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Reinforcement learning (RL) has shown superior performance in solving

sequential decision problems. In recent years, RL is gradually being used to

solve unmanned driving collision avoidance decision-making problems in

complex scenarios. However, ships encounter many scenarios, and the

differences in scenarios will seriously hinder the application of RL in collision

avoidance at sea. Moreover, the iterative speed of trial-and-error learning for RL in

multi-ship encounter scenarios is slow. To solve this problem, this study develops

a novel intelligent collision avoidance algorithm based on approximate

representation reinforcement learning (AR-RL) to realize the collision avoidance

of maritime autonomous surface ships (MASS) in a continuous state space

environment involving interactive learning capability like a crew in navigation

situation. The new algorithm uses an approximate representation model to deal

with the optimization of collision avoidance strategies in a dynamic target

encounter situation. The model is combined with prior knowledge and

International Regulations for Preventing Collisions at Sea (COLREGs) for optimal

performance. This is followed by a design of an online solution to a value function

approximation model based on gradient descent. This approach can solve the

problem of large-scale collision avoidance policy learning in static-dynamic

obstacles mixed environment. Finally, algorithm tests were constructed though

two scenarios (i.e., the coastal static obstacle environment and the static-dynamic

obstacles mixed environment) using Tianjin Port as an example and compared

with multiple groups of algorithms. The results show that the algorithm can

improve the large-scale learning efficiency of continuous state space of dynamic

obstacle environment by approximate representation. At the same time, theMASS

can efficiently and safely avoid obstacles enroute to reaching its target

destination. It therefore makes significant contributions to ensuring safety at

sea in a mixed traffic involving both manned and MASS in near future.

KEYWORDS

autonomous ship, collision avoidance, deep reinforcement learning, approximate
representation, continuous state space
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1 Introduction

Maritime transportation is often deemed as the foundation

of international trade and economy. For decades, research on

ship navigation safety has therefore been growing with regards to

both classical hazards and emerging risks brought by new

technologies such as maritime surface autonomous ships

(MASS). Although the occurrence frequency of marine

accidents has decreased with the development of an integrated

bridge system, navigation-related marine accidents still result in

catastrophic consequences today including those arising from

human factors (Zhang et al., 2021). It is particularly worrisome

when fast powered vessels approach to or pass through inland

waterways and/or busy waters (e.g. ports), there are new

collision risks of different degrees involving the give ways by a

ship (Mou et al., 2010). Furthermore, it becomes more

complicated when fishing vessels are concerned as they

sometimes overlook the International Regulation for the

preventing Collision at Sea (COLREGs) (Yi, 2015). To address

such concerns, it is necessary and beneficial to develop an

intelligent collision avoidance decision-making system to

enhance safety during navigation.

Within this context, most academic research efforts are put

forward to develop intelligent collision avoidance decision

methods by using various algorithms. The approaches are

generally divided into rule-based, soft computing, and

learning-based categories. The most representative rule-based

algorithms are finite state machines and rule bases. Wang et al.

(2021) proposed a local collision avoidance algorithm for

unmanned surface vehicles (USVs), which is composed of

collision risk assessment, steering occasion determination, and

navigation waypoint update. These three parts are solved by

finite state machines. Yu et al. (2021) incorporated key dynamic

risk factors into a rule-based Bayesian Network approach to

model ship and offshore installations collision risk. The dynamic

collision avoidance knowledgebase including procedural

knowledge, the knowledge of the facts based on a database

technology, and the knowledge of the cause and effect analysis

of ship collision, has been consolidated into the effects of

Personifying Intelligent Decision-making for Vessel Collision

Avoidance (Li et al., 2010). Although the rule-based algorithm

has clear logic, strong visibility, and stability, it leads to

inconsistent vessel behavior due to the condition of state

cutting. It is easy to have the overlaps between the triggering

conditions of a behavior, resulting in system failures. Further,

there are bottlenecks in the processing of complex working

conditions and the improvement of algorithm performance

(Tam et al., 2009; Wang et al., 2022). To solve these problems,

many scholars have proposed soft computing methods, such as

genetic algorithm (Tsou et al., 2010), velocity Obstacle (Wang

et al., 2020), fuzzy logic (Fiskin et al., 2021), geometric

calculation (Ding et al., 2021), and model predictive control
Frontiers in Marine Science 02
(Yuan and Gao, 2022). However, these soft computing methods

have exposed their limitations in the MASS collision avoidance

applications, among which is the difficulty of tackling new

collision avoidance risks due to lack of scene adaptability after

a MASS attempt to avoids multiple ships successively

(Burmeister and Constapel, 2021).

In recent years, with the rapid development of artificial

intelligence technology, the learning-based algorithms attract

increasing attention in autonomous navigation and decision-

making systems (Huang et al., 2020; Ferreira et al., 2022; Rødseth

et al., 2022). According to different principles, such systems are

divided into decision-making methods related to deep learning

(Chen et al., 2020; Grigorescu et al., 2020) and the interactive

learning theory or reward mechanism (Gao et al., 2018; Gao

et al., 2021). Within the context of MASS, some scholars used

deep learning for autonomous ship collision avoidance

parameter training (Chen et al., 2021), ship behavior

prediction (Murray and Perera, 2021) and trajectory

prediction (Liu et al., 2022). Meanwhile, the others have begun

to construct anthropomorphic and human-like intelligent

collision avoidance decisions based on reinforcement learning

(RL). By considering scene dimension reduction and

segmentation, an intelligent collision avoidance decision model

for autonomous ships is constructed based on deep

reinforcement learning (DRL) to realize safe navigation and

obstacle avoidance in an uncertain environment (Zhang et al.,

2019). Xu et al. proposed a path planning and dynamic collision

avoidance algorithm based on deep reinforcement learning for

unmanned surface vehicles (USVs), subject to COLREGs (Xu

et al., 2022). Xie et al. (2020) combined the long short-term

memory neural network (LSTM) inverse model-based controller

and the model-free A3C policy, to achieve ship collision

avoidance under unknown environments. An automatic

collision avoidance algorithm was proposed by combining the

LSTM and RL in continuous action spaces (Sawada et al., 2021).

However, deep learning has, upon the authors’ best knowledge,

yet been applied for end-to-end adaptive navigation, largely due

to the difficulty by the complex and changeable marine

environment. The use of the RL algorithm to learn the anti-

collision of autonomous ships, is at large presented in a

discrete space.

In addition, other problems such as poor initial performance

and slow convergence speed on DRL-based autonomous

planning and decision-making are also revealed in the related

research. Zhao et al. (2020) propose a novel DRL model which is

composed of an actor, an adaptive critic, and a routing

simulator. The adaptive critic is mainly to accelerate the

convergence rate and improve the solution quality for

autonomous vehicle. For unmanned aerial vehicles (UAVs)

trajectory planning, a navigation reward and a navigation

effort are fusion for a novel reward function, to improve DRL

convergence speed (Li et al., 2022). In addition to changing the
frontiersin.org
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network structure similar to the above two literatures, another

popular approach is to introduce transfer learning, domain

transfer and knowledge transfer included, which improves the

DRL network training effect by reducing the random probability

of state transition and increasing the sampling speed (Shi et al.,

2021; Li et al., 2021). However, in the maritime sailing

environment, the change of a scene domain is extremely

inconspicuous. Existing work dedicated to cross-task transfer

in autonomous systems is only designed for homogeneous

scenario or similar scene domains. To address them, this

paper aims to develop an approximate representation

reinforcement learning collision avoidance (AR-RLCA)

method for collision avoidance of MASS at a continuous state

space. The research adopts the solution method of function

approximation with parametric value given by prior knowledge.

The main contributions of this work are summarized

as follows.
Fron
(1) We discuss continuous state space collision avoidance,

pointing out mainly challenges in the development of

the DRL based collision avoidance decision-making

method.

(2) Aiming at the discussed problem, a novel DRL method

with prior knowledge based approximate representation

is proposed. This method provides DRL collision

avoidance decision-making with a workable direction.

(3) We design a novel online solution method to the

parametric approximation model based on gradient

descent. Moreover, the coastal static obstacle

environment and the static-dynamic obstacles

environment experiments are conducted to validate

the AR-RLCA.
The rest of this paper is organized as follows. Section 2

describes the definitions and theories of multi-ship collision

avoidance and reinforcement learning. Section 3 presents the

framework of the algorithm development that constitutes the

main contributions of this paper, including approximate

representation, a reward function, and a value function

approximation solution method. The simulation and result,

including analysis, obtained using the algorithms are presented

in Section 4. In this section, we set up simulation experiments

from two environments, the coastal static obstacle environment

and the static-dynamic obstacles mixed environment,

respectively, to verify the algorithm. Finally, the conclusion

and future work are presented in Section 5.
2 Definitions and theories

This section outlines all the definitions and the theories

relating to collision avoidance in Section 2.1 and reinforcement

learning in Section 2.2.
tiers in Marine Science 03
2.1 Continuous state space collision
avoidance problem

Ships sailing collision risk increases along with the growing

complexity of maritime traffic in the water. When multiple ships

are encountered, in the whole process of sequential collision

avoidance, the navigation situation of MASS presents a

continuous state space. According to the COLREGs, there are

three kinds of encounter scenarios, including head-on,

overtaking, and crossing, which are shown in Figure 1. In

addition, this paper adopts a way of avoiding collision mainly

by turning according to the requirements of a good seamanship.

Continuous state space collision avoidance problem can be

regarded as a Markov decision process. When there are some

risks of collision with multiple ships, any MASS will avoid

collision according to the degree of danger posed by the target

ships. MASS will adopt various motion behaviors. Until all

obstacles are avoided, including both static and dynamic

obstacles. After each anti-collision action, the status of

operating environment will change. In such scenarios, the

autonomous ship will get the evaluation feedback of this

behavior. As shown in Figure 2, this situation leads to the

sequential collision avoidance of autonomous ships in a

continuous state space scenario.
2.2 Reinforcement learning

Learning by interaction with a sailing environment is the

primary method for crew members to acquire good seamanship.

One of the main characteristics of this learning process is the

ability to adapt to uncertain environments and gradually

enhance its own ability. In the field of artificial intelligence,
FIGURE 1

Encounter scenarios division diagram.
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this learning method usually has two characteristics: one is to

actively test the environment. Second, the feedback from the

environment to the tentative action must be evaluative. This

learning method is named the RL (Sutton and Barto, 2018). RL is

an interactive learning method, which mainly includes two

stages: trial-and-error search and delay return. RL problems

can be described using a Markov decision process (MDP)

framework. MDP contains 4 parts: state space X, action space

U, environment’s migration function f, and reward function R,

i.e., X, U, f, R.
The task of autonomous ships is to learn an anti-collision

strategy p: X !U, in the process of interacting with the

environment. This strategy maximizes the cumulative reward

(1).

Rt =ot
i¼0g

irt+i+1 (1)

where t is the time step. g< 1 is a constant, which determines

the relative proportions of delay versus immediate reward.

In RL, a value function is employed to link the optimal

objective and policy of the MDP, including the Q-value and V-

value functions. Under a certain policy p (x) and a state x, taking

a given action u, the Q-value function Qp: X × U ! R is:

Qp x, uð Þ =o∞
t¼0g

tr(xt , ut) (2)

Thus, we can calculate the optimal policy p*.

p* xð Þ ∈ argmaxuQ x, uð Þ (3)
3 Methods

To solve an autonomous ship collision avoidance problem in

a continuous state space, first, we use the approximate

representation based on prior knowledge to reduce the effect

of difference between the various states and scenarios. Secondly,
Frontiers in Marine Science 04
a new safety reward function is designed. Lastly and most

importantly, we proposed a method of value function

approximation to solve the RL collision avoidance problem in

a continuous state space.
3.1 Approximate representation

In solving a collision avoidance problem, it has been

acknowledged that it is notoriously difficult to store and learn

every state. Therefore, in the continuous state space, we use an

approximate representation to learn approximate storage for an

anti-collision policy. On one hand, using approximate

representation can improve the sampling efficiency and iteration

speed. On the other hand, approximate representation offers a

better performance in scenarios generalization. This makes it an

attractive candidate for its application in this study.

In the Q-value iterative algorithm in a random environment,

the uncertainty of the random problem itself needs to be

considered in addition to sampling evaluation.

Ql+1 x, uð Þ = Ex 0 e~f x,uð Þ ~R x, u, x0
� �

+ gmax
u 0

Ql x
0,   u0

� �� �
(4)

where the E is expected function. l represents the number of

state basis function (BF).

According to the COLREGs, there are three BF of MASS

encounter scenarios, which are mentioned in Figure 1. Thus, the

prior knowledge of the BF as shown in Table 1.

Consequently, we adopt the method of parameterized state

function mapping, from a parameter state space to a target state

space. The method takes into account the state approximator

whose state is parameterized into an n-dimensional vector w.
Each parameter state vector corresponds to an approximate state

basis function.

Q̂ = F wð Þ (5)
FIGURE 2

Collision avoidance of autonomous ships in a continuous state space scenario. Graph flow of upper and lower layers: the lower layer is the
schematic diagram of the physical scene. In the scene, there is a static obstacle and four target ships (dynamic obstacles). Four target ships form
the head-on, crossing, and overtaking scenarios with the own ships. In the upper layer, st represents the state at time t, at represents the anti-
collision action at time t, rt+1 represents the reward from st to st+1 by action at at time t.
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Q̂ x, uð Þ = F wð Þ½ � x, uð Þ (6)

In this paper, the linear state function approximator with

parameters consists of three BF f1, f2, f3: X × U! R and three-

dimensional parameter vectors. Therefore, the linear calculation

formula of the approximate Q value corresponding to the state

action pair (x,u) is given as:

Q̂ x, uð Þ = F wð Þ½ � x, uð Þ =o3
l¼1fl(x, u)wl = fT (x, u)w (7)

where f (x,u) is a n-dimensional vector composed of BF.

For a two-dimensional situation, this paper uses a rough

coding technology as a continuous state space set. This

technology completely covers the state space in the navigation

environment of autonomous ships with N circles. Each circle

represents a feature. For different state characteristics of

overtaking, head-on, and crossing encounter scenarios, we

have adopted different generalization methods as shown in

Figure 3. In an overtaking scenario, the encounter situation

changes slowly, leading to the choice of the wide generalization.

Conversely, because the encounter situation changes quickly in

the head-on scenario, we use a narrow generalization.

Comparatively, the scenario change of crossing encounter is

more complex, which does not reflect a symmetrical mapping in

the vertical and horizontal directions. Thus, asymmetric

generalization is proposed for this scenario because of its

strong generalization ability in the direction of its elongation.

According to good seamanship, the ellipse whose major axis is

1.5 times the ship length is the generalization unit area for

crossing scenario. A circle with a diameter of 1.5 times the length

of the ship is used as the generalized unit area of the overtaking

scenario. A circle with a diameter of the length of the ship serves

as the generalized unit area for head-on scenario. In the same

generalized unit area, generally only one state transfer is made,

except when there is an emergency risk.

During online sampling, the three encounter scenarios

identified for the first time are used as the reference scenario,
Frontiers in Marine Science 05
and an index table is built. The status action of BF can be

expressed as:

f i,j½ � x, uð Þ =
1,   x ∈ Xi, u = uj

0,   else

(
(8)

where [i,j] represents a scalar index of the state space and the

action space. i,j represents the number of state space and action

space, respectively.
3.2 Reward function

For continuous learning and training of continuous state space

events, the reward function should bephased, andgoal constrained.

Initially,weapplyadense reward functionas implemented inWang

et al. (2021). Equation (9) specifies the collision aspects and goal

aspects construction in the reward function. In the continuous

space searching model, a MASS sailing situation is divided into N

state spaces, which includes the safety state and the obstacle areas.

Rnormal =
rcollision,   if   x, yð ÞOS− x, yð Þobstaclek k22<   dsafe   zone

rgoal,   if   x, yð ÞOS− x, yð Þgoal
�� ��2

2< dsafe   zone

8<: (9)

where (x,y)os is the position of OS. (x,y)obstacle is the position

of obstacles, and (x,y)goal is the goal position. dsafezone is the

radius of a MASS safe zone. In this paper, we take this value as

the length of 5 pixels.

The MASS should select the action search strategy that meets

“early, large, wide and clear” requirements from the COLREGs.

Therefore, in the design of a reward function, the behavior of

approaching obstacles will be given a penalty value, and vice

versa. Therefore, we set different safety zones and risk zones for

obstacles and ship.

As shown in Figure 4, if the TS enters the safe area of the

OS, a collision will occur, but there is still a risk of collision
TABLE 1 The prior knowledge about the BF.

Feature Definition

Overtaking

tan−1 j yTS − yOS
xTS − xOS

j > 22:5 °

vos > vTS
jj(x, y)OS − (x, y)TSjj22 < 3   n  mile

hasFrontScenario = Overtaking Scenario

Head-on
tan−1 j xTS − xOS

yTS − yOS
j < 6 °

jj(x, y)OS − (x, y)TSjj22 < 6   n  mile
hasFrontScenario = Head-on Scenario

Crossing

tan−1 j yTS − yOS
xTS − xOS

j < 22:5 °

tan−1 j xTS − xOS
yTS − yOS

j > 6 °

jj(x, y)OS − (x, y)TSjj22 < 6   n  mile

hasFrontScenario = Crossing Scenario
jj(x, y)OS − (x, y)TSjj22 is the Euclidean distance of Target ship (TS) and Own ship (OS). n mile is the nautical mile, a unit used to measure a distance at sea (1 n mile ≈ 1852 m). It is
noteworthy that, the ships concerned in this study should have a length of greater than 50M (Wu, 2014).
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when sailing within the risk zones. Therefore, it is necessary to

promote waypoint selected by the OS to be outside the risk

zones through the interaction of the risk reward function. CR

is for assessing the risk value in encounter scenario (Chun

et al., 2021).

CR = exp DCPA + V · TCPAð Þ · ln CR0ð Þdrð Þ (10)

where, DCPA is the distance to the closest point of approach,

and TCPA is defined as the time to the closest point of approach.

V is speed of TS. CR0 is a criterion risk to determine that the OS

earliest anti-collision. dr is the radius of risk zone.

Therefore, the risk reward function is as follows.

Rrisk =

0                 if  CR ≤CR0

1
dr
rcollision if  CR0 ≤ CR ≤ 1

rcollision         if   1 ≤ CR

8>><>>: (11)

At the same time, to improve the stability of the ship’s

steering motion, we added a reward function for the steering

angular constraint, as shown in equation (12).

Rstable = −100 · w=pj j (12)

where w is a single steering angular variation.

In summary, the cumulative reward is calculated as follows.

R = Rnormal + Rrisk + Rstable (13)
3.3 Value function approximation solution

In this paper, we design an online solution method to the

parametric approximation model based on gradient descent.

Using Equation (6), the optimal value function is approximated

by minimizing the mean square error (MSE) (Mitchell, 1997).

MSE w tð Þ =ox∈X; u∈U P̂ x, uð Þ½Qp x, uð Þ − Q̂ t x, uð Þ�2 (14)
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wherewt is theparameter vector.Qp (x,u) and Q̂ t(x, u) are the real

value and estimated value at time t, respectively. P̂ (x, u) is the weight

distributionof the state-action(x,u).Qp (x, u) − Q̂ t(x, u) expresses the

error of temporal difference (TD), indicated by symbol d.
Further, the parameter vector is solved as follows:

wt+1 = wt −
1
2
a∇wt

Qp x, uð Þ − Q̂ t x, uð Þ� �2
= wt + a Qp x, uð Þ − Q̂ t x, uð Þ� �

∇wt
Q̂ t xt , utð Þ (15)

To sum up, we combine the approximate representation of a

state value function and RL to achieve the collision avoidance

solution for MASS in a continuous state space. Three groups of
FIGURE 4

The schematic diagram of safety zones and risk zones for
obstacles and own ship.
B CA

FIGURE 3

Schematic diagram of the influence of (A) crossing, (B) overtaking, and (C) head-on scenarios features on generalization. S represents the state
of the environment. AB is major axis of ellipse. d is the circle diameter. L indicates the length of the ship.
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state BF are set for the continuous state space. Then, the MSE is

solved by the state value function approximation learning model

and continuous renewing of MSE by interacting with the

environment. Finally, the state value function is solved using

the gradient descent to approximate the model. The pseudo code

of Algorithm 1 is shown below, while the algorithm framework is

shown in Figure 5.
Fron
1. Input BF ϕ1, ϕ2, ϕ3: X × U ! R, state

transfer function T, Reward function R,

Discount factor γ.2. Initialize parameter

vector, ω0  03. Initialize MASS state x04.

repeat (for each time step t = 0,1,2·;·;·;)

① ut ε greedy (for exploration and

exploitation)

② action ut, caculate xt+1 and rt+1
③ ωt+1 ωt+α[rt+1+γmaxu′(ϕT(xt+1,u

′)ωt)−ϕ
T

(xt,ut)ωt]ϕ(xt,ut)

④ until ωt+1-ωt< θ

⑤output ω* = ωt+1
Algorithm 1. Q-valued function approximation learning algorithm based

on gradient descent
4 Simulation and result

In this section, the validity and suitability of our method on

the MASS collision avoidance in the two scenarios are evaluated:

the coastal static obstacle environment and the static-dynamic

obstacle mixed environment. The first scenario (the coastal static

obstacle environment) aims to test the exploration and

exploitation ability of AR-RLCA. Tianjin Port is taken as an

illustrative example for the simulation using Python 3 and

Pygame platform. Referring to (Lillicrap et al., 2015;
tiers in Marine Science 07
Henderson et al., 2018), the hyperparameters of our method

are shown in Table 2. In this study, we set up the initial epsilon as

0.5, and the final epsilon as 0.01.
4.1 Scenario 1: The coastal static
obstacle environment

In this scenario, the MASS anti-collision planning in the

coastal static obstacle environment, including seaboard and

static obstacle ships of different sizes is simulated. The

projection of the chosen harbors in Tianjin port is designated

as a simulation environment of 684*806 pixels. As shown in

Figure 6, the gray circle represents the static obstacle ship, and

the brown polygon represents the seaboard. As shown in

Figure 6A, the start point is set as (631, 503) with a blue circle,

and the goal point is set as (190, 348) with a red circle.

As shown in Figure 6B, the condition represents the initial

exploration stage in which the algorithm is searching for samples

and storing the learning experience in the memory pool. In this

stage, the algorithm’s first search takes many steps and can get

stuck in local iterations. Through the interactive training of the

reward function, the target point is found for the first time at

the 50th epochs, as shown in Figure 6C, and continued with the

search as there was still random search and trial and error.

Gradually, the MASS improves learning experience utilization.

As shown in Figures 6D, E the MASS has an approximate target

direction. Following these steps, the random search for

probability of avoidance trajectories gradually decreases. The

avoidance path planned by the algorithm tends to be stable and

optimized at the 1500th epochs. In the end, MASS successfully

avoided all static obstacles and achieved safe sailing from the

initial point to the target point.

In order to analyze the learning convergence performance of

the algorithm, the training step variation in each iteration was

counted. As shown in Figure 7, there are three-part visualization
FIGURE 5

Q-valued function approximation learning algorithm framework.
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about step-epoch. The first is a whole line chart from epoch 0 to

epoch 2500. From this part, we can see the AR-RLCA algorithm

is convergent and has a good interactive learning ability. At the

initial epoch, the algorithm needs to explore and sample obstacle

environments to search for the obstacles and goal points. So,

17,405 steps are taken in the initial epoch. In addition, to better

present the algorithm performance, we zoom in the convergence

trend graph of two key nodes (see Figures 7A, B). The part A is a
Frontiers in Marine Science 08
step-epoch area chart. It can be seen from the 100th epochs that

the integral area of step line is getting smaller and smaller. It can

be demonstrated that the utilization of learning experience

accumulated on the exploration is improved. The part B can

present another critical node, the 1500th epoch. At this point, the

algorithm reaches the condition for terminating the iteration,

and finds the avoidance path with the largest cumulative reward.
4.2 Scenario 2: The static-dynamic
obstacles mixed environment

In the actual coastal environment, there are often static and

dynamic obstacles. This requires a MASS to avoid the target

ships (TS), static obstacles (SO), and seaboard. In this section, we

simulate a static-dynamic mixed environment, to verify the

collision avoidance performance in a continue state space. The

environment state settings are shown in Table 3.

As shown in Figure 8, the start point is set as (211,190) with

a blue circle, and the goal point is set as (619,183) with a red

circle. In the simulation experiment, the target ship is set as a

dynamic obstacle sailing at a constant speed. Through offline
B C

D E F

A

FIGURE 6

Result of collision avoidance in the coastal static environment. Snapshots of the six epochs in simulation: (A) initial setting, (B) epochs 10, (C)
epochs 50, (D) epochs 100, (E) epochs 500, and (F) epochs 1500. The red hollow circle is the collision avoidance path of the MASS. A safety
area of 5 pixels is set for the MASS to be away from all the obstacles. In the training scenario, the MASS’s goal is to sail from the start point to
the goal point safe.
TABLE 2 The hyperparameters of AR-RLCA.

Parameter Value

g 0.9

a 0.99

t 2500

Num. Nodes 10000

e 1~0.01

q 0.001
g is the discount factor. a is the learning rate. t is total epoch of training. Num. Nodes
represents the data storage nodes from exploration to exploitation. e is the epsilon. q is
the termination condition parameter.
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sampling and online value function approximation training,

the ship sails from the start point to the goal safe. The anti-

collision trajectory is shown in Figure 8. As shown in

Figure 8A, the MASS is sampling the sailing environment

and trying anti-collision. Ship attempts multiple random

actions at almost the same location. Therefore, the trajectory

direction looks very unstable. In the early stage of training,
Frontiers in Marine Science 09
MASS cannot find a better obstacle avoidance trajectory in a

multi-obstacle environment. As shown in Figure 8B, the MASS

successfully avoids TS1 and TS3, when it forms a head-on

encounter situation and a crossing encounter situation. The

taken right turn motion also complies with the COLREGs to

avoid these two target ships. However, the trajectory of

avoidance is still very volatile. As shown in Figure 8C, MASS
TABLE 3 The initial environment state settings parameters of the static-dynamic obstacles mixed environment.

Obstacles Initial point Goal point Speed Safe Zone

TS1 (406,600) (340,490) (5,5) 15

TS2 (630,448) (495,313) (3,5) 10

TS3 (325,562) (493,625) (8,3) 15

SO1 (583,281) — (0,0) 20

SO2 (357,398) — (0,0) 10

SO3 (192,415) — (0,0) 20

SO4 (223,323) — (0,0) 10

SO5 (220,640 — (0,0) 15

SO6 (576,710) — (0,0) 10

SO7 (638,574) — (0,0) 10

SO8 (498,515) — (0,0) 20

SO9 (455,213) — (0,0) 15

Seaboard Brown Polygon — — —
f

The data units in the table are described by pixels.
FIGURE 7

Training step variation with each epoch from the start point to the goal in simulation scenario 1, including And enlarged (A) 0-120 epochs and
(B) 1100-1600 epochs two parts.
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forms a crossing encounter situation with TS2, and there are

some static obstacles in front of TS2. Therefore, the MASS

makes a large right turn as soon as possible, not only to avoid

passing through the bow of TS2, but also to successfully avoid

static obstacles. Finally, the algorithm iteration is completed in

1500 epochs, avoiding three target ships and static

obstacles successfully.

In order to analyze the learning convergence performance,

the training step variation in each iteration is counted. As shown

in Figure 9, there are a whole line chart and two partial

magnifications chart. As the whole line chart from epoch 0 to
Frontiers in Marine Science 10
epoch 2500, it is observed that the AR-RLCA algorithm is

convergent. At the initial training, the algorithm takes many

steps to interact with the environment through a reward

function. However, after the offline training and online

approximate representation, the algorithm has shown a good

convergence performance in the dynamic obstacle environment.

In addition, to better present the algorithm performance, we also

zoom the convergence trend graph of two key nodes (see

Figure 9). The part A is a step-epoch area chart. It can well

represent the exploratory properties of the algorithm. The part B

includes the 1500th iteration, where the optimal avoidance path
FIGURE 9

Training step variation with each epoch from the start point to the goal in simulation scenario 2, including And enlarged (A) 1-205 epochs and
(B) 1314-1617 epochs two parts.
B CA

FIGURE 8

Result of collision avoidance in the static-dynamic obstacles mixed environment. Snapshots of three time-steps in simulation: (A) 100 epochs,
(B) 500 epochs, and (C) 1500 epochs. The red hollow circle is the collision avoidance path of a MASS. A safety area of 5 pixels is set for the
MASS to keep a safe distance from obstacles. In the training scenario, the MASS’s goal is to sail from the start point to the goal point safe.
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output after the algorithm satisfies the convergence conditions is

clearly seen.

In order to verify the convergence performance and iteration

effect of this algorithm, we compare the training steps and result

data of the Dynamic Window Approach (DWA), Deep Q-

Network (DQN), Transfer RL, and our algorithm. Figure 10

shows the training step - epochs curve chart, where the X-axis is

the epochs of training, and the Y-axis is the cumulative step in

each epoch.

Figure 10A is the global curve of training step – epochs chart.

It can be seen from the Figure 10A that DWA, DQN, Transfer-

RL, and AR-RLCA algorithm converges. It shows that basically

all of them can solve complex collision avoidance problems in

continuous state environment. However, we enlarge the curve

chat, as shown in Figure 10B. DWA, DQN, Transfer-RL, and

AR-RLCA algorithm have different convergence performance.

Compared with learning-based algorithms (DQN, Transfer-RL,

and AR-RLCA), DWA have the largest step size fluctuations,

and they don’t even stop iterating in the 2500th epochs. The

performance of DQN and Transfer-RL is similar. The optimal

obstacle avoidance path is planned at about the 2000th epochs.

But in terms of trajectory volatility, Transfer-RL is slightly better

than DQN. The algorithm proposed in this paper, AR-RLCA, is

undoubtedly better than the other three groups of algorithms in

solving the problem of continuous state space collision

avoidance. Convergence is the earliest, and the trajectory is

more stable.

In addition, we count the reward interactions of the DWA,

DQN, Transfer-RL, and AR-RLCA algorithms. As shown in

Figure 11, the proposed algorithm, AR-RLCA has less reward

interaction in the later stage of iteration, and most of them are

distributed in the early stage of exploration. Basically, the AR-

RLCA algorithm gets the maximum expectation at 1200 epochs.
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It highlights that the algorithm proposed in this paper can

efficiently balance exploration and utilization, achieving rapid

convergence. From the perspective of the number and density of

bubbles, AR-RLCA is also the best in decision-making and

planning results.

After conducting multiple experiments, statistical analysis is

performed on the reward interaction of multiple experiments

separately. According to the reward function design in Section

3.2, the reward interaction in this paper is mainly divided into

collision reward, risk TS1 reward, risk TS2 reward, risk TS3

reward, and stability reward. As shown in Figure 12, it is the

statistics of the reward interaction of algorithms. For each
BA

FIGURE 10

The training Step-Epochs chart, including (A) Global curve and (B) Enlarged chart.
FIGURE 11

The reward interaction bubble chart.
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algorithm, multiple sets of experiments are carried out to take

the average value for analysis. From the count situation, the

number of reward interactions for DQN, Transfer-RL, and AR-

RLCA is reduced at once. This further illustrates that the AR-

RLCA algorithm does not cause too much risk during

exploration and training. Especially in the face of dynamic

obstacles TS1, TS2, and TS3, AR-RLCA will highlight the

excellent performance of low risk. Because TS3, like TS2,

forms a crossing encounter scenario with OS, no risks emerge

after completing the approximate representation for TS3. From

the density-histogram of reward interaction, AR-RLCA has a

good performance in collision avoidance decision-making in

dynamic-static obstacles environments.

Finally, we record and analyze the anti-collision rate and

final step under each algorithm. The result is shown in Table 4.

AR-RLCA has the highest obstacle avoidance success rate, and

step size for planning is the smallest. In addition, the

convergence trend spectral radius of the four groups of

algorithms is all less than 1, which just shows that the

algorithms have converged. However, the spectral radius of the
Frontiers in Marine Science 12
convergence matrix of AR-RLCA is the smallest, that is, the

convergence of AR-RLCA is the fastest.
5 Conclusion and future work

This paper presents an approximate representation

reinforcement learning algorithm applied to a continuous state

space collision to solve a MASS collision avoidance problem. It is

critical to strike a balancing balance between two independent

tasks of initial feature offline exploration and online collision

avoidance for achieving good performance. In the final

simulation experiment, the results show that the approximate

representation can effectively solve the problem of slow initial

iteration of large-scale continuous states in dynamic obstacle

environments. Through trial-and-error training, it is

demonstrated that the algorithm can successfully plan a safe

avoidance path under the constraints of the COLREGs. The

results of comparative experiments show that integrating

approximate representation into RL network is a new idea to
FIGURE 12

The point-SD and density chart of reward interaction.
TABLE 4 The result data of different algorithms.

Algorithm DWA DQN Transfer-RL AR-RLCA

Anti-collision success rate 97.5% 97.7% 98.4% 98.5%

Step of final epochs 81 70 71 68

Convergence trend spectral radius 0.20000 0.00230 0.00217 0.00064
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solve the problem of collision avoidance in continuous state

space and improve the convergence speed.

In the future work, an improvement to the excitation

function based on the actual trajectory data to match the

actual sailing situation, to build a data-driven human-like

reinforcement learning model should be further addressed.

The model would be pre-trained using real data such as

Automatic Identification System (AIS) data and radar image

data. The reward function obtained by pre-training would be

used to support online decision-making. The resulting decisions

are bound to be more accurate and have robust performance in

an uncertain environment.
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