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Abstract: The electrocoagulation (EC) process introduces coagulants by electrochemical means, and
is widely adopted for removing heavy metals, besides other contaminants, such as organic pollutants,
suspended and dissolved solids, colloidal materials, etc. However, its capability can vary significantly,
depending on the operating conditions. Although most of the investigations so far are limited at the
laboratory level with artificially prepared solutions or industrial effluent lacking full- and field-scale
studies, the success of the process depends a lot on optimizing the process variable. It has been found
that the current density (typically 1–20 mA/cm2), type of electrode (generally aluminum or iron) and
minimum electrolysis time are the key process parameters that influence performance. Furthermore,
key mechanisms involved in the EC process, including charge neutralization, reduction-oxidation and
precipitation/co-precipitation, are crucial for pollutant abatement. This review presents a detailed
study undertaking all significant parameters that play a crucial role in the EC process, its mechanism,
and improving the efficiency of this process by optimization of these parameters, along with suitable
kinetic models.

Keywords: toxic metals; electrochemical coagulation; electrolytic conductivity; optimization; water
energy nexus; energy consumption

1. Introduction

A clean and reasonable water supply to meet the needs of the growing global popula-
tion has become a great challenge of this century [1,2]. Surface and groundwater, which are
a major source of drinkable water supplies, besides desalinated water in water-scarce areas,
are commonly contaminated by various pollutants, primarily heavy metals [3,4]. Increasing
urbanization and expansion of industries, such as metallurgical industries, electroplating
units, mining operations, electronic manufacturing units, fertilizer industries and leather
industries, have resulted in discharging a considerable amount of wastewater containing
high concentrations of trace metals, besides other contaminants, into the environment [5,6].
Several reports of heavy metal contamination of drinkable water supplies worldwide
are available in the literature, of which a few are tabulated below in Table 1. There are
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numerous reports on health effects, due to the presence of these trace metals in water
supplies [7,8]. Intake of chromium, lead, copper, nickel and cobalt may cause leukaemia,
anaemia, hypertension, heart problems and cancer [9,10].

Table 1. Worldwide reports of some important trace metals, along with their source of contamination.

S. No Heavy Metals Country/Region Source Type Contamination
Source/Reason Reference

1.
Chromium, lead,

copper, manganese
and iron

North Greece Surface water used
for drinking

Effluents discharged
from industries and
leaching with soil

[11]

2. Arsenic, iron, lead,
copper and zinc

Amiata and Siena,
Italy

Drinking water
supplies

Leaching with
water-distributing pipes [12]

3.
Chromium, lead,
copper, cadmium

and zinc

Dipsiz stream,
Turkey Surface water Coal-fired power plant [13]

4. Arsenic and
manganese

South Vietnam and
Cambodia Groundwater Geogenic [14]

5.
Cadmium,

chromium, lead,
copper and nickel

Greece Drinking water
supplies

Geogenic and
anthropogenic activities [15]

6. Lead, arsenic,
cadmium and zinc

Dakahliya
Governorate, Egypt Tap water Corrosion in plumbing

fixtures [16]

7. Arsenic Coastal areas and 64
districts, Bangladesh

Tube wells of
shallow depth

Subsurface
contamination [17]

8.
Chromium, lead,
copper, cadmium

and nickel
Bangladesh Buriganga river

Effluents from tanneries,
other industrial outlets

and pesticides
[18]

9. Arsenic, chromium,
and selenium

Makkah, Kingdom
Saudi Arabia Groundwater Geological activity [19]

10. Cadmium and lead Egypt Water distribution
system

Battery, steel and plastic
making industries [20]

11. Lead Southwest
Bangladesh

Rainwater
harvesting structures

Dissolutions from
atmosphere [21]

12. Cadmium, Lead Lagos State, Nigeria surface water scrap yard waste [22]

13. Cadmium, lead and
iron

Kumasi district,
Ghana

Groundwater from
boreholes

Industrial waste from
paint industries,

municipal sewage and
anthropogenic waste

[23]

14.
Chromium, zinc,

copper, manganese,
nickel, lead and iron

Goiânia, Brazil Leachate Sanitary landfill [24]

15.
Chromium, zinc,

copper, manganese,
nickel and iron

North Mathiatis
mine Nicosia,

Cyprus
Open cast mine Mine drainage [25]

16. Nickel and iron Qazvin, Iran Thermal power plant Boiler, air preheater and
washing [26]

17. Copper Eco-city, Bohai bay Sewage samples Wastewater treatment
plant [27]

These toxic heavy metals cannot be easily removed from the wastewater without the
use of advanced treatment technologies [28]. The practiced methods for removing heavy
metals are adsorption, chemical precipitation and aquatic plants [29]. However, most of
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these have serious drawbacks, such as low efficiency, long treatment time or high operating
cost. For example, advancements in the nano-technological field for water purification
and treatment have also engrossed attention [30], although there are a few limitations,
including high cost. Membrane filtration techniques have been widely used, but these
also have disadvantages, such as membrane fouling and high cost. Therefore, effective
and low-cost techniques need to be employed before discharging industrial effluents.
Among conventional methods adopted, electrochemical-based approaches are currently
used worldwide to remove metal ions because of their unique merits, such as the low
consumption of chemicals, cost-effectiveness and simplicity. Electrocoagulation (EC), which
is one of the electrochemical methods, has been successfully adopted for the remediation of
wastewater from a wide range of pollutants, such as heavy metals [26], organic matter [31],
textile dyes [32] and pharmaceutical wastewaters [33]. Preferring the EC method over
conventional methods needs proper evaluation and in-depth analysis of various indices
like a comparative assessment of the process based on operation compatibility, energy
requirement, operational cost, sludge handling, etc. [34]. Therefore, there is a need for a
feasible and cost-effective technology for the target removal of trace metals [35].

The EC method has certain advantages over other conventional methods. For example,
although the chemical coagulation and EC methods have the same removal mechanism [35],
the EC method is better than the chemical coagulation in terms of chemicals consumption,
dissipation of coagulants [36], separation of flocs and sludge and sludge quality [37,38].

A few studies on heavy metal removal by conventional treatment methods on the
comparative ground are shown in Table 2.

Table 2. Comparative assessment of heavy metal removal by various conventional methods adopted.

S. No Treatment
Technique

Target Metal
Ion Efficiency % Advantages Disadvantages References

1. Adsorption Cd2+ & Cr6+ 55–60 Low cost, simple
technique

Moderately efficient,
Regenerative power

declines substantially
[39]

2. Nano-
adsorption Pb2+, Cr6+ 90–99% Selective removal,

Highly efficient
Costly, bulk production

is not possible [40]

3.
Coagulation
and chemical
precipitation

Cu2+, Cr3+,
Pb2+ & Zn2+ 99.3–99.6

Easily operational,
Ease of sludge

settling &
dewatering

Costly, high
consumption of

chemicals, huge sludge
production

[41]

4. Nano filtration Cu2+ 96 Highly efficient,
reliable

Low anti-compacting
ability [42]

5. Ion exchange Cu2+ & Ni2+ 99.14–99.33 Selective removal,
high regenerability

Costly disposal
problems with

regenerative fluids
[43]

6. Electrochemical Ni2+, Cr6+ 98–100
Highly efficient, no

chemical
requirement

High operational cost [44]

Electrochemical method-based water treatment was first noticed and reported long
ago in 1889 in England. However, the first application of electrolysis was patented in 1904.
Since then, treatment using EC has grabbed attention worldwide. On a larger scale, EC
was first used in the USA, way back in 1946, for treating contaminants in drinking water.
However, in the later half of the twentieth century, extensive work was undertaken to
investigate the process mechanism involved. In the last two decades, the EC process has
become quite popular, and it has been used in treating several types of wastewater and
water, such as the removal of arsenic-containing smelting wastewater [45], mining and
metal-processed wastewater [46], distillery-processed wastewater [47], nitrate-containing
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wastewater [48], paper and pulp industry wastewater [48], textile mill wastewater [49],
tannery wastewater [50] and laundry wastewater [51]. Accordingly, numerous publications
have stated the wide applicability of EC in removing heavy metal ions from water and
wastewater [52]. These heavy metals include chromium, nickel, arsenic, cadmium, mercury,
lead, copper, zinc, iron, etc. A sample of studies on optimizing and removing these heavy
metal ions using the EC method has been tabulated in Table 3 below.

Table 3. A sample of the studies that optimized operating conditions for heavy metal removal using
the EC method.

S. No Metal Ion Initial Conc.
(ppm) pH Electrode

Material

Current Density
(A/m2) or

Current (A)

%Removal
Efficiency References

1. Ni & Fe - 8.1 Fe-Fe 1.5 A 99 [26]

2. Cr, Ni and Cu - 6 Al-Al 12 84.55, 89.65
and 95.16 [27]

3. Cr and Cu Cu0 = 20 4 & 6 Al-Al 11.57 93 and 99.4 [53]

4. Fe, Zn, Mn, Cu,
Ni, Cd and Cr - 2.6 Al-Al 20 mA/cm2 100 [25]

5. SO4
2− - 2.4 Fe-Fe 200 10 [54]

6. Cd - 7 Fe/Cu/Zn 25 mA/cm2 99.73, 99.9, 82 [55]

7. Cr 887 6 Fe-Fe - 100 [56]

8. Ni 300 4–8 Al-Al 400 100 [57]

9. As(III)
50 7.5 Al-Al 60 92.2 [58]

50 4 Fe-Fe 5.4 98.42 [59]

10. Hg
41 3–7 Al-Fe 40 99.95 [60]

20 3–7 Al-SS 30 99 [61]

11. Pb
41 6 Al-Fe 23 98.2 [62]

2 7 Fe-Fe 80 99.3 [63]

12. Zn
75 4–8 Al-Al 400 100 [64]

20.4 9.5 Fe-Fe 40 97 [52]

Although the EC method is a self-sufficient process in treating heavy metals with only
a few exceptions, it is used as a hybrid process, along with some other treatment methods
in a continuous phase [52]. However, several studies have used the EC method either
as a pre-treatment or a polishing step. For instance, color and chemical oxygen demand
(COD) removal from UASB (up-flow anaerobic sludge blanket) pre-treated poultry manure
wastewater was carried out using EC as a polishing step. Under the highest substrate
loading with HRT (Hydraulic Retention Time) of 8 days, the maximum COD removal
attained was 81%, suggesting inadequate treatment by UASB alone as per environmental
regulations. Similarly, a recent study conducted by Stylianou, et al. [25] showed significant
removal of heavy metals. The results showed a 99.9% removal of Fe, Zn, Mn, and Cu, and
98%, 96%, and 88% for Ni, Cd and Cr, respectively. In another study conducted by Xu,
et al. [27], keeping the initial pH of 6, they found a removal efficiency of 95.16% of copper.
Thus, EC may be used as a polishing step for various types of wastewater, indicating its
suitability to be applied as a preceding or polishing step.

The present work aims to review and analyze past research on heavy metal removal
using the EC method. Additionally, it aims to define the role of different key parameters in
EC treatment.
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2. EC Theory and Mechanism

Overall, the EC method has a quite complex mechanism that includes various simul-
taneous physio-chemical reactions to generate the coagulants, as shown in Figure 1. The
EC process involves in situ production of coagulating ions, with three consecutive phases:
(i) production of coagulant by electrolytic oxidation of dissipating electrode (generally Al
or Fe), (ii) destabilization of target pollutant, particulate suspension and (iii) aggregation of
destabilized particles together to form flocs. The general mechanism undergoing inside
an EC cell with dissipative electrodes of metal M can be described in the form of chemical
reactions as follows:
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At the anode:
M(s) →M(aq)

n+ + ne− (1)

2H2O(l) → 4H+
(aq) + O2(g) + 4e− (2)

At the cathode:
M(aq)

n+ + ne− →M(s) (3)

2H2O(l) + 2e− → H2(g) + 2OH− (4)

For iron electrodes, Fe(aq)
3+ ions are formed by electrochemical oxidation, which

further reacts to form resultant hydroxide [Fe(OH)3] and polyhydroxide species, namely:
Fe(H2O)6

3+, Fe(H2O)5(OH)2+, Fe(H2O)4(OH)2
+, Fe2(H2O)8(OH)2

4+ and Fe2(H2O)6(OH)4
2+,

based on the pH conditions. These hydroxides/polyhydroxy metallic complexes show
strong empathy towards distributed ions and particles, so they start coagulation. The gases
evolved, resulting in the up-flowing of the coagulated particles. The reactions may be
shown as follows:

At anode:
4Fe(s) → 4Fe2+

(aq) + 8e− (5)

Precipitation:
4Fe2+ + 10H2O + O2 → 4Fe(OH)3 + 8H+ (6)

At cathode:
8H+

(aq) + 8e− (aq) → 4H2(g) (7)
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Overall reaction:

4Fe(s) + 10H2O(l) + O2(g) → 4Fe(OH)3(s) ↓ + 4H2(g) (8)

In addition to Fe3+ production, several reactions occur simultaneously in an EC system.
These include:

• formation of H2 gas at the cathode (Equation (4))
• rise of pH as a result of hydroxyl ion formation (Equation (4))
• reduction of metal ions on the cathodes.

Many researchers have proved the production of O2 at the anode according to Equation
(2) above, though, this does not occur in usual conditions (electrochemical potential) in
EC as anodic dissolution obeys Faraday’s rule [65]. However, in alkaline conditions, the
dissolution of the iron anode is lesser than intended, as per Faraday’s law, which specifies
that several other electrochemical reactions occur in these environments.

3. Factors Affecting EC and Their Significance

Most of the studies undertaken in the past have undertaken only a few parameters to
optimize the EC process. However, to attain maximum removal efficiency with minimum
energy consumption, various factors that influence the process, such as the initial pH, ap-
plied current, operational time, initial metal ion concentration, electrode material, electrode
size, spacing and arrangement, the conductivity of the solution, agitation rate and nature
of power supply (DC or AC). All these parameters have their particular role to play and
need to be adjusted accordingly for the target removal of contaminants. An insight into
these important factors and their role in EC is discussed in detail below.

3.1. Initial pH

pH plays a deterministic role in electrochemical coagulation. It is observed that
pH does not remain still during the treatment, but mostly increases as reaction time
proceeds [66]. The effect of pH depends on the type of pollutant, the material of anode
used, and the reaction mechanism involved. Therefore, understanding the role of the pH in
the reaction mechanism is important to achieve the best performance of the EC units [52].
Several studies have explored the role of pH in the performance of EC units. For instance,
the effect of pH (from 2 to 10) on the removal of mercury, nickel and lead from solutions
was investigated by [67]. The latter used a solution with an initial concentration of 10 mg/L
of the mentioned metals, a current density of 0.15 mA/cm2, a treatment time of 30min,
a temperature of 305 K and an anode and cathode made of magnesium and galvanized
iron, respectively. Increasing the pH beyond the optimum value (7) negatively influenced
the removal of Hg, Ni and Pb. A similar trend was noticed in the study of Kim, et al. [68],
who used two different electrodes (aluminum and iron) to remove Cu, Ni, Zn and Cr
from wastewater. The results showed that both electrodes sowed the best removal of the
mentioned heavy metals at a neutral or slightly alkaline pH value. However, Xie, et al. [69]
reported that the removal of silver using a graphite anode and aluminum cathode is not
much influenced by the pH value, where it was noticed that the best removal of the silver
was achieved after 20 min, regardless of the pH value. The outcomes of these studies
confirmed the fact that the effect of pH on the performance of the EC units depends on
several factors, including the type of electrodes and pollutants. Generally, the effects of
the pH on the performance of the EC method are attributed to its impact on the species of
the coagulants. The literature indicated that changes in the pH value led to the generation
of different species of coagulants. For example, in iron electrodes, Fe2+ is the dominant
specie when the pH < 8, and then Fe(OH)2 is dominant. The same behavior is noticed with
aluminum electrodes. Therefore, the removal efficiency will be changed according to the
type of the dominant specie of coagulants [70]. In conclusion, the pH of the solutions being
treated by the EC units plays a significant role in the deterioration of the species and charge
of the fresh coagulants, which in turn significantly determines the removal efficiency.
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3.2. Role of Electrode Material

Selecting and employing feasible electrode material is essential to maximize the effi-
ciency of the EC process. Besides conventional electrode materials, including Fe, Al, Cu,
Mg, Sr and Zn, a few other materials, such as graphite and lead oxides, may seldom be
used in the EC process as insoluble anodes. Despite the efficiency, easy availability and
cost-effectiveness of conventional electrode materials, they have high oxygen evolution
potential characteristics. Therefore, many materials were utilized in the EC method to
remove pollutants. For example, Safwat [71] investigated the efficiency of zinc (Zn) and
titanium (Ti) electrodes for the removal of oils, total dissolved solids (TDS) and COD from
solutions at various experimental conditions (current density, spaces between electrodes
and time). The results showed that the best oil removal efficiency was 14% by the Zn
electrode and 19% by the Ti electrode, and the removal of COD was 50% and 46% by Zn
and Ti electrodes, respectively. TDS removal efficiencies were 9% and 19% for Ti and Zn
electrodes, respectively. These results showed that Zn and Ti electrodes could remove
pollutants when used in the EC process. Hafez, et al. [72] used three different materials, Al,
Fe and Zn, as electrodes to remove hardness and dissolved silica from wastewater under
different experimental conditions. The obtained results showed the Al electrodes were
better than the Fe and Zn electrodes, because Al removed 55.36% and 99.54% of hardness
and dissolved silica. However, the low cost, better dissolution and availability of Fe and
Al electrodes made them favorable in wastewater treatment practices. Reátegui-Romero,
et al. [73] used iron electrodes to remove several metals (Fe, Mn, Cu, Zn and Cd) at pH
between 6.6 to 8, a current density of 22.35 A/m2, and an application time of 45 min. The
results showed the removal efficiency of Fe and Mn at 99.17% and 99.97%, respectively,
whereas the removal efficiency of Cu, Zn and Cd was about 99.99%. In another study,
Khosa et al., 2013 [74] used aluminum and iron electrodes to remove Ni, Pb and Cd. The
results showed the Fe electrodes achieved a better removal; the Al electrodes removed
92.3%, 91.5% and 89.4% for Ni, Pb and Cd, respectively, while the Fe electrodes removed
99.0%, 98.3% and 96.8% of Ni, Pb and Cd, respectively.

The effects of the electrode materials on the performance of the EC method are related
to many factors. For example, the chemical and physical properties of electrode materials
are different in terms of ions’ size, the ions’ migration speed in solution, oxidation potential,
ion-OH bond polarity and structure of their hydroxide compounds. Therefore, the adsorp-
tion capacity of the coagulants is different from one material to another [71,72,75]. The
main conclusion of this short literature review is that the material of electrodes determines
the chemical composition and adsorption capacity of the coagulants and the size of flocs,
which determines the removal of the EC method.

3.3. Role of Current Density

The influence of the applied current density in the EC process is quite noteworthy, as
it controls both bubble generation rate and coagulant dosage. The latter two parameters are
very important because, firstly, the bubble generation rate determines the removal paths.
Increasing the applied current increases the number of the generated bubbles, which results
in the predomination of the floatation path in the separation of pollutants, while the low
current densities lead to a low production of bubbles that makes the sedimentation path the
predominant separation path. Additionally, the high current density increases the anodic
dissolution that increases the formation of hydroxo-cationic complexes, thereby improving
the removal efficiency (Liu et al., 2010). A considerable number of studies investigate the
effects of the current density on the removal of pollutants by the EC units. For example,
Manilal et al. [76] applied the EC method to remove oil and chemical oxygen demand
(COD) from water, and the experiments were carried out using mild steel electrodes under
different conditions, including the current density (between 0.25 to 0.75 A/dm2). The
results showed the current density significantly affects the removal of the pollutant; it was
noticed the removal of oil and COD increased from about 55% to about 90% when the
current density increased from 0.25 to 0.75 A/dm2. The authors explained this increase



Sustainability 2023, 15, 1708 8 of 19

in the removal of oil and COD with the current density by the rise in the production of
the coagulants [Fe(OH)3 ions] that, in turn, produce more precipitates and consequently
improve the removal of pollutants. A similar trend was noticed by Mena, et al. [77] during
the removal of fluoride from water using aluminum electrodes under different current
densities (in the range between 3 and 15 mA/cm2). The results showed that increasing the
current density from 3 and 15 mA/cm2 considerably improved the removal of the fluoride
from about 60% to about 80%, respectively. The authors also explained the increase in
the removal of fluoride with the current density by the increase in the production of the
aluminum ions, which improves the removal efficiency. The same effect of the applied
current density on the removal of heavy metals (arsenic) from the water was noticed by
Müller, et al. [78]. The results showed that the residual concentration of arsenic decreased
from about 750 to 10 µg/L when the current density increased from 1.72 to 0.49 mA/cm2

after 180 min. The given reason for the increment in arsenic removal with the current
density by the increase in the production of Fe(OH)3 ions that improve the removal of
arsenic. The conclusion from these studies is that the effect of the current density on the
efficiency of the EC method is related to the production rate of the coagulants from the
anodes, which speeds up the removal of pollutants.

3.4. Operational Time

Operational time is another key parameter in EC, as the coagulant concentration
generated due to electrolysis is time-bound and directly dependent on the electric charge
added per unit volume. With longer durations, more hydroxyl radicals are generated,
resulting in more availability of metallic polymer species in the form of hydroxides as
adsorbents, thus increasing the removal efficiency [79,80]. However, the removal efficiency
of pollutants increases with electrolysis time until it reaches saturation at an optimum
condition [59]. This operation time is well associated with current density and thus needs to
be optimized, as the removal efficiency desired depends upon the availability of coagulant
floc for the target removal of pollutants. The effect of the operating time on the performance
of the EC units was widely investigated in the literature; for example, Balarak, et al. [81]
used a bench-scale EC unit to remove amoxicillin from water under different operating
parameters and noticed increasing the treatment time significantly improves the removal
of amoxicillin. The results showed that increasing the treatment time from 10 to 100 min
increased the removal of amoxicillin by about 58%. Similar results were noticed in the
removal of other pollutants, such as total organic carbon [82], orange II dye [83], Cr [84] and
COD [85]. The given reason for the improvement of pollutant removal with the increase
in the treatment time is more coagulants will be produced over time, which improves the
removal of the targeted pollutants [81,86].

It can be concluded from the reviewed studies that it is essential to provide an adequate
period for the EC treatment to generate coagulants, hence, to complete the coagulation of
the pollutants.

3.5. Initial Concentration

The amount of metal ions present in an aqueous solution is another important pa-
rameter in the EC method. Several studies have been performed in the past to inspect its
influence on the performance of the EC method [87,88]. For example, the effect of initial
arsenic concentration on its removal efficiency was investigated by Chen, et al. [89] by
preparing solutions with an initial concentration of zinc ranging from 50–2000 mg/L at a
pH of 2.9–7.4 and a current density of 8.3 mA/cm2. It was observed that higher removal
efficiency was achieved at lower initial concentration values, and it was found the residual
concentration of zinc in the solution increased from 0 to about 1250 mg/L when the initial
concentration of zinc increased from 50 to 2000 mg/L, respectively. Moreover, the removal
rate was observed initially to be quite high in the early 10 min of the process; however,
the rate declined afterwards. Moreover, it was found that amount of coagulant generated
was almost the same having no effect of varying the initial concentration, due to which
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the generated coagulant was insufficient for the complete removal of metal ions at higher
initial concentrations. Thereby, with a higher initial concentration of the ions present, there
is more power consumption to attain the complete removal of target metal ions. These
findings agree with another study carried out in treating Cr(VI) with initial concentrations
of 329.55 to 1170.45 ppm using an EC unit supplied with iron electrodes [90]. The results
showed increasing the initial concentration of Cr(VI) from 329.55 to 1170.45 ppm decreased
the removal efficiency from 99.9% to 84.6%, respectively. The reviewed studies indicated
that a decrease in the efficiency of the EC units with the increase of the concentration of the
pollutant is due to insufficient production of the coagulant to remove the high concentra-
tions, but this problem can be solved by increasing either the treatment time or the applied
current density, which allows the anodes to produce more coagulants and thereby complete
the removal of the high concentrations of the pollutants. The conclusion here is the decrease
in the efficiency of the EC units with the increase in the concentration of the pollutant is not
related to the performance of the EC reactor; it is related directly to the production rate of
the coagulants. Therefore, this problem can be overcome by applying high current density
to accelerate the dissolving of the anodes or by increasing the treatment time.

3.6. Electrode Arrangement

Typical arrangement of electrodes inside an EC reactor may be either bipolar or
monopolar, such arrangements have been tried in various studies carried out in the past as
shown in Figure 2. Several studies have comparatively reported the removal efficiency and
operating cost from the monopolar and bipolar arrangement [91–93]. For instance, a group
of researchers (Khaled et al. [94]) employed both monopolar and bipolar configurations
using 4 aluminum electrodes for the removal of cadmium, with results showing rapid
removal of up to 95% taking just 30 min, in comparison to when only two electrodes
were used, where it took 45 min for almost the same performance. The removal efficiency
obtained from the bipolar configuration was 92%, whereas 87% was obtained from the
monopolar configuration. More often, effective treatment costs are incurred, and a high
removal efficiency rate makes bipolar configuration more favorable. In another study, the
removal efficiency of 99.84% and 89.58% for Cr (III) from bipolar and monopolar configura-
tion after 20 min of EC at a current density of 25 mA/cm2 was reported [95]. In an earlier
alternate study, the same removal efficiency from monopolar and bipolar configuration
was found but reported bipolar configuration as energy and cost-effective [63].
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3.7. Electrode Spacing

Spacing between electrodes is considered a vital parameter in the design of the reactor
for the efficacy of the EC process, because it determines the energy consumption and reactor
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size [96]. Generally, the removal efficiency increases with the increase in electrode spacing
until it reaches the optimum distance; then, the travel time of ions between electrodes
increases resulting in reduced removal efficiency. Additionally, the literature shows that the
potential developed in the EC units due to internal resistance (IR), is directly proportional to
electrode distance; as the electrode spacing increases, the IR drop increases [75]. This drop in
the IR increases power consumption and decreases the efficiency of the EC units. Therefore,
optimizing the distance between electrodes is vital in the EC units [97]. Hence, most
literature included the distance between electrodes as a crucial parameter. For example,
several experiments were conducted by Mohammadi et al. [98] to measure the effects of
different spaces between electrodes (3, 5, 6 and 7 cm) on the removal of nitrogen using an
EC unit with iron and aluminum electrodes. It was found that closely spaced electrodes
achieved higher removal efficiency; increasing the distances between electrodes from 3 to
7 cm decreased the removal of nitrogen from about 53 % to 20% and increased the power
consumption from 4.75 to 19.01 KWh/kg of nitrogen, respectively. The authors explained
the decrease in the performance of the EC unit by the fact that short distances decrease
the IR drop, which facilitates the travel of ions between electrodes and minimizes power
consumption. The relationship between the distance between electrodes and the IR is
shown by the following equation [99]:

IR =
Cuurent (A)×Distnace beween electodes (m)

Effective anode area (m2)× Specific conductivity (103 mS/m)
(9)

The same results were noticed by other researchers, such as Naje et al. [100], Maghanga
et al. [99], and Liu, et al. [101], and they justified the drop in the removal efficiency with the
increase in the distance between electrodes by the reduction in the IR and the long travel
time for the ions between the electrodes. The conclusion here is that the distance between
electrodes must be optimized not because it affects the removal efficiency but because it
also affects the power consumption, which determines the operating cost of the EC units.

3.8. Agitation

To sustain a uniform distribution of coagulants and pollutants inside an EC cell, stirring
or agitation at a particular intensity is generally employed [102]. Obviously, by agitating
the solution, the velocity attained by generated ions due to anode oxidation increases
accordingly, which enhances the contact between the pollutants and the coagulants and
thereby improves the removal efficiency. However, increasing the stirring speed more
than the optimum value leads to breaking the fresh flocs, negatively affecting the removal
efficiency [94,103]. The influence of agitation speed on the EC process has been investigated
by numerous researchers in the past. For example, Khaled et al. [94] demonstrated the
positive outcome of agitation on cadmium removal from wastewater by EC in which
observations were taken at 0, 300, 450, and 600 rpm and found moderate agitation most
effective. In this investigation, the maximum attainable removal efficiency was 95% and
99.5%, achieved after 30 min and 60 min, respectively. A slight decrease was noticed in the
removal efficiency was observed at higher speeds, 450 rpm and 600 rpm, which could be
due to the breaking of flocks and excessive agitation. Similarly, Bao et al. [103] investigated
the effect of stirring speed on the removal of three types of perfluoro-alkane-sulfonic acids
(PFBS, PFHxS and PFOS) from groundwater using an EC unit having Al and Zn electrodes.
The experiments were conducted at stirring speeds of 0 to 1000 rpm, and results showed
that a stirring speed of 400 rpm achieved the best removal of PFBS, PFHxS and PFOS (87.4%,
95.6% and 100%, respectively). The decrease in the removal of these pollutants at high
stirring speeds was due to the development of a high shear force within the solution that
destroys the hydroxide flocs, while the low efficiency at low stirring speeds is attributed
to the insufficient contact between coagulants and pollutants (insufficient mixing). The
same trend was found by Liu et al. [104] who reported that increasing the stirring speed
more than the optimum value (500 rpm) decreases the removal efficiency of perfluoro-
octanoic acid from water, and explained this reduction in the removal efficiency by the
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prevention of adsorption of the pollutant by the fresh coagulants. It can be concluded here
that low or high stirring speeds are not useful for the EC treatment, and these effects can be
summarized as follows:

1. High stirring speeds prevent the adsorption of pollutants on the fresh flocs and also
break down the aggregates, which decreases the removal efficiency;

2. Low stirring speeds do not create a uniform distribution of pollutants and coagulants
in the solution, which also decreases the efficiency of the EC unit.

4. Kinetic Models Applied in EC

Although it has quite a complex mechanism, including various physio-chemical reac-
tions, the adsorption is only one step in the whole electrocoagulation (EC) process. The
complexes produced during EC as a result of oxidation in the form of metal hydroxide
act as an adsorbent for pollutants in the water and wastewater. These adsorption and
complexation steps in the EC process can be modelled using suitable models, such as the
first-order, second-order, Dubinin–Radushkevich model, Elovich model, Temkin model,
Pseudo-first-order or Pseudo-second-order [52,105]. Each of these models has its peculiari-
ties and significances. For instance, the Pseudo-first-order model describes the adsorbate
uptake and is based on solid adsorption capacity, while the Pseudo-second-order model
undertakes chemisorption involving the exchange of electrons between metal ions and
OH−. For instance, Yılmaz et al. [106] carried out a statistical analysis, along with an em-
pirical model, to explain the boron removal from wastewater stream employing aluminum
electrodes in EC. They reported that the reaction rate followed the pseudo-second-order
model quite well.

The pseudo-first-order model is as follows:

dq
dt

= k1
(
qe − q

)
(10)

where k1 is the first-order rate constant, q is the adsorption capacity at any time “t“ and
qe is the adsorption capacity on attaining equilibrium. Integrating and linearizing this
equation, the resulting Equation is as follows:

ln(qe − q) = ln(qe) − k1t (11)

ln(qe− q) is plotted against “t” and linear regression is carried out to obtain the best fit.
The values of qe and k1 were acquired from the slope and intercept of the plots accordingly.

The Pseudo-second-order model is given as follows:

dq
dt

= k2
(
qe − q

)2 (12)

where k2 is the second-order rate constant. The following equation can be obtained by
integrating and rearranging Equation (12):

t
q
=

1
k2qe2

+
t
qe

(13)

The graph of “ t
q ” vs. ”t” is plotted, and linear regression is carried out to ob-

tain the equation. qe and k2 values are depicted from the slope and intercept of the
plots accordingly.

Several researchers have applied kinetic modelling in the adsorption of heavy metals
in the EC process. Xi, et al. [107] applied both first and second-order models in the removal
of cadmium using EC and found better values of correlation coefficients in the case of
second-order model plots. Similarly, in another research carried out on the removal of
mercury, lead, and nickel using EC, the second-order model was found to be more suitable
in explaining the adsorption of all three metal ions over Mg(OH)2 by employing magnesium
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anode [108]. However, in another investigation carried out employing iron electrodes in
EC for heavy metal removal, the Pseudo-second-order model was found to fit well [52]. In
the same manner, several other researchers have explored the suitability of these models in
their studies, a few of which are summarized in Table 4. Thus it may be concluded that
various models are used to explain the adsorption step of heavy metal in EC. This may be
attributed because the interaction between pollutants and coagulant ions depends on their
nature, properties, and operating conditions.

Table 4. Some used kinetic models to explain the adsorption of heavy metal ions in the EC process.

S. No Target Metal Ions
(Pollutants) Anode Employed Kinetic Model Reference

1. Cu, Zn and Ni Iron Pseudo-second-order [52]

2. Hg, Ni and Pb Magnesium Second-order [109]

3. As Iron and Aluminum First-order [110]

4. Co and Mn Aluminum First-order [111]

5. Ni and Zn Stainless steel Pseudo-first-order [112]

6. As Iron Pseudo Second order [113]

7. Cu, Pb and Ni Aluminum and Iron Pseudo-first-order [114]

8. Cd Magnesium Second-order [108]

9. Pb Magnesium Second-order [63]

10. Fe Iron Second-order [115]

5. Cost Analysis

Cost information and estimation are available in very few researches employing
EC. Considerable work at the laboratory and pilot scale had been conducted using EC
processes for treating metal-containing wastewater, and it has been speculated that the
cost is quite competitive with traditional chemical precipitation and other techniques. The
main constraint in the large-scale applicability of the EC process is its operating cost [116].
For wider applicability in treating various industrial effluents, it is necessary to make EC
a low-cost technique. Increasing energy prices is an important issue that discourages the
applicability of the EC process on a field scale [117]. Moreover, electrodes get sacrificed
in dissipating coagulants and thus need to be replaced from time to time, which adds up
to the overall operational cost of the process. Therefore, optimization of the EC process is
a necessary step in making it cost-effective before any practical use, thereby minimizing
energy consumption and attaining higher efficiency. For instance, Khan et al. [28] reduced
the overall cost of the EC process to a very low amount in treating per g of Cr(VI) by
multivariate optimization of process variables. In another research, response surface
methodology (RSM), a mathematical approach, was used to optimize and analyze the effect
of the process-dependent variables, affecting the treatment efficiency and thus making
the process cost-effective [118]. They attained higher efficiencies at lower operating costs,
suggesting the successful applicability of RSM and the need for multivariate optimization
as a whole in achieving the objectives. A good illustration of cost variation for the EC
process was performed by Shaker et al. [119] on nickel removal at different current densities
(5, 10, and 15 mA/cm2). They found that the least EC cost was around 0.7 USD/m3 when
the current density was five mA/cm2 with an initial pH of 9.2. From an economic aspect, a
current density of 5 mA/cm2 instead of 10 mA/cm2 is more feasible, because the difference
in the removal efficiency is insignificant.

Few comparative studies on optimizing the removal of heavy metal using EC have
been tabulated, indicating the energy consumption as well as operating cost (see Table 5).
Another potential advantage of the EC process is the lesser production of sludge which is
generally easier to dewater that might be usefully recovered.
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Table 5. A summary of previous EC studies investigated the power consumption and operational
cost with optimized conditions.

S. No Metal Parameters Removal (%) Energy
Consumption

Operating Cost
References

Local Currency USD

1. Copper

Applied current 0.26 A,
pH 7, Time 5.4 min,

Initial Concentration
27.8 ppm

95% 0.903 W-h/g
Cu(II)

0.134 INR/g
removal 0.002 US$/g [120]

2. Arsenic

Applied current 0.46 A,
pH 7, Initial

concentration 10 ppm,
Time 2 min

95% 3.1 W-h/g total
As

0.0974 INR/g
removal 0.0013 US$/g [121]

3. Chromium

Applied Current 1.48 A,
pH 3, Time 21.47 min
Initial Concentration

49.96 ppm,

100% 12.97 W-h/g
Cr (VI)

0.956 INR/g
removal 0.013 USD/g [28]

4.
Copper, Zinc,

Nickel and
Manganese

Current density
25 mA/cm2,
Time 50 min

49 kWh/m3 €3.43/m3 3.77 USD/m3 [122]

5. Iron

Initial concentration
20 ppm, Time 20 min,

pH 6,
Current density

1.5 mA/cm2

98% 3.2 kWh/m3 0.22 USD/m3 [116]

6. Arsenic and
Fluoride

Run time -95 min
Flow Rate -0.88 L/h 0.358 USD/m3 [123]

7.
Copper

Chromium
Nickel

pH 3.0, Time 20 min,
Current 10 mA/cm2

Cu-100%
Cr-100%
Ni-100%

10.07 kWh/m3 [44]

8. Cadmium

Initial concentration
250 ppm, pH 6,
Current density
0.25 mA/cm2

58% 0.363
kWh/m3 0.42 €/m3 0.46 USD/m3 [124]

9. Zinc and
Copper

Initial Concentration
500 ppm, pH 7, Electric

potential 40 V.

Zinc-99.5%
Copper-99.7%

Zn- 0.095
kWh/g
Cu- 0.29
kWh/g

[125]

10. Domestic
Wastewater

Current density-
100 A/m2, pH 7,

Time 10 min

COD- 72%
Turbidity-98%

Phosphorus- 98%
8.9 kWh/m3 0.86 USD/m3 [126]

11. Fluoride
pH-7,

Current density
18.51 A/m2

85% 3.43 kWh/m3 [127]

12. Textile Water

Initial concentration
50 ppm, electrode

distance 1 cm,
time 30 min

98.59% 1.303 kWh/m 0.256 USD/m3 [128]

6. Conclusion Remarks and Future Perspectives

The EC method has gained wider acceptance as an alternative to conventional wastew-
ater treatment methods, although its potential needs further exploration. Simple apparatus,
expedient operation and no use of chemical substances for settling and floc formation are
the main advantages of this process. EC had been successfully applied with a variable
degree of treatment achieved for various types of water and wastewater streams. The
current density, electrolysis time and electrode type must be carefully considered for each
application. It is found that this treatment process has been successfully used to treat
different types of heavy metal ions, such as Ni, Cu, Cr, Cd, etc. Optimization of this process
not only enhances efficiency, but also makes it possible for its use at a larger scale at an
affordable cost. The EC process has proven to be a practical, cost-effective technology for
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removing most pollutants. However, in the future, more work needs to be done in process
optimization, modelling and scaling up this technique to prove its consistency for efficient
and large-scale wastewater treatment. Multivariate optimization techniques, such as RSM,
have made the applicability of this technique wider. In addition, sustainable end-use of
sludge generated is essential, as it has recently become an attractive research area. Beyond
that, we may improve and enhance the efficiency of the EC process by combining it with
other conventional techniques or using other methods sequentially as pre-treatment or as a
polishing step wherever required.
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51. Dimoglo, A.; Sevim-Elibol, P.; Dinç, Ö.; Gökmen, K.; Erdoğan, H. Electrocoagulation/electroflotation as a combined process for
the laundry wastewater purification and reuse. J. Water Process Eng. 2019, 31, 100877. [CrossRef]

52. Al-Shannag, M.; Al-Qodah, Z.; Bani-Melhem, K.; Qtaishat, M.R.; Alkasrawi, M. Heavy metal ions removal from metal plating
wastewater using electrocoagulation: Kinetic study and process performance. Chem. Eng. J. 2015, 260, 749–756. [CrossRef]

53. Lu, J.; Fan, R.; Wu, H.; Zhang, W.; Li, J.; Zhang, X.; Sun, H.; Liu, D. Simultaneous removal of Cr (VI) and Cu (II) from acid
wastewater by electrocoagulation using sacrificial metal anodes. J. Mol. Liq. 2022, 359, 119276. [CrossRef]

54. Foudhaili, T.; Lefebvre, O.; Coudert, L.; Neculita, C.M. Sulfate removal from mine drainage by electrocoagulation as a stand-alone
treatment or polishing step. Miner. Eng. 2020, 152, 106337. [CrossRef]

55. Mehri, M.; Fallah, N.; Nasernejad, B. Mechanisms of heavy metal and oil removal from synthetic saline oilfield produced water
by electrocoagulation. NPJ Clean Water 2021, 4, 1–14. [CrossRef]

56. Verma, S.K.; Khandegar, V.; Saroha, A.K. Removal of chromium from electroplating industry effluent using electrocoagulation.
J. Hazard. Toxic Radioact. Waste 2013, 17, 146–152. [CrossRef]

57. Dermentzis, K.; Valsamidou, E.; Lazaridou, A.; Kokkinos, N. Nickel removal from wastewater by electrocoagulation with
aluminum electrodes. J. Eng. Sci. Technol. Rev. 2011, 4, 188–192. [CrossRef]

58. Flores, O.J.; Nava, J.L.; Carreño, G. Arsenic removal from groundwater by electrocoagulation process in a filter-press-type
FM01-LC reactor. Int. J. Electrochem. Sci 2014, 9, 6658–6667.

59. Can, B.Z.; Boncukcuoglu, R.; Yilmaz, A.E.; Fil, B.A. Effect of some operational parameters on the arsenic removal by electrocoagu-
lation using iron electrodes. J. Environ. Health Sci. Eng. 2014, 12, 1–10. [CrossRef]

60. Daniel, R.; Himabindu, V.; Krupadam, R.; Anjaneyulu, Y. Removal of Mercury from Pharmaceutical Wastewaters Using
Electrocoagulation: A Cleaner Technology Option. IUP J. Environ. Sci. 2010, 4, 7–15.

61. Murthy, Z.; Parmar, S. Electrocoagulative treatment of mercury containing aqueous solutions. Water Sci. Technol. 2012, 65,
1468–1474. [CrossRef]

62. Khan, S.U.; Mahtab, M.S.; Farooqi, I.H. Enhanced lead (II) removal with low energy consumption in an electrocoagulation column
employing concentric electrodes: Process optimisation by RSM using CCD. Int. J. Environ. Anal. Chem. 2021, 1–18. [CrossRef]

63. Kamaraj, R.; Ganesan, P.; Vasudevan, S. Removal of lead from aqueous solutions by electrocoagulation: Isotherm, kinetics and
thermodynamic studies. Int. J. Environ. Sci. Technol. 2015, 12, 683–692. [CrossRef]

64. Dermentzis, K.; Christoforidis, A.; Valsamidou, E. Removal of nickel, copper, zinc and chromium from synthetic and industrial
wastewater by electrocoagulation. Int. J. Environ. Sci. 2011, 1, 697–710.

65. Sasson, M.B.; Calmano, W.; Adin, A. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell. J. Hazard. Mater.
2009, 171, 704–709. [CrossRef]

66. Parga, J.R.; Cocke, D.L.; Valverde, V.; Gomes, J.A.; Kesmez, M.; Moreno, H.; Weir, M.; Mencer, D. Characterization of electrocoagu-
lation for removal of chromium and arsenic. Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 2005, 28, 605–612.
[CrossRef]

http://doi.org/10.2166/wst.2016.172
http://doi.org/10.1016/j.watres.2009.03.007
http://doi.org/10.1016/j.desal.2010.11.001
http://doi.org/10.1016/j.chemosphere.2020.128253
http://www.ncbi.nlm.nih.gov/pubmed/33297198
http://doi.org/10.1016/j.seppur.2019.01.056
http://doi.org/10.1016/j.jece.2020.104811
http://doi.org/10.1016/j.jece.2020.104292
http://doi.org/10.1016/j.jhazmat.2019.03.030
http://www.ncbi.nlm.nih.gov/pubmed/30897490
http://doi.org/10.1016/j.jwpe.2020.101642
http://doi.org/10.1016/j.jwpe.2019.100877
http://doi.org/10.1016/j.cej.2014.09.035
http://doi.org/10.1016/j.molliq.2022.119276
http://doi.org/10.1016/j.mineng.2020.106337
http://doi.org/10.1038/s41545-021-00135-0
http://doi.org/10.1061/(ASCE)HZ.2153-5515.0000170
http://doi.org/10.25103/jestr.042.12
http://doi.org/10.1186/2052-336X-12-95
http://doi.org/10.2166/wst.2012.036
http://doi.org/10.1080/03067319.2021.1873304
http://doi.org/10.1007/s13762-013-0457-z
http://doi.org/10.1016/j.jhazmat.2009.06.057
http://doi.org/10.1002/ceat.200407035


Sustainability 2023, 15, 1708 17 of 19

67. Al-Anbari, R.H.; Albaidani, J.; Alfatlawi, S.M.; Al-Hamdani, T.A. Removal of heavy metals from industrial water using
electro-coagulation technique. In Proceedings of the Twelft International Water Technology Conference, Alexandria, Egypt,
27–30 March 2008.

68. Kim, T.; Kim, T.-K.; Zoh, K.-D. Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during
electrocoagulation using Fe and Al electrodes. J. Water Process Eng. 2020, 33, 101109. [CrossRef]

69. Xie, J.; Zhong, Y.; Yu, Y.; Wang, M.; Guo, Z. Green capturing of Ag from ultra-low concentration precious metal wastewater by
electrodeposition assisted with electrocoagulation: Electrochemical behavior and floc characterization. Process Saf. Environ. Prot.
2022, 167, 592–600. [CrossRef]

70. Barrera-Díaz, C.E.; Balderas-Hernández, P.; Bilyeu, B. Electrocoagulation: Fundamentals and prospectives. In Electrochemical
Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2018; pp. 61–76.

71. Safwat, S.M. Treatment of real printing wastewater using electrocoagulation process with titanium and zinc electrodes. J. Water
Process Eng. 2020, 34, 101137. [CrossRef]

72. Hafez, O.M.; Shoeib, M.A.; El-Khateeb, M.A.; Abdel-Shafy, H.I.; Youssef, A.O. Removal of scale forming species from cooling
tower blowdown water by electrocoagulation using different electrodes. Chem. Eng. Res. Des. 2018, 136, 347–357. [CrossRef]

73. Reátegui-Romero, W.; Flores-Del Pino, L.V.; Guerrero-Guevara, J.L.; Castro-Torres, J. Benefits of electrocoagulation in treatment of
wastewater: Removal of Fe and Mn metals, oil and grease and cod: Three case studies. Int. J. Appl. Eng. Res. 2018, 13, 6450–6462.

74. Khosa, M.K.; Jamal, M.A.; Hussain, A.; Muneer, M.; Zia, K.M.; Hafeez, S. Efficiency of Aluminum and Iron Electrodes for
the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method. J. Korean Chem. Soc. 2013, 57, 316–321.
[CrossRef]

75. Al-Qodah, Z.; Al-Shannag, M. Heavy metal ions removal from wastewater using electrocoagulation processes: A comprehensive
review. Sep. Sci. Technol. 2017, 52, 2649–2676. [CrossRef]

76. Manilal, A.; Soloman, P.; Basha, C.A. Removal of oil and grease from produced water using electrocoagulation. J. Hazard. Toxic
Radioact. Waste 2020, 24, 04019023. [CrossRef]

77. Mena, V.; Betancor-Abreu, A.; González, S.; Delgado, S.; Souto, R.; Santana, J. Fluoride removal from natural volcanic underground
water by an electrocoagulation process: Parametric and cost evaluations. J. Environ. Manag. 2019, 246, 472–483. [CrossRef]

78. Müller, D.; Stirn, C.N.; Maier, M.V. Arsenic Removal from Highly Contaminated Groundwater by Iron Electrocoagulation—
Investigation of Process Parameters and Iron Dosage Calculation. Water 2021, 13, 687. [CrossRef]

79. Asaithambi, P.; Aziz, A.R.A.; Daud, W.M.A.B.W. Integrated ozone—Electrocoagulation process for the removal of pollutant from
industrial effluent: Optimization through response surface methodology. Chem. Eng. Process. Process Intensif. 2016, 105, 92–102.
[CrossRef]

80. Khan, S.U.; Islam, D.T.; Farooqi, I.H.; Ayub, S.; Basheer, F. Hexavalent chromium removal in an electrocoagulation column reactor:
Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Saf. Environ. Prot. 2019, 122,
118–130. [CrossRef]

81. Balarak, D.; Chandrika, K.; Attaolahi, M. Assessment of effective operational parameters on removal of amoxicillin from synthetic
wastewater using electrocoagulation process. J. Pharm. Res. Int. 2019, 29, 8. [CrossRef]

82. AlJaberi, F.Y. Removal of TOC from oily wastewater by electrocoagulation technology. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020,
928, 022024. [CrossRef]

83. Signorelli, S.C.M.; Costa, J.M.; de Almeida Neto, A.F. Electrocoagulation-flotation for orange II dye removal: Kinetics, costs, and
process variables effects. J. Environ. Chem. Eng. 2021, 9, 106157. [CrossRef]

84. Patel, S.R.; Parikh, S.P. Chromium removal from industrial effluent by electrocoagulation: Operating cost and kinetic analysis.
J. Environ. Treat. Tech. 2021, 9, 621–628.

85. Alkurdi, S.S.; Abbar, A.H. Removal of COD from Petroleum refinery Wastewater by Electro-Coagulation Process Using SS/Al
electrodes. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 012052. [CrossRef]

86. Danial, R.; Abdullah, L.C.; Sobri, S. Potential of copper electrodes in electrocoagulation process for glyphosate herbicide removal.
Proc. MATEC Web Conf. 2017, 103, 06019. [CrossRef]

87. Chen, M.; Dollar, O.; Shafer-Peltier, K.; Randtke, S.; Waseem, S.; Peltier, E. Boron removal by electrocoagulation: Removal
mechanism, adsorption models and factors influencing removal. Water Res. 2020, 170, 115362. [CrossRef] [PubMed]

88. Nyangi, M.J.; Chebude, Y.; Kilulya, K.F.; Andrew, M. Simultaneous removal of fluoride and arsenic from water by hybrid Al-Fe
electrocoagulation: Process optimization through surface response method. Sep. Sci. Technol. 2021, 56, 2648–2658. [CrossRef]

89. Chen, X.; Ren, P.; Li, T.; Trembly, J.P.; Liu, X. Zinc removal from model wastewater by electrocoagulation: Processing, kinetics and
mechanism. Chem. Eng. J. 2018, 349, 358–367. [CrossRef]

90. Genawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium removal from tannery wastewater by electrocoagulation:
Optimization and sludge characterization. Water 2020, 12, 1374. [CrossRef]

91. Othmani, A.; Kadier, A.; Singh, R.; Igwegb, C.A.; Bouzid, M.; Aquatar, M.O.; Khanday, W.A.; Bote, M.E.; Damiri, F.; Gökkuş, Ö. A
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