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Sex differences in allometry for phenotypic
traits in mice indicate that females are not
scaled males

Laura A. B. Wilson 1,2 , Susanne R. K. Zajitschek 1,3, Malgorzata Lagisz1,
Jeremy Mason 4,5, Hamed Haselimashhadi5 & Shinichi Nakagawa 1

Sex differences in the lifetime risk and expression of disease are well-known.
Preclinical research targeted at improving treatment, increasing health span,
and reducing the financial burden of health care, has mostly been conducted
on male animals and cells. The extent to which sex differences in phenotypic
traits are explained by sex differences in body weight remains unclear. We
quantify sex differences in the allometric relationship between trait value and
body weight for 363 phenotypic traits inmale and femalemice, recorded in >2
million measurements from the International Mouse Phenotyping Con-
sortium. We find sex differences in allometric parameters (slope, intercept,
residual SD) are common (73% traits). Body weight differences do not explain
all sex differences in trait values but scaling by weight may be useful for some
traits. Our results show sex differences in phenotypic traits are trait-specific,
promoting case-specific approaches to drug dosage scaled by body weight
in mice.

A historic use of male animals in preclinical research and male par-
ticipants in clinical trials has resulted in a significant bias in health-
care systems around the world1. The knowledge available on many
diseases, their manifestation, time course and the efficacy of treat-
ment options, is highly skewed in favour of males. The need to reach
parity of the sexes in biomedical research and to conduct sex-specific
analysis of research results has been widely acknowledged2–6. Efforts
to address this issue resulted in legislative changes around clinical
research, requiring female participants in government-funded clin-
ical trials (e.g.,7–9). Modest improvement to rebalancing representa-
tion of the sexes in clinical trials10–12 has been bolstered by recent
revisions to government guidelines in the US for preclinical research,
requiring biological sex to be included as a study variable13.

Preclinical research on mice, one of the most common animal
models for investigating human disease14,15, is fundamental for
informing clinical research. These data illuminate clinically relevant

pharmacological processes and enable the testing of treatment effects
thatwould raise ethical and safety issues in humans15.With the growing
recognition of the importance of sex in biomedicine, a sharper focus
on the topic in data from mice has revealed that some of the initial
assumptions and concerns surrounding use of female animals in pre-
clinical research, such as their propensity for greater variation asso-
ciated with the oestrous cycle, lack empirical support2,16–18.

Building on empirical studies that have sought to establish the
nature of sex differences in biomedicine and to clarify the assump-
tions surrounding preclinical research data collected on males and
generalised to females2,18–20, we here use an allometric framework
and large phenotype data set to tackle the unresolved issue of
whether sex differences in phenotypic traits in mice may be
explained by sex differences in body weight. The extent to which
body weight may eliminate the statistical significance of sex as an
independent variable remains unclear21, yet is material to debate
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surrounding how reductions in health disparities may be effectively
targeted. Data on allometric scaling relate to one of the most salient
aspects of sex differences, those concerning adverse drug reactions
(ADRs). Compared to men, women experience ADRs almost twice as
often22, with the same therapeutic dose often being prescribed to
both sexes23. Defining the allometric relationship between pheno-
typic trait and body weight for males and females is required to
better understand whether this relationship is upheld across diverse
traits and whether most observed differences are due to scaling. This
will help inform whether the majority of sex-specific ADRs might be
resolved by implementing weight-adjusted doses and, if not, whether
the use of weight-adjusted dosing may be helpful in some circum-
stances at reducing sex-specific ADRs.

Studies have established that thenature ofdisease experience and
benefits of treatment differ betweenmen and women24–29, and that for
many systems the observed sex differences in traits relate to differ-
ences in underlying processes rather than sex differences in body size.
These differences manifest in major pillars of healthcare, impacting
cost associated with care and its quality30. For example, the broadly
divergent behaviour of male (anti-inflammatory) and female (pro-
inflammatory) immune systems translates to antibody response
variability, with some vaccines resulting in a stronger immune
response in men compared to women31–34. Further, sex differences in
metabolism underlie more pronounced expression of metabolic syn-
drome disease (e.g., obesity) phenotypes in mice and rat models35.
These have been linked to fundamental regulatory differences in
metabolic homoeostasis, impacting energy partitioning and storage.
Pathophysiological differences between the sexes have also been
recognised in cardiology, such that diagnostic data extracted from
coronary angiograms are interpreted in a sex-specific manner36. In the
context of drug treatment, sex differences in pharmacokinetics, rela-
ted to absorption rates (e.g., gastric enzymes37), distribution
mechanisms (e.g., plasma binding capacity38), and metabolism (e.g.,
renal elimination capacity) result in men having lower free drug con-
centration and higher drug clearance compared to women38. Likewise,
sex differences in major aspects of renal function (e.g., glomerular
filtration rate39) mean that the effects of a drug on the body are also
different for men and women, which, together with pharmacokinetic
parameters, translates to differences in drug efficacy and toxicity22.
Extending across and beyond many of these systems in which sex
differences have been identified, we here provide empirical data on
static allometry across phenotypic traits that represent preclinical
parameters (e.g., immunology, metabolism, morphology) in a disease
model animal (mouse). We aim to clarify if, and the extent to which,
trait values formalemicemaybe scaled tomatch those of femalemice.

Here, we show that sex differences in body weight do not
explain all differences in phenotypic traits between male and female
mice, highlighting that sex differences in allometrymay impact study
outcomes in biomedicine. We adopt the framework of static allo-
metry, the measurement of trait covariation among individuals of
different size at the same developmental stage, following Huxley40,41

who proposed an equation to model simple allometry. This equation
expresses the growth of two traits, x and y, when regulated by a
common growth parameter: y = axb or equivalently, log y = log(a) +
b log(y), where the ratios between the components of the growth
rates of y and x correspond to intercept log(a) and a slope b42. We
quantify the relationship between phenotypic trait and body weight
in males and females, statistically evaluating scenarios that describe
the magnitude and patterning of sex differences across 363 traits in
over 2 million mice from the International Mouse Phenotyping
Consortium43 (IMPC, www.mousephenotype.org). We discuss these
data considering the discourse on the generalisation of male data in
preclinical research44, as well as their evolutionary implications,
leveraging a large, wildtype data set to illuminate trends in static
allometry. Consideration of the evolutionary context surrounding

sex differences may augment understanding of how disease state
phenotypes emerge or persist in a population45,46.

Results
Data characteristics
Following initial data cleaning and filtering procedures, the data set
comprised 363 phenotypic traits with a mean sample size of 2866 mice
per trait (n=2,080,767). Representation ofmales and femaleswas highly
similar across most phenotypic traits, with fewer than 15% of traits (53/
363) displaying greater than 5% difference in sample size between the
sexes. The traits were collated into nine functional groupings following
Zajitschek et al.18 (see “Methods”): behaviour (85 traits, n=440,491), eye
(40 traits, n=21,871), hearing (21 traits, n=273,715), heart (31 traits,
n=233,772), haematology (24 traits, n=291,214), immunology (99 traits,
n=92,130), metabolism (8 traits, n= 108,788), morphology (21 traits,
n=287,420), and physiology (34 traits, n=331,366).

The 363 phenotypic traits were further filtered for non-
independence of traits, so that p values were merged for traits that
were related to one another, resulting in a reduced data set of 219
traits, with a mean sample size of 3530 males and 3598 females
per trait.

Linear mixed-effects models for static allometry
Our linear mixed-effects models, which included sub-strain as a ran-
dom effect, indicated that 11 out of 219 traits (5%) (17/363 traits for
unmerged p values) are associated with scenario A (different slope,
same intercept, Fig. 1a, d); most of these traits belonged to immunol-
ogy and heart functional groups. Scenario B (same slope, different
intercept, Fig. 1b, e) was supported for 93/219 (42%) traits (154/363
traits for unmerged p values). For scenario C (different slope, different
intercept, Fig. 1c, f), 57/219 (26%) traits were categorised as consistent
(70/363 traits for unmerged p values), and the remaining 58/219 (26%)
traits showedno significant differences in slope and intercept between
males and females. Overall, when a statistically significant difference in
allometric pattern was present between the sexes, intercept differ-
ences appeared more common than slope differences (42% compared
to 5% traits), however both slope and intercept differences were also
common (26%). Just over a quarter of traits showed no significant
differences betweenmales and females, indicating that, formost traits,
sex differences in allometric patterning represent a significant source
of variation in trait values. All slopes presented as hypo-allometric with
slope values of <1.

Our comparisons of model fit for our applied model, including
sub-strain of mice as a random factor, and amodel without sub-strain,
indicated that accounting for sub-strain variation resulted in a sig-
nificantly greater fit of our model for 155 out of 248 traits (63%) in the
unmerged comparison. The functional groups with the greatest
number of traits with significant delta AIC values (δAIC), indicating
improved model fit when sub-strain was included as a random factor,
were heart (25/31 traits, 81%) and immunology (51/63 traits, 81%).
Model fit was significantly greater for 98 out of 154 traits (64%) in the
merged comparison.

Taken together, traits in all functional groups showed statistically
significant (α =0.05) sex differences. Slope differences between the
sexes (scenario A) and intercept differences between the sexes (Sce-
nario B) are most common in behaviour, immunology and physiology
groups. Traits exhibiting both slope and intercept differences between
the sexes (scenario C) were most commonly found in the behaviour,
physiology and haematology functional groups. Non-significant dif-
ferences in slope and intercept weremost common among traits in the
behaviour and eye functional groups.

Sex bias in allometric parameters
Values for sex bias represent the number of traits that showed
greater parameter value when male and female mice differed
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significantly. That is, we counted which sex displayed the greater
intercept, slope and higher magnitude of variance. Sex bias in the
slope and intercept values, in addition to the magnitude of var-
iance (residual SD), showed considerable variability across func-
tional groups, suggesting trait-specific patterning of sex
differences. For scenario A, representing traits with significant
differences in slope, most traits showed greater slope magnitudes
for males (n = 10 traits), rather than for females (n = 7 traits)
(Fig. 2a). For scenario B, females showed greater intercept mag-
nitudes for heart, morphology, immunology, and eye functional
groups (n = 91 traits), whereas males showed greater intercepts
for traits in physiology, metabolism, haematology, behaviour and
hearing functional groups (n = 63 traits) (Fig. 2b). Overall sex bias
(63 male traits: 91 female traits, Fig. 2b) was slightly greater for
intercept differences, compared to slope differences (10 male
traits: 6 female traits, Fig. 2a). Scenario C, which represents sig-
nificant slope and intercept parameter differences between the
sexes, was predominated by mixed bias across three out of nine
functional groups (n = 26 traits), indicating that traits most fre-
quently showed a mixture of directional differences in bias,
comprising a combination of male bias in one parameter (slope or
intercept) and female bias in the other parameter (slope or
intercept) (Fig. 2c). Immunology and hearing-related traits
represent an exception under scenario C, whereby traits with
significant differences between the sexes did not show a mixed
bias for slope and intercept values, consistent with few sex dif-
ferences among traits. Across functional groups, male bias is
slightly more common (5 groups) than female bias (4 groups) for
statistically significant sex difference in residual SD, indicating
that where traits show differences between the sexes, it is more
common for males to be more variable than females, than vice
versa (Fig. 2d) (152 male traits: 97 female traits).

Meta-analysis and meta-regression of sex differences in slope,
intercept and variance
Multi-level meta-analysis of absolute values in allometric slope
and intercept, and variance revealed significant differences
between the sexes (Fig. 3a–c). For overall comparisons
(Fig. 3a–c), the effect sizes ranged from significant (i.e., con-
fidence interval [CI] not overlapping with zero) point estimates of
0.089 [0.063–0.115, CI] (Fig. 3a) for sex differences in intercept to
0.152 [0.1.5–0.200, CI] (Supplementary Table 1) for differences in
residual SD (Fig. 3c). Across functional groups, there was varia-
bility in the magnitude of absolute difference between the sexes,
both within parameters (i.e., intercept) and across parameters.
For absolute differences in intercept, traits within the behaviour
functional group showed the greatest model point estimate dif-
ference between males and females (0.140 [0.115–0.166, CI]
(Supplementary Table 1). Effect sizes were significant for all
groups (Supplementary Table 1), except traits within the hearing
group, which showed the smallest magnitude of difference
(Fig. 3d), with a point estimate of 0.049 [−0.034 to 0.132, CI]
(Supplementary Table 1). For differences in slope, except for the
hearing group, all categories showed significant effect sizes
(Supplementary Table 1). The largest model point estimate dif-
ference was observed for immunology traits (0.037
[0.029–0.046, CI]), being almost four times greater than the
effect size for morphology traits (0.010 [0.002–0.017, CI])
(Fig. 3e, Supplementary Table 1).

For the relative difference in residual SD, the greatest effect
sizes were found for eye (0.292 [0.228–0.357, CI]) and immu-
nology traits (0.234 [0.184–0.283, CI]), between two and three
times greater than traits within the heart group, which showed
the lowest significant effect size (0.091 [0.038–0.145]) (Supple-
mentary Table 1). Hearing traits were most similar in SD values

a b c

ed f

Fig. 1 | Examples of scenarios of sex differences in the allometric relationship
between phenotypic trait and body weight. Top row shows a hypothetical
positive relationship between body weight (x-axis) and eye size (y-axis) and the
bottom row shows a negative relationship between body size and activity level (y-
axis). Body weights are scaled and centred so that the intercept is at the trait mean
represented by a grey dashed line. A series of scenarios are illustrated as follows.

a The sexes show different positive slopes but the same intercept. b Both sexes
have the same positive slope but different intercepts. c The sexes show different
positive slopes and different intercepts. d The sexes show different negative slopes
but the same intercept. e Both sexes have the same negative slope but different
intercepts. f The sexes have different negative slopes and different intercepts.
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between the sexes, having a non-significant effect size (0.087
[−0.04 to 0.216, CI]) (Fig. 3f, Supplementary Table 1). Overall,
across all parameters (intercept, slope, SD and model fit), con-
fidence intervals (CIs) for hearing traits were the only ones to
consistently overlap with zero, showing no statistically significant
difference between the sexes (Fig. 3d–f, Supplementary Table 1).
For traits within a given functional group, there was considerable
variability in the magnitude of difference between the sexes. For
sex differences in intercept, inter-trait variability was highest
within physiology, metabolism and behaviour groups (Fig. 3d),
whereas slope differences showed most inter-trait variability for
eye and behaviour traits (Fig. 3e). Relative difference in SD was
most variable among traits in the eye group (Fig. 3f).

Relationship between slope/intercept and residual variance
Our quad-variate meta-regressions and ordinations of the relation-
ships between slope, intercept and residual variance (Fig. 4) revealed
weak, non-significant, correlations between either slope or intercept
and residual variance (r = 0.07–0.14, Fig. 4a, b), indicating that a
greater magnitude of difference between the sexes in either slope or
intercept parameter is not strongly associated with greater trait
variance. In contrast, absolute differences between the sexes in slope
and intercept are strongly and significantly correlated (r = 0.82,
Fig. 4c), indicating that in cases where there are significant differ-
ences in trait values for males and females, should a difference in
intercept be present, this is likely accompanied by a difference in
allometric slope.
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Fig. 2 | Sex biases for phenotypic traits in mice, arranged in functional groups.
Sex bias represents a greater parameter value (slope, intercept, variance) in one sex
compared to the other. Colours represent significant differences in trait values
between the sexes (green = male biased, orange = female biased). The number of
traits that are either female biased (relative length of orange bars) or male biased
(relative length of green bars) are expressed as a percentage of the total number of
traits in the corresponding group. Numbers inside the green bars represent the
numbers of traits that show male bias within a given group of traits, values inside

the orange bars represent the number of female biased traits, and those inside the
purple bars represent a combination of female bias (for intercept or slope) and
male bias (for intercept or slope). a Differences between the sexes for slope.
b Differences between the sexes for intercept. c Differences between the sexes for
slopeand intercept, including traits withmixed (purple) significant differences (i.e.,
male-biased significant slope and female-biased significant intercept, or female-
biased significant slope andmale-biased significant intercept).d Bias in statistically
significant difference in variance (residual SD) between the sexes.
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Discussion
Most current medical guidelines are not sex-specific, being informed
by preclinical studies that have been conducted only on male
animals4,10,47 under the assumption that the results are equally applic-
able to females, or that the female phenotype represents a smaller
body size version of the male phenotype48,49. We find that 73% of traits
are dimorphic, either in slope, intercept or both slope and intercept,
and that among these 42% of traits show scaling differences between
male and femalemice. Scaling differences are not supported across all
phenotypic traits, indicating that body weight alone is not enough to
explain sexdifferences inphenotypic traits but that itmaybe useful for
some traits.

In an era where personalised medicine interventions are within
reach and patient-specific solutions represent a realisable frontier in
healthcare (e.g.,50–52) it is now well recognised that sex-based data are
much needed to advance care in an equitable and effectivemanner. As
studies that illuminate the presence and importance of sex differences
continue to emerge, many experimental set-ups that use both sexes
continue to eschewdownstreamtesting for sexdifferences, in part due
to perceived inflation of sample size required for such analyses48,53–55.

Explicit male-female comparisons are needed to clarify the nature
of sex differences47,56. Herewe address this issue through a novelmeta-
analytical focus on identifying and characterising allometric scaling
relationships for biological traits on a broad scale. Our meta-analytical
results recover significant effect sizes for sex differences in slope,
intercept and residual SD across all functional groups, with the only
exception being for traits assigned to the hearing group, which are
similar (CI overlapping zero) for males and females across all allo-
metric parameters analysed (Supplementary Table 1, Supplementary
Data 1, Supplementary Data 2). Standardised mean differences (SMD,
or Cohen’s d) indicated amediumeffect size of sex difference for 9%of
traits (33/363), mostly within behaviour, eye and physiology groups,
and a large effect size for 7% of traits (25/363), mostly among beha-
viour, metabolism, morphology and physiology groups (Supplemen-
taryData 2). An additional 29% (106/363) of traits, distributed across all
functional groups, showed a small effect size (SMD>0.2), and the
remaining traits had an SMD value of below 0.2 in magnitude (Sup-
plementary Data 2). We identify slope parameter (b) differences
between the sexes and find these aremostly associatedwith significant
differences in intercept value (Fig. 4c). Where a significant difference
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Fig. 3 |Orchardplots illustrating resultsofmultivariatemeta-analysis.Orchard
plots show model point estimate (black open ellipse) and associated confidence
interval (CIs) (thick black horizontal line), 95% prediction intervals (PIs) (thin black
horizontal line; PI represents heterogeneity), and individual effect sizes (filled
circle), which are scaled by their sample size (N), the number of mice included per
trait. The number of effect sizes (number of phenotypic traits) is represented by k.
a Overall difference between male and female absolute values for allometric

intercept. b Overall difference between male and female absolute values for allo-
metric slope. c Overall difference between male and female values for residual
variance (SD). d Difference between male and female values for allometric inter-
cept, separated by functional group. eDifference betweenmale and female values
for allometric slope, separated by functional group. fDifference betweenmale and
female values for residual variance (SD), separated by functional group.
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Fig. 4 | Bivariate ordinations of log absolute difference between males and
females for allometric variables. Plots show biological traits collated into nine
functional groups (i.e., trait types, represented as different circle colours). Indivi-
dual effect sizes (circles) are scaled by their sample size (N), the number of mice

included per trait. a Relationship between allometric intercept and residual SD.
b Relationship between allometric slope and residual SD. c Relationship between
allometric slope and intercept.
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betweenmale and female slope is present, 38% of slopes are steeper in
females and62%of slopes are steeper inmales (SupplementaryData 1).
Where females have steeper slopes, ignoring the difference in slopes
between the sexes would result in missing between 0.3–32.6% of trait
variance (average = 8.9%) in those traits, mostly belonging to physiol-
ogy and behaviour and eye groups (Supplementary Data 1). Similarly,
where males have steeper slopes, ignoring the difference in slopes
between the sexes would fail to capture 0.3–46.1% of variance in those
traits, most markedly for morphology, haematology and heart groups
(Supplementary Data 1).

We demonstrate that the relationship between trait and body
mass in mice differs fundamentally in mode (i.e., change in inter-trait
covariance) between the sexes and that dimorphism cannot be fully
explained by a magnitude shift in intercept value, as would be pre-
dicted should female phenotype represent a scaled version of male
phenotype. For traits where there are significant differences in both
slope and intercept between the sexes, it is common for a mixed
scenario (male-biased significant slope and female-biased significant
intercept, or female-biased significant slope and male-biased sig-
nificant intercept) to occur (26%), meaning a female value cannot be
predictedbasedon an allometric coefficient extracted fromregression
data collected on males. Further, we find a male bias in residual SD,
indicating greater variance in males, for traits in morphology, immu-
nology, haematology, heart, and hearing functional groups (5 out of 9
functional groups).

Our findings of trait-specific allometric patterns complement
recent evidence that supports a complex, trait-specific patterning of
sex differences in markers routinely recorded in animal research18,20,57.
Previous studies using phenotypic traits from the International Mouse
Phenotyping Consortium have identified that sexual dimorphism is
prevalent among phenotyping parameters20, and moreover that, con-
trary to long-held assumption, neither females normales show greater
trait variability.

We asked the question of whether all or some sex differences in
phenotypic traits are due to differences in body weight, which has
implications for drug therapy, and specifically data surrounding the
efficacy of drug dosing scaled by body weight.

There exist known sex differences in drug prescription pre-
valence and usage patterns, as well as response to drug therapy58,59.
The same therapeutic regimen can elicit different responses due to
sex-specific variance in pharmacokinetics and pharmacodynamics
profiles (e.g.,60,61), arising from underlying physiologic differences.
These include, for example, significantly dimorphic traits captured
among the physiology group in our analysis, such as iron62 andbody
temperature63, among the morphology group, such as lean mass
and fat mass58, and among the heart functional group, such as QT
interval (time between Q wave and T wave)64. Further, women are
50–75%more likely to experience AdverseDrugReactions (ADRs)65,
although these are not fully explained23. Women may be at
increased risk of ADRsbecause they areprescribedmoredrugs than
men, howeverwomen are usually prescribeddrugs at the samedose
as men, meaning that they receive a higher dose relative to body
weight inmost cases. Scalingof doses on amilligram/kilogrambody
weight basis has been recommended as a pathway to reducing
ADRs22, particularly for drugs that exhibit a steep dose–response
curve66. Indeed, sex differences in ADRs have been argued to be the
result of bodyweight rather than sex, per se21. For both assertions to
be supported, we would expect to observe a scenario (here, sce-
nario B) whereby most or all phenotypic traits exhibit a scaled
relationship between males and females, as a function of body
weight.

Our results indicate that 42% traits follow scenario B, with many
traits (26%) also supporting a sex- and trait-specific relationship
between weight and phenotypic trait. This aligns with evidence that
weight-corrected pharmacokinetics are not directly comparable in

men and women22,67, and that many sex differences in ADRs persist
after body weight correction68,69. Nevertheless, the Food and Drug
Administration (FDA) has recommended dosage changes for women
(e.g., sleep drug zolpidem70) and weight-adjusted dosing of some
drugs, such as antifungal drugs and antihypertensive drugs, which
appear to ameliorate sex differences in pharmacokinetics71,72. Our
results are consistent with support for scaling in some circumstances,
the greatest number of these traits occur in the immunology and heart
groups, which contain parameters most closely relevant to pharma-
cokinetic and pharmacodynamic factors. Whilst acknowledging that
there are known cases where mouse models are unable to capture the
human response to therapeutic drugs (e.g., cancer treatment73), we
suggest traits in scenario B as candidates for further investigation in
weight-adjusted dosing. If weight-adjusted dosing is supported based
on intercept scaling (scenario B), the extent to which variation in the
allometric relationship may reduce the efficacy of such an approach
also requires consideration. This is measured by model fit in our ana-
lyses, whereby greater model fit equates to more of the variance in
phenotypic traits for males and females being explained by body
weight. For those traits that scale (scenario B), the most useful candi-
dates for dose-scaling are therefore likely to be captured by those
traits with the highest model fit (Zr, transformed from R2 marginal)
(Supplementary Fig. 2). These include morphological traits such as
organ mass (R2 marginal = 0.82) and lean mass (R2 marginal = 0.71), as
well as physiological and metabolic traits associated with lipid and
glucose parameters (e.g., HDL cholesterol, R2 marginal = 0.60; area
under glucose response curve, R2 marginal = 0.50). Traits with lower
model fit may scale, but a considerable amount of variance in the
phenotypic trait is not explained by body weight, therefore scaling
may not achieve the desired clinical outcome. Traits within scenario B
that meet this criterion are most frequently found in the eye, mor-
phology and physiology groups.

We suggest that where there exists an association between sex
and dose, dose–response curves are likely to be sex-specific and clar-
ification of this relationship would be supported (e.g., using meta-
analysis74). Since many drugs are withdrawn from the market due to
risks of ADRs in women, meta-analytic approaches to illuminating sex-
specific dose–response curves represents a viable opportunity to
reducing the number of ADRs and reaching an important target set by
precisionmedicine75. We further note that behavioural factors, such as
differences in health-seeking behaviours and prescription patterns,
may relate to a higher prevalence of use for most therapeutic drugs in
women as compared to men59,76, and are not captured by our data
on mice.

Established as a foundational descriptor of morphological varia-
tion at ontogenetic, population and evolutionary levels77,78, allometry
may channel phenotypic variation in fixed directions, defining scaling
relationships that persist across large evolutionary timescales. For
example, craniofacial variation amongmammals has been observed to
be constrained by allometry, such that small mammals have shorter
faces than do larger ones79. Conversely, allometry may facilitate mor-
phological diversification, acting as a line of ‘evolutionary least resis-
tance’, allowing for new morphotypes to originate relatively rapidly
among closely related species42,80. These pathways (allometric con-
straint vs allometric facilitation) may be a start point for exploring
how sex differences in disease phenotypes arise, data that have
been cited as a potential unexploited resource relevant for the devel-
opment of new therapies81. Studies of static allometry, as examined
herein, have revealed low levels of intraspecific variation in allometric
slope, which explains only a small proportion of variation in size82,
compared to variation in allometric intercept83. Moreover, traits under
sexual selection have also revealed low magnitudes of allometric
slope change under artificial selection experiments84 and in wild
populations85, whereas intercept changes appear clear and heritable.
Features of the developmental system have previously been
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considered to act as an internal constraint40,86, whereas more recent
interpretations suggest that external constraint (selection) more likely
acts to maintain slope invariance at the static level42, which is con-
sistent with data showing that variation occurs instead at the ontoge-
netic level, i.e. growth rate and ontogenetic allometric slope are
evolvable (e.g.,87–89). Broadly consistent with other static allometric
studies, we find that where differences in allometry are present, sig-
nificant intercept shifts alone are more common than are significant
slope shifts (Fig. 2a compared to 2b). Aside from the evolutionary
implications—that allometric slope likely does not have a high evol-
vability, or capacity to evolve—many of the traits examined here may
show a low level of sex difference in slope because the sexes are both
experiencing the same selective pressure to maintain functional size
relationships across different body sizes.

Our meta-analytic results build a narrative of complexity in sex-
based trait interactions and promote a case-specific approach to pre-
clinical research that seeks to informdrugdiscovery, development and
dosage. Using a model that includes sub-strains of mice, across a
diverse set of phenotypic traits we show that differences in body
weight are not sufficient to explain sex differences in trait values, but
scaling differences are common and body weight scaling may be
helpful in some traits. Our results evidence the plasticity of static
allometry, revealing a pathway for sex variation in phenotypic traits
that may be generalisable beyond Rodentia and underlie the pattern-
ing of phenotypic space on a broader scale. Sex differences in allo-
metry may likely influence study outcomes in biomedicine.

Methods
Data compilation and filtering
We conducted all data procedures, along with statistical analyses, in
the R environment v. 4.1.390 (data set and scripts available on
Zenodo91). We compiled our data set from the International Mouse
Phenotyping Consortium (IMPC) (www.mousephenotype.org, IMPC
data release 10.1 June 2019), accessed in October 2019. These repre-
sent traits recorded in a high-throughput phenotyping setting
whereby standard operating procedures (SOPs) are implemented in a
pipeline concept. The phenotypic traits represent biomarkers used for
the study of disease phenotypes (see ref. 20), collated into the fol-
lowing nine functional groups: behaviour, eye, hearing, heart, hae-
matology, immunology, metabolism, morphology, and physiology,
which are the IMPC’s original categorisation (also previously used in
Zajitschek et al.18). These groupings were assigned in relation to the
description of the procedure undertaken for data point collection and
following the categorisation of pipeline events at adult stage, detailed
in the International Mouse Phenotyping Resource of Standardised
Screens (IMPReSS, https://www.mousephenotype.org/impress/index).
Sex was operationalized using a standard operating procedure for all
live pups, consistent across all data, and part of the primary viability
screen in the pipeline. Mice were sexed based on the morphology of
the external genitals.

For the initial data set, data pointswere collated for adult wildtype
mice only, filtering to include non-categorical phenotypic trait values
for which covariate information on sex and body weight were avail-
able. Note that all mice were from the C57BL/6 strain, but they come
from seven sub-strains. This initial data set comprised of 2,866,345
data points for 419 traits. A series of data cleaning procedures were
implemented to remove data points with missing body weight, zero
values for a phenotypic trait and duplicated specimen IDs. Data fil-
tering was conducted using the R package dplyr v.1.0.792. The resulting
data set comprised 2,118,370 data points for 379 phenotypic traits, all
of which had corresponding body weight data, enabling us to estimate
an allometric relationship between a trait of interest and body weight.
Of these, 89 traits (24%) were on the interval scale, and were therefore
adjusted to be on the ratio scale. For each phenotypic trait, we had the
following variables (covariates): phenotyping centre name (location

where experimental data were collected), external sample ID (animal
ID), metadata group (identifier for experimental conditions in place
during the experiment), sex (male/female), weight (body weight in
grams), weight days old (day on which weight was recorded), strain
name (identifier character for sub-strains of mice), procedure name
(description of the experimental procedure as in IMPReSS), parameter
name (description of the recorded parameter as in IMPReSS), and data
point (phenotypic trait measurement—response variable).

Linear mixed-effects model for static allometry
The static form of allometry, the covariation of a trait with size as
measured across a population of adults within a single species78, was
quantified using a linear mixed-effects model approach93. Within this
framework, the relationship between phenotypic trait value and body
weight, accounting for random effects associated with sub-strain,
assignment to a metadata group and batch (defined as the date when
the measurements are collected), was quantified for each of the 379
traits. We use body weight as opposed to adiposity (trait ~ fat mass)
because, although there are sex differences in prevalence of obesity94

which may limit body weight differences between males and females,
body mass is the clinical measure used in studies assessing drug
dose–response and collected in healthcare settings. Models were
constructed using the function lme in the R package nlme v. 3.1-15395

and applied to each phenotypic trait separately. We applied a grand-
mean centring (gmc) to the continuous predictor (i.e., weight); in this
way, the intercepts (x = 0) for each sex provide the predicted value for
a female or a male of similar weight. The applied model was:

log (data point) ~ gmc(log (weight)) * sex + (1 | batch) + (gmc(log
(weight)) | metadata group) + (gmc(log (weight)) | sub-strain)

The random factor ‘batch’ labelled a cohort of mice that went
through a procedure on the same day (see ref. 20), ‘metadata group’
represented occasions when procedural parameters were changed
(e.g., different instruments, different observers and different settings)
and strain represents the strain identifier (e.g., C57BL/6N) for each
mouse. These three random factors along with the ‘weight’ random
slopes would reduceType I errors due to clustering96. Also, to estimate
different residual variances between the two sexes, we modelled
group-wise heteroscedasticity structure, which was defined using the
lme function’s argumentweights = varIdent (form= ~1 | sex).Weparsed
a custom function to apply this model using conditional statements to
account for situations where the random factor (sub-strain or meta-
data group) has only one unique term (e.g., data for trait ‘tibia length’
comprised only of strain C57BL/6N). In other words, some traits had
only one sub-strain or one metadata group, and in such cases we did
not fit the corresponding random effect. This procedure resulted in a
final data set of 2,080,767 and 363 traits (i.e., the model did not con-
verge for several traits, which were excluded from the subsequent
analysis).

For each phenotypic trait, model parameters (regression coeffi-
cients and variance components) were extracted, using R package
broom.mixed v.0.2.797, for males and females (slope, intercept, stan-
dard error, SE of slope, SE of intercept, R2 marginal, R2 conditional and
residual variance) and corresponding p values for regression coeffi-
cients were extracted to assess the significance of sex differences in
slope and intercept. Because the lme function did not provide statis-
tical significance for differences in residual variances (standard
deviations, SDs), we used the method developed by Nakagawa et al.98

or the logarithm of variability ratio, which compares the difference in
SDs between two groups to obtain p values for residual SD differences
(see also Senior et al.99).

We were aware that some of the 363 studied traits were strongly
correlated (i.e., non-independent: e.g., traits from left and right eyes
and immunological assays with hierarchically clustering and over-
lapping cell types). Therefore, we collapsed p values of these related
traits into 219 p values, using the procedure (grouping related traits or
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trait grouping) performed by Zajitschek et al.18. We employed Fisher’s
method with the adjustment proposed by Li and Ji100 implemented in
the R package, poolr101, whichmodelled the correlation between traits;
we set this correlation to 0.8.

To assess the extent to whichmouse sub-strain explains variation
in our model, we wrote a custom function to compare our above
applied model, including sub-strain as a random factor, with a model
that excluded sub-strain. We extracted the difference (delta, δ) in
model fit, measured using Akaike Information Criterion (AIC), and the
associated p value for all traits that contained more than one sub-
strain, included in both the applied model and themodel without sub-
strain (248 traits).We further applied the above approach of removing
non-independent traits and collapsing p values (see ref. 18) for related
traits, to create a reduced data set (154 traits), and conducted the same
model comparisons using δAIC.

Static allometry hypotheses and sex bias in allometric
parameters
Using parameters extracted from the above models, three scenarios
were assessed (see Fig. 1), describing the formof sex differences in the
static allometric relationship between phenotypic trait value and body
weight. For a given trait, these were: (a) males and females have sig-
nificantly different slopes but share a similar intercept (Fig. 1a, d), (b)
males and females have significantly different intercepts but share a
similar slope (Fig. 1b, e), (c) males and females have significantly dif-
ferent slopes and intercepts (Fig. 1c, f). In addition, we assessed how
many traits were significantly different in residuals SDs between the
sexes. For these classifications, we used both p values from 363 traits
and 219 merged trait groups.

For scenarios A–C, which represent significant differences
between male and female regression slope and/or intercept para-
meters and cases where sex differences in SDs were significant, data
were collated into functional groupings (as listed above) to assess
whether, and to what extent, sex bias in parameter values and variance
was present across phenotypic trait values. That is, when males and
females differed significantly, we counted which sex displayed the
greater parameter value (intercept, slope) and, separately, we also
tallied the sex with the higher magnitude of variance. Results were
pooled for phenotypic traits within a functional group and visualised
using R package ggplot 2v. 3.3.5102 for scenarios A–C, resulting in one
set of comparisons for parameter values, and one for variance (SD)
values. We should highlight that we only used the data set with 363
traits because the directionality of some trait values became mean-
ingless once traits were merged, although merged p values were
meaningful as p values are not directional (e.g., spending time in light
side or dark side).

Meta-analysis of differences in slopes, intercepts and residual SD
Wewere aware that our classification approachusingp values is akin to
vote counting, which has limitations103. Therefore, we conducted for-
mal meta-analyses using the following effect sizes: (1) difference
between intercepts (traits mean for males and females on the natural
log scale), (2) difference between slopes (on the log-log scale), and (3)
differences between residuals SDs used corresponding SE or, more
precisely, the square of SE as sampling variance (the details of this
effect size can be found elsewhere98,99). The first two effect sizes and
their sampling error variance are obtained as regression coefficients
and their error variance from the mixed model described above. We
note that the difference between male and female intercepts are
equivalent to the log response ratio (lnRR)104 that shows relative dif-
ference between the two groups (note the intercept difference sig-
nifies the difference when males and females are at the average
population weight). Because both types of effect sizes are on the scale
pertaining to the natural logarithm, they can be compared across
different traits. In addition, we calculate Cohen’s d, a common

estimator of standardised mean difference (SMD) for each trait, along
with lnRR. SMD was calculated to illustrate the magnitude of the dif-
ference in mean trait value for males and females, adopting the stan-
dardbenchmarks of SMD values for small effect = 0.2,mediumeffect =
0.5 and large effect = 0.8 SMD (or d).

Our main interest in this study was whether males and females
were different in intercepts, slopes and residuals SDs irrespective of
effect size directionalities. Therefore, we conducted meta-analyses of
magnitudes applying the transformation to the mean and sampling
variance, which assumes to follow folded normal distribution (eq. 8105),
by using the formulas below:

ESfolded = SE

ffiffiffiffi

2
π

r

exp � ES2

2SE2

 !

+ ES 1� 2Φ � ES
SE

� �� �

ð1Þ

SE2folded = ES
2 + SE2 � ES2folded ð2Þ

where Φ is the standard normal cumulative distribution function and
ESfolded and SEfolded are, respectively, transformed effect size (point
estimate) and sampling variance, while ES and SE are corresponding
point estimate and sampling variance before transformation. In addi-
tion to these three effect sizes, we also meta-analysed another effect
size, which is the model fit quantified by marginal R2 (variance
accounted for by fixed effects; in our case, weight, sex and their
interaction). The marginal R2 values were squared-root transformed
into correlation values, which are akin to the corelation between
observed trait values and model predicted values (based on fixed
effects). Then, we transformed this correlation value to Fisher’s Zr so
that we could calculate sampling variance based on sample sizes
(see Supplementary Material for results).

Morrissey105 has shown that meta-analytic means using such a
folding transformation (absolute valued effect sizes) are hardly biased.
Therefore, these transformed variables were directly meta-analysed
using the rma.mv function in the R package, metafor106. The intercept
models (meta-analyticmodel) had three random factors: (1) functional
group, (2) traits group and (3) effect size identifier (which is equivalent
to residuals in a meta-analytic model107), while in the meta-regression
models, we fitted functional group as a moderator (see Fig. 3). The
model structures for all the three effect sizes were identical. We
reported parameter estimates and 95% confidence intervals, CI and
95% prediction intervals, PI, which were visualised as orchard plots
(similar to a violin plot108) using the R package, orchaRd109. In a meta-
analysis, 95% PI represents the degree of heterogeneity as well as a
likely range of an effect size for a future study. We considered the
estimate statistically significant when 95% CI did not span zero.

Correlations among differences in slopes, intercepts, residual
SDs and model fits
We also quantified correlations among the four effect sizes, using a
Bayesian quad-variate meta-analytic model, implemented in the R
package, brms110. We fitted functional grouping as a fixed effect and
trait groups as a random effect using the function, brm. Notably, we
have log transformed ESfolded and Zr and also transformed SEfolded and
SE for Zr using the delta method (e.g.,111), accordingly, before fitting
effect sizes to the model. We imposed the default priors for all the
parameter estimated with the settings of two chains, 1000 warm-ups
and 4000 iterations. We assessed the convergence of the chains by
Gelman-Rubin statistic112, which was 1 for all chains (i.e., meaning they
were all converged) and we also checked all effective sample sizes for
posterior samples (all were over 800). We reported mean estimates
(correlations among the three effect sizes and model fits) and 95%
credible intervals (CI) and if the 95% CI did not overlap with 0, we
considered the parameter statistically significantly different from 0.
Quad-variate regressions for Zr are provided in the Supplementary
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Material, to illustrate the range and magnitude of the allometric fit
across functional groups, and in relation to slope, intercept and SD
values (Supplementary Note 1, Supplementary Fig. 1, Supplemen-
tary Fig. 2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data generated in this study have been deposited on
GitHub (https://github.com/itchyshin/mice_allometry). The data used
in this study are available on the Zenodo database (https://doi.org/10.
5281/zenodo.7336162)91. Data were compiled from International
Mouse Phenotyping Consortium (IMPC) (www.mousephenotype.org,
IMPC data release 10.1 June 2019).

Code availability
AnRMarkdownfilewith instructions and the completeworkflow for all
analyses is provided in the supporting information, available at https://
itchyshin.github.io/mice_allometry/.
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