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Abstract 

In safety assessment, one alternative to animal testing, that is increasingly being recognised 

as a suitable method for obtaining data, is read-across. This is the process by which 

information from one (source) chemical is used to infer information for another similar 

(target) chemical. However, determining similarity between chemicals is difficult as they 

cannot be considered as absolutely similar, only similar with respect to a given property. The 

research undertaken involved the development of two resources to address this problem. 

Within this thesis a resource is presented, wherein available physiologically-based kinetic 

(PBK) models have been collated and used in the development of a second resource, a KNIME 

workflow that can help to identify similar chemicals that have an existing PBK model. This 

enables PBK model information from source chemical(s) to be used in a read-across approach 

to help develop new PBK models for target chemicals. Initially, a systematic review of 

available PBK models in literature was undertaken; extraction of relevant information from 

the papers identified was captured in a Microsoft Excel spreadsheet which consisted of over 

7,500 PBK models.  The chemical space coverage of the chemicals with PBK models was 

compared to that of six datasets for different types of chemicals (drugs, cosmetics, botanicals, 

industrial chemicals, pesticides and food additives) in terms of their key physicochemical 

properties (molecular weight, hydrogen bond acceptors/donors, Slog P, TPSA, and Lipinski 

rule violations). The PBK model dataset that had been created in Excel was used as a resource 

in the development of a KNIME workflow that helps to identify similar chemicals to a target 

chemical. This KNIME workflow was applied to six chemicals, one from each of the different 

datasets, to assess its applicability across various industries. Two complete case studies were 

then undertaken (using the drug atenolol and the pesticide flumioxazin) in which new PBK 

models were built for these two target chemicals, using data obtained from source chemicals 

that had been identified by the workflow as being similar. PBK models for the source 

chemicals were initially reproduced, before being adapted and used as templates for the 

target chemicals. The performance of the new PBK models was assessed by comparing the 

output of these to existing data. The results demonstrated that a read-across approach could 

be successfully applied for developing new PBK models for data-poor chemicals. Information 

acquired from these PBK models can be used to support safety assessment of chemicals, 

reducing reliance on animal testing.   
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Abbreviations 

3Rs Reduce, refine and replace animals 

ad Adipose 

ADME Absorption, distribution, metabolism or excretion 

Ai Amount 

art Arterial 

AUC Area under the curve 

BBB Blood brain barrier 

bl Blood 

bo Bone 

br Brain 

CAS Chemical Abstracts Service 

Ci Concentration  

CL*; Clint*; CLrenal* Clearance; Intrinsic clearance; renal clearance 

CLP Classification, labelling and packaging 

Cmax Maximum concentration 

co Cardiac output 

ECHA European Chemicals Agency 

EPAA European Partnership for Alternatives to Animal Testing 

EU European Union  

fa Fraction absorbed from intestinal tract 

fB Bound fraction in blood 

FRS,oral; F Oral bioavailability 

fu,p*; fup*; Fub Unbound fraction in plasma 

gu Gut 

HBA Hydrogen bond acceptor 

HBD Hydrogen bond donor 

hep Hepatic 

HESI Health and Environment Sciences Institute 

ht Heart 

InChiKey International Chemical Identifier Keys 
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IVIVE In vitro-to-in vivo extrapolation 

JRC Joint Research Centre 

ka Oral absorption rate constant 

ki Kidney 

Kml Michaelis constant 

Kp,i Tissue partition coefficient 

KWAAS KNIME workflow for assisting analogue selection 

li Liver 

Log D Logarithm of the distribution coefficient  

log P 

lu 

Logarithm of the octanol:water partition coefficient 

Lung 

mu Muscle 

MW Molecular weight 

NAMs New approach methodologies 

NG Next generation 

ODEs Ordinary differential equation 

OECD Organisation for Economic Cooperation and Development 

PBBK Physiologically-based biokinetic 

PBK Physiologically-based kinetic 

PBPD Physiologically-based pharmacodynamic 

PBPK Physiologically-based pharmacokinetic 

PBPM Physiologically-based biopharmaceutical model 

PBTK Physiologically-based toxicokinetic 

PK Pharmacokinetic 

pKa; pKb Acid dissociation constant; Base dissociation constant 

PMD Physiologically-based kinetic model dataset 

pp Slowly perfused tissues 

PPB Plasma protein binding 

Qi Blood flow 

(Q)SAR (Quantitative) structure-activity relationship 

Rbp*; R*;Rb* Blood-plasma concentration ratio 
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REACH Registration, Evaluation Authorisation and restriction of 

Chemicals 

rp Rapidly perfused tissues 

SCCS Scientific Committee on Consumer Safety 

sk Skin 

Slog P Predicted logarithm of the octanol:water partition 

coefficient 

SMILES Simplified Input Line Entry String 

sp Spleen 

T Total  

Tmax Time taken to reach the maximum concentration 

TPSA Topological polar surface area 

ur Urine 

US EPA United States Environmental Protection Agency 

ve Venous 

Vd Volume of distribution 

Vi Volume 

Vmax Maximum velocity of metabolism 

 

*The different terms here are those stated in the models that are quoted in the methods
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Chapter 1 – Introduction  

1.1 Safety assessment 

Cosmetics, pharmaceuticals, food additives, and pesticides are just some of the things 

humans and animals are exposed to everyday that contain a variety of chemicals. The safety 

assessment of chemicals is a legal requirement and essential to ensure safe use for workers 

and consumers, as well as protection of domestic/farm animals and environmental species 

(Thompson et al., 2021). Safety assessment requires knowledge of exposure (external and 

internal) as well as intrinsic activity (toxicity). In terms of legislation, a particular requirement 

for plant protection agents and their product safety assessment is kinetic data and, whilst not 

formally required, incorporation of such data is widely recommended in other regulations, 

for example for classification, labelling and packaging (CLP) and the Registration, Evaluation 

Authorisation and restriction of Chemicals (REACH) (Pistollato et al., 2021). While for other 

sectors (e.g. cosmetics) the European Chemicals Agency (ECHA) and the European Union (EU) 

Commission have recommended the use of kinetic data for cosmetics and chemical safety 

(European Commission, 2008; ECHA, 2017; Scientific Committee on Consumer Safety, 2018).  

 

Traditionally, animals have been used for safety assessment of chemicals. However, problems 

can arise when using animals, for example there are ethical implications as well as 

questionable human relevance. Cruelty free international (2022) reported that 192.1 million 

animals were used worldwide for scientific purposes in 2015. Traditional approaches to risk 

assessment are no longer considered sufficient to predict the potential risk associated with a 

given substance (European Commission, 2022). In 2016, animals were replaced by simulators 

and human-relevant models in US and Canadian medical schools after lobbying by the 

Physicians Committee for Responsible Medicine (2022). The OECD (2021a) have approved a 

new strategy which is shown to perform better than existing animal tests defining approaches 

on skin sensitisation involving the evaluation of results based on three different non-animal 

methods (OECD, 2021a; Macmillan and Chilton, 2019).  

 

Product development and safety assessment regulation for cosmetics highlights the 

significance of alternative methods. The ban on the use of animals for testing finished 

cosmetic products has been in force since 2004, with the ban on ingredients testing effective 
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from 2009. Furthermore, the use of cosmetic ingredients or products that were tested on 

animals since the introduction of the ban have also been banned from being marketed in the 

EU since 2013 by the Cosmetics Regulation (Regulation (EC) No 1223/2009. The Directive 

2010/63/EU sets out the aims for protecting animals in scientific research, where marketing 

authorisation holders are required to integrate the 3Rs and welfare standards for the 

treatment of animals in all aspects of development, manufacture and testing of animals. 

 

US law also states that the reduction and replacement of animals should be undertaken as 

per the Frank R Lautenberg Chemical Safety for the 21st Century Act of Congress (Lautenberg, 

2016). Although one of the most common approaches used as an alternative method is read-

across (using information from a data-rich chemical to inform the prediction of toxicity to a 

similar data-poor chemical, see section 1.5 for more detail), quantitative structure-activity 

relationships (QSARs) are used as well. Thus, the extensive economic and ethical contribution 

of using in silico methods is being substantiated across industries (Madden et al., 2020).  

 

1.1.1 Pharmacokinetic importance in safety assessment 

Pharmacokinetic studies provide information on bioavailability, half-life, absorption, free 

drug concentration in plasma etc. The increase in development of tools for predicting 

pharmacokinetic profiles has resulted in a reduction in late-stage termination of drug 

candidates, as potential pharmacokinetic issues are now identified much earlier in the drug 

discovery process. This includes early detection of drug safety issues, such as potential drug-

drug interactions, or non-linear kinetics (Walker, 2004). Guidance documents from ECHA 

(2017) and the Scientific Committee on Consumer Safety (2018) recommend making use of 

all available data (including kinetic data) to support decision-making in safety assessment. 

Incorporation of pharmacokinetic data in read-across predictions in safety assessment is also 

being increasingly used. Following a forum, organised by the European Partnership for 

Alternatives to Animal Testing (EPAA), Laroche et al. (2018) produced a report on finding 

synergies for reducing, refining and replacing (3Rs) testing on animals, detailing the need to 

use toxicokinetic data in read-across, see Section 1.5, in multiple industries (i.e. the 

pharmaceutical, cosmetics, food and agrochemical industries) and their associated regulatory 

organisations to produce a greater impact. Further, within the agrochemical industry, the use 

of pharmacokinetic information is a requirement for obtaining permission for pesticide use, 
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as a result of the revision of Directive 91/414/EC, to improve the risk assessment of non-

pharmaceuticals (Loizou and Hogg, 2011). 

 

1.1.2 In-silico methods for safety assessment 

There is clear evidence that in silico methods (including QSAR, read-across, physiologically-

based kinetic (PBK) modelling, chemical categories, and grouping) are encouraged to be used 

across many sectors to reduce and replace animal testing wherever possible. This requires 

the development of appropriate methodologies to provide the required information and fill 

gaps in knowledge; such methods have been in development for decades. Blaauboer et al. 

(2016) highlights the possibilities of applying in silico methods to the safety assessment of 

food, food ingredients, and mixtures. The authors proposed a stepwise roadmap highlighting 

the need to address gaps in current knowledge for safety evaluation including the applicability 

of data from alternative methods. Cronin et al. (2022) review different in silico approaches, 

for example PBK models, used for assessing exposure and hazard of cosmetic ingredients as 

well as approaches applied to modelling to predict hazard, for example read-across, and 

QSARs. Furthermore, the authors identify the need for acceptance of non-animal safety 

assessment for cosmetics and ingredients by manufacturers, consumers and regulatory 

authorities as essential for their use. However, a coordinated approach is needed to make 

greater impact, particularly on the regulatory community (Sewell et al. 2021).  

 

In the EU, there have been multiple reports with subsequent implementation of a range of 

regulations to encourage the use of alternative methods. In June 2007, processes developed 

for the purpose of protecting humans and the environment from the adverse effects of 

chemicals came into effect through an EU regulation (2006) referred to as REACH. The REACH 

regulation promotes the use of in silico predictions (such as read-across approaches and 

QSAR) as alternatives to animal testing. The regulation requires that where results are derived 

from a QSAR model, scientific validity must be established and the model must be considered 

adequate for purpose, for example for classification or labelling. In addition, reliable 

documentation of the applied method must be provided, and the chemical must fall within 

the applicability domain of the in silico model. ECHA endorses the principle that dossiers being 

submitted for REACH should use results from alternative methods in place of new animal tests 

wherever possible. Further, ECHA’s 4th report (2020) into the use of alternatives to testing on 
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animals for the REACH regulation highlighted that read-across remains the most commonly 

used alternative method.  

 

1.2 New approach methodologies (NAMs) 

Assessment of potential toxicity is needed to ensure products developed are safe for animals 

and humans. Predictive toxicology helps to avoid harm to animals that chemicals may elicit 

when used in testing to determine the effects of a chemical on the body. REACH regulation 

states animal testing should be used as a last resort. Therefore, new approach methodologies 

(NAMs) are needed to be developed to predict toxicity and understand the mechanisms by 

which this may occur. The application of in silico tools has expanded across multiple industries 

and regulatory sectors. Initially, these models and tools were developed for predicting 

chemical toxicity to environmental species (e.g. fish, aquatic invertebrates, algae and bees) 

(Balls et al., 2018). There is increasing recognition of the role of in silico tools in providing 

information for regulatory submissions to meet legislative requirements across multiple 

industries (e.g. cosmetics, pesticides and food) as well as the use of in silico methods in 

product development (Madden et al., 2020). In terms of drug development there is a history 

of using in silico models to maximise drug efficiency as well as reduce adverse effects and 

understand the underlying mechanisms. Only those drug candidates that are most likely to 

be successful are progressed through to the animal testing stages. In silico models can also be 

used to reduce the number of drugs subject to post-marketing withdrawal and for early 

screening of toxicity which is superior to in vitro and animals (Güneş et al., 2021). Hence, there 

is a wealth of knowledge of in silico model building that can be leveraged from such studies 

and applied to new areas. 

 

NAMs provide data for safety assessment; they can be defined as any non-animal based 

approach that, used in combination or alone, can provide information for chemical safety 

assessment. Paini et al. (2019) highlighted the possibilities of applying NAMs and next 

generation (NG) safety assessment methods, to the development and use of PBK models, to 

address the lack of (kinetic) data for the majority of chemicals. Therefore, it is crucial to have 

alternative methods for providing these data. A European Commission report (2019) 

indicated that in 2017, 9.4 million animals were used for experiments, with an additional 14 
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million animals used for tissue and organ samples, breeding, and maintenance in Europe, 

despite the significant costs associated with testing on animals. According to the UK Home 

Office (2021) there has been a 15% decrease in the number of procedures involving animals 

in 2020 from the previous year, although the amount of procedures involving fish has 

increased. Acceptance and uptake of in silico tools is supported through the cross-disciplinary 

sharing of information and methods, allowing faster advancement of methodologies and 

development of tools. This application of tools, developed in one industry, to solve problems 

in another, can help with the acceptance of alternative methods being used for regulatory 

purposes.  

 

1.2.1 Predicting intrinsic activity (toxicity) 

There are two key components to predicting whether or not a chemical is likely to elicit a 

response in an organism: knowledge of the intrinsic activity (toxicity) of the chemical (or its 

derivatives) and the extent to which the organism is exposed. Note that “exposure” can be 

further subdivided into external exposure, the total dose received by ingestion, inhalation 

etc, and the internal exposure i.e. the amount that is taken up into various organs of the body 

(Thompson et al., 2021). Intrinsic activity (toxicity) may be predicted using a range of 

(quantitative) structure-activity relationship ((Q)SAR) models. These models rely on the 

relationship between properties of a chemical and/or its molecular structure and its activity. 

Chemicals with data available about their activity are used to develop models to predict 

activity for unknowns. The relationship of molecular features of a chemical and its activity 

may be defined by an SAR. When dealing with continuous data QSAR analysis is beneficial.  

 

A wide range of predictive models are available, for example, models for toxicity, 

physicochemical properties, environmental fate and ecotoxicity. Some predictive software 

integrates QSAR models; one such software is EPISUITE 

(http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm; accessed July 2022). Other 

examples of software that predict toxicity from structural information include: VEGAHUB – 

this predicts a range of toxicity endpoints including skin sensitisation, mutagenicity, 

carcinogenicity and environmental endpoints (Roncaglioni et al, 2022; 

https://www.vegahub.eu/; accessed July 2022); Derek Nexus also predicts skin sensitisation, 

mutagenicity carcinogenicity as well as other endpoints such as teratogenicity, irritation etc 

http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm
https://www.vegahub.eu/
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(https://www.lhasalimited.org/products/derek-nexus.htm; accessed July 2022) and; Toxtree 

which predicts skin and eye irritation/corrosion, skin sensitisation and others 

(http://toxtree.sourceforge.net/; accessed July 2022).  

 

Using data from one (or more) chemicals to predict characteristics of other chemicals works 

on the premise that if chemicals are determined to be similar, the expectation is that they will 

elicit similar effects. However, there are inadequacies with this theory (e.g. presence or 

absence of other structural features may impact the response or alter activity) (Madden et 

al., 2020). Therefore, when making predictions, models should only be used when the 

chemical falls within the applicability domain of the model; any exceptions e.g. anomalous 

predictions need to be investigated separately as their mechanism of action may be different. 

Whilst predicting toxicity is clearly as essential component of safety assessment, this is not 

the focus of the current thesis. This thesis focuses on predicting the second key component 

referred to above i.e. exposure, specifically internal exposure.  

 

1.2.2 Internal exposure and its prediction 

To have complete knowledge of internal exposure at the organ-level, information regarding 

absorption, distribution, metabolism and excretion (ADME) is needed, in addition to the 

overall concentration-time profile for the chemical in the organ. Absorption is related to how 

a substance enters the body. There are many different routes of administration, for example 

orally through tablets, food or water; dermally through the skin; and intravenous injections. 

How much of a chemical is absorbed is determined by the dose and the regularity of doses, 

the rate of absorption (normally denoted as ka) and the physicochemical properties of the 

chemical such as the logarithm of the octanol:water water partition coefficient (log P) and the 

ionisation constants (pKa or pKb), in addition to physiological parameters, for example pH and 

absorptive surface area. The lower gastro-intestinal (GI) tract is where most absorption takes 

place following oral dosing. Human intestinal absorption is an important parameter in 

modelling, being the percentage of the dose that reaches the portal vein after passing through 

the intestinal wall (Mostrag-Szlichtyng and Worth, 2010). Absorption through skin layers or 

across the surface of the alveoli in the lungs are important routes of uptake for dermally 

applied or inhaled chemicals respectively. Bioavailability (denoted as F) is the proportion of a 

chemical that reaches the systemic circulation in its unchanged form; it is directly 

http://toxtree.sourceforge.net/
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proportional to the amount of the chemical that is absorbed and inversely proportional to the 

amount that is metabolised before reaching the systemic circulation.  

 

Distribution relates to where a chemical may go within the body (e.g. its site of action). The 

volume of distribution (Vd) is a hypothetical volume that relates the concentration in blood 

(or plasma) to the dose administered. Chemicals with a high Vd have a tendency to move out 

of the blood and into tissues; chemicals with a low Vd have a tendency to remain more within 

the blood compartment. Distribution is determined by the relative affinity of a substance for 

blood versus tissue components (e.g. the ability of a substance to bind with plasma proteins 

or tissue constituents) and its ability to permeate membranes. There are two sites of 

distribution of particular concern i.e. whether a chemical can cross the blood brain barrier 

(BBB) or the placenta (Mostrag-Szlichtyng and Worth, 2010). If a chemical can pass the BBB, 

neurotoxicity can occur; if it can cross the placenta teratogenic effects may result. Another 

consideration is the potential for the substance to accumulate in a tissue, for example in 

adipose. Plasma protein binding is an important factor for distribution as an unbound 

substance may more easily pass-through membranes, therefore, the substance may be more 

likely to be metabolised or excreted. 

 

Often considered the most important component of ADME is metabolism (Doogue and 

Polasek, 2013) as it can significantly affect the toxicity of a chemical. A hazardous chemical 

may have no effect on the body, for example it may not reach the site of action, or it may be 

metabolised, whereas a non-hazardous chemical could become hazardous when metabolised 

by the body, through the formation of metabolites that are be considered to be toxic. 

Metabolism of a chemical can occur at many sites with most tissues having some metabolic 

capability, although the liver is the main site for metabolism. There are two types of 

metabolism, phase I metabolism which is the addition or exposure of a functional group on a 

molecule, and phase II metabolism which involves conjugation reactions that render the 

molecule more water soluble so that it can be readily excreted by the kidneys. Enzymes play 

a role within metabolism, where the enzymes of the CYP450 system account for 

approximately 75% of drug metabolism (Wang et al., 2015). There is a range of software for 

predicting metabolism. Some examples include, Meteor Nexus from Lhasa 

(https://www.lhasalimited.org/products/meteor-nexus.htm) which predicts metabolic fate, 

https://www.lhasalimited.org/products/meteor-nexus.htm


 16 

Toxtree (http://toxtree.sourceforge.net) which is an open source software that applies a 

decision tree approach to predict toxic hazard, and the OECD Toolbox 

(https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm) which can 

predict a chemicals potential mechanism of action and identify chemicals with similar 

structural characteristics and mode of actions. Multiple industries (pharmaceutical, food and 

agricultural) are prioritising research on metabolism prediction (Wang et al., 2015). There is 

often an over prediction of potential metabolites by predictive software, however attempts 

are being made to solve these issues (Paini et al., 2019).  

 

The final stage of the ADME process is excretion. This concerns the chemical or its 

metabolite(s) leaving the body normally through the kidneys, although clearance of a 

compound from the body can also occur through other means, such as through expired air, 

bile, faeces, sweat or breast milk.  

 

Many datasets exist for ADME properties (for example those collated by Przybylak et al. 

(2018), however the quality of the data are highly variable. There are also multiple software 

packages available to predict ADME properties as reported by Madden and Thompson (2022), 

but often there is a lack of consistency between predictions. Patel et al. (2018) identified and 

assessed over 80 models to predict 31 different ADME endpoints. However, these authors 

reported significant difficulties in reproducing the published models. Many other methods for 

predicting ADME properties are available: Mostrag-Szlichtyng and Worth (2010) list available 

resources for ADME predictions and Wang et al. (2015) discuss the increase in predictive 

models for ADME properties. 

 

Traditionally in safety assessments, correlating effects with external exposure (i.e. dose) has 

been employed, however the more relevant measure, the organ-level exposure (i.e. amount 

reaching the target site), is acknowledged to be linked more accurately to observed toxicity 

(WHO, 2010). Internal exposure predictions are needed to help determine the true effect a 

chemical may have on a body and the biological response. Predicting internal exposure with 

greater accuracy can help to reduce gaps in knowledge and the uncertainties associated with 

predicting biological effects.  

 

http://toxtree.sourceforge.net/
https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
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1.3 PBK models 

To provide predictions of chemical concentration at the organ-level, physiologically-based 

kinetic (PBK) models (synonymous with physiologically-based pharmacokinetic, toxicokinetic 

or biokinetic (PBPK, PBTK or PBBK) models) are developed and used in numerous industries. 

They include more detailed physiological processes than traditional PK modelling. 

Applications of PBK models are numerous and extend the original role of PBK modelling; 

traditionally PBK models were used in developing pharmaceuticals, utilised to predict first 

dose in man and drug-drug interactions (Perry et al., 2020). The influence of health status on 

kinetics, for example hepatic impairment, was also modelled using PBK models. Further, PBK 

models have been accepted for some regulatory purposes. These include for example, drug-

drug interactions and extrapolation across different patient populations such as paediatric 

dosing and adjustments for those with impaired liver function. Many examples, detailing 

cases in which PBK models were used to impact drug development and regulatory decisions 

can be found in Shebley et al. (2018). However, there is still reluctance in the uptake of PBK 

models within public health agencies (Tan et al., 2018), as well as a reluctance to submit PBK 

models due to differing requirements across various agencies (Paini et al., 2017).  

 

The use of PBK modelling in relation to environmental chemicals has increased significantly 

in recent years. Applications of PBK models for environmental chemicals include route-to-

route extrapolation (e.g. extrapolating from one administration route to another, such as 

estimating properties for the inhalation route using data obtained from the oral route); 

determining the dose at target tissue following external exposure; dose extrapolation; inter- 

and intra-species extrapolation (accounting for species, population or genetic variability 

through adaptation of physiological and anatomical parameters); in vitro-to-in-vivo 

extrapolation (IVIVE); ascertaining safe levels based on tissue dosimetry; estimating chemical 

exposure from biomonitoring or epidemiological data (using reverse dosimetry) and assessing 

potential for bioaccumulation (Thompson et al., 2021). 

 

PBK models combine physiological and anatomical information (e.g. organ volume and blood 

flow) with chemical specific information (e.g. solubility, pKa, molecular weight, and log P) to 

predict the concentration-time profile in different organs or tissues. Physicochemical 

properties are also important in pharmacokinetics. For example, molecular weight can affect 
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the absorption of drug where the higher the molecular weight the lower the absorption. 

Similarly, aqueous solubility and log P also influence both absorption and distribution, 

influencing dissolution and membrane partitioning. The pKa of a drug also affects its 

distribution properties, as this influences the extent of ionisation – unionised molecules pass 

through biological membranes more readily. Protein binding is particularly influential as it is 

unbound chemicals that traverse membranes and, for example, enable the access to sites of 

metabolism or excretion. Hence, physicochemical properties affect a range of ADME 

properties which will directly impact PK predictions. Figure 1.1 outlines a generic schematic 

of a PBK model, where the body is split into different compartments (e.g. organs) which are 

connected by blood flow.  

 

  

Figure 1.1 Schematic of a generic PBK model 

 

Table 1.1 summarises key inputs required for building PBK models. PBK models can be data 

and resource intensive, requiring significant time to create because of the large number of 

parameters needed and difficulties in obtaining all of the data required to build the models.  

 

Table 1.1 Key inputs required for PBK modelling 

Inputs required for PBK modelling 
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Chemical-specific 

information 

Physiological and 

anatomical information 

Exposure Scenario 

Tissue-partition coefficient  Organ blood flow Dose 

Blood-plasma 

concentration ratio 

Organ volume Frequency of dose 

Oral absorption rate 

constant 

Tissue composition (e.g. lipid 

content) 

Route of administration 

Fraction absorbed Potential elimination routes 

potential 

 

Clearance (total, renal, 

intrinsic) 

  

Maximum velocity of 

metabolism 

  

Michaelis constant   

Oral bioavailability    

Fraction unbound in plasma   

Molecular weight   

Solubility   

 

In PBK modelling, the body is split into compartments, that represent either an organ, tissue 

or group of organs in the body. The level of complexity of a PBK model is dependent on the 

number of compartments incorporated into the model (Thompson and Beard, 2011). The rate 

of change in the concentration of the chemical in each compartment is represented using 

ordinary differential equations (ODEs). A fundamental unit of a PBK model is shown in Figure 

1.2. Blood flows into an organ from the arterial blood and out of the organ to the venous 

blood, where the concentration of the chemical is given as a function of time. The sum of all 

these results in the overall PBK model. PBK models can assimilate new information as it 

becomes available to increase predictive capacity; these models provide an advantage over 

traditional one or two compartment kinetic models (Rowland et al., 2015). 
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Figure 1.2 Fundamental unit of a PBK model 

 

Key organs may be incorporated into a model as an individual compartment, or further 

divided into multiple compartments, known as sub-compartments. For example, the lung may 

be further divided into airway generations (e.g. tracheobronchial and alveolar) or into 

compartments representing the epithelium, the sub-epithelium and the epithelial lining fluid. 

Thus, this results in higher level, complex models. Although there are advantages to modelling 

ADME processes, the level of information required as input for complex models can be a 

hinderance (Sager et al., 2015). To create simpler models, organs may be grouped together, 

this is referred to as lumping and common lumping of organs includes all poorly perfused 

organs considered as one compartment and all highly-perfused organs considered as another 

(Thompson et al., 2021). Models consisting of very few compartments (for example 

comprising only blood, liver and gut) are commonly referred to as minimal PBK models.  

 

The uncertainty of pharmacokinetics associated with extrapolation across species, 

populations, routes, between preclinical and clinical studies can be reduced with PBK 

modelling (Andersen et al., 1987, Punt et al., 2016, Gentry et al., 2017). It is important to 

investigate changes in species (or sub-species), life-stage, route of administration and sex 

separately as there are changes in the inputs required for the models. For example, the size 

of an organ or blood flow, as well as metabolic and excretion differences need to be 

accounted for when scaled to the relevant species or when comparing older populations to 

younger ones. The route of administration of a chemical effects how it is absorbed into the 

blood and how much of a chemical would be absorbed, e.g. topical dermal application of a 

drug would absorb differently to a drug that is taken as a tablet orally. An overview of how 

the key characteristics combine to create a PBK model and accurately describe the time 

course of a chemical is represented in Figure 1.3.  
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Figure 1.3 Key features that make up a PBK model (from Thompson et al. (2021)) 

 

There are multiple mathematical modelling and simulation tools available to assist in 

constructing and applying PBK models. Generic software for modelling, simulating and fitting 

data (all last accessed July 2022) includes: NONMEM 

(https://www.iconplc.com/innovation/nonmem/), and GNU MCSIM 

(https://www.gnu.org/software/mcsim/mcsim.html). Pheonix WinNonLin 

(https://www.certara.com/wp- 

content/uploads/Resources/Brochures/BR_PhoenixWinNonlin.pdf) is an industry standard 

software used for non-compartmental analysis and PBK modelling. Whereas MATLAB 

(https://www.mathworks.com/products/matlab.html) and Berkley Madonna 

(https://berkeley-madonna.myshopify.com/) are software capable of constructing complex 

models. The open source software, PKSim (http://www.systems-biology.com/products/PK-

Sim.html), is also a useful resource for PBK modelling that has a database with anatomical 

and physiological parameters for multiple species (e.g. human, mouse and dog), where the 

user can create different scenarios using interchangeable building blocks.  

 

https://www.iconplc.com/innovation/nonmem/
https://www.gnu.org/software/mcsim/mcsim.html
https://www.certara.com/wp-%20content/uploads/Resources/Brochures/BR_PhoenixWinNonlin.pdf
https://www.certara.com/wp-%20content/uploads/Resources/Brochures/BR_PhoenixWinNonlin.pdf
https://www.mathworks.com/products/matlab.html
https://berkeley-madonna.myshopify.com/
http://www.systems-biology.com/products/PK-Sim.html
http://www.systems-biology.com/products/PK-Sim.html
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1.4 Validation  

Information on the construction and validation of PBK models is well reported (USEPA, 2006, 

WHO, 2010, Kuepfer et al., 2016, Upton et al., 2016, Laroche et al., 2018, Madden et al., 2019). 

These publications report, the application of PBK models within different industries and the 

tools that are available to support building PBK models. The WHO (2010) report sets out the 

main principles for the characterisation and application of PBK models for safety assessment. 

These principles are built upon in the Organisation for Economic Cooperation and 

Development’s (OECD) guidance document on the characterisation, validation and reporting 

of models for regulatory purposes, where they focus on the use of alternative approaches (in 

silico and in vitro) for parameterising PBK models (OECD, 2021b). PBK models developed for 

laboratory test species (such as rabbits, rats, dogs and mice), humans, species of ecological 

relevance (e.g. fish and birds) and farm animals are all applicable under the OECD guidance 

(Paini et al., 2021a). Furthermore, it is relevant for chemicals in a range of forms, for example 

biologicals, nanomaterials, metals and macromolecules. Chemicals used in medical devices 

are not included in the developed guidance. 

 

OECD (2021b) recommends validating PBK models based on five characteristics these include: 

the biological basis of the model structure and parameters; theoretical basis of the model 

equations; reliability of input parameters; sensitivity of the model output to input 

parameters; and goodness-of-fit and predictivity of a given dose metric. Models can be 

validated by predictivity and fitting a model to data; however, this requires the availability of 

in vivo kinetic data for comparison to the PBK predictions. The model validation can be slowed 

by increasing complexity of the equations used within PBK models (Loizou and Hogg, 2011). 

Sensitivity and uncertainty analysis are commonly used to assess PBK models. Sensitivity 

analysis allows for uncertainty in model output to be attributed to one or more of the model 

input parameters (Patelli et al., 2010). Therefore, allowing for the confidence in the 

application of a PBK model to be evaluated. It is important for sensitivity analysis to be 

undertaken for validation of PBK models as there is lack of trust and understanding in PBK 

modelling that has led to a reluctance in uptake of regulatory use of these models (Paini et 

al., 2017, Paini et al., 2019).  
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Within a sensitive model, parameter uncertainties can have a stronger influence on the 

associated model predictions. Thus, identification of the relevance of input parameters is 

essential. Sensitivity analysis is split into three types, local sensitivity analysis, screening 

methods and global sensitivity analysis. The OECD guidelines recommend that local or global 

sensitivity analysis be undertaken on a PBK model to validate the model. For practical cases, 

local sensitivity analysis is commonly undertaken due to the lower computational costs 

(Saltelli, 2002). Global sensitivity analysis allows parameters that are linked to be assessed by 

investigating the entire range of variation of the input parameters. Screening methods (for 

example the Morris factorial sampling method (Morris, 1991)) have low computational cost 

and are meant for computationally expensive models, involving large numbers of parameters. 

In this method, input parameters are ranked according to their importance without 

quantifying how much more important one parameter is than another (Patelli et al., 2010).  

 

For considerable interaction between estimated model parameters a global sensitivity 

analysis is desirable as all parameters at the same time point are analysed (Sobol, 2001, 

Saltelli et al., 2007, Patelli et al., 2010). Although, global sensitivity analysis can be 

computationally costly, such uncertainty estimations are required for modelling and 

simulation standards. One multidisciplinary software for quantifying uncertainty is COSSAN. 

COSSAN is a general purpose computational software for non-deterministic analysis (Patelli, 

2016). This MATLAB-based software is flexible for the user to adapt to different purposes 

while being open source. Parameter uncertainty in PBK models can be analysed through 

construction and implementation of algorithms. Therefore, the validation of PBK models can 

be undertaken. 

 

1.5 Read-across 

There are many alternatives to animal testing to predict the effects of chemicals - a key 

method being read-across. This is an approach in which information from a chemical, rich in 

data (source chemical) is used to inform predictions for a chemical poor in data (target 

chemical), where the chemicals are considered similar (ECHA, 2017). In recent years there has 

been an increase in accessibility of resources to support read-across and in silico modelling, 

particularly for ADME data. For example, a review of resources to support read-across was 
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undertaken by Pawar et al. (2019). These authors identified over 900 databases, including 38 

containing ADME-relevant data for in silico model development. Furthermore, a broad 

literature search by Sayre et al. (2020) resulted in a database of time-series concentration 

data being extracted. Read-across is reported as the most commonly used alternative method 

in safety assessment to reduce or replace animal testing (ECHA, 2020), with kinetic data being 

key within this approach (Schultz et al., 2015, ECHA, 2017). However, within the regulatory 

sector there is an increasing want for establishing best practices for conducting and 

evaluating read-across (Schultz et al., 2015).  

 

There are two ways in which we can consider using PBK data for read across. Firstly, a PBK 

model for a source chemical can be read across (applied) to a target chemical to obtain PBK 

model data for the target. For example, liver concentrations for the target chemical are 

predicted over time, based on a new PBK model that was derived from information from the 

model for the source chemical. These liver concentration predictions can be confirmed to be 

in line with expected concentrations. The second way in which PBK-type data can be used, is 

to add the derived PK information to a read-across prediction for toxicity. For example, a 

maximum liver concentration is derived from a PBK model, and this is linked to a proposed 

toxic effect. If a source chemical has a particular functional group associated with liver toxicity 

and the target chemical has that same functional group (and is predicted to be similar in terms 

of pharmacokinetics) then the same liver toxicity may be expected. Thus, a read-across 

approach is supported by adding PBK information. 

 

Read-across can be supported by using PBK models to derive relevant data. Uncertainties to 

do with ADME characteristics can be reduced using PBK models as they include the biokinetics 

of a chemical. As PBK models are so time and resource-intensive to generate, both PBK model 

development and safety assessment would benefit from the ability to use a read-across 

approach when developing PBK models (Laroche et al., 2018). Recently there have been 

publications (Lu et al., 2016a, Paini et al., 2021b) demonstrating the use of a read-across 

approach to obtain PK information from analogue chemicals. The data can be obtained in two 

ways: either from a PBK model for the target chemical, or from a PBK model for a source 

chemical that is identified as being similar to the target. In applying read-across to different 

chemicals or extrapolating to different species or routes of exposures, animal testing can be 



 25 

reduced. However, to use an existing PBK model as a template for a target chemical, it is 

important to identify suitable similar chemicals with an existing PBK model. Guidance from 

the OECD (2021b) to increase the uptake of PBK models in the regulatory sector has been 

published outlining the use of read-across for PBK modelling.  

 

1.6 Previous literature underpinning the thesis 

The number of PBK models, and their applications, being published has increased 

considerably in the last 30 years (Tan et al., 2018). Previously, using papers from 1977 to 2014 

a knowledgebase of available PBK models for 307 chemicals was created by Lu et al. (2016a). 

They applied a read across approach to build new PBK models, using information from existing 

PBK models from the knowledgebase. For building the ethylbenzene PBK model, information 

was drawn from PBK models for six chemicals identified as having similar structures. 

Information from the PBK model for gefitinib was used to predict information for seven 

chemicals with varying degrees of similarity to gefitinib. For these two case studies, similarity 

of chemicals was based on physicochemical properties. However, there is no consensus as to 

the best method to determine similarity between chemicals (Mellor et al., 2019). Ellison 

(2018) was one of the first to evaluate a PBK model where PK data were unavailable. This 

author used two approaches, involving structural and functional analogues, for PBK modelling 

of pharmaceuticals using models based on in vivo data. The approach of Ellison (2018) was 

extended successfully by Ellison and Wu (2020) where they applied the approach to PBK 

models built on in vitro and in silico data only (i.e. in the absence of in vivo PK data).  

 

Previous resources collating literature PBK models have been created. One of which is the 

dataset, created by the US EPA, of available PBK models in the literature which is available on 

Figshare (Sayre et al., 2019). Information recorded in the dataset included species, gender, 

life-stage, route of administration, PubMed ID of the PBK models and the compartments 

modelled. Paini et al. (2021b) outlined a framework for using a read-across approach to 

develop and evaluate PBK models to inform safety assessment, using information from data-

rich chemicals to provide information for data-poor chemicals using chemicals in the PBK 

Knowledgebase. They undertook a case study, identifying estragole and safrole as 

appropriate source chemicals for the target chemical methyleugenol, as determined through 
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analysis of structural similarity.  Thus, successfully demonstrating the principles of using 

information from existing PBK models to inform the development of new models for similar 

chemicals that may be applied in safety assessment. 

 

Establishing the nature of the chemicals for which PBK models are available is important as 

similarity is commonly compared using structure and/or physicochemical properties – these 

key characteristics can be compared across datasets. As identified by Madden et al. (2020) 

the recognition of the application of a read-across approach and utilising existing data is an 

important tool in reducing animal testing. Thus, it is necessary to identify chemicals with 

available PBK models (and establish the nature of these chemicals) with the intention of 

assisting the application of this approach.  

 

Therefore, one significant asset for researchers, industry and regulators, to reduce the 

number of animals used in chemical safety assessment and drug development, would be the 

availability of a resource, readily updatable and accessible, that contained information on the 

chemicals with available PBK models and the details of those models (Thompson et al., 2021). 

Another valuable asset to the 3Rs, would be an automated tool that can help to identify 

chemicals that can be considered as similar. This would enable predictions to be made for 

data-poor chemicals, using existing PBK models for data-rich chemicals. This could provide 

further mechanistic insight for the assessment of data-poor chemicals. A structured method 

to identify similar chemicals would help increase the uptake of using a read-across approach 

for PBK modelling. Furthermore, to help authenticate the use of such a tool for identifying 

similar chemicals, relevant case studies need to be undertaken. If successful, this could 

encourage the use of a read-across approaches (especially by regulators) to help towards the 

3Rs.  

 

1.7 Research aims 

This thesis describes the creation of an extensive dataset of PBK models available in literature, 

and the development of an automated workflow that identifies chemicals from this dataset 

that are similar to a target chemical of interest. Case studies were undertaken to demonstrate 

the use of the workflow to identify existing PBK models for source chemicals that could be 
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used as templates for the development of PBK models for target chemicals; the performance 

of the developed models was also assessed. The ultimate goal is to develop methods that can 

reduce the number of animals used in safety assessment. 

 

The use of an existing PBK model, for a data-rich chemical, to serve as a template on which to 

build a new PBK for a similar, data-poor chemical has been established (Lu et al., 2016a, Paini 

et al., 2021b). In order for this approach to be more accessible across a wider range of 

chemical types and more acceptable, particularly to regulators, there are three key steps. 

Firstly, existing PBK models, that may serve as templates, must be curated into a readily 

searchable resource. Secondly, an automated tool must be developed that assists in the 

identification of chemicals that can be considered as suitably similar to allow for read-across. 

Thirdly, case studies need to be undertaken in order to demonstrate the validity of the 

approach. These three steps form the basis of the research undertaken for this thesis: a 

systematic review of available PBK models and an analysis of their chemical space coverage; 

the development of a KNIME workflow to identify similar chemicals (analogues) for PBK 

modelling; and case studies demonstrating the application of the KNIME workflow for 

analogue selection, enabling read-across of PBK model-derived information. The research is 

described in the subsequent chapters as follows. 

 

The aims for Chapter 2 were to: 

(i) Develop a protocol for a systematic review of existing PBK models. This required 

the use of pilot studies, with iterative development and testing to optimise the protocol. 

(ii) Undertake a pilot study to determine the most appropriate systematic review 

software to use in this study; SyRF and Covidence software were compared.  

(iii) Conduct a systematic review of PBK models using the optimised protocol and the 

software determined as being most appropriate. Relevant information for the PBK models 

was captured in a flexible spreadsheet format, using both free text and controlled vocabulary 

to optimise searching. This spreadsheet is subsequently referred to as the PBK model dataset 

(PMD).  

(iv) Ascertain the chemical space coverage (in terms of key physicochemical 

properties) of chemicals for which PBK models were available. The variation in these key 

physicochemical properties was compared across six specific types of chemicals. 
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The aims for Chapter 3 were to: 

(i) Investigate a range of similarity assessment metrics (e.g. chemical fingerprints and 

physicochemical properties) to determine which method(s) resulted in the most appropriate 

selection of source chemicals (analogues) for the purposes of serving as a template in PBK 

model development for a target chemical.  

(ii) Develop a KNIME workflow for assisting with analogue selection, employing the 

similarity metrics identified as being most appropriate; this utilises the PBK model dataset 

(PMD) from Chapter 2 as a source for identifying chemicals with existing PBK models 

(iii) Test the KNIME Workflow for Assisting Analogue Selection (KWAAS) using six 

different types of chemicals (pesticides, botanicals, drugs, cosmetics, food additives and 

industrial chemicals) to demonstrate its utility across a range of industrial and regulatory 

sectors.  

 

The aims for Chapter 4 were to: 

(i) Demonstrate use of the KWAAS created in Chapter 3 by applying the approach to 

two case study target chemicals – atenolol and flumioxazin. Initially, source chemicals with 

PBK models available in the literature were identified, using the KWAAS. These models were 

reproduced for the source chemicals, and subsequently used as templates to enable new 

models to be derived for the two target chemicals using a read-across approach 

(ii) Assess the performance of the newly-derived PBK models by comparing blood-

concentration-time profiles with existing data from the literature. The model assessment was 

undertaken for each new PBK model created using global sensitivity analysis and comparison 

of fold error for key parameters obtained from the models.  

 

The overall outcomes of this project and potential developments for the future are discussed 

in Chapter 5.  
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Chapter 2 – Systematic review of available PBK models and an analysis 

of their chemical space coverage 

The research described in this chapter has been published in Alternatives to Laboratory 

Animals (Thompson et al, 2021).  

DOI: https://doi.org/10.1177/02611929211060264 

  

2.1 Introduction 

As described in Chapter 1, PBK models (which describe the time-course of chemicals in 

different compartments of the body), are flexible and adaptable across multiple routes of 

administration, species and life-stages. As new data are made available, these can be 

incorporated into PBK models enabling them to better predict concentration-time profiles. 

Publications relating to, or referencing, PBK modelling has increased significantly in recent 

years, and the methods are increasingly becoming accepted by regulatory agencies (Sager et 

al., 2015). However, there can be a lack of confidence in the information provided by the 

models due to the limited availability of in vivo data that are used to build and validate the 

models (Lu et al., 2016a). One way in which the lack of data can be addressed is to use an 

existing PBK model, for a chemical that is “data-rich”, as a template to build a new model for 

a “data-poor” chemical. Making use of existing data in this way would be a significant asset 

for model development across a wide range of industrial and regulatory sectors. This 

approach requires knowledge of the existing PBK models and the nature of the chemicals for 

which such models are available.    

  

The first requirement, therefore, is a curated dataset of as many PBK models as reasonably 

practicable along with information on their key model characteristics such as species, sex, life-

stage, route of administration, compartments, availability of model equations and chemical 

identifiers. This can be achieved most efficiently by conducting a systematic review. A 

systematic review aims to bring together and summarise the available evidence on a pre-

defined research question, with a rigorous and reproducible methodology (Hoffmann et al., 

2017, Pollock and Berge, 2018). In addition, the minimisation of subjectivity is sought in the 

completion of a systematic review (Siddaway et al., 2019). The results of research are 

https://doi.org/10.1177/02611929211060264
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systematically collated in a systematic review, this helps to reduce duplication of research, as 

well as ensuring the study is comprehensive and avoids bias (Siddaway et al., 2019).  

 

Ideally systematic reviews should be updated regularly to incorporate new studies and ensure 

that conclusions remain valid (Pollock and Berge, 2018). Protocols, describing how the review 

will be conducted are a necessary part of the systematic review process. In order to increase 

transparency, of the process, to ensure that the method can be independently reproduced, 

and to help ensure selection bias is avoided the protocol should be published before 

beginning the review. Furthermore, this avoids research duplication by ensuring other 

researchers are aware that the review is being undertaken (Pollock and Berge, 2018, 

Siddaway et al., 2019). A detailed and transparent published protocol for the systematic 

review also ensures that the review can be readily updated as (in this case) more PBK models 

are published.  

 

PBK models are used in multiple industries to provide predictions of the variation in chemical 

concentration over time, at the organ level. It is useful to know the chemical space coverage 

of existing PBK models as models are available for relatively few chemicals overall. Obtaining 

information on key properties of the chemicals for which models are available demonstrates 

how well (or otherwise) the chemical space of drugs, cosmetics, botanicals, pesticides etc is 

represented by the available models. Therefore, a chemical space analysis for chemicals with 

existing models is useful to understand this. However, one caveat is that there is no simple 

process by which a chemical can be designated as being a particular “type”, for example 

cosmetic ingredients may also be food additives; botanicals may have pharmaceutical 

properties etc.  

 

In summary, the aims of this chapter were to: 

(i) Develop a protocol for a systematic review of existing PBK models. This required 

the use of pilot studies, with iterative development and testing to optimise the protocol. 

(ii) Undertake a pilot study to determine the most appropriate systematic review 

software to use in this study; SyRF and Covidence software were compared.  

(iii) Conduct a systematic review of PBK models using the optimised protocol and the 

software determined as being most appropriate. Relevant information for the PBK models 
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was captured in a flexible spreadsheet format, using both free text and controlled vocabulary 

to optimise searching. This spreadsheet is subsequently referred to as the PBK model dataset 

(PMD).  

(iv) Ascertain the chemical space coverage (in terms of key physicochemical 

properties) of chemicals for which PBK models were available. The variation in these key 

physicochemical properties was compared across six specific types of chemicals. 

 

2.2 Method  

2.2.1 Pilot studies 

2.2.1.1 Systematic review application 

A pilot study comparing two different systematic review applications, SyRF 

(https://syrf.org.uk) and Covidence (https://www.covidence.org), was undertaken to 

determine the most suitable software for completing the systematic review. SyRF is freely 

available and specifically designed for the purpose of conducting systematic reviews and 

meta-analysis of animal studies, whereas Covidence has more general application. The 

following characteristics were compared: upload speeds, the size of data files containing the 

abstracts of papers to be uploaded onto the systematic review software, how the review 

process was divided into different stages (e.g. automatically divided into abstract screening, 

full text screening, etc., or if these steps needed input from the user); and the availability of 

additional tools to expedite the overall review process (e.g. automatic removal of duplicates, 

machine learning assisted screening of abstracts etc).  

 

The pilot study showed that Covidence automatically removes duplicates, reducing the time 

required to identify suitable abstracts and automatically divides each stage of the review into 

logical sections, whereas SyRF does not. However, SyRF incorporates a machine learning tool 

to aid the screening process, reducing the time taken overall. In SyRF there is the option to 

annotate studies and highlight additional information in the paper to streamline the 

extraction process (e.g. questions on the disease model induction, treatment outcome 

assessment etc). However, these questions would have to be answered for each paper in 

order to create a process for extraction but were not relevant to the type of data that needed 

to be captured for this particular review. Further, SyRF required smaller sizes of the files 

https://syrf.org.uk/
https://www.covidence.org/
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containing the abstract information to be uploaded into the systematic review software. SyRF 

had issues with the abstract files being uploaded into the software when an author’s name 

was incorrect in the EndNote library, e.g. 3rd or Jr. at the end of someone’s name. These 

problems needed to be addressed before being able to be successfully uploaded to SyRF. To 

fix this the exported XML file had to be updated with all references containing the terms, ‘, 

3rd’, ‘, III’, ‘, 2nd’, ‘, II’, ‘, Jr.’ were removed. Therefore, it was determined that Covidence 

would be the most suitable software for the project. 

 

2.2.1.2 Databases to search 

A scoping study of potentially useful databases and search terms was undertaken to 

determine the most appropriate databases and terms for identifying published papers on PBK 

models. Some of these databases investigated were: Web of Science 

(https://www.webofknowledge.com), ProQuest 

(https://www.proquest.com/central/fromDatabasesLayer?accountid=12118), Sage Journals 

(https://journals.sagepub.com), Cochrane Library 

(https://www.cochranelibrary.com/?cookiesEnabled), PubMed 

(https://pubmed.ncbi.nlm.nih.gov/), Taylor and Francis Online 

(https://www.tandfonline.com). All databases for scientific papers available through the 

university library were assessed. Any database found to have less than 100 results and any 

that were a sub-section of a larger database were removed. Following this analysis Scopus 

(https://www.scopus.com/), PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Web of 

Science (https://www.webofknowledge.com) were identified as the most appropriate 

databases and used in the subsequent study.  

 

2.2.1.3 Protocol 

Multiple arrangements of strings of search terms were tested in order to determine the best 

outcome, in terms of relevant and comprehensive results, using the different search criteria. 

These terms included, PBK, PBPK, PBTK, PBBK, PBPD, and physiologically based, 

pharmacokinetic, toxicokinetic, biokinetic and “?” to replace a hyphen for any words that 

might be hyphenated. Initially plans within the project were to capture only rat and human 

models, noting other species for future reference. However, it was decided that including all 

https://www.webofknowledge.com/
https://www.proquest.com/central/fromDatabasesLayer?accountid=12118
https://journals.sagepub.com/
https://www.cochranelibrary.com/?cookiesEnabled
https://pubmed.ncbi.nlm.nih.gov/
https://www.tandfonline.com/
https://www.scopus.com/
https://pubmed.ncbi.nlm.nih.gov/
https://www.webofknowledge.com/
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species would be best to capture all relevant PBK models. To begin, data captured from the 

papers included chemical name, species, administration route, sex, life-stage, software used 

for model development, compartments considered in the model and reference. After piloting 

it was decided that the availability of model equations, PubMed IDs and DOIs should also be 

included, as well as any additional information on the chemical, e.g. whether information 

related to metabolite or parent, and if metabolite data were present in the model. Further 

chemical identifiers i.e. Chemical Abstract Registry (CAS) numbers, Simplified Input Line Entry 

Strings (SMILES) and International Chemical Identifier Keys (InChiKey) from PubChem, as well 

as identifiers from the COSMOS databases were added to the data extraction spreadsheet. 

 

2.2.2 Systematic Review 

The systematic review used for this study was registered on PROSPERO (CRD42020171130, 

see Appendix 1 for the published protocol), the National Institute for Health Research’s 

international prospective registration system, with the review question stipulated as: “For 

which substances are physiologically-based kinetic (PBK) models available and which species, 

genders, life-stages and routes of administration have been investigated for these 

substances? This will include determining the chemical space coverage of the models and the 

availability of the associated model equations within the literature” (Thompson et al., 2020). 

The review complies with the PRISMA reporting standards, the PRISMA checklist is given in 

Appendix 2.  

 

The following method was used in order to complete the systematic review according to the 

published protocol.  

Databases: A search of the following three databases was conducted – Scopus 

(https://www.scopus.com/), PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Web of 

Science (https://www.webofknowledge.com); in the timeframe of all available years. The 

search of these databases was completed in October 2020.  

Search terms: (“pbpk” OR “pbk” OR “pbbk” OR “pbtk” OR “pbpd” OR “pbpm” OR 

“physiologically based”) AND (“pharmacokinetic” OR “toxicokinetic” OR “biokinetic” OR 

“pharmacodynamics” OR “biopharmaceutical”) were used to search abstracts, titles and 

keywords of papers within each database, across all years available.  

 

https://www.webofknowledge.com/
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A total of 14,803 papers were initially identified, however following automated removal of 

duplicates in Covidence, 6,771 remained. All abstracts were screened independently by two 

researchers using the same process specified by the protocol with all conflicts being resolved 

by discussion. The inclusion criteria encompassed PBK models for all routes of administration 

for chemical, biological and carrier systems, including cases where normal physiology was 

altered or interactions between administered chemicals were investigated. Models that could 

not be associated with a specific chemical (such as generic models applicable to large groups 

of chemicals) were excluded. Where an abstract was associated with a paper that had 

subsequently been retracted it was ensured that this model was excluded from the dataset.  

 

Although standard practice in other systematic reviews, assessment of the quality of the 

reported models and risk of bias in reporting was considered unnecessary for this review. 

Judging the quality of a model is difficult for multiple reasons; a PBK model may not be of the 

highest quality but may be sufficient for some purposes depending on its use (e.g. a PBK 

model could be good enough for screening purposes but not for regulatory purposes). OECD 

(2021b) and WHO (2010) have published guidelines on assessing the robustness of PBK 

models. However, to undertake a systematic review on the quality of a PBK model would 

include confirming validity of the parameters used, comparing the output from a PBK model 

with literature values, undertaking local or global sensitivity analysis. Thus, it would be an 

enormous undertaking, taking a significant amount of time to assess the quality of every PBK 

model and there are currently no appropriate tools that exist that can aid in this process. 

Therefore, it would not be practicable to do. The purpose of the review was to document all 

available models, enabling interested researchers to rapidly identify potentially useful models 

to assist with future model development. The assessment of PBK model quality (aside from 

fundamental considerations relating to good modelling practice) needs to be considered in 

terms of fitness for a given purpose (OECD, 2021b), it is therefore context dependent and 

remains the decision of the model user.  

 

Following the abstract screening, 3,120 abstracts were retained for full text screening. PBK 

model data were extracted from 1,649 of these papers, resulting in 7,541 individual models 

being captured. If oral and intravenous dosing were used for both male and female subjects 

for the same chemical this would be extracted as four individual models, hence there are 
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many more models than individual chemicals. Reasons for exclusion of papers during full text 

screening included: PBK model not being reported in the article; the article referenced a 

previously published model with no adaptations (information on the PBK model was 

extracted from the original publication); full article not being available in English or not being 

reasonably accessible. Inter-library loans were requested for the full text of all papers, as well 

as contacting the authors directly. However, not all responded, or they sent papers months 

later after the systematic review was in the process of publication.  

  

 

2.2.3 Extraction of data from available PBK models 

Data was manually extracted from these 1,649 papers, with information being acquired from 

text, tables, figures and supplementary information. The data were entered into a Microsoft 

Excel spreadsheet that captured details of the chemical: parent, with metabolites specified 

where appropriate, species (with a sub-category where relevant e.g. human ethnicity, or a 

subcategory for bovine of cattle, cow, etc.), sex, life-stage, route of administration, literature 

reference for the model (with DOI), compartments considered in the model, the software 

employed and the availability of PBK model equations within the article. Controlled 

vocabulary was used where possible to ensure consistency of data extraction and to enable 

the resulting spreadsheet to be readily filtered and searched for specific types of models, i.e. 

controlled vocabulary was used for species, sex, life-stage, route of administration, availability 

of equations and software used. The vocabulary was empirically derived, to enable the most 

efficient searching. For example, life stages can be reported in multiple ways – no. of weeks, 

months, years of age, young adult, adult, neonate, young child, juvenile etc. Therefore, for 

consistency this information was allocated to the more generic categories of pre-birth or pre-

hatch; from birth or hatch up to adult; adult; pregnant; old age (if specified) as well as a 

generic category for health compromised (excluding old age) individuals. Some models were 

created for modified animals, i.e. animals with cells added to them which were not of the 

same species, or information from two species that are similar, i.e. mouse and rat, were 

combined to create the model. These differences in species have also been recorded. 

 

All information extracted from the spreadsheets can be seen in Appendix 3. The controlled 

vocabulary options used for each column are listed below. 



 36 

Species: aquatic, bird, bovine, cat, dog, gerbil, goat, guinea-pig, hamster, horse, human, non-

human primate, mouse modified, mouse unmodified, oyster, polar bear, porcine, rabbit, rat, 

rodent combined, rodent unspecified, sheep. 

Secondary species category or human ethnicity: bull, cattle, chicken, clam, cow, fish, minipig, 

monkey, oyster, pig, porpoise, scallop, swine, turkey, whale, African, African American, 

Caucasian, Chinese, Hispanic, Indian, Japanese, Korean, comparative ethnicity, human 

unspecified. 

Sex: male, female, unspecified 

Life-stage: pre-birth or pre-hatch, from birth or hatch up to adult, adult, pregnant, old aged 

(specified), health compromised (excluding old age), unspecified. 

Administration route: buccal, dermal injection, dermal topical, gills, in utero, inhalation, 

intra-arterial, intramuscular, intraocular, intraperitoneal, intramammary, intratracheal, 

intravaginal, intravenous bolus injection, intravenous infusion, metabolism from parent, 

nasal, oral bolus, oral feed/water, unspecified. 

Availability of equations in the paper: full equations in paper, combination of partial 

equations in paper and software files on request from author, partial equations in paper, 

equations in combination of primary and secondary references, equations in secondary 

references, equations on request from paper author, software files on request from paper 

author, model code in secondary references, not available, in supplementary material, model 

code available on Github, model code available on BioModels database, model code in 

appendix, model code in supplementary material. 

Simulation software: ACSL/X/Xtreme/Libero/Xtreme Optium/Sim/TOX, ADAPT ll/5, BASIC, 

Berkeley Madonna, C, C++, COPASI, Chrisis, CMATRIX, CSMP lll, Crystal Ball, DARE-P(6), 

DESsolver, Ecolego, Fotran, G+, GastroPlus, Jacobian, KaleidaGraph, LSODA, 

Mathematica/2.2/9, MathCad/PLUS, Matlab, MLAB, MCSim, Microsoft Excel/Visual Basic, 

ModelMaker/4, MULTI-FORTE, Napp, NEXTSTEP, NONLIN, NONMEM, OpenFOAM, Pascal, 

Phoenix, PK-Sim/MoBi, PKQuest, Python, R, SAAM/ll, SAS, SCIENTIST, ScoP, Simbiology, 

Simcyp, Simulink, SIMUSOLV, Sun/4, STELLA, Totalchrom, Phoenix WinNonlin, Multiple 

software used, not specified. 

 

The free text columns are listed below with an explanation of the minimum information 

required to be inputted. 
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Chemical name: as stated in paper. 

Additional information on chemical: Parent – stipulating if there is also information on 

metabolites in the spreadsheet; Co-administered/Interaction – indicates where co-

administered with another chemical e.g. to check for interactions such as for drug-drug 

interaction studies; Co-exposure – co-exposure of the chemical with other chemicals; Mixture 

– mixture of more than one chemical; Inhibited – an inhibitor was present; Inhibitor – the 

inhibitor chemical; Pre-treatment – the chemical used for pre-treatment. 

Reference: authors, year, journal, volume, pages. 

PubMed ID: if available.  

DOI. 

 

A chemical may be identified using common names or chemical identifiers such as the 

Chemical Abstracts Service (CAS) registry number, a Simplified Molecular Input Line Entry 

System (SMILES) string or the International Chemical Identifier Key (InChiKey). Ideally multiple 

identifiers should be incorporated in the dataset to avoid ambiguity. Chemical identifier 

information was obtained by manually inputting the chemical name (as given in the 

publication) into PubChem (https://pubchem.ncbi.nlm.nih.gov/) and extracting the molecular 

weight, canonical SMILES, isomeric SMILES, InChiKey and CAS number. The CAS registry 

number from PubChem was used as input for the COSMOS database, version 2 

(https://cosmosdb.eu). Where available, the CAS registry number and chemical name, as 

recorded in COSMOS, were extracted to confirm the identity of the chemical; the COSMOS ID 

was also extracted.  

 

Model development can be performed using a range of software, the equations employed 

may be specified within the publication itself (or as part of the supplementary information 

accompanying the article).  

 

2.2.4 Assessment of the chemical space coverage of the PBK model dataset in relation to other 

chemical datasets 

In order to assess the nature of the chemicals in the PBK model dataset to be able to identify 

how many PBK models are available for the different “types” of chemicals, key 

physicochemical properties were generated and compared to those of chemicals appearing 

https://pubchem.ncbi.nlm.nih.gov/
https://cosmosdb.eu/
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in other datasets to assess their chemical space coverage. Relevant datasets have been 

compiled in-house at Liverpool John Moores University and comprise: botanicals (obtained 

from https://www.efsa.europa.eu/en/data/compendium-botanicals); pesticides (obtained 

from https://ec.europa.eu/food/plant/pesticides/eu-pesticides-db_en); cosmetic 

ingredients (obtained from COSMOS db version 2 (https://cosmosdb.eu); food additives 

(obtained from http://foodb.ca); pharmaceuticals (obtained from www.drugbank.ca) and 

REACH chemicals (obtained from  https://echa.europa.eu/information-on-chemicals/pre-

registered-substances). The number of chemicals in the PBK model dataset that also appeared 

in each of the other datasets was ascertained and are shown in Table 2.1. Canonical SMILES 

for all chemicals in these datasets were generated using OpenBabel (v.3.0.0; 

http://openbabel.org/wiki/Main_Page). OpenBabel was used for ease and consistency across 

all datasets as each dataset could be inputted as one list and all results generated 

simultaneously. From the PBK model dataset 1,150 unique SMILES were identified with 1,187 

unique InChiKeys (chemical isomers may have the same SMILES string but different 

InChiKeys). In order to determine how many chemicals with PBK models were present in each 

of the other six datasets the InChiKeys were compared using the “find duplicates” function in 

Excel. This was used to obtain the number of duplicates found when combining the InChiKeys 

of the PBK dataset with each of the other six datasets in turn. 

 

The SMILES strings for all datasets were inputted into the RDKit (v. 2020.03.6; www.rdkit.org) 

Descriptor Node, accessed through KNIME software (v. 4.3.1; www.knime.com), in order to 

obtain the physicochemical properties for all chemicals. Properties included molecular 

weight, number of hydrogen bond donors/acceptors, predicted logarithm of the 

octanol:water partition coefficient (Slog P) and the topological polar surface area (TPSA); the 

number of Lipinksi rule violations were calculated from this information. Whilst it is possible 

to generate thousands of physicochemical properties, here only a few readily calculable 

properties were selected, representing those most often used to broadly characterise 

chemicals in terms of size, polarity and partitioning behaviour. These simple properties were 

also used to determine Lipinksi rule violations, frequently used to indicate potential poor oral 

absorption – a common route of administration for these models. The minimum, maximum, 

mean and median values and interquartile ranges of these properties were calculated using 

https://www.efsa.europa.eu/en/data/compendium-botanicals
https://ec.europa.eu/food/plant/pesticides/eu-pesticides-db_en
https://cosmosdb.eu/
http://foodb.ca/
http://www.drugbank.ca/
https://echa.europa.eu/information-on-chemicals/pre-registered-substances
https://echa.europa.eu/information-on-chemicals/pre-registered-substances
http://openbabel.org/wiki/Main_Page
http://www.rdkit.org/
http://www.knime.com/
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Minitab version 19.2 for all datasets. Histograms were also generated using Microsoft Excel 

to enable a visual comparison of the property ranges between the different datasets.  

 

2.3 Assessment of abstract screening and data extraction reliability 

After screening all 6,771 abstracts in duplicate, 3,120 were taken forward to full text 

screening; of these, 1,362 papers were rejected at this stage. In addition, 109 papers could 

not be readily obtained or were not in English, therefore data were extracted from 1,649 

papers, resulting in 7,541 models. The resultant spreadsheet comprises over 150,000 

individual entries as for each model the species, sex, life-stage, route of administration, 

availability of equations, compartments, references and chemical identifiers were captured. 

It is expected that errors will arise when assessing the suitability of papers for inclusion and 

performing extensive manual processing, hence a quality assessment exercise was 

undertaken. Three aspects of the screening and data extraction processes were reviewed by 

a second investigator: 

(i) 5% of the papers that had been excluded at the full text screening phase were 

reviewed. 

(ii) 5% of PBK model data extracted from the papers (chemical information, species 

data (primary and secondary categories), sex, life-stage, route of administration, 

reference (DOI and PubMed ID if available), compartments investigated, 

availability of equations and simulation software were checked. 

(iii) 5% of the chemical identifier information from PubChem and COSMOS (chemical 

name, CAS registry number, molecular weight, canonical SMILES, isomeric SMILES, 

InChiKey, COSMOS ID) was obtained again from these sources and compared to 

the values in the spreadsheet. 

The greatest source of “error” was determined to be the exclusion of papers that were 

considered as potentially relevant by a second investigator i.e., 6% of excluded papers. In 

terms of the systematic review this is not considered a highly substantial problem. PBK 

models are continually being published, hence there can never be a finalised set of models. 

For PBK model data, manually extracted from the papers, an error was detected in the 

information captured for 3.5 % of chemicals. This does not equate to 3.5 % of the total 

information being incorrect as this may indicate an error in only one (or possibly more) of the 
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13 columns that relate to the PBK model information. An error was detected in the data for 

2.4% of the chemicals in relation to the identifier information. As above, this does not equate 

to 2.4% of the total information being incorrect, but that for 2.4% of chemicals an error was 

detected in one (or more) of the 7 columns associated with chemical identifier information. 

 

2.4 Results and discussion 

The results and discussion are combined in this section for clarity. 

 

2.4.1 Systematic Review 

The number of papers considered at each stage of the review process and the total number 

of models extracted in the PBK model spreadsheet is summarised in Figure 2.1. Of the 6,771 

of papers initially identified, 3,120 remained after abstract screening, and data were 

extracted from 1,649 of these. There are more models than individual chemicals or papers, 

as if oral and intravenous dosing were used for both male and female subjects for the same 

chemical this would be extracted as four individual models, or a paper might have modelled 

more than one chemical. 

 

 

Figure 2.1 Summary of papers considered at each stage of the review process and total number of models extracted. Total 

number of models is greater than the total number of individual chemicals or papers, as if oral and intravenous dosing were 
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used for both male and female subjects for the same chemical this would be extracted as four individual models, or a paper 

might have modelled more than one chemical. 

 

Any search strategy, even one that is well formulated, is liable to miss relevant information. 

The protocol outlined for this systematic review is set to capture as many papers as possible 

that have PBK models for a specific chemical. However, some PBK models (approximately 6%) 

may have been missed as was determined in the quality assessment exercise undertaken. The 

inclusion of PBK models for all chemical types, across all species, life-stages and routes of 

administration ensures as many PBK models as possible can be captured. Thus, the systematic 

review is relevant across all industry sectors. 

 

2.4.2 Extraction of data from available PBK models 

A total of 7,541 individual models were identified and extracted from the literature. For an 

individual chemical multiple models may be available in one paper. To enable more flexible 

searching, all models were categorised and recorded individually. For example, where use of 

either males or females was stipulated separately in the experimental protocol, these would 

be recorded as two separate models. Similarly, where more than one administration route 

had been given in the paper, each administration route would be recorded as a separate 

model. This would allow future searches to be conducted, not just by chemical name, but also 

by species or route of administration etc. Predefined lists of vocabulary were used to ensure 

consistency of the terms used when reporting the species (and secondary species or ethnicity 

category), life-stage, sex, route of administration, software, and availability of equations. Free 

text input was used for chemical name, additional chemical information, reference, DOI, 

PubMed ID, compartments and any additional notes. 

 

Appendices 4 and 5 represent the spreadsheets curated from the systematic review, where 

Appendix 4 is a snapshot of the PBK dataset discussed in this Section (2.3.2), and Appendix 5 

is the physicochemical properties associated with the chemicals in the PBK spreadsheet 

discussed in Section 2.4.3. A total of 1,889 chemical names are present in the PBK model 

dataset, some represent biological entities (such as monoclonal antibodies) or are not 

associated with a specific structure. Hence only 1,187 unique chemicals, with identifiable 

structures, were available, each of these is identified in the dataset by its unique InChiKey.  
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2.4.2.1 Species 

All species (and sub-categories) captured within the PBK model dataset are listed in Section 

2.2.3 and illustrated in Figure 2.2 that also summarises the number of models associated with 

each species. The largest number of models by species was 3,676 for human models, with 

models for goats and cats being the fewest, with only 4 models for each.  



 

 

Figure 2.2 Proportion of models associated with different species from Thompson et al. (2021) 

 



2.4.2.2 Life-stage 

The majority of models reported in the dataset were either for a typical adult (1,666 models), 

or the life-stage was unspecified (4,746 models).  There were fewer than 100 models for old 

aged, health compromised and pre-birth or pre-hatch. Although, there were 220 models for 

pregnancy and 730 models for the category from birth or hatch up to adult. 

 

2.4.2.3 Route of administration 

A pie chart of the proportion of models associated with different routes of administration is 

displayed in Figure 2.3. The three main administration routes were oral (1,903 models), 

inhalation (1,195 models), and metabolism from a parent chemical (2,138 models). However, 

there were 18 models with the route of administration unspecified within the papers. 



 

 

 

Figure 2.3 Proportion of models associated with different routes of administration from Thompson et al. (2021) 



2.4.2.4 Modelling software and equation availability 

The four main software used for solving the equations were SIMUSOLV, Symcyp, ACSL and 

Matlab, representing 10.3%, 9.0%, 11.0%, and 8.4% of software respectively. A quarter of 

models had full equations reported in the original paper, equally however, one quarter of 

reported models had no equations available. Equations found in secondary references were 

the case for just under one quarter of models, with the remaining quarter of models having 

equations or model code in supplementary material, available on request from the author, 

on a secondary online platform or a combination of these options. 

 

Efforts to improve the reproducibility of mathematical models are increasing. Journals are 

increasingly making it a requirement that a precondition to publication is to make available 

implementations of mathematical models in online repositories, for example GitHub 

(https://github.com). Additionally, markup languages for representing models (e.g. Systems 

Biology Markup Language (SMBL) and CellML (https://www.cellml.org)) is being specified and 

becoming more consistent in use for particular models (Hedley et al., 2001; Hucka et al., 

2003). The Biomodels database (https://www.ebi.ac.uk/biomodels/) represent models in the 

SBML format.  

 

2.4.2.5 Compartments 

The main compartments included in the models were (arterial/venous) blood, poorly 

perfused or well perfused compartments, kidney, liver and lungs. A common feature was that 

models were often split into the individual organs, i.e. adipose, brain, intestines, gut, gastro-

intestinal tract, skin, bones, stomach, muscle, reproductive organs, etc. In addition, there 

were models created in more detail with a focus on a particular life-stage or administration 

route, i.e. models for pregnant animals included foetus and placenta; fish models included 

gills, etc. 

 

Through undertaking a systematic review, information concerning over 7,500 PBK models 

from 1,649 papers was captured. The models encompassed 18 species (including rat, human, 

mouse, cow, guinea-pig) at various life-stages (e.g. juvenile, adult, pregnant, health-

compromised) across 21 administration routes (e.g. oral, inhalation, in utero). The 

https://github.com/
https://www.cellml.org/
https://www.ebi.ac.uk/biomodels/
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information has been distilled into a Microsoft Excel spreadsheet that was constructed using 

controlled vocabulary to enable users to search using different criteria (e.g. to select models 

by species or routes of administration etc). It is anticipated that researchers or regulatory 

scientists can use this information to assist building or evaluation of new models, or as a 

resource from which to extract relevant pharmacokinetic or toxicokinetic data. As identified 

in the quality assessment exercise, some of the historic models were omitted, and it is also 

noted that it would not be possible to generate a finite list of all PBK models as this is such a 

dynamic area of research. The publication of new models has shown a rapidly increasing 

trajectory in recent years (Paini et al., 2017), the current dataset serves as a basis for 

continuing curation of existing models which will provide an increasingly rich source of 

information for modellers in future. The PBK modelling dataset (in the form of an Excel 

spreadsheet) has been added to the EURL ECVAM catalogue for alternatives 

(https://data.jrc.ec.europa.eu/dataset/f98e9abf-8435-4578-acd6-3c35b5d1e50c) and has 

been used as the underpinning knowledge for a PBK model browsing webtool, under 

development at the US Environmental Protection Agency. 

 

2.4.3 Assessment of the chemical space coverage of the PBK model dataset in relation to other 

chemical datasets 

Chemicals can be used for a variety of purposes, and it is often not feasible to allocate a 

chemical to unique “type” (e.g. there is a significant cross-over between chemicals used as 

food additives and as cosmetic ingredients, hence the same chemicals may appear in more 

than one dataset). It is therefore difficult to determine for which chemical “types” there are 

most PBK models. However, in the analysis undertaken here, to identify how many PBK 

models are available for the different “types” of chemicals, there are some trends discernible. 

Thus, to assess the extent to which the PMD was representative of the chemical space of 

other datasets. The results for the comparison of InChiKeys for chemicals in the PBK model 

dataset to those for the six comparative datasets are shown in Table 2.1. REACH chemicals 

were the largest dataset, and less than 1% of the chemicals had PBK models, whereas for the 

pesticide dataset (the smallest datasets analysed) just over 4% of the chemicals have an 

available PBK model. Across all six datasets only 4.23% of chemicals were chemicals present 

in the PBK model dataset.  
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Unsurprisingly, given that PBK modelling evolved in the area drug development, the greatest 

proportion of models correspond to chemicals in the DrugBank dataset. Pesticides are 

generally well studied and data-rich, therefore the second most common type of chemical 

with PBK models are the pesticides. For food additives and cosmetic ingredients, where there 

are often chemicals in common, similar proportions of chemicals have PBK models. Due to 

the size and generality of the REACH dataset it would be anticipated that relatively few 

chemicals would have existing PBK models. The results confirm the paucity of PBK models 

available in relation to different areas of chemical space and underline the importance of 

using existing PBK models to help fill data gaps. 

 

Table 2.1 The number (and percentage) of chemicals with existing PBK models that are present in the six comparative 

datasets investigated (as reported in Thompson et al. (2021)) 

Dataset Number of 

chemicals in dataset 

(with unique, 

identifiable 

structures) 

Number of 

chemicals in dataset 

also present in PBK 

model dataset 

Percentage of 

chemicals in dataset 

also present in PBK 

model dataset (%) 

PBK model 1,186 N/A N/A 

Botanical  947 24 2.67 

Pesticide 945 40 4.23 

COSMOS  5,655 123 2.41 

Food  2,674 88 3.37 

DrugBank 6,716 382 5.80 

REACH 75,663 620 0.85 

 

In addition to the spreadsheet comprising the PBK models collated from the literature 

(Appendix 4), an additional spreadsheet (Appendix 5) comprises a list of the 1,144 chemicals 

in the PBK Model Dataset with unique SMILES and their associated key physicochemical 

properties. Table 2.2 shows the results of the statistical analysis of the key physicochemical 

properties (molecular weight, number of hydrogen bond donors and acceptors, predicted 

logarithm of the octanol:water partition coefficient (Slog P), topological polar surface area 
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and number of Lipinksi rule violations for the chemicals in the PBK model dataset. The 

extreme values observed for molecular weight and log P are a result of the chemical vistarem, 

a magnetic resonance imaging contrast agent, with large hydrophilic chains. All datasets have 

chemicals with molecular weights with a mean between 200-393.65. The range of TPSA values 

for pesticides is significantly smaller than the PBK dataset and the other five datasets used for 

comparison.



Table 2.2 Statistical analysis of the physicochemical properties of the chemicals in the PBK model and the six comparative 

datasets 

Variablea Mean  Minimum  Q1  Median  Q3  Maximum  Range  IQR 

PBK dataset, n=1,186 

MW 325.61 6.94 163.10 292.28 410.67 6496.20b 6489.26 247.57 

No. HBD 1.79 0.00 0.00 1.00 2.00 100.00 100.00 2.00 

No. HBA 4.17 0.00 1.00 3.00 6.00 120.00 120.00 5.00 

Slog P 2.25 -45.03b 0.80 2.08 3.73 11.10 56.13 2.93 

TPSA 73.07 0.00 23.47 56.92 93.00 2536.36 2536.36 69.53 

No. 

Violations 

0.37 0.00 0.00 0.00 0.00 4.00 4.00 0.00 

Botanicals dataset, n=947 

MW 393.65 68.08 242.32 333.38 470.69 2749.89 2681.82 228.37 

No. HBD 2.482 0.00 0.00 1.00 3.00 43.00 43.00 3.00 

No. HBA 6.360 0.00 3.00 5.00 8.00 76.00 76.00 5.00 

Slog P 2.31 -9.75 1.22 2.55 3.45 12.50 22.25 2.22 

TPSA 95.30 0.00 40.16 65.56 118.22 1276.40 1276.40 78.06 

No. 

Violations 

0.59 0.00 0.00 0.00 1.00 4.00 4.00 1.00 

Pesticides dataset, n=945 

MW 302.24 73.12 225.30 296.33 362.11 1199.38 1126.26 136.81 

No. HBD 0.81 0.00 0.00 1.00 1.00 21.00 21.00 1.00 

No. HBA 3.87 0.00 2.00 4.00 5.00 33.00 33.00 3.00 

Slog P 3.17 -14.33 2.066 3.21 4.34 18.10 32.43 2.28 

TPSA 56.71 0.00 29.54 50.41 69.22 535.59 535.59 39.68 

No. 

Violations 

0.21 0.00 0.00 0.00 0.00 3.00 3.00 0.00 

COSMOS dataset, n=5,554 

MW 272.19 2.02 157.21 210.32 328.74 6179.37 6177.36 171.53 

No. HBD 1.28 0.00 0.00 1.00 2.00 116.00 116.00 2.00 

No. HBA 3.39 0.00 1.00 2.00 4.00 191.00 191.00 3.00 
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Slog P 2.22 -83.67 0.37 2.45 3.91 32.04 115.71 3.54 

TPSA 61.93 0.00 23.73 38.69 78.66 3038.93 3038.93 54.93 

No. 

Violations 

0.33 0.00 0.00 0.00 0.00 4.00 4.00 0.00 

Food dataset, n=2,679 

MW 200.47 4.00 132.06 164.25 214.22 2555.60 2551.60 82.16 

No. HBD 0.84 0.00 0.00 0.00 1.00 37.00 37.00 1.00 

No. HBA 2.78 0.00 1.00 2.00 3.00 49.00 49.00 2.00 

Slog P 1.53 -21.07 0.94 2.08 2.98 25.56 46.63 2.04 

TPSA 47.34 0.00 18.46 26.30 46.53 1109.38 1109.38 28.07 

No. 

Violations 

0.14 0.00 0.00 0.00 0.00 4.00 4.00 0.00 

Drugbank dataset, n=6,716 

MW 348.44 6.94 231.26 323.40 414.59 6179.37 6172.43 183.33 

No. HBD 2.74 0.00 1.00 2.00 4.00 116.00 116.00 3.00 

No. HBA 5.29 0.00 3.00 4.00 6.00 191.00 191.00 3.00 

Slog P 1.61 -83.67 0.050 1.91 3.49 24.57 108.24 3.44 

TPSA 101.43 0.00 55.56 83.98 118.77 3038.93 3038.93 63.21 

No. 

Violations 

0.36 0.00 0.00 0.00 0.00 4.00 4.00 0.00 

REACH dataset, n=75,662 

MW 314.1 2.02 180.1 251.3 384.4 10402.5 10400.5 204.3 

No. HBD 1.11 0.00 0.00 1.00 2.00 141.00 141.00 2.00 

No. HBA 3.98 0.0000 2.00 3.00 5.00 191.00 191.00 3.00 

Slog P 2.31 -83.67 0.78 2.33 3.88 60.85 144.52 3.09 

TPSA 69.12 0.00 26.30 49.69 86.74 4202.80 4202.80 60.44 

No. 

Violations 

0.37 0.00 0.00 0.00 0.00 4.00 4.00 0.00 

*MW = molecular weight; No. HBD = number of hydrogen bond donors; No. HBA = number of 

hydrogen bond acceptors; Slog P = predicted logarithm of the octanol:water partition coefficient; 
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TPSA = topological polar surface area; nViolations = number of violations of the Lipinski Rule of Five 

(Lipinski et al. 1997). 

bThe extreme values here are for vistarem refer to text 

 

Figure 2.4 (A-F) shows the comparison of these key physicochemical properties across the 

seven datasets. Similar trends in the spread of chemicals over six physicochemical properties 

can be observed for all datasets. While the pesticides dataset has the largest percentage of 

chemicals with a higher molecular weight of 601+ Da, the predominant trend across all 

datasets is that most chemicals are within the range of 100-600 Da. Cosmetic ingredients 

(COSMOS dataset) and industrial chemicals (REACH dataset) have the most diverse values for 

log P within. Pesticides and botanicals datasets have a greater percentage of chemicals in the 

log P ranges 3-4 (43% and 47% respectively), whereas the PBK dataset only has 28% of 

chemicals in this range. Chemicals with a higher number of hydrogen bond donors are 

observed within the botanical dataset.  

 

Figure 2.4A shows the distribution of molecular weight across the seven datasets. As 

expected, the majority of chemicals fall within the range 100-600 Da but there are notable 

differences between the datasets. There are a relatively high number of chemicals in the PBK 

dataset with low molecular weight, these will include the volatile chemicals for which 

respiratory uptake has been extensively studied. Food additives and cosmetic ingredients 

(which have chemicals in common) show a relatively high proportion of low molecular weight 

chemicals. Chemicals that are designed to be biologically active, such as drugs and pesticides, 

tend to be developed in accordance with guidelines relating to preferred physicochemical 

properties. For example, the Lipinski Rule of Five stipulates that poor oral absorption of drugs 

is associated with those chemicals having molecular weight > 500 Da; log P > 5; >10 hydrogen 

bond acceptors or; > 5 hydrogen bond donors (Lipinski et al., 1997).  
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Figure 2.4(A-F). Comparison of the ranges of physicochemical properties across the seven datasets investigated (from 

Thompson et al. (2021)) *MW = molecular weight; No. HBD = number of hydrogen bond donors; No. HBA = number of 

hydrogen bond acceptors; Slog P = predicted logarithm of the octanol:water partition coefficient; TPSA = topological polar 

surface area; nViolations = number of violations of the Lipinski Rule of Five (Lipinski et al. 1997).  
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Other research has also suggested that TPSA >140 Å (Pistollato et al., 2021) is also 

unfavourable for oral absorption, consequently certain chemical types are designed to fall 

within narrower property ranges and such trends are evident in the property ranges here. A 

correlation between molecular weight and log P is often observed amongst groups of 

chemicals (although there are many exceptions to this), here a similar pattern to the range of 

values is generally observed for log P and molecular weight.  

 

Pesticide and botanical datasets comprise fewer molecules capable of carrying a charge 

(associated with increased hydrophilicity) hence on average have higher log P values. This is 

significant as partitioning behaviour (often estimated using log P) is a key element in building 

PBK models. Whilst the extreme values for log P, calculated by the software used here, may 

be unrealistic (and therefore unsuitable for model building), when used for comparison they 

are still useful for demonstrating the trends in the data. The range in values for all of the 

physicochemical properties of pesticides, is narrower than for the other chemical types, 

indicating the more restrictive chemical properties required for these chemicals. Botanicals 

generally show a wider range of values for each of the physicochemical properties (in 

particular more chemicals show properties at the upper extremes of the ranges). A significant 

number of chemicals within this dataset are large and complex. Whilst in other datasets, 

molecules tend to be designed for a specific purpose (and those outwith given property 

ranges are filtered out) the same exclusions would not be applicable to this dataset.  

 

Understanding the kinetic behaviour of a chemical within the body, particularly its 

concentration-time profile at a target site, is essential to accurately determine its potential 

effects. For the majority of chemicals there is a lack of data concerning toxicity and kinetics, 

however generating such information de novo would require excessive use of animals and is 

legally, ethically and financially constrained. Hence there is a need to leverage existing 

knowledge in order to obtain as much information as possible to assist decision making. Read-

across is the most common method used by which information from data-rich chemicals is 

used to predict information for data-poor chemicals. Within this chapter, a comprehensive 

collation of existing PBK models that can be searched using multiple criteria is presented.  
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The PBK model dataset described in this chapter enables researchers to readily gain insight 

into available PBK models across multiple species, life-stages and routes of administration, 

such that the structure and parameterisation of PBK models for different chemicals is more 

accessible. This ensures maximum use of existing knowledge on PBK modelling and reduces 

the time and cost associated with developing new PBK models. The next chapter in this thesis 

identifies appropriate similarity metrics to assist in the identification of PBK models for 

analogues to use for read-across using the PBK model dataset curated in this chapter.  
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Chapter 3 – Development of a tool to identify similar chemicals for PBK 

modelling  

3.1 Introduction 

The dataset of PBK models created in Chapter 2 was utilised as a resource to create a tool 

that helps to determine which chemicals are similar to a target chemical. The ability to use a 

read-across approach (using data-rich chemicals to inform the development of models for 

chemicals that are data-poor) would help fill the current gaps in toxicokinetic data, especially 

for regulatory purposes. There are resources available on using and reporting read-across 

predictions. The European Chemicals Agency (ECHA) (2017) provide guidance on evaluating 

read-across predictions for regulatory submissions. Schultz et al. (2015) describe a workflow 

strategy on structuring and reporting read-across predictions for toxicity. However, to be able 

to use a read-across approach, identification of similar chemicals to a target is required by 

assessing the similarity of chemicals. Determining similarity of chemicals is a complex issue as 

there are multiple criteria for determining similarity, for example in terms of structural or 

physicochemical properties, mechanism of action or metabolite formation (Paini et al., 

2021b). Similarity may be assessed using simple calculable properties, these options include: 

(1) Chemical fingerprints 

(2) Physicochemical properties 

(3) Absorption, distribution, metabolism, and excretion (ADME) properties 

Chemical fingerprints are a method of identifying structurally similarity chemicals. The 

presence or absence of key structural features within a chemical is indicated by a ‘1’ or ‘0’ 

respectively (Madden et al., 2020). Figure 3.1 outlines the key concepts of fingerprints and 

calculating similarity. Similarity between chemical fingerprints are calculated using 

mathematical formulae, for example a Tanimoto score, to determine the degree of 

commonality in the presence of key structural features (bits). For example, a Tanimoto score 

between zero (dissimilar) and one (highly similar or identical) can be generated. A Tanimoto 

score of 0.6 is commonly used as a cut-off above which chemicals are considered to be similar, 

although this is an arbitrary value and other values may be suitable for different scenarios. 

Different structural features are used within different fingerprinting algorithms (e.g. MACCS 
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uses 166 structural features, PubChem uses 881 structural features) (Madden et al., 2020), 

thus resulting in different Tanimoto scores depending on the algorithm used. Mellor et al. 

(2019) demonstrated this issue of different scores and reported that there is no consensus as 

to which similarity metric is best. 

 

 

Figure 3.1 Key concepts of fingerprints and calculating similarity (figure adapted from Madden (2020)) 

 

Physicochemical properties include the logarithm of the octanol:water partition coefficient 

(log P), pKa (degree of ionisation), molecular weight, hydrogen bonding capacity (number of 

hydrogen bond donors and acceptors), solubility etc. Defining similarity of chemicals in terms 

of physicochemical properties alone is problematic as many diverse chemicals may have 

similar properties (expert judgement should also be used when determining similarity). 

However, this approach was successfully used by Lu et al. (2016b), wherein the authors 

adjusted chemical specific parameters of an existing PBK model to develop a model for a 

similar chemical. Chemical specific parameters can be derived from experimental 

measurements or predicted using software. Calculated values for certain parameters are 

more reliable than for others, e.g. calculated log P values are generally more reliable than 

calculated ADME properties (Madden et al., 2019). Resources for predicting fundamental 

physicochemical properties (e.g. log P, log D, pKa) include EPISUITE 

(https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface), 

ADMETlab 2.0 (https://admetmesh.scbdd.com/service/evaluation/cal) and Opera 

https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://admetmesh.scbdd.com/service/evaluation/cal
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(https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html); EPISUITE 

also provides measured values where available.  

 

There has been a significant increase in publications in regard to predicting ADME properties 

in recent years (Wang et al., 2015). ADME parameters include half-life, volume of distribution, 

clearance, absorption rate, etc. There are many tools that predict ADME properties and thirty-

eight databases that include ADME information were identified by Pawar et al. (2019). 

However, there are often inconsistencies in measured values recorded in these databases. 

Table 3.1 outlines example resources for prediction and identifies some of the ADME 

properties that they can predict.  

 

Table 3.1 Summary of resources that predict ADME properties and some example properties they can predict 

Software Website  

(all last accessed July 2022) 

Example properties predicted 

ADMETlab 

2.0 

https://admetmesh.scbdd.com/service/e

valuation/cal 

% Human Intestinal Absorption, 

Fraction Unbound, Half-Life, 

Total Clearance, Volume of 

Distribution, Bioavailability 

admetSAR http://lmmd.ecust.edu.cn/admetsar2/  % Human Intestinal Absorption, 

Fraction Unbound, Half-Life, 

Bioavailability 

SwissADME http://www.swissadme.ch/  Lipinski Rule Violations, % 

Human Intestinal Absorption, 

Bioavailability 

pkCSM http://biosig.unimelb.edu.au/pkcsm/  % Human Intestinal Absorption, 

Fraction Unbound, Volume of 

Distribution 

Comptox https://comptox.epa.gov/dashboard/ Fraction Unbound, Hepatic 

Clearance, Half-Life, Volume of 

Distribution 

 

https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html
https://admetmesh.scbdd.com/service/evaluation/cal
https://admetmesh.scbdd.com/service/evaluation/cal
http://lmmd.ecust.edu.cn/admetsar2/
http://www.swissadme.ch/
http://biosig.unimelb.edu.au/pkcsm/
https://comptox.epa.gov/dashboard/
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For more extensive examples of properties and the software used to generate them see 

Madden and Thompson (2022). There are recognised limitations with predicting ADME 

properties, for example, the models may not be applicable to certain chemicals, if similar 

chemicals were not incorporated in the training set. Although predicted ADME properties 

could have been used for assessing similarity in the research conducted here, there are 

arguments against using this approach. Firstly, there are many different methods for 

calculating ADME properties, often giving very different results. Secondly, estimates may be 

unreliable (particularly for certain chemicals) and not well represented by the training set. 

Moreover, in many cases the models are solely based on predicted physicochemical 

properties. Thus, in the present study, chemical similarity was assessed using chemical 

fingerprints and readily calculable physicochemical properties, rather than ADME properties.  

 

PBK models require chemical specific (e.g. plasma protein binding fraction, molecular weight, 

solubility), anatomical (e.g. blood flow, organ volume), and physiological (e.g. glomerular 

filtration) information in order to build a model. Sources for PBK model inputs are available 

from multiple databases (see Madden et al. (2019) for resources). As discussed in Section 1.3, 

PBK models are time and resource intensive to build (Laroche et al., 2018). Therefore, it would 

be a great asset to be able to automate the process of identifying chemicals with existing PBK 

models that are similar to a target chemical to inform the development of new models. KNIME 

(https://www.knime.com) is an open-source software for data analysis. It allows for data to 

be transformed, blended, modelled and visualised through the workflows that a user creates. 

It is commonly used in chemoinformatic research and integrates machine learning and data-

mining. Thus, this software was identified as being appropriate for creating a workflow to 

assist in selection of source chemicals, similar to a given target. This is subsequently referred 

to as the KNIME Workflow for Assisting Analogue Selection (KWAAS). 

 

In summary, the aims of this chapter were to: 

(i) Investigate a range of similarity assessment metrics (e.g. chemical fingerprints and 

physicochemical properties) to determine which method(s) resulted in the most appropriate 

selection of source chemicals (analogues) for the purposes of serving as a template in PBK 

model development for a target chemical.  

https://www.knime.com/
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(ii) Develop a KNIME workflow for assisting with analogue selection, employing the 

similarity metrics identified as being most appropriate; this utilises the PBK model dataset 

(PMD) from Chapter 2 as a source for identifying chemicals with existing PBK models 

(iii) Test the KNIME Workflow for Assisting Analogue Selection (KWAAS) using six 

different types of chemicals (pesticides, botanicals, drugs, cosmetics, food additives and 

industrial chemicals) to demonstrate its utility across a range of industrial and regulatory 

sectors.  

 

3.2 Methods 

3.2.1 KNIME workflow for assisting analogue selection (KWAAS) development  

3.2.1.1 Building the KNIME workflow 

It was determined that there was a need for an automated process that gave the freedom of 

flexibility and adaptably when helping to identify similar chemicals. Thus, KNIME was 

determined to have these abilities that allow for an automated workflow to be created while 

giving the user the ability to adapt the workflow to their needs. After, several iterations of 

designing, testing and improving the workflow, the resulting KWAAS (fully outlined in 3.2.2) 

was created. To begin with, a method that calculated similarity using multiple fingerprints 

only and using expert judgement to analyse the results (generally considering a Tanimoto 

score of greater than 0.6 and chemical structure) was considered. However, this method 

could result in many chemicals requiring consideration. Thus, the inclusion of 

physicochemical properties to further refine results and reduce reliance on expert judgement 

in the early stages was considered preferable. This also helps to create a more reproducible 

and less subjective method of assessment. Initially, only molecular weight and log P were 

considered to be included in the workflow for refining the analogue selection. However, 

through discussion with project collaborators it was identified that log D and pKa would also 

be useful for refining results.  

 

Another need, identified in the project discussions, was the ability to search the PMD for 

available models for the target as a first step in a universal workflow. The ability to search by 

more than just chemical name is essential, as became apparent during the systematic review 

(described in Chapter 2). There are often many different names for the same chemical or 
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minor differences in the spelling of the name, hence searching by name alone is not practical. 

A more reliable method of identifying unique chemicals is the use of identifiers, such as CAS 

registry numbers, SMILES strings or InChiKeys. There are known problems with CAS numbers, 

for example, multiple CAS numbers for the same chemical. Similarly, although SMILES strings 

are commonly used identifiers, there can be many SMILES representations for the same 

chemical. Therefore, there was a need to include an additional identifier that overcomes the 

problems associated with SMILES or CAS numbers. For this reason, the international chemical 

identifier (InChiKey) which is unique to a chemical was deemed most appropriate to include 

in the workflow when searching for specific chemicals within the PMD.  

 

Additional features that were also deemed useful, were the ability to search the PMD for the 

target chemical or its analogues, refining the results by model characteristics (e.g. by sex, 

route of administration, species, etc).  This would allow the user to identify the most 

appropriate models and the reference to the original source of the models. A node to allow a 

user to export results at any stage of the workflow was included to give the user the flexibility 

to use the nodes (methods of refining analogue selection) they identified as most appropriate 

for a given query. At every iteration in the design of the workflow, example chemicals were 

inputted to test its usability and ascertain the suitability of the results produced at each stage. 

Once the final format for the workflow had been established, six different chemicals (one 

from each dataset investigated in Chapter 2) was inputted to test the final workflow created. 

 

3.2.1.2 Generating Identifiers and Properties 

A spreadsheet of physicochemical properties was generated using RDKit as stated in Section 

2.2.4. A user can generate these or other physicochemical properties using multiple 

resources, for example RDKit (www.rdkit.org), EPISUITE (https://www.epa.gov/tsca-

screening-tools/epi-suitetm-estimation-program-interface), ADMETlab 2.0 

(https://admetmesh.scbdd.com/service/evaluation/cal) and Opera 

(https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html). The 

predicted properties pKa and log D at pH 7.4 and 5.5 values using OPERA 

(https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html) were 

generated. Log D is predicted at pH 5.5 and 7.4. OPERA automatically removes compounds 

for which a value cannot be calculated. For example unusually large compounds, 

http://www.rdkit.org/
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://admetmesh.scbdd.com/service/evaluation/cal
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html
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organometallics, mixtures and inorganic produced errors and were discarded by Opera. Thus, 

some chemicals in the PMD may not have pKa or log D values associated with them.  

 

These spreadsheets of information were integrated into the KNIME workflow to use 

throughout the refinement and selection of appropriate chemicals using the selected nodes 

in KNIME. The physicochemical properties used within the KWAAS can be adapted by the 

user. Herein, molecular weight, log P, pKa and log D are included within the KWAAS, however 

a user could adapt the workflow to include Lipinski rule violations (or any other ADME 

properties they choose to predict and add to the spreadsheet). The chemicals for which Opera 

was unable to calculate values, e.g. pKa or pKb, have been left blank in the dataset and 

workflow and a user can use expertise whether to consider these chemicals as similar or not. 

The user can integrate these other properties into the KWAAS and use these to refine 

analogue selection, either instead of or in addition to the current properties included. The 

flexibility and adaptability of the workflow ensure that the user can use it however best suits 

their needs. 

 

The addition of ADME properties (e.g. PPB/Fub, Clint, absorption, tissue partitioning, etc.) were 

considered for inclusion in the similarity tool. However, which predicted ADME properties to 

include that are useful and relevant to a PBK model will depend on the user’s requirements 

and the model being created. For example, a skin model will require skin absorption, whereas 

an intravenous model would not. It was determined that these properties may be best for the 

user to generate themselves, after having completed the workflow using fingerprints and 

physicochemical properties as the initial step. Once a list of potential analogues has been 

obtained these could be refined based on ADME properties, selected by the user as being 

most relevant. 

 

3.2.2 Using the KWAAS 

A workflow of the similarity tool created in KNIME is summarised in Figure 3.2. The figure 

outlines the process of using the KNIME workflow to search the database and determine 

similar analogue/s, where the number of analogues suggested as similar decrease as you 

refine using more properties. The KNIME workflow developed has three main stages listed 

below.  
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1. Search PBK model dataset (PMD) for an available model for the target chemical 

2. Determine similar analogues to the target (i.e. potential source chemicals) based 

on structure and relevant properties, such as physicochemical properties 

3. Refine the selection of source chemicals as necessary 

A guide on how to use the similarity tool is in Appendix 6.  The KNIME workflow can be 

downloaded from Github (https://github.com/courtneythomp/KWAAS). 

 

 

Figure 3.1 A summary of the KWAAS process, briefly outlining the process of using the KNIME workflow to search the database 

and determine similar analogue/s, where the number of analogues suggested as similar decrease as you refine by more 

properties shown in the coloured arrows. 

 

3.2.2.1 Stage 1 

To begin, the workflow checks the PBK dataset for available models for the target chemical. 

Chemical name, InChiKey or SMILES for the target chemical is required to search the PBK 

model dataset in the first stage of the workflow. InChiKeys are unique to the compound and 

express more information than SMILES; chemical isomers may have the same SMILES string 

but different InChiKeys. Chemicals can have many possible names and spellings, unless the 

same name and spelling is used as recorded in the PMD then no results may appear. Thus, in 

the first instance InChiKey is recommended for searching, however, SMILES can be used as 

can the chemical name. InChiKey and SMILES can be obtained from multiple webtools or 

websites, e.g. PubChem (https://pubchem.ncbi.nlm.nih.gov), ChemSpider 

https://github.com/courtneythomp/KWAAS
https://pubchem.ncbi.nlm.nih.gov/
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(https://www.chemspider.com). Chemical name, InChiKey or SMILES of the target chemical 

needs to be inputted and any available models matching the input will be given in an Excel 

file with all associated information from the dataset included. 

 

3.2.2.2 Stage 2 

If there were no models available in the PBK modelling dataset or if the models in the dataset 

were not relevant (in the opinion of the user) then the second stage can be used to identify 

similar chemicals from the dataset for which there are available PBK models.  

 

Chemical fingerprints can be used to determine how similar one chemical is to another. A 

Tanimoto score can be generated, ranging from 0 (not similar) to 1 (very similar or identical). 

The workflow generates Tanimoto similarity scores for the source chemicals’ similarity to the 

target chemical using nine different fingerprints. The results are ranked from most similar to 

least similar and the top five results identified for each type of the nine fingerprints are given 

(theoretically giving a maximum of 45 potential chemicals, although in many cases the same 

chemical will be ranked in the top five by multiple fingerprints). As each type of fingerprint 

can identify different analogues (as discussed in Section 3.1) nine different fingerprints are 

used to capture a wider range of chemicals that can be considered as similar chemicals. 

Analogues that are identified as similar by one type of fingerprint only are rejected, as this 

indicates the similarity is being assessed using unique criteria that does not represent more 

general similarity.  

 

SMILES strings are used when determining the top five similar analogues by the nine different 

types of fingerprints. The chemical name can be inputted alongside the SMILES as a useful 

additional identifier. The fingerprint types used within the workflow include Morgan, 

FeatMorgan, AtomPair, Torsion, RDKit, Avalon, Layered, MACCS, and Pattern as these are 

readily available in RDKit. An Excel file of the results including chemical name, SMILES and 

structures of the analogue can be obtained at this stage. Refinements to the analogues can 

be made based on Tanimoto score and physicochemical properties. Once these 45 chemicals 

(different fingerprint algorithms may identify the same chemical/s as similar) identified as 

similar are obtained, the chemicals with a similarity score below 0.6 are removed. A minimum 

Tanimoto score of 0.6 (a commonly used cut off value within literature (Enoch et al., 2009)) 

https://www.chemspider.com/
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is recommended for an analogue to be included for the next step in the workflow, however, 

this value can be adjusted by the user. 

 

Physicochemical properties including, molecular weight, log P, pKa/pKb, and log D can all be 

used to further determine how similar one chemical is to another. The physicochemical 

properties (molecular weight, log P, TPSA, hydrogen bond donors/acceptors, and the number 

of Lipinski rule violations) from the PBK dataset in Chapter 2 are added to the table of similar 

chemicals. In this analysis molecular weight and log P were included into the workflow 

refinement options to identify the most similar chemicals; inclusion ranges can be set and 

adjusted by the user. A user can also select different physicochemical properties as discussed 

above. 

 

For testing the workflow, the properties pKa and log D at pH 7.4 and 5.5 (predicted using 

OPERA) were included in refining the analogue selection. The user can input an appropriate 

range for log P; often ±0.5 of the target chemicals’ value is selected as it is commonly regarded 

as being the range of experimental error for log P. However, in order to not exclude too many 

chemicals (hence obtain too few or no candidates for source chemicals) the range can be 

expanded to ±1 of the target chemicals’ value. Log D (at pH of either 5.5 or 7.4) of ±1 is 

recommended due to the problems associated with predicting log D compared to log P. 

Filtering by pKa/pKb (predicted by Opera) was the last step considered within the workflow 

during the testing phase. The user has the option to refine results by pKa/pKb by inputting an 

appropriate range. Values of ± 1 log of the target chemicals pKa are recommended to refine 

analogue selection. At every stage of the workflow there is the option to export the results to 

Excel. Figure 3.3 outlines the stages of refinement of the analogues. When using the KWAAS 

fingerprints, molecular weight and log P are recommended to be used initially as these are 

the most universal parameters. In addition, it is recommended that at every stage of the 

workflow the user looks at the structures of the chemicals identified as similar.  
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Figure 3.3 Stages of refinement and the recommended ranges to use at each stage of the KWAAS – user may adapt any of 

these as required. These are preliminary recommendations for using the KWAAS the user can add any other properties for 

selection that they can obtain and identify as being useful. 

 

3.2.2.3 Stage 3  

Finally, at the end of the analogue selection process, the PBK model dataset can be searched 

again, this time searching for all analogues that have been identified as being similar to the 

target. This will enable an Excel file to be generated containing information on all of the 

available PBK models associated with these analogues. All information associated with the 

PBK models, as recorded in the PBK modelling dataset, will be extracted. Further filtering of 

the available PBK models can be undertaken by the user with the option of filtering the PBK 

model dataset output by species, availability of equations, software, sex, life-stage, etc. The 

results at each step (i.e. after the application of each filtering node) can be exported to Excel 

and examined as described in Stage 2.  

 

3.2.3 KWAAS testing 

To test the tool’s usability across different chemical types as relevant to different sectors, one 

chemical was chosen from each of the six datasets described in Chapter 2 (i.e. botanicals, 

pesticides, cosmetic ingredients, food additives, pharmaceuticals, and REACH chemicals). For 

each of the six chemical types, the chosen chemical’s name was searched in PubChem to 

obtain its InChiKey; this was used for the initial search of the PBK dataset for available models. 

The availability of any PBK models for the selected chemicals themselves was recorded - Stage 

1 of the KWAAS. The selected chemicals were then inputted into Stage 2 of the KWAAS i.e. to 

identify similar chemicals with existing PBK models. In this analysis all chemicals were 

progressed into Stage 2, even if at Stage 1 it was determined that PBK models were available 

for the chemical of interest itself. This was to determine how well the KWAAS performed in 

selecting analogues for the different types of chemicals. 
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Originally a range of 100 Da either side of the target chemicals molecular weight was 

considered for inclusion. However, this was determined to be insufficient when working with 

extreme values i.e., 50 or 4000 Da. Thus, it was determined that ±50% of the target chemical’s 

molecular weight was ideal to account for chemicals that could have significantly large or 

small molecular weight. Inclusion ranges for log P, and log D (at pH 5.5) were selected to be 

within ±1 log of the target.  

 

Genistein was chosen at from a list of common botanical chemicals to represent botanicals. 

A molecular weight of 270.24 Da and log P of 2.58 for this chemical were obtained from the 

PBK dataset values. Bicyclopyrone was selected, a pesticide of interest by one of the industrial 

collaborators, hence was used for studying this type of chemical. A molecular weight of 399.4 

Da was obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov; accessed May 2022, log 

P of 1.45 obtained from ChemSpider (https://www.chemspider.com; accessed May 2022). 

Benzoic acid was used to represent the cosmetics as it is a common ingredient used within 

cosmetics. A molecular weight of 122.12 Da and log P of 1.3848 were obtained from the PBK 

dataset values. Methyleugenol was chosen to represent food additives, as this chemical had 

been part of the prior investigation by Paini et al. (2021b) and could be used to confirm the 

results from the KWAAS. A molecular weight of 178.23 Da and log P 2.43 were obtained from 

the PBK dataset values. Loxapine was chosen to represent pharmaceuticals. Molecular weight 

of 327.8 Da obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov; accessed May 

2022), log P of 3.6. A chemical of high concern (benzyl butyl phthalate) from the ECHA 

(https://echa.europa.eu/chemicals-in-our-life/which-chemicals-are-of-concern/svhc; 

accessed May 2022) was selected to represent industrial chemicals (REACH), this was selected 

as it is of high production value and therefore potentially of greater concern. Molecular 

weight of 312.4 Da was obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov; 

accessed May 2022), log P of 4.82 was obtained from CompTox 

(https://comptox.epa.gov/dashboard/; accessed May 2022). Log D of 4.68 at pH 7.4 was 

obtained from ADMETlab 2.0 (https://admetmesh.scbdd.com/service/evaluation/cal; 

accessed May 2022).  

 

https://pubchem.ncbi.nlm.nih.gov/
https://www.chemspider.com/
https://pubchem.ncbi.nlm.nih.gov/
https://echa.europa.eu/chemicals-in-our-life/which-chemicals-are-of-concern/svhc
https://pubchem.ncbi.nlm.nih.gov/
https://comptox.epa.gov/dashboard/
https://admetmesh.scbdd.com/service/evaluation/cal


 68 

3.3 Results 

To test the tool’s applicability across multiple types of chemicals, one chemical from each of 

the six datasets identified in Chapter 2.2.4 was selected. Initially, the PMD was searched for 

any available PBK models for each target chemical using its InChiKey.  

 

For botanicals, the chemical genistein was used, with a total of five PBK models for this 

chemical being found in the PBK model dataset. Stage 2 of the KWAAS was still used to identify 

similar chemicals to genistein. Table 3.2 summarises the target chemicals’ property 

information and the source of this information, as well as the inclusion ranges used within 

the KWAAS process, and the number of chemicals identified as similar at each stage. Refining 

by molecular weight, log P and pKa made the similarity search too specific for genistein, 

resulting only in genistein itself being identified by the KWAAS. Thus, using fingerprints, 

molecular weight and log P alone within the KWAAS, a reasonable number of analogues (four) 

were identified, and this was determined a reasonable point at which to stop refining the 

selection. The four chemicals identified as similar and genistein’s (the target’s) structure are 

displayed in Figure 3.4, with the similarity scores calculated by different chemical fingerprint 

types also displayed (a discussion of the apparent similarities based on visual inspection are 

described in section 3.4).  

 

Table 3.2 The target chemical, genistein, the inclusion range at each step of the refinement process, when applying the 

KWAAS, and the number of chemicals identified at each stage. 

Features for 

searching and 

refining  

Target - Genistein  Inclusion range for 

refining results 

Number of chemicals 

identified at relevant 

KWAAS filter 

Fingerprints    11* 

Tanimoto score   > 0.6 9* 

Molecular 

weight  

270.24 Da  

(from PBK dataset in 

Chapter 2) 

135.12 – 405.36 Da 7* 

Log P 2.58  1.58 – 3.58 5* 
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(from PBK dataset in 

Chapter 2) 

*results include the target chemical, genistein. 

  

genistein (target) quercetin 

 0.618 (FeatMorgan), 0.65 (AtomPair), 

0.676 (RDKit), 0.844 (Layered), 0.931 

(MACCS), 0.813 (Pattern) 

  

4'-o-methylquercetin 3'-o-methylquercetin 

0.663 (RDKit), 0.797 (Layered), 0.871 

(MACCS), 0.807 (Pattern) 

0.688 (Avalon), 0.751 (Layered), 0.844 

(MACCS), 0.807 (Pattern) 

 

 

nevadensin  

0.754 (Avalon), 0.716 (Layered), 0.818 

(MACCS) 

 

Figure 3.4 Structure of target chemical, genistein and the chemicals identified as similar after refining by log P  



 70 

Bicyclopyrone had no available PBK models in the PMD. Initially, 42 unique chemicals were 

identified as similar to bicyclopyrone using fingerprints alone in the KWAAS, hence results 

were refined using MW and Log P. A summary of the chemical property information and the 

source of this information for the target chemical, as well as the inclusion ranges used within 

the KWAAS process, and the number of chemicals identified as similar at each stage are 

shown in Table 3.3. The three chemicals identified as similar and bicyclopyrone (target) 

structure are displayed in Figure 3.5, with the similarity scores calculated by different 

chemical fingerprint types also displayed.  

 

Table 3.3 The target chemical, bicyclopyrone, the inclusion range at each step of the refinement process, when applying the 

KWAAS, and the number of chemicals identified at each stage. 

Features for 

searching and 

refining  

Target - 

Bicyclopyrone  

Inclusion range 

for refining 

results 

Number of chemicals 

identified at relative 

KWAAS filter 

Fingerprints    42 

Tanimoto score   > 0.6 15 

Molecular weight  399.4  

(PubChem 

(https://pubchem.nc

bi.nlm.nih.gov; 

accessed May 2022)) 

199.7 – 599.1 Da 12 

Log P 1.45 

(ChemSpider 

(https://www.chems

pider.com; accessed 

May 2022)) 

0.45 -2.45 3 

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.chemspider.com/
https://www.chemspider.com/


 

 
 

bicyclopyrone (target) flumioxazin 

 0.706 (Layered) 

 
 

topotecan amlodipine 

0.736 (RDKit) 0.702 (Layered) 

Figure 3.5 Structure of target chemical, bicyclopyrone, and the chemicals identified as similar after refining by log P 
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Initially, four PBK models were identified in the PMD for benzoic acid before determining 

similarity. Table 3.4 summarises the target chemical’s property information and the source of 

this information, as well as the inclusion ranges used within the KWAAS process, and the 

number of chemicals identified as similar at each stage. The five chemicals identified as similar 

and benzoic acid (target) structure are displayed in Figure 3.6, with the similarity scores 

calculated by different chemical fingerprint types also displayed. 

 

Table 3.4 The target chemical, benzoic acid, the inclusion range at each step of the refinement process, when applying the 

KWAAS, and the number of chemicals identified at each stage. 

Features for 

searching and 

refining  

Target - Benzoic acid Inclusion range for 

refining results 

Number of chemicals 

identified at relative 

KWAAS filter 

Fingerprints    12* 

Tanimoto score   > 0.6 9* 

Molecular 

weight  

122.12 Da  

(from PBK dataset in 

Chapter 2) 

61.06 – 183.18 Da 7* 

Log P 1.38 

(from PBK dataset in 

Chapter 2) 

0.38 – 2.38 6* 

*results include the target chemical, benzoic acid. 



 

 

 
 

benzoic acid (target) m-toluic acid methylparaben 

 0.684 (FeatMorgan), 0.697 

(RDKit), 0.75 (Avalon), 0.855 

(Layered), 0.9 (MACCS), 

0.862 (Pattern) 

0.753 (Layered), 0.789 

(Pattern) 

  

   

phthalic acid phenylglyoxylic acid 2-phenoxyacetic acid 

0.857 (FeatMorgan) 0.625 (AtomPair), 0.73 

(Avalon), 0.692 (MACCS) 

0.789 (Pattern) 

Figure 3.6 Structure of target chemical, benzoic acid, and the chemicals identified as similar after refining by log P 
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Using the chemical methyeugenol for the food additives sector, a rat and a human PBK model 

were available in the literature for safrole. A total of 11 chemicals, including methyleugenol, 

were initially identified as similar. Table 3.5 summarises the target chemical’s property 

information and the source of this information, as well as the inclusion ranges used within 

the KWAAS process, and the number of chemicals identified as similar at each stage. The eight 

chemicals identified as similar and methyleugenol (target) structure are displayed in Figure 

3.7, with the similarity scores calculated by different chemical fingerprint types also 

displayed. Note that some of chemicals identified as similar were metabolites of the target, 

here the PBK model of interest would be the one for the parent. 

 

Table 3.5 The target chemical, methyleugenol, the inclusion range at each step of the refinement process, when applying 

the KWAAS, and the number of chemicals identified at each stage. 

Features for 

searching and 

refining  

Target - 

Methyeugenol 

Inclusion range for 

refining results 

Number of chemicals 

identified at relative 

KWAAS filter 

Fingerprints    11* 

Tanimoto score   > 0.6 11* 

Molecular 

weight  

178.23 Da  

(from PBK dataset in 

Chapter 2) 

89.12 – 267.35 Da 10* 

Log P 2.43 

(from PBK dataset in 

Chapter 2) 

1.43 – 3.43 9* 

*results include the target chemical, methyleugenol. 
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methyleugenol (target) eugenol estragole 

 0.71 (Morgan), 0.68 

(FeatMorgan), 0.642 (AtomPair), 

0.652 (Torsion), 0.942 (RDKit), 

0.78 (Avalon), 0.957 (Layered), 

0.905 (MACCS), 0.96 (Pattern) 

0.85 (FeatMorgan), 0.7 

(Avalon), 0.75 (MACCS) 

  
 

1,2-dihydroxy-4-allylbenzene 3-(3,4-dimethoxyphenyl)-2-

propen-1-ol 

1'-hydroxymethyleugenol 

0.635 (Avalon), 0.919 (Pattern) 0.6 (Torsion), 0.673 (Avalon), 

0.934 (Layered), 0.76 (MACCS), 

0.936 (Pattern) 

0.642 (AtomPair), 0.759 

(RDKit), 0.876 (Layered), 

0.864 (MACCS) 

  

 

safrole 3'-hydroxysafrole myristicin  

0.773 (FeatMorgan), 0.615 

(Torsion), 0.835 (RDKit) 

0.798 (RDKit) 0.739 (FeatMorgan)  

Figure 3.7 Structure of target chemical, methyleugenol, and the chemicals identified as similar after refining by log P 
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The pharmaceutical sector was represented using the chemical loxapine. A summary of the 

chemical property information and the source of this information for the target chemical, as 

well as the inclusion ranges used within the KWAAS process, and the number of chemicals 

identified as similar at each stage is given in Table 3.6. The five chemicals identified as similar 

and loxapine (target) structure are displayed in Figure 3.8, with the similarity scores calculated 

by different chemical fingerprint types also displayed.  

 

Table 3.6 The target chemical, loxapine, the inclusion range at each step of refining the results from the KWAAS and the 

number of chemicals identified at each stage. 

Features for 

searching and 

refining  

Target - loxapine Inclusion range for 

refining results 

Number of 

chemicals 

identified at 

relative 

KWAAS 

filter 

Fingerprints    18 

Tanimoto 

score  

 > 0.6 13 

Molecular 

weight  

327.8 Da  

(PubChem 

(https://pubchem.ncbi.nlm.nih.gov; 

accessed May 2022)) 

163.9 – 491.7 Da 7 

Log P 3.6 

(DrugBank 

(https://go.drugbank.com; 

accessed May 2022)) 

2.6 – 4.6 5 

 

https://pubchem.ncbi.nlm.nih.gov/
https://go.drugbank.com/
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loxapine (target) olanzapine quetiapine 

 0.629 (AtomPair), 0.717 

(Layered), 0.677 (MACCS), 

0.771 (Pattern) 

0.604 (Avalon), 0.762 

(Layered), 0.801 (Pattern) 

 
 

 

 

norclozapine clozapine gefitinib 

0.633 (Avalon), 0.805 

(Layered), 0.712 (MACCS), 

0.838 (Pattern) 

0.651 (FeatMorgan), 0.751 

(AtomPair), 0.6 (Torsion), 

0.674 (Avalon), 0.81 

(Layered), 0.836 (MACCS), 

0.861 (Pattern) 

0.687 (MACCS) 

Figure 3.8 Structure of target chemical, loxapine, and the chemicals identified as similar after refining by log P 
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Benzyl butyl phthalate was used to represent the industrial sector. A summary of the chemical 

property information and the source of this information for the target chemical, as well as 

the inclusion ranges used within the KWAAS process, and the number of chemicals identified 

as similar at each stage is given in Table 3.7. Filtering using log P resulted in no similar 

chemicals being identified, therefore log D was used as a filter in this case. The two chemicals 

identified as similar, and benzyl butyl phthalate (target) structure are displayed in Figure 3.9, 

with the similarity scores calculated by different chemical fingerprint types also displayed.  

 

Table 3.7 The target chemical, benzyl butyl phthalate, the inclusion range at each step of the refinement process, when 

applying the KWAAS, and the number of chemicals identified at each stage. 

Features for 

searching and 

refining  

Target - Benzyl butyl phthalate Inclusion range 

for refining 

results 

Number of 

chemicals 

identified 

at relative 

KWAAS 

filter 

Fingerprints    11 

Tanimoto 

score  

 > 0.6 8 

Molecular 

weight  

312.4 Da  

(PubChem 

(https://pubchem.ncbi.nlm.nih.gov;  

accessed May 2022)) 

156.2 – 468.6 Da 8 

Log P 4.82 

(CompTox 

(https://comptox.epa.gov/dashboard/

;accessed May 2022)) 

3.82 – 5.82 0 

Log D (pH 7.4) 4.68 

(ADMETlab 2.0 

(https://admetmesh.scbdd.com/servic

e/evaluation/cal;accessed May 2022)) 

3.68 – 5.68 1 

https://pubchem.ncbi.nlm.nih.gov/
https://comptox.epa.gov/dashboard/
https://comptox.epa.gov/dashboard/
https://admetmesh.scbdd.com/service/evaluation/cal
https://admetmesh.scbdd.com/service/evaluation/cal


 

  
 

 

benzyl butyl phthalate 

(target) 

di-n-butylphthalate mono(2-ethylhexyl) 
phthalate 

 0.781 (Morgan), 0.826 

(FeatMorgan), 0.676 

(Torsion), 0.867 (RDKit), 

0.953 (Avalon), 0.94 

(Layered), 0.893 (MACCS) 

0.795 (RDKit), 0.6 (Avalon), 

0.917 (Layered), 0.719 

(MACCS), 0.89 (Pattern) 

Figure3.9 Structure of target chemical, benzyl butyl phthalate, and the chemicals identified as similar after refining by log D 

 

3.4 Discussion 

A KNIME workflow was developed to aid in the selection of similar chemicals (with existing 

PBK model(s) that could be used as a template to build new PBK models) through an iterative 

process of design and testing. The KWAAS was successfully run for six example chemicals, 

identifying where PBK models existed for the target itself in addition to finding similar 

chemicals with PBK models. Initial visual inspection of the analogues selected for five of the 

chemicals (genistein, benzoic acid, methyleugenol, loxapine and benzyl butyl phthalate) 

indicate one or more of these may be suitable starting points for developing new PBK models 

in a read-across approach. However, the chemicals identified for bicyclopyrone were more 

diverse. Initially, assessing similarity by chemical fingerprints, molecular weight and log P is 

recommended as these properties are universal. Other properties can be used to refine the 

results by, and these can be added by the user. However, in this analysis for some chemicals 

the additional properties were too specific to a target chemical; hence if the target was 

already in the PMD, it was the only chemical identified as being “similar”. The results shown 
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in Section 3.3 demonstrate that the tool works satisfactorily, in that it can identify potential 

analogues and refine this selection using criteria deemed appropriate by the user. Although 

the KWAAS was tested here using molecular weight and log P, this may not be appropriate 

for all cases. Thus, not all chemicals identified may be suitable analogues, before taking the 

analysis further (e.g. developing a new PBK model) the user would need to use expert 

judgement to determine the suitability of the analogues.  

 

Overall, the capabilities of the KWAAS described in this chapter have been tested using six 

different types of chemicals, thus demonstrating how analogue selection may be performed. 

Visual analysis indicates that reasonable source chemicals were identified for most chemicals 

following refinement. Each target chemical had at least ten chemicals identified as being as 

similar using fingerprints alone. There was a greater selection of chemicals with PBK models 

determined as being similar to methyleugenol (food additives) compared to genistein 

(botanicals). The structures of the chemicals identified as similar to genistein in Figure 3.4 are 

visually similar to each other compared to the structures of the chemicals identified as similar 

to bicyclopyrone in Figure 3.5 which are visually very different. Genistein has 3 benzene rings 

as do the four chemicals identified as similar, whereas bicyclopyrone has no key visual 

structures the same between it and the identified similar chemicals. The five chemicals 

identified as similar to benzoic acid (see Figure 3.6) were very similar in structure to benzoic 

acid, as where the suggested analogues for methyleugenol (Figure 3.7). However, when 

compared to the analogues found for loxapine (Figure 3.8) and benzyl butyl phthalate (Figure 

3.9), they were less visually similar. This can be seen with loxapine having a chlorine attached 

to a benzene ring but two of the suggested analogues not having any chlorine attached to the 

structure. 

 

The target chemical (bicyclopyrone) from the pesticide dataset resulted in the largest number 

of chemicals (42) initially identified as similar, this was expected as the pesticide dataset had 

one of the largest number of chemicals present in the PMD. However, the number of 

chemicals decreased significantly as the physicochemical property filters were included, this 

may be due to pesticides having a narrower range of values for physicochemical properties 

than other datasets. Although the three chemicals (flumioxazin, topotecan and amlodipine) 

identified as similar to bicyclopyrone after using the KWAAS visually look different (see Figure 
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3.5), they were highlighted as being similar by physicochemical properties (molecular weight 

within 50% of bicyclopyrone and log P within 1 log also) and Tanimoto score (all three 

analogues had a Tanimoto score greater than 0.7).  

 

Not surprisingly, metabolites for chemicals are commonly highlighted as similar chemicals to 

given targets, particularly when using chemical fingerprints as the basis for similarity. This is 

because fingerprints identify key common features, and it is likely that many of these would 

be found in both parent and metabolite. There is a need for expert judgement when 

determining the most useful chemical with a PBK model to use as a template. Layered 

fingerprints was the only fingerprint type that had identified at least one chemical as similar 

after all refinements were included in the KWAAS. However, RDKit identified at least one 

chemical as similar after all refinements were included for all target chemicals except, 

loxapine. Torsion was the least successful fingerprint type to have identified similar chemicals 

after including all refinements, this could be as its designed to compare small molecule 

conformations. 

 

The tool identifies analogues with published PBK models which can be used in two main ways. 

One method uses the exact equations of the model of the source chemical as a template to 

develop a new PBK model for a target chemical by changing parameter values to that of the 

target chemicals. This method will be undertaken in the next Chapter (Chapter 4). The second 

method, which is more qualitative, provides information to adapt a generic PBK model so that 

the key process appearing in the model for the source chemical are reflected in the model for 

the target chemical. Thus, rapidly providing a more accurate chemical-specific model that is 

suitably informative. Additionally, this method can be advantageous when there are 

difficulties in reproducing a PBK model, for example where insufficient model or parameter 

details are available for the published model. This tool can facilitate the inclusion of PBK 

model-derived data for a wide range of chemicals for which PBK models are currently lacking. 

This can help to fill the knowledge gaps within current toxicokinetic information for chemicals 

that are data poor. Using data from rationally selected analogues can help towards the 

integration of information from alternative methods into regulatory practice. This will assist 

in producing more accurate safety assessments of chemicals through providing supporting 

information, so increasing uptake of read-across for regulatory purposes. The KWAAS is an 
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option to use for those with KNIME expertise or expertise using similar software as the 

workflow can be altered and adapted readily, e.g. by adapting the Excel spreadsheet to 

include further physicochemical properties or altering ranges used for inclusion criteria when 

selecting analogues. 

 

The automated approach taken within this chapter for determining similarity using structural 

similarity and physicochemical properties to use the information from the PBK models for 

source chemicals in a read-across approach to build new PBK models. Whereas previously 

Ellison (2018) evaluated a PBK model using in vivo data from structural and functional 

analogues, and Ellison and Wu (2020) evaluated PBK models built in the absence of in vivo PK 

data (on in vitro and in silico data only). This functional analogue approach focused on using 

significant expertise of chemical structure to determine similar analogues, and the functional 

analogue approach focused on comparing area under the curve (AUC) and maximum 

concentration (Cmax) to determine the parameters most influencing predictions and then 

assessing similarity based on specific parameter values (bioavailability, volume of distribution 

and clearance). This approach requires a lot of research and expertise to determine similar 

analogues. Lu et al. (2016a) used a correlation matrix of multiple physicochemical properties 

to identify similar chemicals. This approach requires expertise in understanding the ranking 

of results to determine the most suitable analogue, and structural similarity was not assessed 

for determining similar analogues. However, there is no consensus among researchers 

regarding the best molecular descriptors and similarity calculations to use to determine 

similarity for read-across. Having a structured method, as developed here, can increase the 

uptake of using a read-across approach for PBK modelling.  

 

This tool will be useful across all industries and could become increasingly significant if the 

dataset were to be populated with additional PBK models to use as templates. In future, when 

choosing the most appropriate PBK model, considering factors such as the reproducibility of 

the PBK model and the confidence in obtaining the correct input parameters could also be 

included into the KWAAS refinement criteria to help choose a suitable PBK model. Including 

ADME properties into the KWAAS to refine chemicals by would help identify chemicals that 

are similar for the purpose of the PBK model being created. For example, refining by skin 

absorption to ensure chemicals have similar kinetics for creating a model for a chemical that 
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may be to be administered (or exposed) via the skin. To further the analysis of the KWAAS 

and determine the suitability of the source chemicals proposed, two specific case studies are 

undertaken in Chapter 4. The KWAAS is used for two chemicals, atenolol and flumioxazin, for 

which new PBK models are built using available PBK models for chemicals identified by the 

KWAAS as being similar. 
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Chapter 4 – Application of the KNIME Workflow for Analogue Selection 

4.1 Introduction  

As referred to in Section 1.6 the number of papers published in recent years on PBK modelling 

has significantly increased (Paini et al., 2017, Lu et al., 2016a). The purpose of the PBK model 

dataset (PMD, described in Chapter 2) and the KNIME Workflow for Assisting Analogue 

Selection (KWAAS, described in Chapter 3) is to enable the process by which information from 

an existing PBK model for one chemical can be used to inform the development of a PBK 

model for another chemical that has been identified as being similar. This requires the existing 

model to be adequately reported and a suitable method to be employed for identifying similar 

chemicals.  

 

Regarding chemical similarity, Lu et al. (2016) previously used a quantitative comparison of 

physicochemical properties to determine similarity when identifying which chemicals would 

be suitable as analogues for developing new PBK models. However, it is important to also 

capture similarity in terms of chemical structure. Hence, the need for a structured approach 

to determining similarity; this was achieved through the development of the KWAAS (outlined 

in Chapter 3) enabling a user to optimise analogue selection based on physicochemical 

properties, chemical fingerprints or other criteria subject to additional data (such as ADME 

properties) being supplied. 

 

Obtaining the required input parameters for PBK models can be time-consuming and resource 

intensive (Punt et al., 2011). Physiological parameters (e.g. organ volume, blood flow rate), 

ADME properties (e.g. clearance, intestinal absorption) and physicochemical properties (e.g. 

log P, pKa, hydrogen bonding ability), are all required to build a PBK model (Paini et al., 2019). 

Efforts to predict ADME properties through in silico methods are increasing (see Madden et 

al. (2020) and Madden and Thompson (2022) for further resources), however experimental 

data are generally preferred.  

 

There are multiple software that predict a range of physicochemical properties such as Opera 

(https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html), 

ADMETlab (http://admet.scbdd.com/calcpre/index/), EPI SUITE (https://www.epa.gov/tsca-

http://admet.scbdd.com/calcpre/index/
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
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screening-tools/epi-suitetm-estimation-program-interface), etc. Variability in the output of a 

PBK model is expected where different values for these properties are used to generate the 

model. For example, higher log P values are associated with more of the chemical being 

absorbed by the body (leading to a higher concentration blood) until the log P reaches a value 

beyond which the amount of chemical absorbed decreases. Consequently, the value for log P 

that is incorporated in the model can have a significant effect on predicted internal 

concentrations.  

 

The format for the reporting of PBK models in the literature varies considerably, as does the 

level of detail included in the reports of PBK models (Tan et al., 2020). Hence, when 

reproducing literature models this can lead to difficulties. However, the ability to reproduce 

these models accurately would enable wider application of the knowledge therein, which is 

especially important with the increasing number of models that can be found in the literature. 

This need to improve reporting standards for PBK models has led to the recently published 

OECD (2021b) guidance document on the characterisation, validation and reporting of PBK 

models. The guidance, which focuses on the use of alternative methods, incorporates a PBK 

model reporting template (shown in Table 4.1 below, as reported in OECD (2021b)) to ensure 

the level of detail required to reproduce a model is included. 

https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
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Table 4.1 PBK Model Reporting Template (as given in OECD, 2021b) 

 

 

The software used to create PBK models traditionally required significant expertise to use. 

However, as highlighted in Section 1.3 accessibility of PBK modelling software has increased 

as more generic software is now available e.g., QIVIVE (http://www.qivivetools.wur.nl), 

http://www.qivivetools.wur.nl/
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PKSim (https://www.open-systems-pharmacology.org) etc. Although software that requires 

specific knowledge of computational languages is still widely used, e.g., R (https://www.r-

project.org) and MATLAB (https://www.mathworks.com/products/matlab.html). MATLAB 

was chosen for use in this study, due to its greater functionality and transparency as 

determined in the pilot study undertaken in Section 4.2. 

 

The work described in this chapter was based upon the use of the KWAAS, outlined in Chapter 

3, to identify existing PBK models for analogues of two target chemicals, the drug atenolol 

and the herbicide flumioxazin. Atenolol is a beta blocker - a drug commonly used to reduce 

blood pressure. Flumioxazin is a pesticide that was highlighted for use as a case study by an 

industrial partner of the research funding body for this project. These chemicals were used as 

case studies as both chemicals have existing PBK models, hence these chemicals are 

considered as “pseudo-unknowns”. It is important at this stage to have data against which 

model results can be compared, to give confidence in the approach as a proof-of-principle. 

The importance of assessing the reliability of the models is summarised in Section 1.4. 

Assessment of a model’s predictivity is commonly performed by determining the fold error of 

the most common pharmacokinetic metrics (Cmax, Tmax and AUC) and undertaking a global 

sensitivity analysis to determine the input parameters that have the biggest impact on the 

output variables. 

 

The aims of this chapter were to: 

(i) Demonstrate use of the KWAAS created in Chapter 3 by applying the approach to 

two case study target chemicals - atenolol and flumioxazin. Initially, source chemicals with 

PBK models available in the literature were identified, using the KWAAS. These models were 

reproduced for the source chemicals, and subsequently used as templates to enable new 

models to be derived for the two target chemicals using a read-across approach 

(ii) Assess the performance of the newly-derived PBK models by comparing blood-

concentration-time profiles with existing data from the literature. The model assessment was 

undertaken for each new PBK model created using global sensitivity analysis and comparison 

of fold error for key parameters obtained from the models. 

 

https://www.open-systems-pharmacology.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.mathworks.com/products/matlab.html
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4.2 Pilot study on PBK modelling software  

A published PBK model for atenolol from the literature (Peters, 2008) was reproduced using 

three software packages, MATLAB, PKSim, and QIVIVE, to compare the usefulness and 

accessibility of these software in order to determine which would be most appropriate to use 

for subsequent model development for this thesis. The analysis of each software considered 

ease of inputting parameters, usability of the software and accuracy of reproducing the 

literature model. In summary, less chemical and physiological information was needed to be 

inputted into PKSim and QIVIVE to obtain concentration-time graphs and no equations were 

required for input. Hence, these two software are considered to be more user friendly. 

SimBiology (MATLAB) required the most input, requiring information on all parameters to be 

inputted into the model including physicochemical and ADME properties, in addition to 

information on the ODEs. Therefore, MATLAB was found to require more expertise to use, 

however, the functionality of the software and adaptability is greatest, and it reproduced the 

atenolol model most accurately. Whilst QIVIVE was found to be most user friendly, in this 

analysis, model adaptability is restricted. For example, it was not possible to view or make 

any adaptions to the model equations or the compartments included in the model. Thus, 

MATLAB was deemed the most appropriate software to use for the analysis in this thesis as 

it allows for direct implementation of the model equations whereas the alternative software 

(PKSim and QIVIVE) considered start from pre-defined templates that can be adjusted. 

 

4.3 Method 

4.3.1 Identifying analogues with existing PBK models using the KNIME Workflow for Assisting 

Analogue Selection (KWAAS) for the target atenolol 

The first case study was the drug atenolol. Initially, the PBK database was searched using the 

InChiKey for atenolol. Atenolol already has an available PBK model in the literature, hence the 

in vivo data in this literature could be used for assessing the predictions of any new models 

generated using the read-across approach. The chemical name and SMILES string of atenolol 

was inputted into the KNIME workflow to calculate similarity to other chemicals in the PMD 

using nine different fingerprints before being refined to find the most similar chemicals. 

Chemicals with similarity scores of 0.6 and above were included for further refinement (0.6 

was selected as the cut-off for similarity as rationalised in Section 3.1).  



 89 

 

Figure 4.1 shows the analogues selected by the KWAAS at every stage of the workflow. Using 

the nine fingerprints to identify similar chemicals resulted in eight potential analogues being 

identified. Atenolol has a molecular weight of 266 Da and log P of -0.11; hence when refining 

the results of the similarity analysis, chemicals with a molecular weight of 266 Da ±50% (i.e. 

133-399 Da) and log P of -0.11 +/- 1 (i.e. -1.11-0.89) were sought. The KNIME workflow 

suggested six analogues based on chemical fingerprints and molecular weight; one of which 

was atenolol itself. The suggested analogues after refining the results by molecular weight 

included three other beta-blockers. Selection of an analogue PBK model to use for atenolol 

included filtering the resulting analogues from the spreadsheet using Stage 3 of the workflow 

as described in Chapter 3. It is important to note that this tool is to help fill gaps in kinetic 

data, it does not provide information on activity at the biological site of action. That is, the 

availability of full equations, human as species, as well as oral for route of administration were 

used to refine the results of available PBK models from the PBK model dataset.  

 

 

Figure 4.1 Results for identifying analogues for atenolol at each stage of using KWAAS. The arrow on left indicates the criteria 

used to refine the selection at each stage. 

 

Analysis of the proposed analogues at different stages of the workflow were undertaken to 

assess the suitability of the analogues suggested at each stage. A PBK model for propranolol 

Fingerprints

•8 different chemicals

•Atenolol, metoprolol, metoprolol tartrate, bisoprolol, alpha-hydroxymetoprolol, 
propanolol, phenacetin, and salbutamol

Tanimoto ≥
0.6

•7 different chemicals

•Atenolol, metoprolol, metoprolol tartrate, alpha-hydroxymetoprolol, bisoprolol, 
propanolol, and salbutamol

Molecular 
Weight

•6 different chemicals 

•Atenolol, metoprolol, alpha-hydroxymetoprolol, bisoprolol, propranolol, and 
salbutamol

log P

•3 different chemicals

•Atenolol, alpha-hydroxymetoprolol, and salbutamol
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was determined to be the most suitable after the refinement at the molecular weight stage 

(Stage 3 in Figure 4.1). When refining further and including log P as a similarity metric only 

one analogue was suggested, salbutamol, (the other two chemicals remaining at this stage 

were atenolol itself and a metabolite of the beta-blocker metoprolol). Thus, salbutamol was 

chosen as a second chemical to use as a template. Refinement of KWAAS results included only 

molecular weight and log P as the results produced at log P, were atenolol itself, one 

metabolite and one analogue suggestion. Thus, refinement has been undertaken as far as was 

reasonable, refining further would be too specific and only result in the target chemical itself 

being identified. The structures of the target chemical, atenolol, and the two source 

chemicals, propranolol and salbutamol, are displayed in Figure 4.2.  

 

 
 

 

Atenolol (target) Propranolol Salbutamol 

Figure 4.2 Structure of target chemical, atenolol, and the chemicals identified as similar at the molecular weight stage, 

propranolol, and at the log P stage, salbutamol 

 

4.3.2 Propranolol PBK model 

Kiriyama et al. (2008) describe a 13 compartment PBK model for propranolol, with a structure 

as shown in Figure 4.3. The compartments included in the model were: arterial (art), venous 

(ve), lung (lu), brain (br), heart (ht), liver (li), spleen (sp), gut (gu), kidney (ki), adipose (ad), 

muscle (mu), bone (bo), and skin (sk). The volume (Vi) and blood flow rates (Qi) from Kiriyama 

(2008) are summarised in Table 4.2 and were used for both propranolol and atenolol 

simulations.  

 



 91 

 

Figure 4.3 Schematic of the PBK model outlined in Kiriyama (2008). Blood flows from the arterial compartment into the 

organs. These include brain, heart, liver, spleen, gut, kidney, adipose, muscle, bone and skin. Blood enters the venous 

compartment from the brain, heart, liver, spleen, gut, kidney, adipose, muscle, bone and skin. Blood from the venous enters 

the lung which then leaves the lung and enters the arterial compartment. Clearance is modelled from the liver, and the dose 

enters through the gut.  

 

As tissue specific partition coefficients (Kp) require input of specific chemical properties (i.e. 

pKa, log P, pH and fraction of free drug in the plasma), they need to be calculated for each 

individual chemical. Rodgers and Rowland (2006) describe a method that calculates these 

using chemical properties and the volume fraction of various components of the tissue (i.e. 

volume fraction of water, lipids and phospholipids). The tissue partition coefficients for 

propranolol and those calculated for atenolol are given in Table 4.3. Propranolol’s tissue 

partition coefficients are taken from Kiriyama et al. (2008), with atenolol’s being calculated 

using the method described in Rodgers and Rowland (2006). Elimination of the chemical from 

the body was assumed to be via metabolism in the liver (Kiriyama et al., 2008). 

 



Table 4.2 Organ blood flow rates and volumes from Kiriyama et al. (2008) 

Compartment Q (ml/min) V (ml) 

Arterial 5,270 1,720 

Venous 5,270 3,440 

Lung 5,270 320 

Brain 110 360 

Heart 260 210 

Liver 930 2,310 

Spleen 110 130 

Gut 690 1,700 

Kidney 70 460 

Adipose 370 4,800 

Muscle 1,460 25,530 

Bone 640 2,620 

Skin  310 12,000 

 

The ODEs given by Equations 4.2-4.7 represent each organ included within the PBK model and 

were solved in MATLAB using the numerical regression solver for stiff differential equations - 

ode15s. These equations were reproduced from the original paper with the gut equation 

corrected to better model the dose entering the system. In the original paper, the reporting 

of the gut equation was incorrect where the dose and absorption of the drug in was multiplied 

by the stomach blood flow (highlighted in red in Equation 4.1). However, this was corrected 

in Equation 4.2 by adding the dose and absorption of the drug to the blood flow in the 

stomach after it was multiplied by the concentration in the stomach (highlighted in red in 

Equation 4.2). Once this model was accurately reproduced with the corrected equation, it was 

subsequently used as a template for atenolol. 

 

Gut (absorption site) – incorrect equation from original paper 

𝑑𝐶𝑔𝑢
𝑑𝑡

=
1

𝑉𝑔𝑢
(𝑄𝑔𝑢 (𝐶𝑎𝑟𝑡 + 𝑘𝑎 × 𝐷 × 𝐹𝑎 × 𝑒

−𝑘𝑎×𝑡  −
𝐶𝑔𝑢 × 𝑅𝑏𝑝
𝐾𝑝,𝑔𝑢

)) 

Equation 4.1 
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Gut (absorption site) – corrected equation 

𝑑𝐶𝑔𝑢
𝑑𝑡

=
1

𝑉𝑔𝑢
(𝑘𝑎 × 𝐷 × 𝐹𝑎 × 𝑒

−𝑘𝑎×𝑡 +𝑄𝑔𝑢 (𝐶𝑎𝑟𝑡 −
𝐶𝑔𝑢 × 𝑅𝑏𝑝
𝐾𝑝,𝑔𝑢

)) 

Equation 4.2 

where Fa is the fraction absorbed from the intestinal tract, and D is the dose, that was orally 

administered. 

 

Arterial blood 

𝑑𝐶𝑎𝑟𝑡
𝑑𝑡

=
1

𝑉𝑎𝑟𝑡
(𝑄𝑇 (

𝐶𝑙𝑢 × 𝑅𝑏𝑝
𝐾𝑝,𝑙𝑢

− 𝐶𝑎𝑟𝑡)) 

Equation 4.3 

where QT is the total blood flow through the body. 

 

Venous blood 

𝑑𝐶𝑣𝑒
𝑑𝑡

=
1

𝑉𝑣𝑒
(∑𝑄𝑖 (

𝐶𝑖 × 𝑅𝑏𝑝
𝐾𝑝,𝑖

) + (𝑄𝑙𝑖 +𝑄𝑠𝑝 +𝑄𝑔𝑢)
𝐶𝑙𝑖 × 𝑅𝑏𝑝
𝐾𝑝,𝑙𝑖

− 𝑄𝑇𝐶𝑣𝑒) 

Equation 4.4 

where i represents the compartments brain, heart, kidney, adipose, muscle, bone, skin. 

 

Lung  

𝑑𝐶𝑙𝑢
𝑑𝑡

=
1

𝑉𝑙𝑢
(𝑄𝑇 (𝐶𝑣𝑒 −

𝐶𝑙𝑢 × 𝑅𝑏𝑝
𝐾𝑝,𝑙𝑢

)) 

Equation 4.5 
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Liver  

𝑑𝐶𝑙𝑖
𝑑𝑡

=
1

𝑉𝑙𝑖

(

 
 
𝑄𝑙𝑖𝐶𝑎𝑟𝑡 +∑𝑄𝑖 (

𝐶𝑖 × 𝑅𝑏𝑝
𝐾𝑝,𝑖

) − (𝑄𝑙𝑖 + 𝑄𝑠𝑝 + 𝑄𝑔𝑢) ×
𝐶𝑙𝑖 × 𝑅𝑏𝑝
𝐾𝑝,𝑙𝑖

−
𝐶𝑙𝑖 × 𝑓𝐵 × 𝑅𝑏𝑝

𝐾𝑝,𝑙𝑖
×

(

 
𝑉𝑚𝑎𝑥

𝐾𝑚𝑙 + 𝐶𝑙𝑖 × 𝑓𝐵 (
𝑅𝑏𝑝
𝐾𝑝,𝑙𝑖

)

+ 𝐶𝐿𝑖𝑛𝑡

)

 

)

 
 

 

Equation 4.6 

where i represents the compartments spleen and gut. 

 

Non-eliminating compartments, 

𝑑𝐶𝑖
𝑑𝑡

=
1

𝑉𝑖
(𝑄𝑖 (𝐶𝑎𝑟𝑡 −

𝐶𝑖 × 𝑅𝑏𝑝
𝐾𝑝,𝑖

)) 

Equation 4.4 

where i is compartments brain, heart, spleen, kidney, adipose, muscle, bone, skin. 

 

Table 4.3 Tissue partition coefficients for each organ. Propranolol values from Kiriyama et al. (2008) and atenolol values 

calculated using the method outlined in Rodgers and Rowland (2006). 

 Propranolol Atenolol 

Lung 6.46 5.2971 

Brain 13.54 2.0133 

Heart 4.38 3.6362 

Liver 5.67 6.0850 

Spleen 2.98 4.7545 

Gut 8.22 3.8063 

Kidney 5.18 6.4511 

Adipose 0.18 0.5764 

Muscle 3.20 3.1315 

Bone 6.90 1.5818 

Skin 7.22 2.3715 
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Additional parameter values used in the model for atenolol and propranolol are summarised 

in Table 4.4. Unbound fraction in blood and blood-plasma concentration ratio values for 

propranolol were taken from Obach (1997), with all other propranolol parameter values from 

Kiriyama et al. (2008). Sources for the parameter values for atenolol are given in Table 4.4. In 

brief, parameters were obtained from the literature (Taylor and Turner, 1981, Vila et al., 

1992), and from online databases: DrugBank (https://go.drugbank.com), Comptox 

(https://comptox.epa.gov/dashboard) and PubChem (https://pubchem.ncbi.nlm.nih.gov) - 

all accessed October 2021. 

 

The doses used as input for the propranolol simulations were 10mg, 40mg, 80mg and 160mg. 

These were the same doses as used in the reports for the observed data which were used for 

comparison (to determine model accuracy). For atenolol the dose used was 100mg i.e. the 

same dose as used in the Peters (2008) publication.  

 

Table 4.4 Parameter values used within the PBK model. Propranolol values noted from Kiriyama et al. (2008) and Obach 

(1997). Atenolol values obtained from the literature and online databases. 

Parameter Propranolol Atenolol  Source Description 

ka 0.009 min-1 0.00633 

min-1  

Vilà et al. 

(1992) 

Absorption 

rate constant 

fa 0.65 0.5 DrugBank Fraction 

absorbed from 

intestinal tract 

CLint 9208 

ml/min/ 

human 

301.6440

ml/min/ 

human 

Comptox Intrinsic 

clearance 

Vmax 4572 

µg/min/ 

human 

- - Maximum 

velocity of 

metabolism 

https://go.drugbank.com/
https://comptox.epa.gov/dashboard
https://pubchem.ncbi.nlm.nih.gov/
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Kml 0.8921 

µg/ml 

- - Michaelis 

constant 

fB 0.13 0.8785 Comptox Unbound 

fraction in 

blood 

Rbp 0.89 1.07  Taylor and 

Turner 

(1981) 

Blood-plasma 

concentration 

ratio 

MW 259.34 266.34 PubChem Molecular 

weight 

 

4.3.3 Salbutamol PBK model 

A nine compartment PBK model, with the structure as shown in Figure 4.4, (according to 

Boger and Fridén (2019)) for salbutamol was reproduced. This was then used as a template 

to develop a PBK model for atenolol from which atenolol concentrations in the blood were 

derived. Blood flow (Qi), which is calculated from total body weight (70 kg), and organ 

volumes (Vi) are given in Table 4.5. Adipose (ad), gut (gu), liver (li), lung (lu), slowly perfused 

tissues (pp), rapidly perfused tissues (rp), spleen (sp), arterial (art) and venous (ve) were all 

included in the model. Blood flow for arterial and venous was assumed to be total cardiac 

output (co). Blood flows and organ volumes were the same for both compounds. Tissue-to-

blood partition coefficients (Kp) for salbutamol and atenolol are both calculated using Rodgers 

and Rowland (2006) method for predicting Kp. The Kp values are summarised in Table 4.6.  
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Figure 4.4 Schematic of the nine compartment PBK model for salbutamol as described in Boger and Fridén (2019), with the 

dose of the chemical entering through the gut. The nine compartments include lung, liver, spleen, gut, rapidly perfused 

organs, slowly perfused organs, adipose, arterial and venous.  

 

Table 4.5 Organ blood flow rates and volumes from Boger and Friden (2019) 

Compartment Volume (L)  Blood flow (L/h) 

Adipose 14.28 15.6 

Gut 1.14 53.04 

Liver 1.71 18.72 

Lung 0.51 312.00 (Equal to Qco) 

Slowly perfused 41.77 109.20 

Rapidly perfused 1.94 109.20 

Spleen 0.17 6.24 

Arterial 1.71  

Venous 3.43  

Cardiac output  312.00 

 

The Boger and Fridén model was created for both oral and inhalation administration routes, 

with the lung being split into 24 airway compartments, with further splitting of these airway 

generations into three separate compartments, the epithelial lining fluid, the epithelium and 
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the sub-epithelium. However, for simplicity the lung compartment was reduced to one 

equation in this analysis as the inhalation pathway was not relevant to this route of 

administration. The equations for all other compartments were reproduced exactly from the 

original paper with clearance only being modelled from the venous compartment in the 

original model. Equations 4.8-14 were coded and numerically integrated in MATLAB to 

simulate concentration-time graphs for salbutamol and atenolol. 

 

Arterial  

𝑑𝐶𝑎𝑟𝑡
𝑑𝑡

=
1

𝑉𝑎𝑟𝑡
(𝑄𝑐𝑜 (

𝑅𝐶𝑙𝑢
𝐾𝑝,𝑙𝑢

− 𝐶𝑎𝑟𝑡)) 

Equation 4.5 

 

Venous 

𝑑𝐶𝑣𝑒
𝑑𝑡

=
1

𝑉𝑣𝑒
(𝑄𝑟𝑝

𝑅𝐶𝑟𝑝
𝐾𝑝,𝑟𝑝

+ 𝑄𝑝𝑝
𝑅𝐶𝑝𝑝
𝐾𝑝,𝑝𝑝

+ 𝑄𝑎𝑑
𝑅𝐶𝑎𝑑
𝐾𝑝,𝑎𝑑

+ (𝑄𝑙𝑖 +𝑄𝑠𝑝 + 𝑄𝑔𝑢)
𝑅𝐶𝑙𝑖
𝐾𝑝,𝑙𝑖

− 𝑄𝑐𝑜𝐶𝑣𝑒

− 𝐶𝐿𝐶𝑣𝑒) 

Equation 4.6 

 

Liver 

𝑑𝐶𝑙𝑖
𝑑𝑡

=
1

𝑉𝑖
(𝑄𝑙𝑖𝐶𝑎𝑟𝑡 + 𝑄𝑔𝑢

𝑅𝐶𝑔𝑢
𝐾𝑝,𝑔𝑢

+ 𝑄𝑠𝑝
𝑅𝐶𝑠𝑝
𝐾𝑝,𝑠𝑝

− (𝑄𝑙𝑖 + 𝑄𝑠𝑝 + 𝑄𝑔𝑢)
𝑅𝐶𝑙𝑖
𝐾𝑝,𝑙𝑖

) 

Equation 4.7 

 

Gut 

𝑑𝐶𝑔𝑢
𝑑𝑡

=
1

𝑉𝑔𝑢
(𝑄𝑔𝑢 (𝐶𝑎𝑟𝑡 −

𝑅𝐶𝑔𝑢
𝐾𝑝,𝑔𝑢

) + 𝑘𝑎𝐴𝑔𝑢) 

Equation 4.8 

where, 

𝑑𝐴𝑔𝑢
𝑑𝑡

= −𝑘𝑎𝐴𝑔𝑢  

Equation 4.9 
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Other tissues  

𝑑𝐶𝑖
𝑑𝑡
=
1

𝑉𝑖
(𝑄𝑖 (𝐶𝑎𝑟𝑡 −

𝑅𝐶𝑖
𝐾𝑝,𝑖

)) 

Equation 4.10 

where i represents spleen, rapidly perfused, slowly perfused, and adipose. 

 

Lung 

𝑑𝐶𝑙𝑢
𝑑𝑡

=
1

𝑉𝑙𝑢
(𝑄𝑙𝑢 (𝐶𝑣𝑒 −

𝑅𝐶𝑙𝑢
𝐾𝑝,𝑙𝑢

)) 

Equation 4.11 

 

Table 4.6 Tissue partition coefficients for each organ. Salbutamol values from Boger and Friden (2019) and atenolol values 

calculated using the method outlined in Rodgers and Rowland (2006). 

 Salbutamol  Atenolol (Kp,u) 

Liver 5.81 5.72 

Spleen 3.80 4.47 

Rapidly perfused (mean of 

brain, heart and kidney) 

3.01 4.03  

Slowly perfused (mean of 

bone and muscle) 

2.27 2.36 

Gut 3.63 3.58 

Adipose 0.545 0.542 

Lung 5.06 4.98 

 

Table 4.7 summarises all parameters included in the model. Salbutamol values were obtained 

from Boger and Friden (2019). Atenolol values were gathered from literature (Taylor and 

Turner, 1981, Vila et al., 1992) and online databases (Comptox 

(https://comptox.epa.gov/dashboard/, accessed October 2021), admetSAR 

(http://lmmd.ecust.edu.cn/admetsar2/, accessed October 2021) and PubChem 

(https://pubchem.ncbi.nlm.nih.gov, accessed November 2021)) . 

https://comptox.epa.gov/dashboard/
http://lmmd.ecust.edu.cn/admetsar2/
https://pubchem.ncbi.nlm.nih.gov/
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Table 4.7 Parameter values used within the PBK model. Salbutamol  values noted from Boger and Friden (2019). Atenolol 

values obtained from the literature and online databases. 

Parameter Salbutamol Atenolol Source Description 

R 0.96 1.07 Taylor and 

Turner (1981) 

Blood-plasma 

ratio 

CL 18.1452 (l/h) 18.0986 (l/h) Comptox Clearance 

FRS,oral 0.094 

(R-salbutamol 

oral) 

0.687 

(S-salbutamol 

oral) 

0.6286 admetSAR  Oral 

bioavailability 

fu,p 0.77 0.94 (plasma) Comptox Fraction 

unbound in 

plasma 

ka 0.63 h-1 0.38 h-1 Vilà et al. 

(1992) 

Oral 

absorption 

rate constant 

MW 239.3  266.34 PubChem Molecular 

weight 

 

An enantiomer is one of two stereoisomers of a chemical that are mirror images of each other. 

Salbutamol has an active enantiomer (R-salbutamol), however, as a mix of the enantiomers 

is being modelled, both need to be considered in an equal quantity. Clearance was calculated 

as a weighted average of each enantiomer by the below equation (Equation 4.15) from Boger 

and Friden (2019).  



 

𝐶𝐿 =
𝐹𝑅𝑒

−𝑘𝑅

𝐹𝑅𝑒−𝑘𝑅 + 𝐹𝑆𝑒−𝑘𝑆
𝐶𝐿𝑅 +

𝐹𝑆𝑒
−𝑘𝑆

𝐹𝑅𝑒−𝑘𝑅𝑅 + 𝐹𝑆𝑒−𝑘𝑆𝑆
𝐶𝐿𝑆 

Equation 4.12 

where, 

 

𝑘𝑅/𝑆 =
ln(2)

𝑡1
2

 

Equation 4.13 

where, t1/2,R=2.85h and t1/2,S=6.03h (Ward et al., 2000). 

 

The dose (2mg) entering the body was calculated by including bioavailability as shown in 

Equation 4.17. 

 

𝐷𝑜𝑠𝑒 = 𝐹𝑅𝑆
2 mg

𝑀𝑊
× 106, 

Equation 4.14 

where, 

𝐹𝑅𝑆 = 0.5𝐹𝑅 + 0.5𝐹𝑠. 

Equation 4.15 

 

4.3.4 Identifying analogues with existing PBK models using the KNIME Workflow for Assisting 

Analogue Selection (KWAAS) for the target flumioxazin 

The second case study was for the herbicide flumioxazin. Initially, the PBK database was 

searched using the InChiKey for the flumioxazin. Flumioxazin already has an available PBK 

model in the literature, hence the in vivo data in this literature could be used for assessing 

the predictions of any new models generated using the read-across approach. The chemical 

name and SMILES string of flumioxazin was inputted into the KNIME workflow to calculate 

similarity to other chemicals in the PMD using nine different fingerprints before being refined 

to find the most similar chemicals. Chemicals with similarity scores of 0.6 and above were 
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included for further refinement (0.6 was selected as the cut-off for similarity as rationalised 

in Section 3.1). 

 

 

Figure 4.5 Results for identifying analogues for flumioxazin at each stage of using KWAAS. The arrow on left indicates the 

criteria used to refine the selection at each stage. 

 

Figure 4.5 summarises the results at each stage of the workflow for flumioxazin. This chemical 

has a molecular weight of 354 and log P of 1.9281. These values were used for assessing 

similarity as well as including information on pKb (3.31) and log D (2.55) at pH 5.5. Ranges 

used for inclusion of analogues at each stage of the workflow were: molecular weight, 177-

531; log P, 0.9281-2.9281; pKb, 2.31-4.31; log D, 1.55-3.55. 30 different chemicals were 

initially identified when fingerprints alone were considered for similarity, further refining of 

the analogues resulted in only one candidate analogue remaining after pKa, and log D were 

included in the similarity assessment. An existing PBK model for flumioxazin was also 

identified at every stage of the process; information from this model was used for comparison 

when assessing the accuracy of the model developed using the analogue as a template. It is 

Fingerprints

• 30 different chemicals

•Flumioxazin, danofloxacin, pefloxacin (BCRP), norfloxacin, enrofloxacin, R-norketamine, paroxetine, diazepam, 
ketamine, marbofloxacin, levofloxacin, SAR260301, vinblastine, vincristine, zoptarelin doxorubicin, chlortetracycline, 
flunitrazepam, moxifloxacin, antofloxacin, cabotegravir, CGP52421, (S)-N-(4-hydroxyphenyl)-3-(6-(3-
(morpholinomethyl)-1,2,3,4- tetrahydroisoquinoline-2-carbonyl)benzo[d][1,3]dioxol-5-yl)-N-phenyl- 5,6,7,8-
tetrahydroindolizine-1-carboxamide, linezolid, ketoconazole, rivaroxaban, GSK1034702, TAK-357, bicyclol, vitamin D, 
and levonorgestrel

Tanimoto ≥ 
0.6

•17 different chemicals

•Flumioxazin, vinblastine, vincristine, zoptarelin doxorubicin, chlortetracycline, moxifloxacin, antofloxacin, cabotegravir, 
CGP52421, (S)-N-(4-hydroxyphenyl)-3-(6-(3-(morpholinomethyl)-1,2,3,4- tetrahydroisoquinoline-2-
carbonyl)benzo[d][1,3]dioxol-5-yl)-N-phenyl- 5,6,7,8-tetrahydroindolizine-1-carboxamide, linezolid, ketoconazole, 
rivaroxaban, TAK-357, bicyclol, vitamin D, and levonorgestrel

Molecular 
Weight

•12 different chemicals

•Flumioxazin, chlortetracycline, moxifloxacin, antofloxacin, cabotegravir, linezolid, ketoconazole, rivaroxaban, TAK-357, 
bicyclol, vitamin D, and levonorgestrel

log P

•7 different chemicals

•Flumioxazin, moxifloxacin, antofloxacin, cabotegravir, linezolid, rivaroxaban, and bicyclol

pKb/log D

•2 different chemicals

•Flumioxazin and rivaroxaban
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important to note that this tool is to help fill gaps in kinetic data, it does not provide 

information on activity at the biological site of action. As only one chemical, rivaroxaban, was 

determined to be similar after all stages of the KWAAS, it was selected to be used as a 

template for building a model for flumioxazin. The structures of the target chemical, 

flumioxazin, and the source chemicals, rivaroxaban, are displayed in Figure 4.6. 

 

  

Flumioxazin (target) Rivaroxaban 

Figure 4.6  Structure of target chemical, flumioxazin, and the chemicals identified as similar using the KWAAS, rivaroxaban 

 

4.3.5 Rivaroxaban PBK model 

Yamazaki-Nishioka et al. (2019) describe a minimal PBK model consisting of a chemical 

receptor compartment, a metabolising compartment and a central compartment for oral 

administration of rivaroxaban. This model was reproduced directly, and subsequently 

adapted to be used as a template for flumioxazin. The minimal model incorporates the 

hepatic (hep), blood (bl), urine (ur) and gut (gu) compartments. Blood flow for hepatic and 

organ volumes are summarised in Table 4.8.  

 



Table 4.8 Organ blood flow rates and volumes from Yamazaki-Nishioka et al. (2019) 

Parameter Abbreviation Value 

Hepatic blood flow Qhep 96600 (ml/h) 

Hepatic volume Vhep 1500 (ml) 

Systemic circulation volume Vbl 30800 (ml) 

Urine volume Vur 62.5 (ml) 

 

The minimal model is described by Equations 4.19-22. These were solved in MATLAB using 

the ODE solver - ode15s. 

 

Gut 

𝑑𝐴𝑔𝑢
𝑑𝑡

= −𝑘𝑎𝐴𝑔𝑢  

Equation 4.16 

 

Hepatic  

𝑑𝐶ℎ𝑒𝑝
𝑑𝑡

=
1

𝑉ℎ𝑒𝑝
(𝑄ℎ𝑒𝑝𝐶𝑏𝑙 −

𝑄ℎ𝑒𝑝𝐶ℎ𝑒𝑝𝑅𝑏
𝐾𝑝ℎ𝑒𝑝

+ 𝑘𝑎𝐴𝑔𝑢 − 𝐶𝐿𝑖𝑛𝑡
𝐶ℎ𝑒𝑝
𝐾𝑝ℎ𝑒𝑝

𝑓𝑢𝑝) 

Equation 4.17 

 

Blood  

𝑑𝐶𝑏𝑙
𝑑𝑡

=
1

𝑉1
(−𝑄ℎ𝑒𝑝𝐶𝑏𝑙 +

𝑄ℎ𝑒𝑝𝐶ℎ𝑒𝑝𝑅𝑏
𝐾𝑝ℎ𝑒𝑝

− 𝐶𝐿𝑟𝑒𝑛𝑎𝑙𝐶𝑏𝑙) 

Equation 4.18 

 

Urinary  

𝑑𝐶𝑢𝑟
𝑑𝑡

=
1

𝑉𝑢𝑟
(𝐶𝐿𝑟𝑒𝑛𝑎𝑙𝐶𝑏𝑙) 

Equation 4.19 
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Parameters for rivaroxaban and flumioxazin are summarised in Table 4.9. Rivaroxaban values 

are taken from Yamazaki-Nishioka et al. (2019), while flumioxazin values are taken from 

online databases and ADME property predictors (Comptox 

(https://comptox.epa.gov/dashboard/, accessed November 2021), ADMETlab 2.0 

(https://admetmesh.scbdd.com/service/evaluation/cal, accessed November 2021), Opera 

(https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html, accessed 

November 2021). Liver to plasma concentration ratio was calculated using Rodgers and 

Rowlands (2006). However, no value for the blood-plasma concentration ratio, from online 

ADME property predictors or literature, could be found so the assumption that the ratio was 

equal to 1 was used (Mamada et al., 2021). The absorption rate constant was taken from 

Takaku et al. (2014). 

 

  

https://comptox.epa.gov/dashboard/
https://admetmesh.scbdd.com/service/evaluation/cal
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-opera/opera.html
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Table 4.9 Parameter values used within the PBK model. Rivaroxaban values noted from Yamazaki-Nishioka et al. (2019). 

Flumioxazin values obtained from the literature and online databases. 

Parameter  Rivaroxaban Flumioxazin Source Description 

log P 2.39 2.55 Opera - 

fup 0.203 0.03 Comptox Fraction 

unbound in 

plasma 

Rb 0.893 1 Assumption Blood-plasma 

concentration 

ratio 

ka 1.42 (h-1) 0.005 (h-1) Takaku, 

Nagahori and 

Sogame (2014) 

Absorption 

rate constant 

CLrenal 2000 (ml/h) 4629.6 

(ml/h) 

ADMETlab 2.0 Renal 

clearance 

CLint 19000 (ml/h) 90072 

(ml/h) 

Comptox Intrinsic 

hepatic 

clearance 

Kphep 1.97 0.6855 Calculated 

using Rodgers 

and Rowlands 

(2006) method 

Liver to 

plasma 

concentration 

ratio 

 

4.3.6 Model assessment 

4.3.6.1 Fold error calculation 

For each chemical analogue model (original model reproduced from the literature) and 

template model (adapted literature model) the most common pharmacokinetic metrics, time 

taken to reach the maximum concentration (Tmax), the maximum concentration (Cmax), and 

the area under the curve (AUC), were calculated and compared with literature estimates to 

assess accuracy. The fold error was calculated for each taking a ratio between the predicted 

and literature values so that it was always greater than 1.  
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4.3.6.2 Comparison with a model for a chemical with a low similarity score 
To demonstrate that using a PBK model for analogues identified as similar were more useful 

than, for example, using a randomly selected PBK model, a further analysis was undertaken 

wherein the PBK models for chemicals not identified as similar were investigated. The 

rivaroxaban PBK model described in Section 4.3.5 was used with the key chemical specific 

parameters for atenolol being inputted. Predictions using the rivaroxaban model were 

compared to the predictions from using propranolol and salbutamol PBK models as a 

template for atenolol. Further, the PBK model for salbutamol described in Section 4.3.3 was 

used as a low similarity analogue for flumioxazin. Key chemical specific parameters for 

flumioxazin were inputted into the salbutamol model with the predictions being compared 

to those obtained using the rivaroxaban PBK model as a template for flumioxazin. 

 

4.3.6.3 Sensitivity analysis 

When creating new models, it is important to understand which parameters require further 

investigation to ensure the most accurate data are used, thus reducing gaps in data. 

Discrepancies between models and data can be identified with sensitivity analysis where 

parameters that may need to be changed are identified. The general purpose software 

OpenCOSSAN (https://cossan.co.uk) was used to perform global sensitivity analysis on all 

three models developed above (i.e. two models for atenolol developed using models for 

propranolol and salbutamol as analogues and one model for flumioxazin developed using a 

model for rivaroxaban). OpenCOSSAN was used to perform a Sobol indices method for this 

global sensitivity analysis. The Sobol indices method determines the significance of each input 

parameter and their interactions to the overall model output variance. There is no 

assumption between model inputs and outputs, with the full range of each input parameter 

variation and interactions between parameters being evaluated. As explained in Section 1.4, 

the analysis was undertaken to establish the parameters with the greatest impact on 

predictions.  

 

To complete global sensitivity analysis using OpenCOSSAN a probability distribution needs to 

be assigned to each parameter (e.g. normal, log normal, etc.), and sampling method (e.g. 

Monte Carlo, Latin Hypercube, Halton, etc.). A normal probability distribution is used to vary 

all parameters across this distribution using a Monte Carlo sampling method. A standard 
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deviation () (see equation 4.23) of the normal distribution is chosen so that the variation is 

10% of the mean ().  

𝜎 = 0.1𝜇 

Equation 4.23 

The method assesses the influence of each input parameter on the output variables. Results 

from the global sensitivity analysis are illustrated through a Lowry plot, where parameters are 

ranked according to the magnitude at any given time of the total effects from left to right as 

a bar chart; the main effect of a parameter (black bar) and any interactions with other 

parameters (grey bar) together make up the total effect of the parameter which is 

represented by stacked bars; and the variance due to parameter interactions is represented 

by a blue ribbon across the plot (McNally et al., 2011). The total variance is represented by a 

red dashed line, where parameters seen as having significant contribution to the total 

variance are left of the red dashed line.  

 

4.4 Results 

4.4.1 Selecting the most appropriate analogue for read-across for the target atenolol 

Kiriyama et al. (2008) outlined a PBK model for propranolol which was used as the first case 

study. The output from the Peters (2008) atenolol PBK model was used for comparison to 

assess the accuracy of using the chemical analogue model as a template for atenolol, changing 

only the chemical specific variables noted in Table 4.4 and the tissue partition coefficients. 

Both the Kiriyama et al. (2008) and the Peters (2008) model oral dosing in a human ensuring 

the most similar scenarios for comparison. Firstly, the original propranolol model from the 

Kiriyama et al. (2008) paper was reproduced. The model information including equations, 

parameters and variables were used as a template for atenolol, where chemical specific 

information was changed to be that of atenolol using predictive software or data from the 

literature. The atenolol model output and observed data from Peters (2008) was then used 

as validation to ensure the template model accurately predicts atenolol concentrations. 

 

The salbutamol PBK model described in Boger and Friden (2019) was used as the second 

analogue chemical model to predict atenolol kinetics. The atenolol data from Peters (2008) 

was used for comparison to assess the accuracy of using the model for this analogue with key 
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variables changed to those for atenolol. Both models (Boger and Fridén (2019) and Peters 

(2008)) were developed for a human with oral dosing. The model for salbutamol was used as 

a template, using equations and parameters from Boger and Fridén (2019). The chemical 

inputs noted in Table 4.7 and tissue partition coefficients were adapted to those for atenolol 

and compared to the data from Peters (2008) to assess the accuracy of the model once it had 

been adapted for atenolol. 

 

4.4.2 Propranolol PBK model 

Simulations of propranolol at the doses 10mg, 40mg, 80mg and 160mg, to reproduce the PBK 

model in Kiriyama et al. (2008) with comparisons to observed data for propranolol obtained 

from Kopitar et al. (1986) are shown in Figure 4.5. Simulations of propranolol with a dose of 

80mg best fit the observed data. Overall, across all doses the model fits well, discrepancies in 

modelling lower doses to the observed data can largely be due to quantifying the chemical in 

the blood at such a low concentration.    
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Figure 4.5 Simulations of propranolol at the doses 10mg (       ), 40mg (      ), 80mg (             ) and 160mg (             ) using the 

PBK model described in Kiriyama et al. (2008). Individual data points of observed propranolol data from (Kopitar et al., 

1986). 

 

Key physicochemical information in the model was replaced with data for atenolol but organ 

volume and blow flow values remained the same, as did the model equations. Figure 4.6 

shows the predicted atenolol simulation compared to observed and predicted atenolol data 

from Peters (2008), alongside propranolol predicted and observed data. The atenolol 

predications using a low similarity scored chemical model, rivaroxaban, were also simulated 

on the same plot for comparison. The overall lineshape (the shape of the curve) of atenolol 

using the analogue chemical model (i.e. the model for propranolol) is similar to Peters (2008). 

However, the predicted concentration of atenolol decreases at a faster rate than that given 

in Peters (2008). The model for the less similar chemical rivaroxaban can be seen to 

significantly overpredict atenolol in comparison to the simulations using the analogue model. 
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Figure 4.6 Predicted propranolol (40mg dose dark blue line) and atenolol (100mg dose using the propranolol model as a 

template represented by a yellow line and using the low similarity score model as a template represented by a light blue 

line) simulations compared to observed data from the literature (Kiriyama et al, 2008 (Cmax represented by a red dot), 

Peters, 2008 (observed Cmax represented by a purple dot and predictied by a green dot)). 

 

The propranolol model using the output at a dose of 40mg from the literature was 

reproduced, with the predicted Cmax and Tmax comparable with that observed in Kiriyama et 

al. (2008). Predicted AUC was calculated to be within a 1.9-fold error of the literature. The 

resulting simulation using the model for propranolol as a template produced AUC and Cmax 

values within 3-fold error of the values observed in the literature. However, the Tmax was 

within a 1-fold error. Predicted Cmax, Tmax and AUC values for propranolol and atenolol are 

noted in Table 4.10 as are the literature values used for comparison.  
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Table 4.10 Comparisons of Cmax, AUC and Tmax of propranolol and atenolol to the literature (Kiriyama et al, 2008, Peters, 

2008). Fold errors of predictions are also shown.. 

 Propranolol Kiriyama, 

Honbo and Iga 

(2008) 

Atenolol Peters (2008) 

 

Cmax (µg/ml) 0.0312 0.03 0.1296 0.3942 

Fold error 1.0 3.0 

AUC 

(µg·min/ml)   

11.3699 6.25 62.4018 195.6001 

Fold error 1.8 3.1 

Tmax (min) 92.39 90 155.9400 102 

Fold error 1.0 1.5 

 

4.4.3 Salbutamol PBK model 

Figure 4.7 shows the reproduced salbutamol PBK model compared to observed data from 

Boger and Fridén (2019) as well as the predicted atenolol simulations compared to observed 

and predicted data from Peters (2008). The predictions for atenolol using the low similarity 

scored chemical model (rivaroxaban) were also simulated on the same plot for comparison. 

This used the model equations, organ volumes and blood flow rates for salbutamol as a 

template for simulating atenolol, with the physicochemical information adapted to be the 

values for atenolol. The salbutamol simulation accurately represented the observed data, 

likewise, lineshape of the atenolol simulation was similar to the atenolol simulation in Peters 

(2008). The less similar rivaroxaban model can be seen to overpredict atenolol blood plasma 

concentrations in comparison to the simulations using the analogue model. 
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Figure 4.7 Predicted salbutamol (2mg blue line) and atenolol (100mg dose using the salbutamol  model as a template 

represented by a yellow line and using the low similarity score model as a template represented by a light blue line) 

simulations compared to observed data from the literature (Boger and Fridén, 2019  (red data points), Peters, 2008 (purple 

and green data points)). 

 

The Boger and Fridén salbutamol model was reproduced well for Cmax and AUC. Using the 

analogue chemical model as a template, atenolol simulations were reproduced well (1-fold 

error) for Cmax and Tmax and AUC within a 2-fold error compared to the literature values. All 

Cmax, Tmax and AUC values predicted, and literature values are summarised in Table 4.11 with 

fold errors also given.  
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Table 4.11 Comparisons of simulated Cmax, AUC and Tmax for salbutamol and atenolol to the literature (Boger and Friden, 

2019). Fold errors of predictions are also given. 

 Salbutamol Boger and 

Fridén (2019) 

Atenolol Peters (2008) 

Cmax (nmol/l) 16.1614 18.8464 1467.9 1480 

Fold error 1.2 1.0 

AUC (nmol·h/l) 168.5676 181.0549 18152 12240 

Fold error 1.1 1.5 

Tmax (h) 2.4 3.9 3.7 1.7 

Fold error 1.6 2.2 

 

 

4.4.4 Selecting the most appropriate analogue for read-across for the target flumioxazin 

Yamazaki-Nishioka et al. (2018) report a PBK model for rivaroxaban which was used as a 

template to build a model to predict flumioxazin. The data from Takaku et al. (2014) was used 

for comparison to assess the accuracy of using the model for rivaroxaban as a template from 

which to build a model for flumioxazin. Both modelled oral dosing in a human however, 

Takaku et al. (2014) modelled data for a pregnant woman.   

 

4.4.5 Rivaroxaban PBK model 

The rivaroxaban PBK model from Yamazaki-Nishioka et al. (2019) was reproduced. 

Rivaroxaban simulations, in addition to the flumioxazin and low similarity model salbutamol 

simulations, compared to literature (Takaku et al., 2014) are shown in Figure 4.8. Flumioxazin 

concentration predictions do not reduce over time as would be expected when compared to 

the data in Takaku et al. (2014). This is possibly due to the effects of the clearance on the 

model, which was shown by the sensitivity analysis that was undertaken to have a significant 

effect. The low similarity score model, salbutamol, can be seen to significantly underpredict 

flumioxazin in comparison to the simulations using the analogue model. 
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Figure 4.8 Predicted rivaroxaban (5mg dose blue line) and flumioxazin (1000mg dose using the rivaroxaban model as a 

template represented by a red line and using the low similarity score model as a template represented by a purple line) 

simulations compared to observed data from the literature (Takaku et al., 2014) represented by yellow dots. 

 

Literature data for rivaroxaban for Cmax and AUC, used to compare to simulation data, was 

taken from Yamazaki-Nishioka et al. (2019). Simulation of rivaroxaban is of a 5mg dose to 

accurately compare to the dose used in literature. The predicted and observed rivaroxaban 

AUC, and Cmax, are compared in Table 4.12, as is flumioxazin predicted and observed data 

(Takaku et al., 2014). The model reproduced key metrics for rivaroxaban, furthermore, the 

flumioxazin metrics compared well to the literature. The line shape when using the analogue 

chemical model is not the same as Takaku’s flumioxazin simulation. Some differences will be 

noted as the sex and life stage of model for the analogue chemical are different compared to 

the data in Takaku et al. (2014). 
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Table 4.12 Comparisons of Cmax, AUC and Tmax of rivaroxaban and flumioxazin to the literature (Yamazaki-Nishioka et al., 

2019, Takaku et al., 2014). Fold errors of predictions are also given. 

 Rivaroxaban Yamazaki-

Nishioka et al. 

(2018) 

Flumioxazin Takaku, 

Nagahori and 

Sogame (2014) 

Cmax (ng/ml) 117.0415 141 615.5223 856 

Fold error 1.2 1.3 

AUC (ng·h/ml) 768.4955 816 21864 19351 

Fold error 1.1 1.1 

 

4.4.6 Sensitivity Analysis 

A global sensitivity analysis was performed to determine the parameters with the greatest 

impact on the predictions. Analysis was presented using a Lowry plot; comprising bars for 

each parameter associated with the main effect (black bar), interactions with other 

parameters (grey bar), the variance due to parameter interactions (blue ribbon), and the total 

variance (red dashed line). Parameters to the left of the red dashed line are those considered 

to have significant contribution to the total variance. 

 

4.4.6.1 Source model: Propranolol 

The results of using OpenCOSSAN with the Monte Carlo sampling method, when using the 

propranolol PBK model as a template to develop the atenolol model are summarised in Figure 

4.9. The fraction absorbed from the intestinal tract (fa) was highlighted as the most significant 

parameter within the model to contribute to total variance, with the total effect contributing 

to over 50% of the variance. In addition, the blood-plasma concentration ratio (Rbp), the 

fraction unbound in the plasma (fup), the clearance (CL) and the fraction unbound in the blood 

(fB) also had significant overall effects on the model. However, the rate of absorption (ka) was 

deemed to only have a small contribution to the total variance of the model output. Thus, 

fraction absorbed is the key feature within the model. 
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Figure 4.9  A Lowry plot showing the results of global sensitivity analysis when using propranolol as the template model for 

atenolol 

 

4.4.6.2 Source model: Salbutamol 

Global sensitivity analysis of the salbutamol model when used as a template for atenolol 

highlighted three parameters having significant contribution to the total variance, clearance 

(CL), blood-plasma ratio, (R), and slowly perfused tissue-to-blood partition coefficient (kppp). 

Figure 4.10 shows the Lowry plot for the global sensitivity analysis for the salbutamol 

template model for atenolol. The clearance was the most influential parameter on the 

predictions, with a total effect of 92%, with the slowly perfused tissue-to-blood partition 

coefficient having a 3% effect and blood-plasma ratio a 5% effect. The absorption and the gut 

tissue-to-blood partition coefficient (kpgu) was highlighted as having a minimal effect. 

 fa      Rbp   fup    Clint     fB       ka     Vmax  Kml   Kplu   Kpbr  Kpht   Kpli    Kpsp  Kpgu  Kpki  Kpad  Kpmu  Kpbo  Kpsk 
Parameter 
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Figure 4.10 A Lowry plot showing the results of global sensitivity analysis when using salbutamol as the template model for 

atenolol 

 

4.4.6.3 Source model: Rivaroxaban  

All input parameters that were adapted from values for rivaroxaban in the source model, to 

those of flumioxazin (target) were analysed for uncertainty. The rate of absorption (ka) was 

found to be the most sensitive and significantly contributed to the total variance, with a total 

effect of 55%. Renal (CLrenal) and intrinsic clearance (CLint) contributed to the total variance, 

20% and 8% respectively, as well as blood-plasma concentration ratio (Rb), 8%. A summary of 

the sensitivity analysis in a Lowry plot is shown in Figure 4.11. The fraction unbound in the 

plasma (fup) had some effect, but this was not significant.  
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Figure 4.11 A Lowry plot showing the results of global sensitivity analysis when using rivaroxaban as a template model for 

flumioxazin 

 

Sensitivity analysis helps to identify the discrepancies between the model and the data, hence 

identifying parameters that may need to be changed. By highlighting gaps in data, it can be 

used to help understand which parameters require further investigation to ensure the most 

accurate data are used and to reduce the gaps in data. Figures 4.9-11 outline the key 

parameters needed for improving the model to better fit the data, for example the template 

model for flumioxazin requires an accurate absorption rate value for the model to make 

accurate predictions. Whereas clearance highly impacted the output when using the 

salbutamol model as a template model for atenolol. In addition, these results from 

undertaking the sensitivity analysis can help with refining models when calibrating the model 

to better fit data. 

 

4.5 Discussion  

Developing PBK models for new chemicals using existing PBK models as a template would be 

a valuable asset for safety assessment and an advantage in terms of the 3Rs (Laroche et al., 

2018). Hence, the development of a tool to identify chemical analogues with existing PBK 

models was developed and described in Chapter 3. To validate this KWAAS tool, case studies 

were undertaken for two chemicals, atenolol and flumioxazin. The KWAAS workflow initially 

identified five chemicals as being similar to atenolol, when only including fingerprints and 
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molecular weight as similarity metrics, reducing to two models when log P was also included 

- namely, models for the metabolite alpha-hydroxymetroprolol and salbutamol. The PBK 

models for these were reproduced and adapted using key parameters for atenolol. 

Comparisons to literature data were then used to assess the accuracy of each of these 

template models.  

  

Although it was possible to reproduce the propranolol model in Kiriyama et al. (2008), 

determining values for some of the parameters required for the model was less 

straightforward. The parameter fa (the fraction absorbed from the intestinal tract) had 

multiple values reported in Kiriyama et al. (2008); the values used in the model for particular 

simulations were not recorded in the paper. In addition, several other parameter values were 

only available from secondary references such as fB and Rbp. Issues with reporting of equations 

incorrectly can further hinder reproducing models, as encountered when considering the 

equation for the gut in Kiriyama et al. (2008). The reporting of the dose and absorption of the 

drug was multiplied by the stomach blood flow (highlighted in red in Equation 4.24), instead 

of being added to the blood flow in the stomach after it was multiplied by the concentration 

in the stomach (highlighted in red in Equation 4.25).  

 

𝑑𝐶𝑔𝑢
𝑑𝑡

=
1

𝑉𝑔𝑢
(𝑄𝑔𝑢 (𝐶𝑎𝑟𝑡 + 𝑘𝑎 × 𝐷 × 𝐹𝑎 × 𝑒

−𝑘𝑎×𝑡  −
𝐶𝑔𝑢 × 𝑅𝑏𝑝
𝐾𝑝,𝑔𝑢

)) 

Equation 4.24  

𝑑𝐶𝑔𝑢
𝑑𝑡

=
1

𝑉𝑔𝑢
(𝑘𝑎 × 𝐷 × 𝐹𝑎 × 𝑒

−𝑘𝑎×𝑡 +𝑄𝑔𝑢 (𝐶𝑎𝑟𝑡 −
𝐶𝑔𝑢 × 𝑅𝑏𝑝
𝐾𝑝,𝑔𝑢

)) 

Equation 4.25  

 

Additionally, the source terms in the venous equation in Kiriyama et al. (2008) did not match 

with the schematic in the paper. The equations imply blood flow from the spleen and gut into 

the venous blood and liver, whereas the schematic shows blood flow from the spleen and gut 

into the liver only. Inconsistency in reporting of any parameters or equations will result in 

variation in the output, as occurred with the AUC values which could only be reproduced 

within a 2-fold error. Although the time course of the data points were captured and Cmax and 
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Tmax were reproduced reasonably well. Using the propranolol PBK model as a template for 

atenolol gave predictions for AUC and Cmax within a 3-fold error of the literature values, 

however, Tmax was better reproduced with a 1.5-fold error. 

 

While the salbutamol model from Boger and Fridén (2019) could be reproduced, there were 

inconsistencies with how the model was reported. Clearance in the schematic appears to be 

from the liver, however, in the model equations clearance comes from the venous blood 

instead. Blood flow from the gut and spleen into the venous is modelled in the venous 

equation but did not match with the schematic, where blood flow is included from the gut 

and spleen into the liver. The body weight used within the model was not clear. After 

thoroughly searching through secondary and tertiary references it appears that body weight 

was assumed to be 70 kg. Also, in comparison to other literature values (e.g. 1650 ml/min, 

Peters, 2008) for liver blood flow rates the value used within the salbutamol model appear 

low. However, using the value reported in Boger and Fridén gave salbutamol predictions 

within a 1-fold error (i.e. the values were the same) of observed data. A 1-fold error was 

obtained when using salbutamol as a template model for atenolol, as well as reproducing the 

lineshape of that observed in Peters (2008) for atenolol. An improvement in results when 

using salbutamol, compared to using propranolol as a template model, was observed 

suggesting the further refinement of the similarity results from just fingerprints and molecular 

weight to also include log P in the workflow benefitted the predictions obtained using read-

across for atenolol as the target chemical. This is due to the log P of a chemical being 

associated with the absorption level of a chemical in the body. Log P influences the transport 

of a compound around the body while also affecting clearance of a drug. 

 

When comparing the chemical specific parameter values of the source models (propranolol 

and salbutamol) to the target (atenolol) large differences were found between some 

parameters for the source chemical and the target chemical. Clearance for propranolol was 

9208 ml/min/human whereas atenolol was only 301.6440ml/min/human. Propranolol is 

highly metabolised by the liver; however, atenolol is poorly metabolised by the liver. Chemical 

specific parameter values for salbutamol and atenolol where similar, thus indicating that the 

chemical would have similar kinetics. Although propranolol may have more similarity 

structurally to atenolol, salbutamol was more similar based on key physicochemical 
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properties (molecular weight and log P) that can affect how a chemical may be distributed or 

cleared in the body. The importance of physicochemical properties on how a chemical will 

distribute around the body was highlighted through the predictions of atenolol after using 

the PBK model for each source chemical as a template. Thus, further indicating that the PBK 

model for salbutamol is a better template than propranolol for predicting atenolol. 

 

When investigating the second chemical, the herbicide flumioxazin only one analogue 

chemical, with a PBK model, was identified as being similar by the KWAAS tool after every 

step of the workflow was undertaken. The rivaroxaban minimal PBK model was successfully 

reproduced with a 1-fold error. The rivaroxaban model was used as a template model and 

adapted for flumioxazin, resulting in predictions of Cmax and AUC within a 1-fold error of the 

literature values, although, the flumioxazin model does not fit the data points very well. This 

indicates that the resulting model does not capture the time course of the data very well. 

However, discrepancies in the time course of the predicted model could be a result of using 

predicted Kphep and the assumption of 1 for Rb. Peters (2008) propose a workflow for adapting 

parameters to improve the predicted curve to match the observed curve. Following this 

workflow, the suggestion of adding a multiplicative factor to the tissue partition coefficient 

values for flumioxazin to reduce or increase the tissue distribution coefficients, may better 

reproduce the time course of the data by making the predictions better fit the observed 

flumioxazin data in Takaku et al. (2014). Large differences were found between some 

parameters for the source chemical (rivaroxaban) and the target chemical (flumioxazin), the 

fraction unbound in plasma (fup) and absorption rate constant (ka). Rivaroxaban had a fup of 

0.203 and a ka of 1.42 h-1 while flumioxazin had a fup of 0.03 and a ka of 0.005 h-1. These 

differences in ka parameter values could be due to rivaroxaban being highly bioavailable and 

is readily absorbed, whereas flumioxazin is not. 

 

Comparisons to low similarity scored chemicals were undertaken to test the assumption of 

the framework, that similarity of the analogue chemical used as a template is essential for 

obtaining a good model for the target chemical. For both the atenolol and flumioxazin 

predictions it was found that the similar chemical (propranolol and salbutamol) better 

predicted the target chemical blood plasma concentrations than the less similar chemical 

(rivaroxaban). When comparing the less similar model to the propranolol template the less 
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similar model significantly overpredicted atenolol concentrations. Whereas the less similar 

model (salbutamol) predications for flumioxazin significantly underpredicted flumioxazin 

concentrations. Thus, supporting the assumption that similarity of the analogue is essential 

for obtaining a good model for the target chemical. This assumption was also demonstrated 

by Lu et al. (2016a) who compared the results for analogues and dissimilar chemicals and 

likewise demonstrated that using a rationally selected similar analogue gave better 

predictions. 

 

Historical papers can have limitations when reproducing models due in part to a lack of 

consistency in how models are reported. Some terms in equations were not consistent in the 

schematics, which may have been missed in the peer review process. Expertise is needed to 

identify these mistakes when reproducing these models, or ideally, these should be identified 

and corrected during the peer review process. However, this is difficult due to the complexity 

of many PBK models, and the level of detail required in reporting such models. Thus, using 

the reporting template in Table 4.1 would help to reduce these inconsistencies. The approach 

taken in this chapter, i.e. developing new models based on using existing models as templates 

for two target chemicals, atenolol and flumioxazin, provided evidence of the effectiveness of 

using the KWAAS outlined in Chapter 3 to identify chemical analogues. Further, the results 

provide evidence that the read-across approach for PBK models can be applied successfully 

as the model for salbutamol was able to predict well the literature values for atenolol 

concentrations. Similarly adapting the rivaroxaban model, enabled flumioxazin 

concentrations following acute dosing to be predicted within a 1-fold error. The PBK 

modelling undertaken in this chapter, demonstrates a potential contribution to the 3Rs in the 

area of safety assessment, as it demonstrates that the read-across approach, commonly 

applied to predictions of toxicity, is also applicable to obtaining predictions for kinetic data. 

Making optimal use of both existing toxicokinetic and toxicodynamic information increases 

the reliability of predictions for chemicals lacking data. 
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Chapter 5 – Discussion  

5.1 Discussion 

Safety assessment requires a lot of information about potential toxicity and potential for 

internal exposure. However, this information is not available for many chemicals. Therefore, 

predictive methods are needed as animal testing for all predictions of toxicity is not realistic 

or desirable. A common method used for predicting toxicity is read-across, which relies on 

using data from a source chemical considered similar to a target chemical. Within this thesis 

a tool was devised to assist with read-across, to enable prediction of PBK-type data. This was 

achieved through undertaking a systematic review of PBK models in literature where key 

information from the models was extracted, development of the KWAAS and demonstration 

of this tool with two case studies, atenolol and flumioxazin.  

 

The systematic review undertaken in Chapter 2 provides a valuable resource for academia, 

regulators and industry. The published protocol detailing the specific methodology used to 

undertake the systematic review allows for it to be readily updatable as more information 

becomes available. Thus, ensuring a sustainable impact on the 3Rs by reducing the number 

of new animal tests undertaken as existing models and data can be used to aid PBK model 

development. The information collected in the systematic review can serve as a guide for the 

development and evaluation of new PBK models prior to publication. Organising the current 

state of knowledge concerning PBK modelling through curation of existing models provides a 

valuable resource for those working in the area to identify models for chemicals of interest, 

or analogues, that can be used to assist the development or evaluation of new PBK models 

for chemicals lacking such data. The PBK modelling dataset (PMD) created in Chapter 2 

consists of over 7,500 PBK models from the literature, containing information on species, life-

stage, sex, route of administration, availability of equations, and the software used. Originally 

only rat and human models were to be captured, however, the decision was taken to 

incorporate all species to create a resource with greater applicability across different sectors. 

Information on chemical identifiers, i.e. CAS number, COSMOS ID, and InChiKey, were 

captured, to ensure the chemicals associated with a model were correctly recorded. Overall, 

a total of 1,187 unique chemicals with existing models were identified.  
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Within industry, development and advancement of PBK models is often within a confined 

area of chemical space that is of particular relevance to the specific industrial sector. Thus, in 

addition to the creation of the PBK model dataset, Chapter 2 mapped the physicochemical 

property space of existing PBK models and compared this to other chemical types (i.e. food 

additives, cosmetic ingredients, drugs, REACH chemicals, botanicals and pesticides) to obtain 

an overall assessment of the chemical space coverage of the models across the various 

sectors. The PMD resource has been made available in its current form, as a tool to assist 

researchers in finding relevant PBK models. The PMD is already being used successfully by 

industry e.g. Syngenta (UK) and esqLabs (Germany) have used this resource to identify PBK 

models for potential source chemicals for targets of interest. The PMD is available on the Joint 

Research Centre European Union Reference Laboratory for Alternatives to Animal Testing 

Catalogue (https://data.jrc.ec.europa.eu/collection/id-0088) and forms the basis of a 

webtool for exploring existing PBK models, currently under development at US Environmental 

Protection Agency (US EPA). The underpinning knowledge was captured using an Excel 

spreadsheet and this has the capacity to be readily updated in future as newly published PBK 

models (or those that were previously inaccessible/erroneously omitted) become available. 

The intention is that this would become a living resource with potential for further 

development beyond the life-time of the current project. 

 

The creation of the KWAAS outlined in Chapter 3 helps to identify similar chemicals with PBK 

models to a target chemical. This should be of benefit for the 3Rs by enabling existing data to 

be used more efficiently, facilitating the read-across of information from data-rich to data-

poor chemicals. In the KWAAS, similarity is determined using fingerprints, initial results can 

be refined by properties (e.g. molecular weight and log P). However, the properties for 

refining the selection, demonstrated in Section 3.3, may not work for all cases. The flexibility 

of the KWAAS allows for the user to adapt the workflow to select a combination of similarity 

indices and/or physicochemical properties deemed most relevant to the user, as well as, set 

their own range limits to aid the selection of appropriate chemicals to use as templates for 

building new PBK models. However, there is a need for expert judgement to assess the 

suitability of the analogue before taking the analysis further and developing a PBK model 

using a suggested analogue. This supports and enhances the on-going work to address the 

issues surrounding the identification of similar chemicals for read-across purposes. The 

https://data.jrc.ec.europa.eu/collection/id-0088
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methods described herein enables similarity in terms of toxicokinetic behaviour to be 

considered in addition to similarity in inherent activity alone when making a read-across 

prediction of effects. In using the KWAAS it is essential that the user decides for themselves 

the most appropriate filters to employ and applies their own expert judgement as to the 

suitability of any analogues proposed by the KWAAS. 

 

Six example chemicals from different industries (botanicals, pesticides, cosmetics, food 

additives, pharmaceuticals, and industrial) were used to check the applicability of the KWAAS 

to identify similar chemicals to different target chemicals from these data sets. For some 

groups of chemicals more accurate results can be obtained than for others. Each target 

chemical had at least ten chemicals identified as being as similar using fingerprints alone. 

Visual inspection indicated that for most of the chemicals that one or more of these may be 

suitable starting points for developing new PBK models in a read-across approach. To 

demonstrate how analogue selection may be performed, physicochemical properties to 

refine the potential analogues were included. However, other properties can be used to 

refine the results by, which can be added by the user. It was found that additional properties 

were too specific for some chemicals analysed, although ultimately the results shown in 

Chapter 3 demonstrate that the tool works satisfactorily, identifying potential analogues and 

refine this selection using criteria deemed appropriate by the user.  

 

Previously, a PBK model using in vivo data from structural and functional analogues and PBK 

models built in the absence of in vivo PK data (on in vitro and in silico data only) has been 

evaluated by Ellison (2018) and Ellison and Wu (2020) using an approach that requires 

expertise and thorough research to assess similarity based on parameter values 

(bioavailability, volume of distribution and clearance). A correlation matrix of multiple 

physicochemical properties was used by Lu et al. (2016a) to identify similar chemicals of which 

analogues were then chosen through expertise. The KWAAS described within Chapter 3 uses 

structural similarity and physicochemical properties to use the information from the PBK 

models for source chemicals in a read-across approach to build new PBK models. Although, 

there is no consensus among researchers for the best method to determine similarity, this 

approach extends the previous approaches taken through having a structured method that 

includes both structure and physicochemical properties to determine similarity. Additionally, 
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this method can be advantageous through facilitating the inclusion of PBK model-derived data 

for a wide range of chemicals for which PBK models are currently lacking which can help to 

fill the knowledge gaps within current toxicokinetic information for chemicals that are data 

poor. Thus, helping help towards the integration of information from alternative methods 

into regulatory practice, producing more accurate safety assessments of chemicals through 

providing supporting information.  

 

The KWAAS has been used by industrial collaborators to identify similar chemicals to a target. 

The models for these source chemicals were investigated to identify any similarities in model 

structure and/or input parameters that could be used to adapt a generic model for the target 

chemicals. Further, key modes of actions from the source chemical PBK models and used to 

adapt a generic PBK model to create a new model for the target chemical. Thus, creating a 

new PBK model for a target chemical more rapidly and reducing reliance on new animal tests. 

This method can overcome some of the difficulties with reproducing literature models (e.g. 

missing data or parameters) as the complete model does not necessarily need to be 

reproduced. It may be sufficient to identify key features of the models and adapt a generic 

model, by incorporation of these feature, to make it chemical-specific. The case studies that 

were undertaken in collaboration with industrial collaborators confirmed the suitability of the 

approach and showed the influence of chemical selection and input parameters on model 

quality (Paini et al., 2021b; Thompson et al. 2022). The US EPA web-based tool, which is under 

development, is intended to be more simplistic to use, enabling those without KNIME or 

programming expertise, to simply search for PBK model information using an intuitive 

graphical user interface. 

 

Read-across is one of the most important developments in recent years increasingly being 

recognised as providing a suitable alternative to animal testing in safety assessment. 

However, particularly amongst the regulatory sector there is apprehension as to the 

acceptability of predictions. To increase confidence in predictions to promote read-across 

acceptability, as much information as possible needs to be provided. This support in 

predictions in terms of the internal exposure can be achieved through including additional 

information and evidence from PBK models in read-across predictions. Case studies 

successfully using a read-across approach for PBK modelling were outlined in Chapter 4. 
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When attempting to directly reproduce existing models from the literature (for example as 

conducted in Chapter 4) the resulting models had discrepancies resulting in fold errors above 

one. Errors in reporting of equations and parameters in papers, significantly affect model 

output and can require significant expertise in PBK modelling to identify and resolve. This 

issue of irreproducibility of existing models is well reported (Tan et al., 2018, Paini et al., 2017) 

however it is not a problem unique to PBK modelling. Such problems have also been reported 

for in vivo, in vitro and in silico models. The PBK models from the literature were used as 

templates for target chemicals in this study, however, predictions for atenolol using a 

propranolol PBK model as a template resulted in a 3-fold error. Whereas, when using a 

salbutamol PBK model as a template for atenolol Cmax was accurately reproduced and a 1.5-

fold error for AUC was achieved. While the rivaroxaban model could be used as a template 

for flumioxazin and reproduce the Cmax and AUC accurately, lineshape was not accurately 

reproduced. Peters (2008) outlines workflows to adapt the lineshape of the curve to better 

fit the data through addition of a scaling factors for the tissue-partition coefficients. The case 

study chemicals in this analysis were selected as they had available literature data to use for 

comparison to evaluate the models. These provided examples of using a read-across 

approach for PBK modelling, thus, demonstrating the reliability and potential pitfalls of using 

this approach. 

 

5.2 Strengths and limitations of approaches taken 

Whilst strengths and limitations to the work have been considered in the individual chapters, 

some of the over-arching themes are highlighted here. The systematic review outlined in 

Chapter 2 summarises the literature on available PBK models for an existing chemical, this 

provides a valuable resource for researchers requiring PBK model information across multiple 

chemical sectors. The method undertaken to complete this review was made publicly 

available on PROSPERO. By having a publicly available protocol it allows for the review to be 

reproduced, particularly for when it is needed to be updated to capture new models that have 

been published since the protocol was undertaken. The methodology was transparent, and 

bias reduced as it was published prior to the systematic review being undertaken. To ensure 

the systematic review could be used to assist safety assessment by multiple sectors, 
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information was captured on all species, chemicals, life-stages, and routes of administration. 

However, even with this methodical search strategy some information was missed. The 

quality control exercise showed that approximately 6% of PBK models were incorrectly 

excluded. There are multiple reasons as to why this may have occurred. For example, there 

were issues relating to how the PBK models were reported (e.g. lack of clarity as to whether 

a previously existing model was used, or if the model was adapted sufficiently to be 

considered a new model). In such cases personal judgement was used, although this may vary 

between different researchers. Furthermore, without a clear timeframe or plan for updating 

the systematic review, it will not stay up-to-date and continue to be a living resource for 

capturing newly developed PBK models. Another potential criticism is that the quality of the 

PBK models themselves was not ascertained when the model information was extracted. This 

would have been excessively time-consuming and there is the additional issue that when 

assessing model quality, it is useful to know the intended use of the model. A model of 

“lower” quality may still provide useful information for prioritisation purposes. 

Notwithstanding, the development of a robust tool to evaluate the extracted models would 

allow for potential limitations associated with some PBK models, or significant flaws in 

models, to be identified prior to extraction.  

 

Chapter 3 summaries the creation of a KNIME workflow to assist analogue selection, which is 

of benefit those undertaking read-across. One limitation of this approach is the way in which 

similarity is determined. Similarity of chemicals can be determined in multiple ways 

considering different properties of the molecules, e.g. structural, physicochemical or 

mechanism of action. The KWAAS determines structural similarity, initially using fingerprints 

with further refinement using physiochemical properties. One important consideration here, 

is that different fingerprints use different structural keys (fragments of a molecule) to assess 

similarity, giving different results for the similarity assessment. Hence, in this study, nine types 

of fingerprints were used to capture as many potentially similar chemicals as possible, 

however, the use of other fingerprints methods may also be beneficial in identifying 

alternative chemicals. In addition, the tool is limited as it only considers the physicochemical 

properties: molecular weight, log P, log D and pKa. These properties influence how a chemical 

may behave in the body; however, they do not encompass all properties that may influence 

chemical behaviour.  
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The KWAAS outlined in Chapter 3 was assessed in Chapter 4 with regards to its ability to 

identify analogues that could potentially be used in a read-across approach for PBK modelling, 

using case studies. The methods described within Chapter 4 of using a read-across approach 

for PBK modelling, helps to provide additional information when predicting toxicity of 

chemicals that lack data. However, it is important to note that this tool is designed to help fill 

gaps in kinetic data, it does not provide information on activity at the biological site of action, 

e.g. potential toxic effects of a drug or industrial chemical. This is a limitation of this approach 

i.e. PBK modelling predicts chemical concentration-time profiles within the body but does not 

predict what the chemical does once it reach its sites of action. This is exemplified in the case 

study, whereby the PBK profile for salbutamol was predicted using a model for atenolol. 

These drugs show similarities in chemical structure; however, atenolol is an adrenergic 

receptor antagonist and salbutamol is an agonist at the target site.  Further limitations arise 

from using predictive software for obtaining the values required for the target chemical (such 

as log P and pKa) to input into the newly built PBK models, where inaccurate predictions from 

the software could carry forward into the PBK model. Additionally, using existing PBK models 

in the literature relies heavily on all information required to build the source model being 

clearly reported in the original publication. The case studies undertaken highlighted that 

some information may be missing or unclear.  

 

The ability to use information from an existing PBK model to build a PBK model for a similar 

chemical in a read-across type approach helps fill some of the gaps in knowledge. Read-across 

is one of many alternative methods being used to replace animals. Read-across is useful for 

predicting endpoints for new chemicals, however for this to be possible information on 

chemicals considered as similar must be available. PBK modelling has many uses: it can help 

to optimise dosing in specific groups of patients for drugs that are already considered to be 

safe; it can act as an additional barrier before compounds are taken forward into animal 

testing; it can replace some early-stage human toxicology testing and can help replace some 

animal tests in deciding which compounds to take forward to human tests. PBK modelling and 

the methods developed here are a step towards reducing or replacing animal testing, 

although, they do not completely solve the problem of replacing animal test with alternative 

methods.  
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5.3 Conclusions  

To help reduce the number of animals used within safety assessment this thesis has described 

three key steps for using a read-across approach for PBK modelling. A dataset of existing PBK 

models was created with an analysis of their chemical space coverage; an automated KNIME 

workflow that assists identification of similar chemicals from this dataset to a target chemical 

was also developed. Lastly, case studies were undertaken for two chemicals to assess this 

workflow in identifying chemicals with existing PBK models that are similar to a target 

chemical to use as a template through using a read-across approach. The performance of 

these models developed were also assessed. 

 

5.4 Future work 

Although not investigated within this thesis, analogues identified through using the similarity 

tool could be used in a read-across approach to adapt a generic PBK model to include 

metabolic or clearance pathways specific to a chemical of interest. Preliminary investigations 

into this possibility were performed by industrial collaborators but a more formal analysis of 

the general applicability and usefulness of this approach could be undertaken. In developing 

or using models, uncertainty needs to be identified and communicated. In PBK modelling, 

uncertainty (or errors) may be present in the simulations of mathematical models themselves 

or may be present in the reporting of the models. In either case the reliability and 

reproducibility of the models is comprised. The Biomodels database 

(https://www.ebi.ac.uk/biomodels/) has been developed to address this issue. Users can 

attempt to reproduce mathematical models and/or key figures from the literature and record 

in the database whether or not the models were reproducible, or if any errors were 

encountered. Currently there are few PBK models reported in this database, but this may 

change as interest in this area expands. Assessment of more PBK models using the Biomodels 

approach would help to build confidence in using these models.  

 

Reproducing literature models can be difficult as there is inconsistency in how PBK models 

are reported. This hinders the acceptance of PBK models used for read-across, particularly 

within the regulatory sector. To facilitate researchers in extracting relevant data, as well as, 

https://www.ebi.ac.uk/biomodels/
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reproducing published PBK models in the literature, a methodical approach to how PBK 

models are recorded is needed to be incorporated. Some proposed formats for consistent 

publishing of PBK models have previously been proposed by EMA (2018) and USFDA (2018). 

More recently Tan et al. (2020) proposed a reporting format for PBK models that was 

incorporated into the OECD (2021b) guidance. This guidance outlines a PBK checklist utilising 

the previous recommendations for PBK model reporting. Therefore, to assist other 

researchers and reduce the problems associated with reproducing existing models from 

literature, researchers are encouraged to use consistent reporting formats.  The Health and 

Environment Sciences Institute (HESI) were involved in the development of the PBK model 

reporting template published by Tan et al. (2020). There are ongoing activities within this 

organisation to enhance reporting and increase acceptance of PBK models by public health 

agencies. Frameworks for the minimum data (e.g. in vivo, in vitro, in silico, ADME) required 

for different applications for PBK modelling is also being developed by HESI to help facilitate 

the consistent use of PBK models in safety assessment.  

 

Moving forward, leveraging the information currently available in existing PBK models, could 

be achieved by incorporating available resources into free webtools, making such resources 

widely available. Furthermore, efforts to curate available models and continue developing a 

living repository of PBK models that can be used across multiple sectors, will help enhance 

the uptake and accessibility of these models. For example, updating, and making freely 

available, subsequent versions of the PMD could enable any models published from 2020 

onwards, as well as previously excluded models, to be incorporated. This would enhance the 

coverage of the dataset. An updated and comprehensive dataset for information on published 

PBK models, that is applicable to multiple sectors, would be of great advantage for the 3Rs. 

Further enhancements to this dataset in future could be the inclusion of additional relevant 

data (i.e. Vmax, Kml, clearance etc) from current PBK models or alternative sources in the 

literature, that could benefit future modellers when developing PBK models. Ideally, all 

resources necessary for model building and evaluation would be available within a single 

resource.  

 

Future developments of the KWAAS would include incorporating ADME properties to the 

KWAAS and selecting analogues based on these properties to help better identify similar 
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chemicals. Specifically, incorporating information on metabolism and absorption, would be 

useful for determining the most similar chemicals, however, prediction of these properties is 

not always accurate using currently available methods. One property that is notably difficult 

to predict is clearance (Madden et al., 2019), improved models to predict this property and 

inclusion of accurate clearance values into the tool would be a great asset.  Including ADME 

properties into the KWAAS to assist selection of analogues  similar in respect of such 

properties would help to identify suitable PBK models. For example, refining by skin 

absorption to ensure chemicals have similar kinetics for creating a model for a chemical that 

is administered through the skin. Furthermore, other improvements to the KWAAS could be 

the ability to filter potential analogues based on the presence or absence of specific structural 

features associated with known routes of metabolism. For example, filtering results based on 

the presence or absence of aromatic amine function. (These can be metabolised to 

electrophilic nitrenium ions which in turn can react with nucleophilic sites within DNA, leading 

to mutagenicity (Madden et al., 2020) such knowledge may be useful when linking 

pharmacokinetic to pharmacodynamic activity in future.  

 

Moreover, considering factors such as reproducibility of the PBK model and the confidence in 

obtaining correct input parameters when choosing the most appropriate PBK model, could 

be included in the KWAAS as a refinement criterion to help choose a suitable PBK model.  

Undertaking more case studies from multiple sectors (e.g. botanicals, cosmetics, industrial 

compounds) using the PBK model dataset to create new PBK models is needed to further 

highlight its usability and adaptability. The ability to identify analogues based on whether or 

not PK data are available to utilise in creating the new PBK model would also be of great 

benefit. When used correctly PBK modelling and the information within is not only a more 

ethical method for predicting toxicity but also a more feasible method than using animals.  
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Appendices 

Appendix 1 – PROSPERO systematic review protocol 

This protocol has been published on PROSPERO (Thompson et al, 2020).  

URL: https://www.crd.york.ac.uk/prospero/  

PROSPERO

International prospective register of systematic reviews

 

Citation

Courtney Thompson, Judith Madden, Peter Penson. Systematic review to determine the chemical space of

existing physiologically-based kinetic (PBK) models. PROSPERO 2020 CRD42020171130 Available from: 

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020171130

 

Review question
For which substances are physiologically-based kinetic (PBK) models available and which species, genders,

life-stages and routes of administration have been investigated for these substances? This will include

determining the chemical space coverage of the models and the availability of the associated model

equations within the literature.

Context and rationale

In a PBK model, an organism is represented as a series of compartments (key organs, or subcompartments

within organs/tissues) that are linked via blood. Information on the substances administered to the organism

(e.g. solubility, partitioning behaviour) along with physiological information (e.g blood flow rates, organ

volumes etc) are used as inputs for the model. A series of differential equations are then applied to predict

the overall time-course of the substance within the individual compartments. This approach can be used to:

predict the internal dose of a substance, at relevant sites within the body, from external doses; extrapolate

dose-response relationships from in vitro to in vivo scenarios and; estimate chemical exposure from

biomonitoring data. They are highly adaptable, enabling predictions to be extrapolated across species or

populations within a species, but they are also resource intensive to generate ab initio. It is essential to have

a reliable, updateable resource that enables researchers to readily identify for which substances PBK models

are currently available, for which species, gender, life-stage and route of administration as well as the

availability of the equations used in the models and their chemical space coverage. The existing models can

be used to inform the development of new PBK models (reducing reliance on animal testing) which has

implications in safety assessment, not only of new active pharmaceutical ingredients, but also

agrochemicals, consumer products, etc. Hence, information on all existing PBK models will be gathered

using systematic review and the chemical space covered by the models will be assessed.
 

Searches  [1 change]

Search all years with the search terms “pbpk OR pbk OR pbbk OR pbtk OR pbpd OR pbbm OR

“physiologically based” AND (pharmacokinetic OR toxicokinetic OR biokinetic OR pharmacodynamics OR

biopharmaceutical). Additional references identified through ad hoc searching, personal communications,

etc. Sites searched:

 PubMed

 Scopus

 Web of Science

 

Study designs to be included  [1 change]

Inclusion criteria:

Any procedure where a substance has been administered to an animal for the purpose of determining the

kinetics of that substance (or determining the effect of that substance on the kinetics of another co-

administered or endogenous substance) using a physiologically-based kinetic modelling approach. This

includes simulated models that have been validated, or robustly evaluated, using experimental data. Any

software platform used to generate the physiologically-based model (commercial or publicly available) is
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Appendix 2 – PRISMA Checklist 

This research has been published in Alternatives to Laboratory Animals (Thompson et al, 2021).  

DOI: https://doi.org/10.1177/02611929211060264 

 

A Systematic Review of Published Physiologically-based Kinetic Models and an Assessment of Their Chemical Space Coverage 
CV Thompson, JW Firman, MR Goldsmith, CM Grulke, Y-M Tan, A Paini, PE Penson, RR Sayre, S Webb and JC Madden 

PRISMA Checklist  
Section and 
Topic  

Item 
# 

Checklist item  
Location where 
item is reported  

TITLE   

Title  1 Identify the report as a systematic review. Title 

ABSTRACT   

Abstract  2 See the PRISMA 2020 for Abstracts checklist. Abstract 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of existing knowledge. Introduction 

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the review addresses. Introduction and 
Methods 

METHODS   

Eligibility criteria  5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses*. Criteria in 
methods and 
Prospero1 

NB* 

Information 
sources  

6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify 
the date when each source was last searched or consulted. 

Methods: 
“Systematic 
Review” 

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. 

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each 
record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process. 

Data collection 
process  

9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked 
independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in 
the process. 

Methods: 
“Extraction of 
data from 
available PBK 
models” 

and section: 

“Assessment of 
screening and 
data extraction 
reliability” 

Data items  10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in 
each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect*. 

Methods 

NB* 

10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe 
any assumptions made about any missing or unclear information.* 

Methods 

NB* 

Study risk of bias 
assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed 
each study and whether they worked independently, and if applicable, details of automation tools used in the process. 

NB* 

Effect measures  12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results. NB* 

Synthesis 
methods 

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics 
and comparing against the planned groups for each synthesis (item #5)). 

NB* 

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data NB* 

https://doi.org/10.1177/02611929211060264


 146 

Appendix 3 – Data captured in PBK model dataset  

This research has been published in Alternatives to Laboratory Animals (Thompson et al, 2021).  

DOI: https://doi.org/10.1177/02611929211060264 

This is a snapshot of the descriptions for each column heading in the PBK model dataset and the controlled vocab that can be selected or if 

input under a column heading will be free text. Chemical descriptors and information on the model are collected, i.e. species, sex, route of 

administration, availability of model equations.  

 

https://doi.org/10.1177/02611929211060264
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Appendix 4 – PBK model dataset  

This research has been published in Alternatives to Laboratory Animals (Thompson et al, 2021).  

DOI: https://doi.org/10.1177/02611929211060264 

This is a snapshot of the data in the PBK model dataset. The dataset consists of over 7,500 rows with information collected under 13 different 

column headings. The dataset can also be found in the JRC catalogue (https://data.jrc.ec.europa.eu/dataset/f98e9abf-8435-4578-acd6-

3c35b5d1e50c#contributors). 

 

https://doi.org/10.1177/02611929211060264
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Appendix 5 – PBK model dataset physicochemical properties  

This research has been published in Alternatives to Laboratory Animals (Thompson et al, 2021).  

DOI: https://doi.org/10.1177/02611929211060264 

This is a snapshot of the data in the PBK model dataset. Physicochemical properties associated with the chemicals from the PBK dataset. 

Information on molecular weight, Slog P, TPSA, hydrogen bond donors and acceptors, and the number of Lipinski rule violations. 

https://doi.org/10.1177/02611929211060264


Appendix 6 – KNIME workflow for assisting analogue selection (KWAAS) for PBK 

modelling 

Information from a PBK model for a chemical rich in data (source chemical) can be used to 

create a PBK model for a similar chemical lacking data (target chemical). This document 

explains how to use the automated tool created to help determine similar analogues with 

available PBK models. A flow chart of the steps taken to use the tool and determine the 

most similar chemicals from the PBK dataset is shown in Figure A7.1. These models can be 

used either as a template to develop a new PBK model for a target chemical, or provide 

information to adapt a generic PBK model, rapidly providing a more accurate chemical-

specific model. Thus, this will assist more accurate safety assessment of chemicals by 

providing kinetic information for chemicals of interest. 
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Figure A7.1  Flowchart of the steps taken to determine the most similar chemicals in the PBK dataset to a target chemical. 

 

Step-by-step guide on using the KWAAS 

Instructions on how and where to downloaded KNIME can be found at the below link, 

https://www.knime.com/downloads. 

 

Key information for using KNIME: 

• Red light under node – node needs to be configured 

• Yellow light under node – node is configured, and needs to be executed 

Identify target chemical and search PBK 
dataset for an available model for the target 

chemical 

Model available

Use and adapt PBK model as required

No PBK model available 

Use similarity tool to identify the most 
similar analogue(s) in the PBK model dataset

Similar chemicals identified by 9 different 
fingerprint types, the top 5 results by each 

fingerprint is given in output

Fingerprints - Remove chemicals where 
Tanimoto < 0.6

Molecular Weight - Remove chemicals 
where molecular weight is > ± 50% of target

Log P/D - Remove chemicals where log P/D > 
± 1 log of target

pKa/pKb - Remove chemicals where 
pKa/pKb > ± 1 log of the target chemicals

https://www.knime.com/downloads
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• Green light under a node – node executed 

• Right click any node to get a list of options of commands, including configure, 

execute and an option to view results. 

Stage 1 – Checking the PBK model dataset for an existing model for a target 

To check the PBK model dataset to determine if there are any PBK models currently 

available within the dataset for the target chemical of interest. 

 

Right click and select configure on the ‘row filter’ node.  

 

 

 

 

Choose a column option to search the dataset, either by Canonical SMILES, InChiKey or 

chemical name. Input the canonical SMILES, InChiKey or chemical name under ‘use pattern 

matching’ and click OK, then execute the node.  

 

Example: Flumioxazin 

Select InChiKey and input the InChiKEy for flumioxazin (i.e. FOUWCSDKDDHKQP-

UHFFFAOYSA-N) 

 

Output should include 2 models for atenolol (1 model for a human and 1 model for a rat).  
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Enter the term 
“Chemical Name”, 
“Canonical SMILES” 
or “InChiKey” here to 
select which column 
is to be searched 

Enter the name of 
the chemical, its 
SMILES string or 
InChiKey, according 
to the column type 
selected above 

To obtain the results in an Excel spreadsheet, right click 
and select configure on the ‘Excel writer’ node 
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Stage 2 – Finding similar analogues to a target chemical 

Similar chemicals to a target chemical may be identified using chemical fingerprints and/or 

physicochemical properties. Nine chemical fingerprints, Morgan, FeatMorgan, AtomPair, 

Torsion, RDKit, Avalon, Layered, MACCS, and Pattern are all used to calculate similarity 

between chemicals in which a score is given. Excel output can be obtained at every step of 

the workflow (follow steps in stage 1 on how to configure the Excel node).   

 

Configure the first table creator by inputting the Canonical SMILE and chemical name in the 

first row for the target chemical.  

Under ‘file’ select the 
location where you 
want to save your 
excel file before 
executing the node.  
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Example: Flumioxazin 

Input under SMILES column: C#CCN1C(=O)COC2=CC(=C(C=C21)N3C(=O)C4=C(C3=O)CCCC4)F 

Input under chemical name column: flumioxazin 

 

Execute the metanode ‘fingerprint analogues’ to obtain the analogues determined as being 

similar according to chemical fingerprints. The next three metanodes in the sequence, will 

provide the structures, physicochemical properties (molecular weight, log P, hydrogen bond 

donors and acceptors, TPSA (topological polar surface area), and the number of Lipinski rule 

violations) and predicted properties (pKa, pKb, log D at pH 5.5, log D at pH 7.4, and CLint) for 

each suggested analogue when executed.  

Enter the chemical 
name and SMILE in 
Row 0 of the first 
table.   
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All nodes up until the first ‘row filter’ node can be executed without configuration and excel 

output obtained at each stage. A Tanimoto index for similarity is generated giving a score 

between 0 and 1, where 0 is not similar and 1 indicates an identical chemical. The row filter 

node named ‘Tanimoto filter’ is set at default to include all analogues of a with a Tanimoto 

index of 0.6 or higher. However, this Tanimoto value can be set by the user. 

 

Example: Flumioxazin 

After filtering by Tanimoto > 0.6, there should be 25 rows of results consisting of 17 

chemicals.  
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Refining analogue selection by Molecular Weight 

Once a set of suitable analogues has been identified these can be further refined. The ‘MW 

filter’ row filter node sets upper and lower boundaries to include analogues that fall within 

them limits.  

 

It is recommended to set a lower bound of 50% less than the target chemical’s molecular 

weight and an upper bound of 50% greater than the target chemical’s molecular weight 

(although the range can be set to any value of the user’s choice). 

 

Example: Flumioxazin 

Molecular weight for flumioxazin: 354.3 Da. 

Lower bound input: 177.15 

Upper bound input: 531.45 

Tanimoto upper and 
lower limit to be set. 
Default lower bound 
of 0.6 and upper 
bound of 1.0.   
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After filtering there should be 20 rows of results consisting of 12 chemicals. 

 

Refining analogue selection by log P/log D 

Results can be refined further to find the most similar chemicals. The ‘log P filter’ and ‘log D 

filter’ row filter node sets upper and lower boundaries to include analogues that fall within 

those limits.  

 

A log D at pH 5.5 or pH 7.4 needs to be chosen before inputting boundaries to obtain results 

within the specified range. It is recommended to set a lower bound of 1 log less than the 

target chemical’s log P/log D and an upper bound of 1 log greater than the target chemical’s 

log P/log D (although the range can be set to any value of the user’s choice).  

 

Example: Flumioxazin 

To set molecular 
weight boundaries. 
Lower bound = target 
chemical’s molecular 
weight/2 
Upper bound = target 
chemical’s molecular 
weight * 1.5 
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If choose to filter by log P. Log P for flumioxazin:  1.9281 

Lower bound input: 0.9281 

Upper bound input: 2.9281 

 

After filtering there should be 15 rows of results consisting of 7 chemicals. 

 

If choose to filter by log D. Log D (at pH 5.5) for flumioxazin: 2.55 

Lower bound input: 1.55 

Upper bound input: 3.55 

 

After filtering there should be 13 rows of results consisting of 5 chemicals. 

 

 

Choose the term 
‘log D (5.5)’ or ‘log D 
(7.4)’ here to select 
which column of log D 
is to be searched, pH 
5.5 or pH 7.4, 
respectively.  

To set log P/log D 
boundaries.  
Lower bound = target 
chemical’s log P/log D 
- 1 
Upper bound = target 
chemical’s log P/log D 
+ 1 
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Refining analogue selection by pKa/pKb 

Results can be refined further to find the most similar chemicals. The ‘pKa/pKb filter’ row 

filter node sets upper and lower boundaries to include analogues that fall within them 

limits.  

 

It is recommended to set a lower bound of 1 log less than the target chemical’s pKa/pKb and 

an upper bound of 1 log greater than the target chemical’s pKa/pKb (although the range can 

be set to any value of the user’s choice). 

 

Example: Flumioxazin 

pKb for flumioxazin: 3.31 

Lower bound input: 2.31 

Upper bound input: 4.31 

 

After filtering there should be 10 rows of results consisting of 2 chemicals. 
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Generating the Excel output after employing these filters will result in an Excel file 

containing the analogues in the PBK model dataset that are considered most similar to the 

target.  

 

Similarity after all these steps has been determined in terms of the Tanimoto score for nine 

chemical fingerprints and molecular weight, log P, pKa and log D falling within set 

boundaries.  

Choose the term 
‘pKa a’ or ‘pKa b’ here 
to select whether the 
column for pKa or pKb 
respectively, is 
refined.  

To set pKa/pKb 
boundaries.  
Lower bound = target 
chemical’s pKa/pKb - 
1 
Upper bound = target 
chemical’s pKa/pKb + 
1 
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Stage 3 – Refining determined similar models from the dataset  

The PBK model dataset can be searched again, this time searching for all analogues that 

have been identified as being similar to the target and refining to show the analogue models 

most specific to the users wants. Excel output can be obtained at each step within filtering 

(again follow the steps in stage 1 on how to configure the Excel node). Output can be 

exported at any stage to look at the models available for the identified chemicals to see if 

the chemicals PBK models being determined as similar are useful to the user. 

 

 

Each row filter connected to the ‘PBK model dataset lookup’ metanode can be set and 

executed as desired. Currently it is set to filter in the order available equations, species, 

software, life-stage, route of administration. Filtering the PBK dataset results allows the user 

to refine the available models in respect to the purpose of the search, e.g. refine the species 

by human, and life-stage by pregnant to obtain only pregnancy human PBK models.  

 

When configuring a row filter node, first select a ‘column to test’. Then under ‘use pattern 

matching’ select the statement you would like to only include from the drop-down option.  

Connect the last row filter node used 
within determining similarity (stage 2) to 
the ‘PBK model dataset lookup’ 
metanode (in stage 3).  
This can be done by clicking the arrow 
coming out of the last node used and 
dragging it to the bottom input arrow of 
the PBK model dataset lookup’ 
metanode.  
Executing this metanode will result in all 
available models associated with the 
analogues determined as being similar at 
the last filter stage. 
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Alternatively, you can choose to exclude by a specific species, sex, life-stage, software or 

availability of equations. This can be achieved through choosing to ‘exclude rows by 

attribute value’ and following the same steps on how to include a specific row. 

 

Choose the column to 
filter by ‘Life-stage’, 
‘Species’, ‘Availability 
of equations in paper’ 
etc. 

Choose the column to 
filter by ‘Life-stage’, 
‘Species’, ‘Availability 
of equations in paper’ 
etc. 

Alternatively, you can 
choose to ‘exclude 
rows by attribute 
value’. 
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