEDA Right ventricular end-diastolic area
RVESA Right ventricular end-systolic area
RVFAC Right ventricular fractional area change
RVFWS Right ventricular free wall strain
RVOT Right ventricular outflow tract

RWT Relative wall thickness

SBP Systolic blood pressure

SD Standard deviation

SEM Standard error of the mean

SpO, Oxygen saturation

Sslope The linear strain-area slope

NY Stroke volume

TAPSE Tricuspid annular plane systolic excursion
TDI Tissue Doppler imaging
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TPR

VOzmax

Total peripheral resistance

Maximal oxygen consumption
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DATA MANAGEMENT

The data used within this thesis are collected and stored according to the Findable,
Accessible, Interoperable and Reusable (FAIR) principles.” Appropriate data management
is important for 1) knowledge discovery and innovation, 2) protecting scientific integrity
and 3) preservation and reuse of data sets. This thesis is based on results of human studies,
which were conducted in accordance with the principles of the Declaration of Helsinki.
Additionally, a local Medical Ethics Committee approved the study protocols. All subjects
were well informed about the study using an information package and all subjects gave
written informed consent prior to participation in the study. The paper data for this PhD
project are stored in a closed cabinet in a room at the department of Physiology, Radboud
University Medical Center, or at the Research Institute for Sport and Exercise Sciences,
Liverpool John Moores University. The raw and processed digital data are stored on the
server of the department of Physiology, Radboud University Medical Center which are
backed-up ondaily basis to prevent dataloss. The processed data that were generated have
been stored in encoded Microsoft Excel or SPSS data files. The privacy of the participantsin
this study is warranted by use of encrypted and unique individual subject codes. The code
was stored separately from the study data. In data files and case report forms the individual
subject code is used, which allows us to share the data if necessary. The encryption key is
only available to the research team. In order to ensure that the data is generally accessible
and interoperable, file names and data which were used to produce the final results, were
documented using applicable language for knowledge representation. The data will be
available for further analyses for at least 15 years. Furthermore, the datasets generated
and analyzed during these studies are available from the corresponding author upon

reasonable request.
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DANKWOORD

Met dit proefschrift komt er een einde aan een intensief, leerzaam maar bovenal erg leuke
periode. Ik ben ontzettend dankbaar dat mij de mogelijkheid werd gegeven om een duaal
promotietraject aan te gaan in Nijmegen en Liverpool. Met Nijmegen als uitvalsbasis,
bracht ik korte bezoekjes aan Liverpool in het eerste jaar, gevolgd door twee langere
periodes in het tweede en derde jaar. De laatste periode in Liverpool werd helaas abrupt
onderbroken door de COVID-19 pandemie. Sindsdien is het helaas onmogelijk geweest
om terug te keren. Desondanks heeft de COVID-19 pandemie mij ook ontzettend veel
gebracht waarover later meer. Alles tezamen kan ik niet anders dan concluderen dat mijn
onderzoeksperiode een fantastische tijd was. Ik wil hieronder graag de mensen bedanken

die dit mede mogelijk hebben gemaakt.

Allereerst wil ik alle deelnemers van de onderzoeken bedanken. Jullie motivatie, inzet en

tijd hebben mede gezorgd voor de totstandkoming van dit proefschrift.

Tijdens mijn promotie had ik geen beter begeleidingsteam kunnen wensen. Een goede
mix tussen fulltime onderzoekers en clinici, met eenieder zijn specifieke kwaliteiten,

zorgden voor een uitgebalanceerd team dat altijd voor mij klaar stond.

Dick, jouw begeleiding als professor bij de totstandkoming van dit proefschrift is
ongekend.lkmoet nog een professor gaan tegenkomen die meer is toegewijd, en meer tijd
investeert in zijn promovendi dan jij. Om iets concreets te noemen, ondanks jouw drukke
agenda heb ik letterlijk nooit langer dan drie dagen gewacht op feedback. Niet alleen de
inhoudelijke begeleiding, maar ook jouw aandacht voor persoonlijke ontwikkeling en oog
voor privézaken heb ik enorm gewaardeerd de afgelopen jaren. Achteraf kijk ik terug op
een mooie periode. Echter was het bij tijden ook erg druk en stressvol. Ook hier had jij oog
voor en bood mij ondersteuning daar waar nodig. Dick, enorm bedankt voor je toewijding
en inzet. Ik durf te stellen dat zonder jou, en zeker niet in 3 jaar tijd, het niet was gelukt
om dit proefschrift af te ronden. Hopelijk lukt het mij om de kliniek met wetenschap te

kunnen combineren komende jaren en zullen onze wegen elkaar blijven kruisen.

Dave, with regards to this dissertation | cannot express my gratitude enough. Your
continuous support, guidance and encouragement were absolutely essential in this PhD.

Along the process, your knowledge and enthusiasm about echocardiography and sports
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cardiology were extremely inspirational and had a contagious effect on me. Thank you.
But it is not only this, it stretches further. You made me feel very welcome in Liverpool
from the very first start. We met many times outside the Tom Reilly Building for ‘progress
meetings' But to admit, these took place in the pub most of the times. Of course, we
philosophized about our studies and ideas came up for more studies, however, quite
often we also had a lot of fun about many other things in life. Not uncommon, these pub
sessions ended up dancing in a club till the early morning. Dave, matey, also many thanks
for your friendship these three years. Unfortunately, due to the COVID-19 pandemic, | have
had to leave Liverpool suddenly and earlier than expected. It feels as unfinished business.
I will be back!

Arie, tijdens ons eerste gesprek, op 18 september 2015, uitte ik voor het eerst mijn interesse
in de cardiologie. We hadden direct een klik en je gaf aan overeenkomsten tussen ons te
zien. Dat je uiteindelijk naast mijn opleider ook nog mijn co-promotor zou worden had
ik destijds niet kunnen vermoedden. Jouw fysiologische kennis was onmisbaar om de
onderwerpen aangesneden in dit proefschrift naar een hoger niveau te tillen. Hartelijk
dank voor al je inzet en toewijding. Ook bedankt voor al je vertrouwen die je altijd in mij
hebt gehad. Ik hoop nog veel van je te leren zodra ik terug ben in het Radboudumc voor

het academische deel van de opleiding tot cardioloog.

Keith, you always managed to find the weak spots and inconsistencies in my work. Your
valuable feedback significantly improved the quality of this PhD dissertation. Many thanks

for the opportunity to work with you.

John (In memoriam), your enthusiasm and expertise in sports cardiology has been
really inspirational. Many thanks for all your advice and the opportunity you gave me to
get involved in the cardiac screening programs. The last time | spoke to you, we talked
about your retirement plans in a couple of years. | was literally dreaming to become your

successor. It wasn’'t meant to be. May you rest in peace.

Naast mijn promotieteam heb ik ook te maken gehad met hele leuke en fijne collega’s
op de afdeling fysiologie van het Radboudumc. Maria, ondanks dat je niet actief
betrokken was bij mijn promotieonderzoek heb ik veel gehad aan je adviezen. Jij hielp mij

gemotiveerd te blijven tijdens het thuiswerken in het laatste jaar. Dank daarvoor. Thijs E,
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gaandeweg mijn promotie kwam de interesse in de inspanningsfysiologie en met name de
sportcardiologie. Eigenlijk helemaal jouw straatje. Hopelijk gaat het me lukken om kliniek
en wetenschap te combineren en gaat ons review er komend jaar ergens van komen.
Bregina, heel erg bedankt voor het maken van de voorkant van mijn boekje. Hopelijk
was mijn perfectionisme een beetje dragend ;-) Het eindresultaat is werkelijk prachtig
geworden! Uiteraard mijn grote dank aan mijn kamergenoten en medebestuursleden van
de Mancave Research Group B.V.: Bram en Thijs L. Het was werkelijk genieten om met
jullie de Mancave op de afdeling te mogen delen. Ondanks dat het soms meer op Jiskefet
leek, hebben we (op zijn tijd) hard gewerkt maar toch vooral veel en hard gelachen. Op
naar een relinie met kapsalon en pils. Ondanks mijn aftocht, hebben jullie een meer dan
waardig opvolger weten te strikken: Thijs K. Thijs, veel succes met die mannen en je
prachtige project. Uiteraard mag Hugo niet ontbreken in dit dankwoord. Jij was er nooit
vies van om te komen buurten in de Mancave om een lolletje te trappen. Door jouw hulp
heeft mijn promotie een soepele start gehad. Heel erg bedankt daarvoor. Paul, jouw komst
op de afdeling heeft elke PhD’er op de afdeling een vreugdedansje laten doen. Er kwam
topdocent en de continuiteit werd gewaarborgd waardoor wij, de PhD’s, minder tijd kwijt
waren aan het geven van onderwijs. Hopelijk lukt het je om de komende jaren ook te gaan
promoveren naast je onderwijstaken. Het is je gegund. Vincent, medesportcardiologie
liefhebber, grote klasse wat jij afgelopen jaren hebt weten neer te zetten. Dank dat ik in
de laatste fase van mijn promotie bij de MARC-EXERSCIENCE-studie heb kunnen helpen.
Nu we samen zijn begonnen aan de opleiding tot cardioloog zullen onze wegen elkaar
vast nog vaak gaan kruisen. Daarnaast kan Esmee niet ontbreken. Ingewikkelde mixed-
models uitleggen zodat het simpel lijkt. Echter, eenmaal de deur uit was ik vaak het spoor
weer bijster. Dank voor je geinvesteerde tijd. Het fietsclubje ‘Fysiolofiets”: Cindy, Femke,
Thijs V en Yannick. Wat was het heerlijk om met jullie tijdens of na werktijd te wielrennen
of mountainbiken. Ellis en Nicole, enorm bedankt voor al jullie hulp bij het rekruteren van
patiénten voor de Selexipag studie. Josephine, bedankt dat je elke keer weer klaarstond
om mijn ICT-sores op te lossen die ik met de diverse beeldvormingsapplicaties had.
Laurien, Coen, Ralf, Eline, Carlijn, Lando, Jenske, Malou, Merle, Sylvan, Yvonne, Biba,
Lisa, Isa en Laween, ook jullie hartelijk dank voor de gezelligheid op de afdeling. Aan de
nieuwe garde van de afdeling fysiologie: veel succes met jullie promoties! Hierbij wil ik één

iemand uitlichten. Niels, als bachelor student durfde jij het aan om 5 maanden stage te
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komen lopenin Liverpool. Zondag arriveren, direct door naar de pub om de stageplanning
door te nemen, en maandag volle bak te beginnen met de Exercise at Altitude studie. Pure

klasse. Mooi om te zien dat je uiteindelijk bent gaan promoveren. Veel succes.

| want to say a huge thank you to all the people from the Research Institute for Sport
and Exercise Sciences at the Liverpool John Moores University who made me feel
very welcome during my time in Liverpool. It was extremely inspirational and motivating
to be surrounded by people who are completely engaged into sport physiology in an
environment with just top-class equipment. George, Gemma and Dean, many thanks for
all your supportive help with the Exercise at Altitude study. My request to use the altitude
chamber for 35 hours a week stirred things up but finally we managed it, many thanks.
| have worked in Liverpool with great people from all around the world. Guilherme,
Fabio, Thiago and Marcelle from Brazil. Matteo and Alessandro from Italy. Jarret and
Barb from Canada. My dear friends Andrea from Cyprus and Niels from Denmark. And
of course, the British, Dan, Joe, Lucy, Maddie, Katie, Ben and Chris. We not only worked
together, but we also had a lot of fun together outside the Tom Reilly Building. Thank you

all for making my time in Liverpool unforgettable.

Ook mijn Achterhoekse vrienden van ‘t Zomerhuus wil ik bedanken. Toen wij vanaf onze
14¢ levensjaar elk weekend op de kop naar huis gingen na een avondje Ivarca of Radstake
had ik nooit kunnen vermoeden dat ik ooit op het punt zou staan om te gaan promoveren.
Het blijft altijd genieten om weer terug te gaan naar Varsseveld om een biertje met jullie

te drinken. Dank daarvoor.

Mijn studievrienden van FC Pitheel. Veel dank voor de adoptie van mij binnen jullie
al bestaande groep toen ik kwam studeren in Nijmegen. Jullie zorgen altijd voor de

broodnodige ontspanning buiten werk om.

Eenspeciale dank gaat uit naar Nikki & Freek, Joep &Sille en Bart & Maartje. De COVID-19
pandemie bracht mij eerder dan gepland terug uit Liverpool. Mijn appartement had ik
onderverhuurd en ik moest nog 4 maanden onderdak zien te vinden. Jullie ontvingen mij
met open armen. lk heb simpelweg een prachtige tijd gehad. Hartelijk dank voor jullie

gastvrijheid.
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Uiteraard wil ik mijn paranimfen Bart, Max en Freek bedanken voor jullie jullie inzet
rondom mijn promotie en vriendschap. Bart, mijn maatje sinds mijn herinneringen
teruggaan. Opgegroeid nog geen 100 meter hemelsbreed van elkaar. Altijd sta je voor me
klaar, in goede en in mindere tijden. Het is prachtig om te zien hoeveel plezier je beleeft
aan de huisartsgeneeskunde en om je zo gelukkig te zien met Maartje en Juul. Max, onze
vriendschap ontstond tijdens onze eerste baan bij de cardiologie. Lekker klagen en kritisch
zijn op van alles en nog wat. Heerlijk om daar met jou een partner in crime te hebben
gevonden. Freek, het is grappig om te zien dat ondanks wij best wel van elkaar verschillen
toch zo'n enorm goede vriendschap kan ontstaan. Jouw humor, no-nonsense instelling
en relativerende manier van denken helpen mij altijd weer om zaken in perspectief te

plaatsen.

Pa, Moeders en Jeroen, dank voor jullie onvoorwaardelijk steun gedurende mijn hele
leven. Dank dat ik altijd bij jullie terecht kan als het nodig is. Het doet me altijd goed om te
horen dat jullie trots op me zijn. Pa, jouw rust en uitstraling geeft me altijd een geborgen
gevoel. Moeders, jouw medische voorgeschiedenis is en zal altijd een drijfveer blijven
om een goede cardioloog te worden. Jeroen, ik ben enorm trots op je dat je je zo enorm
hebt ontwikkeld de afgelopen jaren met als resultaat een mooie baan bij de Koninklijke
Luchtmacht en een heerlijke woning in Nijmegen. Jouw harde werken, nuchterheid en
relativerend vermogen kunnen mij bij tijden altijd weer met beide benen op de grond

zetten als dat even nodig is.

Lieve opa’s en oma'’s, tot mijn verdriet heeft niemand van jullie mijn promotie mogen

meemaken. In gedachte zijn jullie bij me.

Lieve Iris, jij bent mijn grootste geschenk van de afgelopen 3 jaar. In woorden is het niet
uit te drukken hoe blij ik met je ben. Jouw aanwezigheid, energie en altijd goede zin geeft
mij altijd weer een lach op mijn gezicht. Sinds jij in mijn leven bent verschenen, geniet

ik net een beetje meer van alles. Bedankt voor alles. Op naar nog vele avonturen samen.
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