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Abstract
Arctic climate change is leading to an advance of plant phenology (the timing of life history events) with uncertain impacts 
on tundra ecosystems. Although the lengthening of the growing season is thought to lead to increased plant growth, we have 
few studies of how plant phenology change is altering tundra plant productivity. Here, we test the correspondence between 
14 years of Salix arctica phenology data and radial growth on Qikiqtaruk–Herschel Island, Yukon Territory, Canada. We 
analysed stems from 28 individuals using dendroecology and linear mixed-effect models to test the statistical power of 
growing season length and climate variables to individually predict radial growth. We found that summer temperature best 
explained annual variation in radial growth. We found no strong evidence that leaf emergence date, earlier leaf senescence 
date, or total growing season length had any direct or lagged effects on radial growth. Radial growth was also not explained 
by interannual variation in precipitation, MODIS surface greenness (NDVI), or sea ice concentration. Our results demonstrate 
that at this site, for the widely distributed species S. arctica, temperature—but not growing season length—influences radial 
growth. These findings challenge the assumption that advancing phenology and longer growing seasons will increase the 
productivity of all plant species in Arctic tundra ecosystems.
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Introduction

The Arctic is warming three to four times faster than the 
rest of the planet (Meredith et al. 2019; You et al. 2021) and 
tundra plant communities are particularly sensitive to that 
warming (Elmendorf et al. 2015; Bjorkman et al. 2020). Cli-
mate change is resulting in a longer snow- and ice-free sea-
son, potentially facilitating longer growing seasons (Cleland 
et al. 2007; Khorsand Rosa et al. 2015; Prevéy et al. 2021; 
Frei and Henry 2021). Concurrent with these changes, shifts 
in distribution and abundance (Sturm et al. 2001; Elmendorf 

et al. 2012a), biomass (Hudson and Henry 2009), and phe-
nology (timing of life history events) (Oberbauer et al. 2013) 
have been observed for species across the tundra. Previous 
research assumes that the altered phenology will correspond 
directly with increased growth of tundra plants (Myneni 
et al. 1997; Piao et al. 2007; Ernakovich et al. 2014; Park 
et al. 2016; Arndt et al. 2019; Kim et al. 2021). Arctic spec-
tral greening trends from satellite vegetation indices, such 
as the Normalised Differential Vegetation Index (NDVI), 
are used as proxy metrics of tundra plant phenology (Piao 
et al. 2007; Zeng et al. 2013; Park et al. 2016) and plant 
productivity (Myneni et al. 1997; Kim et al. 2021). How-
ever, remote sensing studies of tundra phenology may not 
be capturing on-the-ground plant phenological and growth 
dynamics and may instead be influenced by other land sur-
face changes such as community compositional shifts and 
snow cover (Helman 2018) particularly in Arctic systems 
(Arndt et al. 2019; Myers-Smith et al. 2020; Cao et al. 2020). 
Satellite (Myers-Smith et al. 2020) and in situ (Oberbauer 
et al. 2013) studies indicate widespread but variable phe-
nological shifts in the Arctic. Remote sensing studies have 
linked phenology change with increased plant productivity 
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in tundra ecosystems (Myneni et al. 1997; Park et al. 2016; 
Kim et al. 2021); however, in situ studies directly  linking 
plant phenology change to plant growth are rare.

Plant phenology is changing throughout the tundra 
(Myers-Smith et al. 2019; Bjorkman et al. 2020; Prevéy et al. 
2021), but the consequences on plant growth remain unclear. 
Phenology defines the bounds for plant activity, including 
photosynthesis, and has shifted around the Arctic due to 
warming (Assmann et al. 2019; Myers-Smith et al. 2020). 
The snow-free season across the Arctic has extended by 2–4 
days per decade of warming (Piao et al. 2007; Barichivich 
et al. 2013; Park et al. 2016; Myers-Smith et al. 2019). 
Seasons are starting earlier and finishing earlier or later 
depending on the location and study metrics investigated 
(Piao et al. 2007; Zeng et al. 2011, 2013; Keenan and Rich-
ardson 2015; Park et al. 2016; Myers-Smith et al. 2019). 
Two key points in deciduous species’ phenology are leaf 
emergence and leaf senescence: the time between being the 
entire growing season. Leaf emergence and senescence are 
both shifting across the Arctic, leading to a longer, earlier 
growing season at many sites, although changing phenology 
is not uniform across sites or species (Oberbauer et al. 2013; 
Assmann et al. 2019; Myers-Smith et al. 2020). Earlier leaf 
emergence is associated with earlier snowmelt (Assmann 
et al. 2019; Myers-Smith et al. 2019) and declining sea ice 
(Post et al. 2009; Bhatt et al. 2010; Kerby and Post 2013), 
although some studies have identified trends towards later 
phenology in some species and locations usually aligning 
with later snowmelt (Wipf and Rixen 2010; Bjorkman et al. 
2015). Earlier leaf emergence may expose individuals to 
late spring frost events (Wheeler et al. 2015) or other harsh 
conditions. Early senescence through deterministic leaf age 
(Oberbauer et al. 2013; Keenan and Richardson 2015), nutri-
ent availability (Lim et al. 2007), or photoperiod (Arft et al. 
1999) may also undermine any growth benefits of earlier 
leaf emergence. Whether plants can take advantage of an 
extended growing season to increase productivity and accu-
mulate biomass is therefore uncertain.

At mid-latitudes of the Arctic, shrub growth can be par-
ticularly sensitive to climate (Myers-Smith et al. 2015a) and 
there is ground based and satellite evidence for rapid shrub 
expansion in the region (Fraser et al. 2011; Moffat et al. 
2016; Myers-Smith et al. 2019). Dendroecology allows  for 
the exploration of the growth history of shrubs based on the 
width of rings formed during seasonal woody tissue deposi-
tion (Myers-Smith et al. 2015b). Individual annual growth 
ring chronologies can be compared with environmental vari-
ables to reveal the climate sensitivity of radial growth over 
time. Through dendroecology, we can directly observe how 
changing conditions affect shrub growth, validating assump-
tions and models. Individual growth is a key element in our 
understanding of shrub expansion throughout the Arctic 
(Tape et al. 2006; Myers-Smith et al. 2011a; Elmendorf 

et al. 2012b; Myers-Smith et al. 2019; García Criado et al. 
2020). Increasing shrub cover and canopy height alters eco-
system processes and species interactions (Myers-Smith 
et al. 2011a; Tape et al. 2016, 2018; Way and Lapalme 
2021) through snow trapping (Myers-Smith and Hik 2013), 
shading (Blok et al. 2010), hydrology and albedo (Sturm 
et al. 2005; Pomeroy et al. 2006), food webs (Ravolainen 
et al. 2014)—including soil assemblages (DeMarco et al. 
2014)—and habitat provision for wildlife (Boelman et al. 
2015). Shrub encroachment has been linked to warming in 
studies  using dendrochronology (Forbes et al. 2010), remote 
sensing (Myneni et al. 1997; Myers-Smith et al. 2020), field 
observations (Hudson and Henry 2009; Myers-Smith et al. 
2011b), and experiments (Elmendorf et al. 2012a, 2015; 
Khorsand Rosa et al. 2015; Frei and Henry 2021). To accu-
rately predict the future structure and function of northern 
ecosystems, we must understand how plant growth is chang-
ing (Myers-Smith et al. 2020), especially the role of phenol-
ogy as ecological dynamics change under warming (Keenan 
and Richardson 2015; Myers-Smith et al. 2019; Bjorkman 
et al. 2020; Samplonius et al. 2020).

Arctic vegetation change plays a key role in regional and 
global feedback loops (Liston et al. 2002; Sturm et al. 2005; 
Pearson et al. 2013; Grosse et al. 2016) and carbon budgets 
(Piao et al. 2007; McGuire et al. 2009; Parker et al. 2021). 
As phenology changes, we expect compositional  shifts and 
increased growth during longer growing seasons (Myneni 
et al. 1997; Ernakovich et al. 2014; Panchen and Gorelick 
2017). Biome-wide shifts in growth rates and community 
composition could have profound implications for global 
carbon budgets through biomass accumulation (Piao et al. 
2007) and decomposition (DeMarco et al. 2014). Warming 
drives earlier leaf emergence (Ernakovich et al. 2014; Park 
et al. 2016), which has been linked with increased plant pro-
ductivity using remote sensing observations (Myneni et al. 
1997). And thus, studies of satellite-derived spectral green-
ing trends have linked changes in phenology to changes in 
plant productivity (Myneni et al. 1997; Park et al. 2016; 
Kim et al. 2021). Furthermore, accurate Earth system mod-
els depend on our understanding of plant growth–climate 
relationships and ecosystem–climate feedbacks (Sturm et al. 
2005; Loranty and Goetz 2012; Richardson et al. 2013; Pear-
son et al. 2013; Fisher et al. 2018; Bonan and Doney 2018). 
Despite underpinning global models, uncertainty remains 
in the expected association between phenology and growth 
of Arctic plants and whether warmer temperatures or longer 
growing seasons are the primary drivers of increasing tundra 
plant productivity.

In this study, we use dendroecology to test the corre-
spondence between in situ phenology observations, envi-
ronmental factors, and radial growth of Salix arctica Pall. 
(Salicaceae) on Qikiqtaruk–Herschel Island in the West-
ern Canadian Arctic.   Salix arctica has a circum-Arctic 
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distribution, woody tissues which enable dendrology, and 
exceptionally closely monitored phenology at the site 
(Myers-Smith et al. 2019), offering a suitable species for 
this study. At this site, S. arctica phenology has advanced 
in both spring and autumn, although autumn only margin-
ally, overall lengthening the growing season by 2 days per 
decade (Myers-Smith et al. 2019). We test three questions: 
(1) Do longer growing seasons facilitate greater shrub radial 
growth? (2) Of phenological metrics, does leaf emergence 
date, senescence date, or growing season length best explain 
shrub radial growth? (3) Do climatic factors (air tempera-
ture, precipitation, sea ice concentration, or snowmelt), or 
maximum plant productivity (estimated through the spectral 
Normalised Difference Vegetation Index, NDVI), explain 
shrub radial growth better than phenology? We hypothesise 
that (1) a longer realised period of growth will increase 
radial growth; (2) growing season length will explain shrub 
radial growth better than leaf emergence or senescence date 
as it encompasses the cumulative change in the growth 
period; and (3) growing season length will best explain 
shrub radial growth relative to temperatures or other vari-
ables as short growing seasons in Arctic systems are limiting 
plant growth (Myers-Smith et al. 2019).

Methods

Study site

We studied S. arctica phenology and radial growth on 
Qikiqtaruk–Herschel Island, YT, Canada (69.57  °N, 
138.90 °W) (Fig. 1). The island is approximately 100  km2 
in area, with soils formed of marine and glacial deposits 
atop ice-rich permafrost (Burn and Zhang 2009). Qikiqtaruk 
sits at the northerly extent of tall shrubs, particularly Salix 
richardsonii Hook. (Salicaceae) (Myers-Smith et al. 2011b), 
which feature heavily in its flora alongside Eriophorum vagi-
natum L. (Cyperaceae) tussock tundra and dwarf shrub heath 
rich in S. arctica (Myers-Smith et al. 2019).

Salix arctica sampling

As woody perennials, shrubs grow annual rings of wood 
which record radial growth over time (Myers-Smith et al. 
2015b). Here, we focus on S. arctica, a prostrate willow 
with a circum-Arctic range which reaches as far north as 
the north coast of Greenland (Argus 2007). We collected 
38 shrub samples on a coastal floodplain on the east side 
of the island in the Ice Creek watershed, a site of known 
vegetation change (Myers-Smith et al. 2019). The vegeta-
tion is dominated by Salix spp., defined by patches of S. 
richardsonii, a canopy-forming willow, with S. arctica at 
ground level. Cross-sections of 3–5 cm in length were taken 

from the base of the thickest stem of 6–8 individuals each 
along five parallel transects on the Qikiqtaruk floodplain in 
July 2016. Individuals were at least 10 m apart and transects 
were 50–100 m apart to lower the risk of sampling clones, 
particularly given the sprawling prostrate growth form of S. 
arctica (Argus 2007).

Dendroecological methods

We sliced thin sections (~ 25 µm) of each sample with a 
sledge microtome, then photographed (Online Resource 1), 
and measured the rings along four radii per sample using 
the ObjectJ package (1.04a) for ImageJ (2.0.0-rc-59/1.51j). 

Fig. 1  A map showing the location of Qikiqtaruk (69.57  °N, 
138.90 °W) within Canada and Sentinel 2 false-colour images show-
ing the location of the transects on Qikiqtaruk. The purple dots repre-
sent the ends of the five transects, and the purple box shows the area 
within which all samples were taken. The orange square shows the 
location of the phenology plots
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We visually crossdated samples to check for partly miss-
ing rings, then averaged the radii for each individual, and 
crossdated again to check for entirely missing rings between 
samples.

We removed the first 2 years of radial growth data for 
each individual to account for age-related growth effects and 
the data from the year of sampling, as the growth for the 
season was not completed (Myers-Smith et al. 2015b). To 
maintain a minimum of 4 years of radial growth data after 
removing the data from 2016 and the first 2 years, the sam-
ple size was reduced to 28 individuals, running from 2002 
to 2015 (Online Resource 1). Individuals with fewer than 7 
years of radial growth were removed and we calculated the 
basal area increments from the ring width data. We then 
detrended the basal area increment data, fitting a smooth-
ing spline (dplR package for R, f = 0.5, nyrs = 0.67), which 
removed variation in radial growth beyond interannual vari-
ation. We visually assessed different detrending methods, 
testing spline, negative exponential, and no detrending and 
found that spline detrending best removed individual growth 
trends to help focus our analyses on interannual variation in 
radial growth (Myers-Smith et al. 2015b). We therefore used 
the detrended basal area increment data for the main text 
analysis. We also conducted the same analysis using ring 
widths and the negative exponential detrending method and 
found similar results to our main text analysis, and these are 
presented in the supplementary materials (Online Resource 
3). For the statistical analysis, all variables were normalised 
between 1 and − 1, so that effect sizes could be compared.

Phenology data

Phenological observations have been collected since 2001 
by Yukon Parks Rangers on Qikiqtaruk every 2–3 days 
from April (snowmelt) until September (leaf senescence) 
along established transects (~ 250 m from our study site). 
The rangers record phenology throughout the growing sea-
son (Myers-Smith et al. 2019) in line with ITEX protocol 
(Prevéy et al. 2021). The phenological dates used in this 
study are the date of first leaf bud burst (leaf emergence) and 
the date of first yellowing of leaves (leaf senescence) aver-
aged across the 20 S. arctica individuals in the observation 
transect. We calculated growing season length (GSL) as the 
number of days between leaf emergence and senescence. 
Please note that the individuals from the phenological mod-
elling are not the same individuals (destructively) sampled 
for the dendroecological growth time-series. However, pre-
vious findings indicate that S. arctica phenology is gener-
ally consistent across individuals at the site (Myers-Smith 
et al. 2019; Assmann et al. 2020). Considering further the 
close proximity of the phenological monitoring sites and 
dendroecological transects we are therefore confident that 
the phenometrics from the phenological monitoring are 

representative for the individuals sampled for the dendro-
ecological analysis.

Other environmental data

We also compared radial growth to seasonal air tempera-
tures and precipitation, snowmelt, sea ice concentration, and 
productivity. The temperature data came from Environment 
Canada Qikiqtaruk–Herschel Island weather station (ID 
1560) and precipitation data came from the ERA5-gridded 
dataset produced by Copernicus Climate Change Service 
and the European Centre for Medium-Range Weather 
Forecasts (Hersbach et al. 2020). We collated data into 
seasons (spring: April–May, summer: June–July, autumn: 
August–September, winter: October–March) including 
the lagged data for the preceding summer and autumn, as 
monthly resolution was higher than useful for this study. 
Snowmelt data are from the Qikiqtaruk phenology data-
set, where the date at which transects are free of snow is 
recorded (Myers-Smith et al. 2019). We used the onset of 
sea ice melt data (Assmann et al. 2019), determined using 
the NOAA/NSIDC Climate Data Record (CDR) v3 Passive 
Microwave Sea Ice Concentrations (Meier et al. 2017). Pro-
ductivity data are the annual maxima (estimated by smooth-
ing trends in the data with a generalised additive model) of 
the MODIS MOD13A1v6 NDVI satellite dataset (Myers-
Smith et al. 2020).

Statistical analysis

We selected our models a priori, using single-predictor 
models to compare individual variables and assess their 
predictive power on shrub radial growth. We used a Bayes-
ian framework for our analyses including weakly informa-
tive priors of a half Student t prior with three degrees of 
freedom. The effect sizes of models were assessed relative 
to their credible intervals (95%). If the credible intervals 
for the estimated slope did not cross zero, we considered an 
effect to be significant. If the credible interval of the model 
slope sits at zero or fluctuates between overlapping zero and 
not overlapping zero, we consider the effect to be marginally 
significant.

To test the relationships between variables we used 
hierarchical linear mixed-effect models, with year, tran-
sect, and individual as random effects and individuals 
nested within transects. We used mixed models due the 
hierarchical structure of our data, caused by non-inde-
pendence of individuals within transects and within a 
given year. Shrubs also shared conditions in each year, 
making them non-independent. The variability in abso-
lute growth amongst individuals was high, as seen dur-
ing crossdating, but due to sampling a single species 
within a relatively small area, similar relative growth 
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responses were expected across groups. Thus, we chose 
not to use random slopes, only random intercepts. As a 
secondary analysis presented in the supplementary mate-
rials (Online Resource 2, Online Resource 3), we used a 
frequentist framework and compared models using AIC 
to see whether the models fit the data better than a null 
model using the conventional threshold (∆AICnull ≥ 2) 
(Akaike 1974). We also calculated conditional and mar-
ginal pseudo-R2 to test the absolute model fit including 
and excluding random effects, respectively (Nakagawa and 
Schielzeth 2013). We used models with maximum likeli-
hood estimation for AIC comparisons and models with 
restricted maximum likelihood estimation for pseudo-R2 
and effect size values. Residuals of models were visually 
assessed for normality with fitted residual plots and tem-
poral autocorrelation (first- or second-order) with correlo-
grams (Online Resource 2). We did not detect a signal of 
temporal autocorrelation, and residuals were similar across 
all models (Online Resource 2). We tested the correlation 
amongst all environmental and phenological variables and 
correlation coefficients varied between − 0.76 and 0.75 
(Online Resource 1).

All statistical tests were carried out in R (3.6.3), via 
RStudio (1.2.1335), including the brms package for 

Bayesian analysis: Code and data are available at the fol-
lowing GitHub repository: https:// github. com/ Shrub Hub/ 
Shrub RingP henoH ub.

Results

Contrary to our first hypothesis that a longer realised period 
of growth will increase radial growth, we found that growing 
season length had no effect on S. arctica basal area incre-
ments, nor was there a lagged effect from the previous grow-
ing season (Table 1, Fig. 2). Contrary to our second hypoth-
esis that growing season length will explain shrub radial 
growth better than leaf emergence or senescence date, it was 
leaf senescence date that was the best predictor of radial 
growth amongst these variables. Radial growth was signifi-
cantly greater in years with an earlier leaf senescence date 
(negative effect), and we detected no relationship between 
radial growth and leaf emergence date, growing season 
length, or previous growing season length (Table 1, Fig. 2). 
Contrary to our third hypothesis that growing season length 
will best explain shrub radial growth relative to tempera-
tures and other variables, we found that rather than growing 
season length, summer temperature was the best predictor 

Table 1  Statistical results for the hierarchical Bayesian models relating radial growth (basal area increment) to phenology, temperature, precipi-
tation, NDVI, sea ice concentration, and snow-free date (results for ring widths are included in Online Resource 3)

All models span the period 2002–2015. Asterisk (*) indicates a model where the 95% credible intervals do not overlap zero and which we there-
fore consider to be significant. Sample depth per year as follows: 2002, n = 5; 2003, n = 6; 2004, n = 8; 2005, n = 10; 2006, n = 14; 2007, n = 16; 
2008, n = 20; 2009, n = 23; 2010, n = 25; 2011, n = 27; and 2012–5, n = 28 (Online Resource 1). Only the fixed effects are shown here, the results 
for the random effects are available in Online Resource 2

Predictor variable Estimate Standard Error Lower 95% CI Lower 95% CI R-hat Bulk ESS Tail ESS Effect

Leaf emergence  − 0.04 0.06  − 0.16 0.08 1.00 2494 2063 Fixed
Leaf senescence  − 0.10 0.04  − 0.18  − 0.01 1.00 2613 1760 Fixed
Growing season length  − 0.05 0.06  − 0.18 0.07 1.00 2268 1700 Fixed
Previous growing season length  − 0.02 0.06  − 0.13 0.09 1.00 3014 2128 Fixed
Previous summer temperature 0.00 0.06  − 0.12 0.13 1.00 2905 1892 Fixed
Previous autumn temperature 0.09 0.05  − 0.01 0.20 1.00 2743 2005 Fixed
Winter temperature  − 0.02 0.05  − 0.12 0.07 1.00 1887 1917 Fixed
Spring temperature 0.02 0.05  − 0.09 0.12 1.00 2618 2475 Fixed
Summer temperature 0.12 0.05 0.01 0.22 1.00 3546 2036 Fixed
Autumn temperature* 0.07 0.06  − 0.04 0.18 1.00 2968 2152 Fixed
Previous summer precipitation  − 0.03 0.06  − 0.14 0.08 1.00 2698 2094 Fixed
Previous autumn precipitation  − 0.01 0.05  − 0.11 0.09 1.00 2389 2016 Fixed
Winter precipitation  − 0.01 0.06  − 0.13 0.12 1.00 2999 2697 Fixed
Spring precipitation  − 0.01 0.05  − 0.10 0.08 1.00 2559 1856 Fixed
Summer precipitation 0.02 0.06  − 0.10 0.13 1.00 2681 2159 Fixed
Autumn precipitation  − 0.01 0.06  − 0.12 0.10 1.00 2781 2215 Fixed
MODIS NDVI 0.01 0.06  − 0.10 0.12 1.00 2164 1501 Fixed
Minimum sea ice extent  − 0.14 0.12  − 0.38 0.11 1.00 3588 2755 Fixed
Sea ice melt onset date  − 0.10 0.06  − 0.22 0.03 1.00 2373 2286 Fixed
Date snow free  − 0.04 0.09  − 0.21 0.13 1.00 1493 724 Fixed

https://github.com/ShrubHub/ShrubRingPhenoHub.
https://github.com/ShrubHub/ShrubRingPhenoHub.
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amongst all variables. Summer temperature explained 2.8% 
of the variation in radial growth (Fig. 3, marginal pseudo-R2, 
Online Resource 2), with higher temperature coinciding with 
higher annual radial growth. However, the overall explana-
tory power of the models was low with no model explain-
ing more than 2.8% of variation without including random 
effects (marginal pseudo-R2, Online Resource 2).

All other variables aside from leaf senescence date and 
summer temperature were non-significant predictors of 
radial growth (Fig. 3). Leaf emergence date; current and 

previous years’ growing season length; temperatures from 
the winter, spring, autumn, and the previous year; all precipi-
tation models; and snowmelt date did not explain variation 
in radial growth (Fig. 3). We used year as a random effect in 
our models (individual and transect level growth variation 
are accounted for during detrending and scaling of the radial 
growth index) and its effect was significant, indicating varia-
tion in radial growth amongst years beyond the effect of the 
bioclimatic variable of interest in that year (Online Resource 
2, Online Resource 3). The model results agreed between the 

Fig. 2  Radial growth corre-
sponded weakly with phenolog-
ical variables and more strongly 
with summer temperature. The 
relationships of radial growth 
with both leaf senescence and 
summer temperature are statisti-
cally significant. Scatter plots 
show the four phenological and 
two temperature variables we 
hypothesised to have relation-
ships with radial growth (basal 
area increment, indexed) in 
a given year over the period 
2002–2015. Trendlines are 
predictions from the hierarchi-
cal Bayesian models, dashed 
trendlines indicate a non-signifi-
cant effect, and the shaded areas 
represent 95%, 80%, and 50% 
credible intervals of the model 
estimates
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different detrending approaches, and although exact effect 
sizes differed slightly, the results were similar when models 
used detrended ring width data or used detrended basal area 
increment (Online Resource 3).

Discussion

Through a unique study of long-term in situ phenology 
monitoring and dendroecology, we compared interannual 
variation in phenology, environmental conditions, and NDVI 
to interannual variation in radial growth of S. arctica on 
Qikiqtaruk. We found that summer temperatures and leaf 
senescence—but not leaf emergence or growing season 
length—explained variation in radial growth for the wide-
spread Arctic shrub S. arctica (Table 1, Fig. 3). Precipita-
tion, sea ice, snowmelt, and NDVI did not correspond with 
variability in interannual radial growth in our study. Thus, 
we did not find support for the hypothesised relationship 
between phenology and radial growth. Our results suggest 
that factors other than the timing of the growing period from 
leaf emergence through senescence, such as temperature, 
can exert a larger influence on shrub growth in this tundra 
ecosystem. These findings ultimately have implications for 

how tundra shrub growth is modelled and thus the projection 
of Arctic carbon budgets.

Phenology

We found no evidence that earlier leaf emergence and 
longer growing seasons corresponded with increased radial 
growth in S. arctica, including growth in the following year 
(Table 1, Fig. 3). Results for preliminary analyses includ-
ing other willow species from this and other sites have 
reached similar conclusions (Angers-Blondin 2019). Ear-
lier leaf emergence did not result in greater S. arctica radial 
growth; however, we did find evidence of greater radial 
growth in years with earlier leaf senescence. Although we 
cannot identify a particular biological mechanism linking 
earlier leaf senescence with enhanced radial growth, early 
leaf senescence was correlated with warmer summer tem-
peratures (Pearson’s product–moment correlation, df = 263, 
p < 0.001, ρ = − 0.60, Online Resource 1). Individuals may 
reach a threshold after intense early growth (Rumpf et al. 
2014), allowing for early cessation of growth above ground. 
Alternatively, growth and leaf age could be determinis-
tic (Oberbauer et al. 2013; Keenan and Richardson 2015; 
Semenchuk et al. 2016; Parker et al. 2017), with growth 

Fig. 3  Only models of leaf 
senescence and summer 
temperature significantly 
explained variation in radial 
growth, and most variables 
showed no relationship to 
radial growth (Table 1). This 
plot shows standardised effect 
sizes (slopes) of hierarchical 
Bayesian models of pheno-
logical events (purple), seasonal 
temperature (red), seasonal 
precipitation (green), NDVI 
(yellow), minimum sea ice 
extent, sea ice concentration, 
and snowmelt date (all blue) on 
radial growth. The centre line 
is the effect and error bars are 
95% credible intervals. For ease 
of comparison between effect 
sizes, explanatory variables in 
this analysis are variance scaled 
from − 1 to 1
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ending at a fixed time after growth begins each year. Or 
earlier leaf senescence could occur in years with warmer 
temperatures without a mechanistic link between the two 
variables. Our findings are in line with previous evidence 
that the timing of tundra plant senescence is driven at least 
in part by non-climatic factors (Arft et al. 1999; Oberbauer 
et al. 2013). Taken together, our results suggest that shifts 
to earlier shrub leaf emergence and longer growing seasons 
are not necessarily driving changes in tundra shrub growth, 
contrary to interpretations of satellite remote sensing data 
(Myneni et al. 1997; Zeng et al. 2011, 2013; Arndt et al. 
2019) and reviews (Ernakovich et al. 2014).

Temperature

We found that higher summer temperatures increased the 
radial growth of S. arctica at our site. The summer is the 
peak season for growth and individuals are sensitive to 
warming in this period (Andreu-Hayles et al. 2020), as 
observed across the biome (Myers-Smith et  al. 2015a; 
Myers-Smith and Hik 2018) from dendrochronology 
(Forbes et al. 2010; Blok et al. 2011; Myers-Smith et al. 
2011a; Li et al. 2016; Weijers et al. 2018; Le Moullec et al. 
2019; Prendin et al. 2022), repeat photography (Sturm et al. 
2001; Tape et al. 2006), and experiments (Elmendorf et al. 
2012a, 2015; Khorsand Rosa et al. 2015; Frei and Henry 
2021). Temperature–growth relationships are heterogeneous 
across the tundra biome, with relatively low climate sen-
sitivity observed on Qikiqtaruk compared with other mid-
latitude tundra locations (Myers-Smith et al. 2015a). Growth 
response to temperature has decreased over time in another 
dwarf willow species, Salix polaris Wahlenb. (Salicaceae), 
at Bjørnøya, Svalbard (Owczarek et al. 2021), suggesting 
that growth responses may not be fixed over long timescales. 
The growth response to early leaf senescence suggests the 
importance of resource accumulation for growth in the fol-
lowing season, shrubs may senesce above ground but remain 
active below ground for longer periods. There is increasing 
evidence that above-ground phenology may be asynchronous 
with below-ground root growth (Blume‐Werry et al. 2016, 
2017; Ögren 2017; Liu et al. 2022), though root phenol-
ogy itself may not respond to autumn warming (Schwieger 
et al. 2018). Snow cover insulates shrubs from winter and 
spring temperatures (Kelsey et al. 2020; Rixen et al. 2022), 
and Krab et al. (2018) found diverging shrub radial growth 
responses to winter temperature, spring warming, and 
snowmelt amongst species. Vaccinium vitis‐idaea L. (Eri-
caceae) grew more with delayed snowmelt with a contrasting 
reduction in growth in Empetrum nigrum L. (Ericaceae). 
We, however, found no association between temperatures in 
the previous year and radial growth, and no relationship for 
winter, spring, and autumn temperatures and radial growth 
(Table 1, Fig. 3).

Hydrology

We did not find a strong influence of summer precipita-
tion, sea ice, or snowmelt on interannual variation in radial 
growth S. arctica in this study. Growth of Arctic shrubs can 
be moisture limited (Keuper et al. 2012; Ackerman et al. 
2017; Buchwal et al. 2020; Weijers 2022). Moisture sensitiv-
ity of growth can depend on temperature (Li et al. 2016) and 
can vary within (Thompson and Koenig 2018) and between 
sites (Myers-Smith et al. 2015a). Soils on Qikiqtaruk are 
frequently saturated, likely reducing the impacts of drought 
locally (Myers-Smith et al. 2019). We did not detect any 
influence of precipitation from summer rain, snowmelt, or 
cloud cover (Table 1, Fig. 3). Decreasing snow cover reduces 
soil insulation in winter and limits productivity increase 
under warming and earlier phenology in Alaska (Kelsey 
et al. 2020). The lack of a precipitation signal detected in 
our study could be influenced by our use of gridded cli-
mate datasets due to a lack of a complete local record for 
precipitation at this site. Gridded climate datasets poorly 
capture spatially variable precipitation, due to the paucity 
of Arctic meteorological stations and the high spatial vari-
ability of precipitation (Macias-Fauria et al. 2014; Myers‐
Smith and Myers 2018). For sea ice, we found that lower 
annual minima and earlier melt are weakly associated with 
increased radial growth of S. arctica, although phenology for 
this species was not found to vary with sea ice extent (Ass-
mann et al. 2019). Sea ice could influence plant growth and 
phenology through interactions with local climate (Post et al. 
2009; Bhatt et al. 2010; Kerby and Post 2013; Macias-Fauria 
et al. 2017; Assmann et al. 2019) and drought-stress (Forch-
hammer 2017; Buchwal et al. 2020). We found no relation-
ship between snowmelt date and radial growth, which is con-
sistent with the primary mechanism of snowmelt controlling 
phenology and so influencing plant growth (Assmann et al. 
2019; Myers-Smith et al. 2019). Taken together, our results 
suggest that temperature rather than growing season length, 
precipitation, or sea ice dynamics was the primary factor 
controlling S. arctica radial growth on Qikiqtaruk.

NDVI

We observed no correlation between NDVI and interannual 
variation in S. arctica radial growth, consistent with results 
for other shrub species at the site (Myers-Smith et al. 2019). 
Whilst satellite datasets do not entirely correspond with 
each other (Guay et al. 2014). and shrub biomass cannot be 
directly estimated from NDVI alone (Cunliffe et al. 2020), 
NDVI is easily scaled, well studied, and part of a broader 
picture of complex Arctic tundra vegetation change (Myers-
Smith et al. 2020). Arctic shrubification has been linked with 
satellite-derived Arctic greening trends (Macias-Fauria 
et al. 2012), and comparing ground observations to spectral 
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greening observed by satellites improves broad-scale inter-
pretation of these trends (Myers-Smith et al. 2020). Cor-
relation of NDVI and shrub growth has been found in some 
studies (Forbes et al. 2010; Macias-Fauria et al. 2012), but 
is not universal and varies with site and the time of year 
(Blok et al. 2011; Brehaut and Danby 2018; Andreu-Hayles 
et al. 2020). Taken together, these results suggest that sat-
ellite spectral greening indices are not capturing all of the 
variation in plant productivity, including the length of the 
snow-free season, indicated by analyses with shrub radial 
growth (Angers-Blondin 2019; Berner et al. 2020).

Study limitations

Whilst our findings bring together phenology and dendro-
chronology, two important fields of study of Arctic change, 
there are limitations. Sampling stem elongation (primary 
growth) and root collars rather than stems alone would 
improve the capture of interannual variation in shrub pro-
ductivity. Primary and secondary (radial) growth can be 
driven by different controls (Bret-Harte et al. 2002; Campioli 
et al. 2012a, b), so study of annual stem increments or other 
measures of shrub growth in addition to radial growth would 
more robustly address questions of shrub growth (Myers-
Smith et al. 2015b). Root collars show greater climate sen-
sitivity (Ropars et al. 2017) and less response to individual 
conditions than stems (Sonesson and Callaghan 1991; Sad-
ras and Denison 2009; Myers-Smith et al. 2015b), yet root 
collars are challenging to find and excavate in clonal species, 
such as S. arctica, and are more destructive to sample. We 
were not easily able to locate root collars consistently at 
this site (Angers-Blondin 2019). The destructive nature of 
dendrological sampling also prevented us from sampling the 
individuals in the long-term phenology transect directly, so 
we sampled nearby individuals as phenology is consistent 
across the site (Myers-Smith et al. 2019). Future research 
across different sites and species using localised climate and 
microenvironmental variables may shed more light on the 
relationships between plant phenology and growth.

Future study

Modern techniques facilitate below-ground monitoring of 
tundra plant phenology and root growth (Iversen et al. 2015; 
Sloan et al. 2016; Blume‐Werry et al. 2016, 2017), exposing 
an overlooked dimension of tundra dynamics. An increas-
ing number of studies indicate phenological asynchrony 
above and below ground at sub-Arctic sites (Ögren 2017; 
Blume‐Werry et al. 2017), with below-ground root growth 
extending into the late summer and autumn in now thawed 
soils. Fungal symbiotes such as mycorrhizae can influence 
plant growth and carbon exchange in tundra shrubs which 
could be altering growth–climate interactions (Clemmensen 

et al. 2006; Compant et al. 2010; Deslippe et al. 2011). Iler 
et al. (2013) suggest that phenology responses to warming 
are reaching physiological limits in some Arctic and alpine 
species, potentially reducing the magnitude of future change. 
Collins et al. (2021) found that reproductive and vegetative 
phenologies are affected differently by experimental warm-
ing, which could alter ecosystem dynamics via trophic mis-
matches and resource allocation (Post and Forchhammer 
2008; Clausen and Clausen 2013; Kerby 2015; Wheeler 
et al. 2015). There has been relatively little investigation of 
plant senescence and the drivers of the end of the growing 
season, creating uncertainty in our understanding of plant 
responses to warming across the growing season.

Innovative techniques such as drone-derived biomass 
estimates could also help with scaling up to landscape-
wide analyses (Cunliffe et al. 2020). Newer approaches to 
studying tundra plant phenology such as time lapse cam-
eras (a.k.a. phenocams) are overcoming inherent challenges 
of data collection in the Arctic (Westergaard-Nielsen et al. 
2017; Richardson et al. 2018; Parmentier et al. 2021). Local 
observations of plant phenology and growth can be scaled 
up using drone and satellite data to bridge scale gaps and 
form a landscape perspective on tundra productivity change 
(Riihimäki et al. 2019; Assmann et al. 2019, 2020; Cun-
liffe et al. 2020). Challenges of scaling and data collection 
are being met by technological solutions, allowing us to see 
Arctic change from new angles and more clearly than ever 
before. Although further research is required, particularly 
for Arctic systems (Diepstraten et al. 2018), the increas-
ing scope of monitoring of above- and below-ground plant 
responses encompassing phenology and growth allows for 
the investigation of key knowledge gaps about tundra eco-
system responses to global change.

Conclusion

Our findings demonstrate that plant phenology does not nec-
essarily predict growth in an Arctic shrub, but that warmer 
temperatures in the summer are associated with increased 
annual radial growth. Interannual variation in precipitation, 
sea ice, snow cover, and MODIS NDVI for the landscape 
were not strongly related to radial growth. Our results indi-
cate that future Arctic warming will likely enhance shrub 
growth and encroachment (Tape et al. 2006; Myers-Smith 
et al. 2011a; García Criado et al. 2020). Where this growth 
is not limited by water or nutrients (Mack et al. 2004; Myers-
Smith et al. 2015a; Ackerman et al. 2017), there may be 
significant consequences for water, energy, and carbon 
fluxes (Loranty and Goetz 2012; Pearson et al. 2013; Parker 
et al. 2021). Taller shrub canopies could influence soil 
temperatures, litter decomposition rates, nutrient cycling, 
and ultimately the tundra carbon cycle (Sturm et al. 2005; 
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Blok et al. 2010; Myers-Smith et al. 2011a; DeMarco et al. 
2014; Way and Lapalme 2021). Whilst questions remain 
in these complex systems, studying shrub phenology and 
growth data for other sites and species—and incorporating a 
below-ground perspective on plant phenology (Iversen et al. 
2015) and growth—will paint a clearer panarctic picture of 
plant responses to rapid Arctic warming (Myers-Smith et al. 
2020). Investigating the magnitude and direction of change 
on the ground in tundra ecosystems is necessary to validate 
assumptions that underpin remote sensing studies (Myers-
Smith et al. 2019; Piao et al. 2019; Cunliffe et al. 2020), 
strengthening our understanding of tundra plant responses 
to warming. Teasing apart the complex mechanisms between 
climate change and plant growth in tundra ecosystems is 
vital to improve projections of how Arctic vegetation change 
influences global climate.
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