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Abstract: Three-dimensional (3D) image and medical image processing, which are considered big data
analysis, have attracted significant attention during the last few years. To this end, efficient 3D object
recognition techniques could be beneficial to such image and medical image processing. However, to
date, most of the proposed methods for 3D object recognition experience major challenges in terms of
high computational complexity. This is attributed to the fact that the computational complexity and
execution time are increased when the dimensions of the object are increased, which is the case in 3D
object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with
low computational complexity is essential. To this end, this paper presents an efficient method for
3D object recognition with low computational complexity. Specifically, the proposed method uses a
fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects.
The fast overlapped block-processing algorithm reduces the computational complexity of feature
extraction. This paper also exploits Charlier polynomials and their moments along with support
vector machine (SVM). The evaluation of the presented method is carried out using a well-known
dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object
recognition methods. The results show that the proposed 3D object recognition approach achieves
high recognition rates under different noisy environments. Furthermore, the results show that the
presented method has the potential to mitigate noise distortion and outperforms existing methods in
terms of computation time under noise-free and different noisy environments.

Keywords: 3D recognition; overlapped block processing; features extraction; orthogonal moments;
orthogonal polynomials; SVM; Charlier polynomials

1. Introduction

Significant effort has been dedicated to developing efficient and reliable remote health-
care systems with the Internet of Things (IoT) applications [1]. This development can
be achieved through transmitting efficient and secure medical images and videos of the
patients and processing them in a fast and reliable way. To this end, advanced remote mon-
itoring schemes of the patients become essential. In particular, efficient three-dimensional
(3D) object recognition techniques could be beneficial to process the images and videos of
medical systems. This is due to the ability of object recognition to enable feature extrac-
tion, which is essential as it provides unique characteristics that can identify objects [2].
Besides, object recognition is also considered as having the most significant importance in
the industrial environment, as it represents each object individually and can distinguish the
object [3]. These cues are used to extract discriminative features for accurate recognition [4].
Therefore, there is an increasing interest in object recognition, especially in the fields of
machine vision, pattern recognition, and machine learning applications [5–7]. Various
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domains, including facial identification [8], gender description [9], and gesture analysis,
among others, use object recognition. Object recognition is also used in object identifica-
tion, medical diagnosis, security applications, multimedia communication, and computer
interface applications [4,10].

1.1. Related Works

Object recognition and classification can be considered essential techniques, which are
beneficial in various applications such as healthcare systems, pattern recognition, molecular
biology, and computer vision [11–15]. To this end, significant research works have been
developed for efficient 3D object recognition. Besides, feature extraction for 3D objects
is extremely useful for classification [16]. Extensive researches have been carried out to
develop 3D object classification methods. Some of these works are based on the principles of
moment invariants and 3D moments. To this end, a method of 3D translation, rotation, and
scale invariants (TRSI) was developed in [17] from geometric moments and an alternative
approach was presented later in [18]. A tensor approach to derive the rotation invariants
from the geometric moments was proposed in [19]. Besides, an automatic algorithm was
proposed in [20,21] to generate 3D rotation invariants from geometric moments. Recently,
a 3D Hahn moments combined with convolutional neural networks (CNN) was proposed
in [22] to enhance the 3D object classification. Specifically, the work in [22] proposed a
hybrid approach based on combining the 3D discrete Hahn moments and CNN to improve
3D object classification. A multi-layer artificial neural network (ANN) perception approach
was proposed in [23] for the classification and recognition of 3D images. In [24], a deep
learning approach based on neural network and Racah-based moments was proposed
for 3D shape classification. Additionally, in [16], an approach based on the combination
of 3D discrete orthogonal moments and deep neural network (DNN) algorithms was
proposed to improve the classification accuracy of the 3D object features. In [25], a 3D
discrete Krawtchouk moments method was proposed for content-based search and retrieval
applications. In [26], a 3D image analysis was considered using Krawtchouk and Tchebichef
polynomials, where orthogonal moments were exploited to characterize various types of
2D and 3D images. To this end, orthogonal moments are used in many applications such as
image analysis [27,28], face recognition [29], pattern recognition [30,31], steganography [32],
image reconstruction [33,34], and medical image analysis [35,36].

The recognition process depends extremely on the feature extraction process, which is
used to distinguish between different objects. To this end, the process of object localization
and object normalization is considered essential for feature extraction technique [37]. As
such, essential issues in object recognition and computer vision applications are the extrac-
tion of significant features from objects [38]. Object recognition to date is still a challenging
problem that affects pattern recognition. This is because the accuracy of object recognition
can be affected by class variations [4,39,40]. In particular, different methods are utilized
to extract the features from the images. These methods can be classified as deep-learning-
based methods, orthogonal-moment-based methods, and texture-based methods [41–45].
While the recognition accuracy of deep-learning-based methods can be very high, these
methods run into a substantial amount of computational complexity, as explained in [46–48].
In the orthogonal moment approaches, the features of the object are calculated efficiently
through the use of Orthogonal Polynomials (OPs) techniques [49]. Due to their effectiveness,
orthogonal moments (OMs) and OPs have been widely exploited in recent years for pattern
recognition, form descriptors, and image analysis [50,51]. The OMs-based method gives a
powerful capability for evaluating the image components because the image components
can be efficiently represented in the transform domain [49]. In many object recognition
applications, OMs can be utilized to extract features. It is possible to consider the OMs
as a scalar approach that is utilized to define and characterize a function. Such OMs can
be used to achieve an effective extraction of the features. The OPs function also contains
the coordinates of an image in addition to OMs [52,53]. According to work performed
in [44], OMs can be exploited in feature extraction from images with various geometric
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invariants, including translation, scaling, and rotation. In general, various types of mo-
ments can be used for image processing. For instance, due to their simplicity, geometric
moments are favored above other types of moments [54]. To depict an image with the
least amount of redundancy possible, a Zernike and pseudo-Zernike moments approach
was developed in [55]. In [55], a moments-based approach was proposed by exploiting
the fractional quaternion for colored image detection [56]. This is because the fractional
quaternion, which is considered an opposed approach to integer-order polynomials, can
represent functions, according to [44]. Furthermore, the diagnosis of plant diseases has
been accomplished using fractional-order moments [57]. In [58], the image analysis used
Zernike and Legendre polynomials, which act as the kernel functions for Zernike and
Legendre moments, respectively. In particular, the Zernike moments approach has the
property of invariance in addition to its capability of image data storing and processing
with the least amount of redundancy. However, because the Zernike moments approach
focused only on the continuous domain, such an approach would require image coordinate
adjustments and transformations for discrete domain [59,60]. To address the challenge of
computing continuous moments in image analysis, the discrete OMs approach has recently
been proposed [61]. To this end, Mukundan presented a series of moments in [62] that uses
discrete Tchebichef polynomials to analyze the image.

Typically, the extraction approaches are divided into global and local features. The
former is also called a holistic-based approach [63], which can capture the essential charac-
teristics of the full human face image. At the same time, it is known as the component-based
approach or block-processing-based approach, from specific areas in images [64]. In the
global feature-based approach, various imaging setups are used to achieve improved per-
formance for feature extraction [65]. To this end, several feature extraction techniques have
been proposed so far to enable a global feature-based approach [66,67]. In block processing
or what is known as the local feature-based approach, the image features can be extracted
locally by utilizing OMs, which entails processing the image’s blocks after it has been
divided into several blocks to ease their processing. In this approach, the signals such as
images and videos can be divided efficiently into several blocks so that they transfer to
another domain to extract the features [68]. The signal characteristics can be stored locally
in memory to prepare it for the next step of processing. The work in [63] demonstrates
that the (local) block-processing-based approach achieves better performance in feature
extraction compared with the (global) holistic-based approach.

One technique for extracting local features is the local binary patterns method [69–71].
In addition, the combination of global- and local-based approaches, which is termed the
hybrid features extraction-based approach, aims to achieve the highest object recognition
accuracy [72,73]. It is demonstrated that block processing, which represents local feature
extraction, can achieve the highest recognition accuracy with the trade-off of higher com-
putation complexity. Specifically, compared with global features, local features are thought
to be more reliable and improve recognition accuracy, see, e.g., [74–76]. To this end, parti-
tioning the images using image block processing has the potential of extracting the blocks
of any image and analyzing them sequentially. From the perspective of computer memory,
this operation is not sequential, which is seen as a major flaw in performance and a crucial
difference between the memory and the speed of the CPU. While such an operation would
result in additional cache misses and replacements, accessing the complete matrix sequen-
tially can aid in maintaining spatial locality [68]. The removal of additional procedures
will speed up the extraction of local features. Specifically, extracting local features from the
image blocks using discrete transform will decrease the computational complexity, which
is called a fast overlapped block-processing method for feature extraction [68]. Although
several advanced methods have been proposed for object recognition, the accuracy and
running time are to date considered challenging issues that need to be addressed. Therefore,
finding a quick and accurate mechanism for 3D object detection is necessary. Additionally,
most of the exciting works need to account for the impact of undesirable noise on recogni-
tion. Hence, there is a limited understanding of the effect of noisy environments. Therefore,
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investigating the proposed method in the noise condition is significant to characterize the
effectiveness of the feature extraction for object recognition processes.

1.2. Paper Contributions

To overcome the aforementioned challenges, a robust object recognition algorithm that
exploits Charlier polynomials and their moments is proposed. The proposed algorithm has
a powerful capability for the characterization and feature extraction of the signals of the
3D objects effectively. In addition, to extract the features effectively and in a fast manner,
this paper exploits an overlap block-processing technique to provide a construction of
auxiliary matrices, which essentially extends the original signal to prevent the time delay
in the loops computation. Furthermore, the proposed method is evaluated in the noise
condition to characterize the effectiveness of the proposed method in feature extraction for
object recognition processes. The major contributions of this paper can be summarized as
follows: (1) Proposing an advanced design for robust 3D object recognition, which takes
into account the accuracy, computational complexity, and execution time. (2) Exploiting the
powerful Charlier polynomials to extract the features of the 3D objects. (3) Developing a
fast overlapped block-processing algorithm, which shows more accurate processing for the
blocks of the image to perform fast feature extraction with low complexity. The proposed
overlapped block-processing method is mainly used to decrease the computation time.
(4) Finally, implementing the support vector machine (SVM) to classify object recognition
features accurately. To this end, a well-known dataset known as the McGill benchmark
dataset is used for performance evaluation [77]. The results demonstrate that the proposed
method achieves high recognition accuracy with lower computational complexity. Further-
more, the results demonstrate that the proposed method is able to reduce noise distortion
and outperforms traditional methods under both clean and noisier environments. These
achievements signify the importance of the proposed method for the future implementation
of 3D object recognition.

1.3. Paper Organization

The paper is organized as follows. In Section 2, the orthogonal polynomials and
their moments are introduced. In Section 3, the methodology of the proposed method for
feature extraction and recognition of 3D objects is presented. In Section 4, the performance
evaluation of the proposed method and the numerical results are discussed. Finally, the
conclusion of the paper is presented.

2. Preliminaries of OPs and Their OMs

The mathematical definition of the utilized OPs is explained in this section. Addition-
ally, this section also describes the computation of the OMs for the 3D signals.

2.1. Charlier Polynomials Computation and Their Moments

This subsection discusses the Charlier polynomials and their moments. In addition, the
existing three-term recurrence (TTR) relation is described. Several studies have considered
the use of Charlier polynomials due to its accuracy and effectiveness [78]. To this end,
research on the application of Charlier polynomials has been divided into two main areas:
moment computation algorithms and recurrence relation algorithms. For the recurrence
relation-based algorithms, the research works exploit the n-direction and x-direction of the
matrix. However, generating high-order polynomials is not possible in these recurrence
algorithms. This is due to the use of the initial values and the number of recurrence times.
The research works make use of either the x-direction or the n-direction of the recurrence
algorithm as their calculation algorithms. To the best of our knowledge, no research studies
have looked into using Charlier polynomials and their moments for 3D object detection.
This paper investigates the effect of using Charlier polynomials for 3D object recognition.
This paper also aims to provide an efficient method for achieving a recurrence relation to
compute Charlier polynomials for high-order polynomials.
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In what follows, the Charlier polynomials and their moments computation are presented.

2.2. Computation of Charlier Polynomials

Charlier polynomials Cn(y; p) of dth dimension can be calculated as follows:

Cn(x; p) = 2F0

(
−n,−x

_

∣∣∣∣ − 1
p

)
, (1)

n, x = 0, 1, 2 . . . , N − 2, N − 1; p > 0,

where p denotes the parameter of the Charlier polynomials, and 2F0 represents the mathe-
matical formulation of the hypergeometric series, which is expressed as [79]

2F0

(
a1, a2

_

∣∣∣∣ z
)
=

∞

∑
k=0

(a1)k (a2)k
k!

(z)k, (2)

where (a)k denotes the ascending factorial, which is termed as the Pochhammer symbol [79].
Following the expressions provided by Equations (1) and (2), Charlier polynomials

can be written as

Cn(x; p) =
∞

∑
k=0

(−n)k (−x)k
k!

(
− 1

p

)k
. (3)

It is worth noting that the orthogonality condition should be met with Charlier poly-
nomials. Besides, the weighted function can be applied to the Charlier polynomials so that

D

∑
x=0

Cn(x; p) Cm(x; p) ωC(x; p) = ρC(n; p) δnm, (4)

where D = N − 1, ωC(x; p), which denotes the weighted function and ρC(d; p) represents
the squared norm of Charlier polynomials dx. The weighted function and the squared
norm of Charlier polynomials are provided in expressions (5) and (6), respectively.

ωC(x; p) =
e−p px

x!
. (5)

ρC(n; p) =
n!
pn . (6)

It is worth noting that the calculation of the Charlier polynomials’ coefficients provided
by the expression in Equation (3) may cause numerical instability. Hence, to overcome this
issue, a weighted normalized Charlier polynomial is applied. To this end, the nth order of
weighted normalized Charlier polynomials can be expressed as

Ĉn(x; p) =

√
ωC(x; p)
ρC(n; p)

Cn(x; p). (7)

2.3. Computation of Charlier Moments

This subsection discusses the computation of Charlier moments. The Charlier mo-
ments, denoted as transform coefficients, are scalar quantities utilized to demonstrate
signals without redundancy [49,80]. For a one-dimensional (1D) signal, denoted as f (x),
Charlier moments can be computed in the moment domain as

µn =
N−1
∑

x=0
Ĉn(x; p) f (x)

n = 0, 1, . . . , Ord− 1,
(8)
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where µn denotes the Charlier moments and Ord represents the maximum number of
orders utilized for signal representation. To obtain the signal f̄ (x) from the Charlier
domain (moments domain), inverse transform can be utilized as follows:

f̄ (x) =
Ord−1

∑
n=0

µn Ĉn(x; p) (9)

For a two-dimensional (2D) signal f (x, y) of size N ×M, the Charlier moments with
2D signal, denoted as µnm, can be computed as

µnm =
N−1
∑

x=0

M−1
∑

y=0
f (x, y)Ĉn(x; p) Ĉm(y; p)

n = 0, 1, . . . , Ord1 and

m = 0, 1, . . . , Ord2,

(10)

where the parameters Ord1 and Ord2 denote the highest order used for the representation
of the signal. To reconstruct the 2D signal f̄ (x, y), denoted as f̄ = f , from the Charlier
domain, the following inverse transformation is used:

f̄ (x, y) =
Ord1

∑
n=0

Ord2

∑
m=0

µnm Ĉn(x; p) Ĉm(y; p) (11)

To compute the moments for higher dimensional space, in our case, the 3D signal,
f (x, y, z), the following formula is used:

µnml =
N−1
∑

x=0

M−1
∑

y=0

L−1
∑

z=0
f (x, y, z) Ĉn(x; p) Ĉm(y; p) Ĉl(z; p)

n = 0, 1, . . . , Ord1,

m = 0, 1, . . . , Ord2 and

l = 0, 1, . . . , Ord3.

(12)

2.4. Charlier Coefficients Computation Using Recurrence Relation Algorithm

This section presents the algorithm exploited to compute the coefficients of Charlier
polynomials. It is worth noting that the algorithm used in this paper is the recurrence
relation, which has been presented in [78].

The computation of initial values of Charlier polynomials’ coefficients is essential
for obtaining an efficient and reliable recurrence relation algorithm. It should be noted
that both three-term recurrence relations algorithms in the x-direction and the n-direction
depend on two sets of initial values. To this end, Ĉ0(x; p) and Ĉ1(x; p) are the two initial
values used in the three-term recurrence relation algorithm in the x-direction. In general,
calculating the set of initial values is mathematically intractable. This is attributed to
incorrectly computed values. To address this issue, a logarithmic function is used [78]:

Ĉp(0; p) =
(

e−(logΓ(p)+p+(1−p)log(p))
)0.5

, (13)

where logΓ denotes the logarithmic mathematical operation for the gamma function.
To obtain the remaining Charlier polynomials’ coefficients for Ĉn(0; p), the two-term

recurrence relation is utilized. We have two ranges for x = 1, which are n < p− 1 and
n > p. For the range n < p− 1, n = p− 2, p− 3, . . . , 0, the two-term recurrence relation
can be written as

Ĉn−1(0; p) =

√
n
p

Ĉn(0; p). (14)
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For the range n > p, n = p + 1, p + 2, . . . , N − 1, the following expression is used:

Ĉn(0; p) =

√
p
n

Ĉn−1(0; p) (15)

After computing the coefficients for x = 0, they are used to compute the Charlier
polynomials’ coefficients for x = 1 using the following recurrence relation:

Ĉn(1; p) =
(p− n)√

n
Ĉn(0; p) (16)

n = 0, 1, . . . , N − 1.

To this end, the polynomial space of the Charlier polynomials is divided into two
portions: lower triangle and upper triangle [78]. These portions are known as “Part 1”
and “Part 2”, which are shown in Figure 1. Charlier polynomials’ coefficients in the lower
triangle matrix (“Part 1”) are obtained using three three-term recurrence relations. In
addition, Charlier polynomials’ coefficients in the upper triangle matrix (“Part 2”) are
obtained using the symmetry relation provided in the expression given by

Ĉn(x; p) = Ĉx(n; p)

n = 0, 1, . . . , N − 1, and

x = 0, 1, . . . , n− 1.

(17)

Figure 1. An illustration of the plan dividing into n− x parts for Charlier polynomials.

After the weighted normalized Charlier polynomials’ identity and initial values calcu-
lations are presented, the calculation of the Charlier polynomials’ coefficients in “Part 1”
is performed by exploiting the three-term recurrence in the x-direction. To this end, the
following calculations are

Ĉn(x + 1; p) = A Ĉn(x; p) + B Ĉn(x− 1; p), (18)
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where x = 1, 2, . . . , N− 1 and n = x, x + 1, . . . , N− 1; the parameters A and B are obtained,
respectively, as [78]

A =
a− n + x√

a(x + 1)
, (19)

B = −
√

x
(x + 1)

. (20)

For more clarification, the utilized algorithm for the weighted normalized Charlier
polynomials is summarized in Algorithm 1.

Algorithm 1 The algorithm used to compute the Charlier polynomials
Input: N = Polynomial size, p=Polynomial parameter.
Output: Ĉ = Charlier polynomials.

1: Initialize Ĉ with a size of N × N

2: Ĉp(0; p)←
(

e−(logΓ(p)+p+(1−p)log(p))
)0.5

{Compute initial value.}
3: n← [p− 2, p− 1, . . . , 0] {Set the range of n.}
4: for i in range n do

5: Ĉi−1(0; p)←
√

i
p Ĉi(0; p)

6: end for
7: n← [n = p + 1, p + 2, . . . , N − 1, ] {Set the range of n.}
8: for i in range n do

9: Ĉi(0; p)←
√

p
n Ĉi−1(0; p)

10: end for
11: for n = 0 to N − 1 do
12: Ĉn(1; p)← (p−n)√

n Ĉn(0; p)
13: end for
14: {Compute the coefficients in “Part 1”}
15: for x = 1 to N − 1 do
16: for n = x to N − 1 do
17: A← a−n+x√

a(x+1)

18: B← −
√

x
(x+1)

19: Ĉn(x + 1; p)← A Ĉn(x; p) + B Ĉn(x− 1; p)
20: end for
21: end for
22: {Compute the coefficients in “Part 2”}
23: for n = 1 to N − 1 do
24: for x = 0 to n− 1 do
25: Ĉn(x; p)← Ĉx(n; p)
26: end for
27: end for
28:
29: return Ĉ {Note that Hd in Equation (27) is equal to Ĉ.}

3. Methodology of the Proposed Feature Extraction and Recognition Method of
3D Object

This section presents the feature extraction and recognition processes for the presented
3D object recognition algorithm.

For any recognition system, a feature extraction process is employed to represent
signals. As a result, local feature extraction can be used to enable more effective object
recognition systems rather than global feature extraction due to their effectiveness, as
discussed earlier in the introduction. Therefore, the 3D image might be separated into
blocks to increase recognition accuracy. Each block has a size of Bx × By × Bz. The Charlier
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polynomials are generated using the procedures in Section 2.4, where Charlier polynomials
can be generated with parameter p. The brief methodology of the presented 3D recognition
algorithm is shown in Figure 2. First, the 3D image information is obtained. Then, the
Charlier polynomials are generated with parameter p. Next, the overlapped polynomials
are generated to reduce the computation cost. After that, the fast 3D moments’ computation
is used to transform the 3D images into the moment domain. Finally, the features are
normalized and used to train the SVM model for recognition.

Figure 2. The brief methodology of the presented 3D recognition algorithm.

The global-based feature extraction approach is, to some extent, inaccurate for noisy
environments, which highly impedes the characterization of efficient 3D object algorithms
in more realistic settings. Moreover, the performance of 3D object recognition accuracy
may be degraded in noisy environments [45,81]. Therefore, preprocessing for the 3D
object becomes essential to mitigate the effect of noise but it may come at the expense of
increasing the computation complexity. The extraction of local features leads to a high
computation cost because the traditional method is used, which is considered a bottleneck
for real-time application [82]. The local features are extracted after partitioning the 3D
object into sub-blocks. For more clarification, see Figure 3.
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Figure 3. Flow diagram of the traditional block-processing algorithms.

A fast overlapped block-processing technique is exploited to overcome the above
challenges. To extract local features, most applications use a non-overlapping block-
processing technique. On the other hand, overlapped block processing could enhance
the accuracy of 3D object recognition [45,81]. Typically, the processing of the blocks in
parallel will significantly raise the cost of computing. We solved this issue by using the
fast overlapped block processing described in [68]. The fundamental idea behind fast
overlapped block processing (FOBP) is to extend the image by adding auxiliary matrices,
which does away with the requirement for nested loops. The computing cost of the feature
extraction procedure will be drastically reduced by eliminating the nested loops (see
Figure 4). Suppose a 3D image F with a size of Nx × Ny × Nz needs to be partitioned into
overlapped blocks. The size of the blocks are Bx × By × Bz with overlapping sizes of vx, vy,
and vz in the x, y, and z-direction, respectively. This lead to a total blocks (TBlocks) of

TBlocks = Blocksx × Blocksy × Blocksz,

TBlocks = Nx
Bx−2vx

× Ny
By−2vy

× Nz
Bz−2vz

.
(21)

Figure 4. Flow diagram of the proposed fast block-processing algorithm.

For further details about the expressions above, see Figure 5.
Suppose the matrix G represents the extended version of F and can be computed as

follows [68]:
G = ∑

z
Ez

[
Ey F ET

x

]
, (22)

where Ex, Ey, and Ez are rectangular matrices with sizes of (Bx · Blocksx × Nx), (By ·
Blocksy × Ny), and (Bz · Blocksz × Nz), respectively. For further elucidation, the matrix Ed
is shown in Figure 6, where d represents the dimensions (x, y, and z).
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Figure 5. Details of the 3D image with overlapped blocks.

Figure 6. Details of Ed matrix. The size of Ed matrix is Bd · Blocksd × Nd. The size of the identity
matrix is Bd × Bd.

To compute the moments (M) for a 3D image using matrix multiplication, Equation (12)
can be rewritten as follows [83]:

M = ∑
z

Rz

[
Ry G RT

x

]
(23)
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By substituting Equation (22) in Equation (23), we obtain

M = ∑
z

Rz

[
Ry

[
∑
z

Ez

[
Ey F ET

x

]]
RT

x

]
. (24)

Note that M represents the matrix form of the moments µnml .
By following the proof presented in [68], Equation (24) can be rewritten as follows:

M = ∑
z

Qz

[
QyGQT

x

]
, (25)

where Qd are computed as follows:

Qd = Rd Ed, (26)

where the matrix Rd can be obtained as follows:

Rd = I⊗Hd, (27)

where matrix I denotes an identity matrix, ⊗ denotes the Kronecker product, and Hd
represents the Charlier polynomials. Note that d represents the dimensions x, y, or z. Due
to the matrices independence from the image, they are generated, stored, and repeatedly
used [45,68]. The process for the matrices generation is depicted in Figure 7.

Figure 7. Flow diagram demonstrates the generation of the matrices Qx, Qy, and Qz.

After the matrices (Qx, Qy, and Qz) are generated, the images are transformed into
the Charlier moment domain to extract features (see Algorithm 2). Then, these features
are normalized to obtain the feature vector. Finally, the objects are classified based on the
extracted features.
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Algorithm 2 The 3D moments computation [83]
Input: F = 3D image, Qd = Charlier polynomials.
Output: FV = Charlier moments.

1: Generate extended 3D image (G) from the 3D image F {Equation (22).}
2: Get stored Charlier polynomials Qx, Qy, and Qz {Using Equation (26).}
3: for z = 1 to Ordz do
4: M← M + Rz ⊗

[
Qx G Qy

]
5: end for
6: FV ← reshape(M) {Reshape the computed moments as a feature vector.}
7: return FV {Note: in the training and testing phases, the feature vector is normalized.}

In this paper, the normalized feature vector is obtained and considered an input to
the classifier. To this end, a label (ID) is considered for each input image of the objects.
The classification procedure is performed in this paper using SVM. The SVM technique
is selected here due to its effectiveness in optimizing the margin between hyperplane
separation classes and data [84]. Furthermore, the SVM technique can be very efficient
for object recognition. This is attributed to the fact that SVM is more robust to signal
fluctuation [85]. In this paper, LIB-SVM is used in the classification process [86].

Figure 8 shows a model of the proposed 3D object recognition method.

Figure 8. A diagram shows the flow process for the proposed 3D object recognition method.

4. Experiments and Discussions

In this section, the performance of the proposed Charlier polynomials algorithm for
3D object recognition is evaluated. In this experiment, the well-known McGill dataset—
developed in [77]—is used as a benchmark dataset. In particular, this dataset contains
19 classes, denoted as 3D objects. These 3D objects are named as planes, spiders, spectacles,
snakes, pliers, octopus, teddies, dolphins, fours, ants, humans, tables, chairs, dinosaurs,
fishes, hands, cups, craps, and birds. Samples of the aforementioned 3D objects are shown
in Figure 9.
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Figure 9. An illustration of samples of 3D objects.

In this experiment, the results are obtained over 19 different objects and various effects.
These effects are translations and rotations. The sample objects are translated in the x, y,
and z axes and their combinations (xy, xz, yz, and xyz) range from (1, 1, 1) to (10, 10, 10)
with a step of (1, 1, 1). In addition, for each direction, the sample objects are rotated in
the x, y, z, xy, xz, yz, and xyz axes between 10◦ and 360◦ with a step of 10◦. The resulting
number of samples per object is 1252, which produces a total number of 23,788 samples for
all objects.

The flow diagram process of the 3D object recognition is shown in Figure 8. For the
3D object recognition, different block sizes are considered in this experiment, which are
given by the block sizes of 64× 64× 64, 32× 32× 32, and 16× 16× 16. Tables 1–3 present
the performance results of block sizes of 64 × 64 × 64, 32 × 32 × 32, and 16 × 16 × 16,
respectively. Besides, different overlap sizes are also considered in addition to the sizes
of the testing and training sets considered during this experiment, which are given as
70% and 30%, respectively. As discussed earlier, the proposed solution for 3D object
recognition and feature extraction is Charlier polynomials (see Algorithm 1) with parameter
p = Block Size/2. The SVM model is used in the proposed algorithm for object classification.
The LIB-SVM library developed in [86] is used to train the extracted features. The SVM
kernel exploits LIB-SVM and uses the radial basis function. In the training phase, five-fold
cross-validation is utilized to obtain the values of the SVM parameters (see Figure 2). The
recognition accuracy is the number of correct predictions divided by the total number of
predictions as follows:

Accuracy =
Number o f correct predictions
Total number o f predictions

(28)

Tables 1–3 reported the recognition rate for clean and noisy environments. First, we
will discuss the clean environment results; then, the noisy environment will be considered
successively for different types of noise.
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The results in Table 1 show that the accuracy of block size of 64× 64× 64 starts at
68.25% and increases to 80.04% as the overlap block size is increased from 0× 0× 0 to
16× 16× 16, which shows an improvement ratio of 14.73%. This implies that increasing
the overlap block size can help in improving the recognition accuracy. For the block size of
32× 32× 32 given in Table 2, the object recognition accuracy starts with a value of 76.28%
at overlap size of 0× 0× 0, which achieves an accuracy improvement of 8.03% higher than
that obtained with the block size of 64× 64× 64 at an overlap size of 0× 0× 0. In addition,
the object recognition accuracy of the block size of 32× 32× 32 is increased to 80.10% at an
overlap block size of 4× 4× 4. For the block size of 16× 16× 16 given in Table 3, the object
recognition accuracy is increased from 70.58% to 80.10% as the overlap size is increased
from 0× 0× 0 to 2× 2× 2.

Table 1. Evaluation of the accuracy (%) of the proposed algorithm of 3D object recognition for the
block size of (64× 64× 64) under different environments.

Block Size = 64 × 64 × 64

Overlap Size (vx × vy × vz)
Environment 0 2 4 8 16

Clean 68.25 70.42 72.44 78.52 80.04

GN 0.0001 39.44 61.18 68.96 78.58 80.16

GN 0.0002 36.95 57.48 67.84 78.58 80.18

GN 0.0003 35.32 55.44 67.14 78.59 80.13

GN 0.0004 33.75 53.44 66.67 78.65 80.01

GN 0.0005 32.26 51.38 66.23 78.63 80.03

SPN 0.1 37.86 58.80 68.36 78.56 80.20

SPN 0.2 31.33 49.28 65.53 78.62 80.04

SPN 0.3 29.39 42.71 61.52 78.36 79.72

SPN 0.4 27.15 39.24 57.66 78.14 78.97

SPN 0.5 26.09 36.56 52.81 77.67 78.32

SPKN 0.2 68.24 70.41 72.40 78.55 80.03

SPKN 0.4 68.22 70.47 72.33 78.53 80.04

SPKN 0.6 68.17 70.39 72.37 78.46 80.04

SPKN 0.8 68.25 70.35 72.43 78.48 79.97

SPKN 1.0 68.21 70.51 72.30 78.53 80.03

To this end, the highest accuracy performance is achieved at a block size of 64× 64× 64
when an overlap size of 16× 16× 16 is used, at a block size of 32× 32× 32 when an overlap
size of 4× 4× 4 is exploited, and at a block size of 16× 16× 16 when an overlap size of
2× 2× 2 is utilized, as illustrated in Tables 1–3, respectively. In a nutshell, the best accuracy
can be achieved when the overlap block size is increased and the block size is decreased.

Different noisy environments are considered for further clarification and evaluation of
the proposed object recognition method, and the results for each type are reported. It is
worth noting that (GN) stands for Gaussian noise, (SPN) stands for salt-and-pepper noise,
and SPKN stands for Speckle noise. Note that different noise levels are considered for each
type of noise. From Table 1, it is obvious for the case of GN with all its different densities
values from 0.0001 to 0.0005 that the accuracy is increased as the values of the overlap block
size are increased. In addition, the same observation is perceived for SPN and SPKN for all
noise density values. Moreover, Table 2 shows that for all types of noise and noise densities,
higher accuracy is achieved at the highest overlap block size. On the other hand, for a block
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size of 16× 16× 16, higher accuracy is obtained for the overlap block size equal to 1× 1× 1
for all noisy environments.

Table 2. Evaluating the accuracy (%) of the proposed algorithm of 3D object recognition for the block
size of (32× 32× 32) under different environments.

Block Size = 32 × 32 × 32

Overlap Size (vx × vy × vz)
Environment 0 1 2 4

Clean 76.28 77.18 78.86 80.10

GN 0.0001 76.21 77.15 78.79 80.16

GN 0.0002 76.16 77.11 78.73 80.14

GN 0.0003 76.18 77.02 78.67 80.11

GN 0.0004 75.98 77.01 78.60 80.14

GN 0.0005 75.75 76.98 78.62 80.14

SPN 0.1 76.25 77.21 78.80 80.16

SPN 0.2 75.46 76.94 78.56 80.10

SPN 0.3 74.39 76.56 78.22 79.92

SPN 0.4 73.79 75.64 78.00 79.58

SPN 0.5 73.03 74.78 77.64 79.21

SPKN 0.2 76.25 77.22 78.90 80.11

SPKN 0.4 76.26 77.18 78.87 80.13

SPKN 0.6 76.33 77.17 78.90 80.11

SPKN 0.8 76.28 77.21 78.84 80.13

SPKN 1.0 76.25 77.18 78.84 80.04

The results show that the best-case scenario can be obtained at a block size of 32× 32× 32
and an overlap size of 4× 4× 4. The accuracy of object recognition starts at very low values
with the block size of 64× 64× 64, which is given in Table 1 when an overlap size of
0× 0× 0 is considered. The recognition accuracy is then increased to the highest values at
a block size of 64× 64× 64 and an overlap size of 16× 16× 16, as given in Table 1; a block
size of 32× 32× 32 and overlap size of 4× 4× 4, as shown in Table 2; and a block size of
16× 16× 16 and overlap size of 2× 2× 2, as demonstrated in Table 3.

To evaluate the performance of the presented algorithm, a comparison is performed
with existing works in terms of recognition accuracy. The existing works in the comparison
are Geometric Moment Invariants (GMI), Tchebichef–Tchebichef–Krawtchouk Moment
Invariants (TTKMI), Tchebichef–Krawtchouk–Krawtchouk Moment Invariants (TKKMI),
Krawtchouk–KrawtchoukKrawtchouk Moment Invariants (KKKMI), TchebichefTchebichef–
Tchebichef Moment Invariants (TTTMI), Hahn Moment Invariants (HMI), Krawtchouk
Moment Invariants (KMI), Tchebichef Moment Invariants (TMI), and Direct Krawtchouk
Moment Invariants (DKMI). The results of the presented and existing works are reported
in Table 4.

It can be observed from Table 4 that the average recognition accuracy of the presented
algorithm outperforms the accuracy of the existing works. According to the results obtained
from this table, the recognition accuracy of the presented algorithm is significantly high
compared with that computed from the existing algorithms for all the given values of the
block size (64× 64× 64, 32× 32× 32, and 16× 16× 16) and overlap size (16× 16× 16,
4× 4× 4, and 1× 1× 1). Therefore, it can be concluded that the presented algorithm can
be useful in object recognition applications.
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Table 3. Evaluation of the accuracy (%) of the proposed algorithm of 3D object recognition for the
block size of (16× 16× 16) under different environments.

Block Size = 16 × 16 × 16

Overlap Size (vx × vy × vz)
Environment 0 1 2

Clean 70.58 80.24 80.10

GN 0.0001 70.73 80.31 80.08

GN 0.0002 70.75 80.27 80.08

GN 0.0003 70.76 80.30 80.04

GN 0.0004 70.80 80.32 80.06

GN 0.0005 70.80 80.34 79.99

SPN 0.1 70.72 80.30 80.11

SPN 0.2 70.83 80.30 80.08

SPN 0.3 70.76 80.10 79.80

SPN 0.4 70.61 79.77 79.51

SPN 0.5 70.44 79.55 79.31

SPKN 0.2 70.63 80.28 80.10

SPKN 0.4 70.55 80.28 80.06

SPKN 0.6 70.55 80.30 80.08

SPKN 0.8 70.51 80.35 80.06

SPKN 1.0 70.65 80.32 80.10

Table 4. Comparison on the McGill database between the presented algorithm and existing works.

Algorithm Name Average Accuracy

GMI [26] 70.26%

TTKMI [26] 72.87%

TKKMI [26] 72.19%

KKKMI [26] 71.11%

TTTMI [26] 71.57%

TMI [30] 60.54%

KMI [30] 60.32%

HMI [30] 60.89%

DKMI [30] 62.01%

Ours (block size = 64× 64× 64, and overlap size = 16× 16× 16) 79.87%

Ours (block size = 32× 32× 32, and overlap size = 4× 4× 4) 80.02%

Ours (block size = 16× 16× 16, and overlap size = 1× 1× 1) 80.21%

Furthermore, in order to provide further performance evaluation of the proposed
method, the computation time of the proposed algorithm is compared with the traditional
algorithm. To this end, Figure 10 illustrates an average computation time for 10 runs for
both the proposed and traditional algorithm under different values of block sizes and
overlap sizes. In addition, the percentage performance improvement between the proposed
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algorithm and the traditional algorithm is also provided. This percentage performance
improvement is obtained by dividing the results from the traditional algorithm by those
obtained from the proposed algorithm. Figure 10 shows that the proposed algorithm signifi-
cantly outperforms the traditional algorithm, where the average performance improvement
across whole values is recorded as around 4.70 compared with the traditional algorithm.
The proposed recognition algorithm achieves the highest percentage performance improve-
ment when the block size is 16× 16× 16 with an overlapped size of 4× 4× 4, which is
recorded as 7.86. This clearly signifies the robustness of our algorithm when a small block
size, i.e., 16× 16× 16, is considered.

Figure 10. Computation time in msec comparing the proposed and traditional algorithms.

5. Conclusions

This paper presents an efficient algorithm for 3D object recognition with low computa-
tional complexity and fast execution time based on Charlier polynomials. The proposed
algorithm has a powerful capability for extracting the features of the 3D object in a fast
manner. This was attributed to the overlapped block-processing technique, which allows
the signals to be virtually extended to auxiliary matrices to avoid the time delay during
loops computation. In addition, in order to characterize the effectiveness of the proposed
3D object recognition method, a noise environment was considered in the evaluation and
comparison. This paper also implemented the SVM algorithm to classify the 3D object
features. The proposed 3D object recognition method was evaluated under different en-
vironments. The results illustrate that the proposed 3D object approach achieved high
recognition accuracy as well as low computation time under the different noisy environ-
ments considered. This achievement signifies the importance of the proposed 3D object
recognition method for future applications.
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3D Three-dimensional
IoT Internet of Things
TRSI Translation, rotation, and scale invariants
CNN Convolutional neural networks
ANN Artificial neural network
OM Orthogonal moments
OP Orthogonal polynomials
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