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Acute impact of aerobic exercise on local cutaneous thermal hyperaemia 
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A B S T R A C T   

Little is known about the acute changes in cutaneous microvascular function that occur in response to exercise, 
the accumulation of which may provide the basis for beneficial chronic cutaneous vascular adaptations. 
Therefore, we examined the effects of acute exercise on cutaneous thermal hyperaemia. Twelve healthy, rec-
reationally active participants (11 male, 1 female) performed 30-minute cycling at 50 % (low-intensity exercise, 
LOW) or 75 % (high-intensity exercise, HIGH) maximum heart rate. Laser Doppler flowmetry (LDF) and rapid 
local skin heating were used to quantify cutaneous thermal hyperaemia before (PRE), immediately following 
(IMM) and 1-h (1HR) after exercise. Baseline, axon reflex peak, axon reflex nadir, plateau, maximum skin blood 
flow responses to rapid local heating (42 ◦C for 30-min followed by 44 ◦C for 15-min) at each stage were assessed 
and indexed as cutaneous vascular conductance [CVC = flux / mean arterial blood pressure (MAP), PU⋅mm 
Hg− 1], and expressed as a percentage of maximum (%CVCmax). Exercise increased heart rate (HR), MAP and skin 
blood flow (all P < 0.001), and to a greater extent during HIGH (all P < 0.001). The axon reflex peak and nadir 
were increased immediately and 1-h after exercise (all comparisons P < 0.01 vs. PRE), which did not differ 
between intensities (peak: P = 0.34, axon reflex nadir: P = 0.91). The endothelium-dependent plateau response 
was slightly elevated after exercise (P = 0.06), with no effect of intensity (P = 0.58) nor any interaction effect (P 
= 0.55). CONCLUSION: Exercise increases cutaneous microvascular axonal responses to local heating for up to 1- 
h, suggesting an augmented sensory afferent function post-exercise. Acute exercise may only modestly affect 
endothelial function in cutaneous microcirculation.   

1. Introduction 

The positive cardiovascular effects of chronic exercise on the pre-
vention/amelioration of cardiovascular disease (CVD) and CVD risk 
factors are well documented (Green et al., 2008; Blair and Morris, 2009). 
Exercise has direct benefits on the entire vascular tree, inducing func-
tional and structural vascular adaptations in both macrovessels (Tinken 
et al., 2008) and microvessels, including the cutaneous microvascula-
ture (Padilla et al., 2011). The skin and its microvasculature play a 
critical role in blood flow regulation, sensory function and thermoreg-
ulation (Johnson et al., 2014). The regulation of body temperature, or 
homeothermy, is achieved primarily by autonomic manipulation of the 
cutaneous microvasculature and sweat glands (Smith and Johnson, 
2016) through sympathetic noradrenergic and sympathetic cholinergic 
efferent neurons. Non-neuronal mechanisms, including the local acti-
vation of chemically-mediated mechanisms, further support alterations 

in cutaneous blood flow (Johnson et al., 2014). 
Rapid local skin heating elicits a biphasic vasodilatory response 

(Minson, 2010). The initial peak of vasodilation is mediated via an axon 
reflex through local sensory and adrenergic nerves (Minson et al., 2001; 
Houghton et al., 2006; Hodges et al., 2008). Following this, a more 
prolonged vasodilation, or plateau, is established, which is predomi-
nantly mediated by nitric oxide (NO) (Choi et al., 2014) but is also 
dependent on other vasoactive products, such as endothelium-derived 
hyperpolarizing factors (EDHFs), and sympathetic axon-derived neuro-
peptides (Hodges et al., 2008). This largely endothelium-dependent 
plateau response can provide an index of microvessel function, the 
impairment of which may be a critical initial contributory step in the 
development of CVD and associated risk factors (Holowatz et al., 2008). 
Indeed, local skin heating protocols have been used to index cutaneous 
microvascular (dys)function when comparing healthy and diseased in-
dividuals, including those associated with ageing (Black et al., 2008), 
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diabetes mellitus (Fuchs et al., 2017) and physical (in)activity (Tew 
et al., 2011b; Atkinson et al., 2018), as well as before and after in-
terventions (Brunt et al., 2016; Woodward et al., 2018). 

The benefits of chronic exercise on the cutaneous microvasculature 
are well known. Exercise training increases cutaneous axon reflex re-
sponses to local heating (Tew et al., 2011a), as well as vasodilatory 
capacity and vascular reactivity in response to both neural, e.g., exercise 
or whole-body heat stress, and non-neural stimuli, e.g., local heating or 
pharmacological administration (Boegli et al., 2003; Black et al., 2008; 
Simmons et al., 2011; Lanting et al., 2017). These long-term functional 
cutaneous vascular adaptations may be mediated, at least in part, 
through regular alterations to the mechanical loading of vessels (Lu and 
Kassab, 2011), locally released biochemical products (Tinken et al., 
2010) and/or episodic increases in blood flow and/or skin temperature 
(Carter et al., 2014; Green et al., 2017). Assessment of changes in skin 
microvasculature in response to acute exercise may provide insight into 
the basis for beneficial chronic vascular adaptations (Green et al., 2011). 
Furthermore, determination of potential skin microvascular function 
changes in response to acute exercise are also important to understand in 
order to develop optimal assessment protocols of microvascular function 
that may take place after bouts of exercise/physical activity, or other 
conditions that induce alterations in skin blood flow, such as heat 
exposure. 

During exercise, as heat production from active musculature in-
creases, various neurally-mediated skin blood flow reflexes occur (Smith 
and Johnson, 2016). After some initial sympathetic vasoconstriction to 
aid redistribution of blood flow to the active musculature, and once a 
core/body temperature threshold is surpassed, sympathetic cholinergic 
mediated active skin vasodilation occurs until a plateau of blood flow is 
established. To date, little work has explored the impact of acute exer-
cise on the skin microcirculation. Previous studies considering the acute 
effects of exercise have mainly focused on macrovascular function and 
have observed mixed results (Dawson et al., 2013), likely owing to 
differences in methodology adopted in these studies. The studies do 
suggest that exercise intensity represents a key factor influencing the 
magnitude and direction of post-exercise changes in vascular health, for 
example, higher intensity exercise results in impaired macrovascular 
function (Dawson et al., 2013). There is a lack of data available con-
cerning the effects of acute exercise on cutaneous microvessel function 
with divergent responses to acetylcholine iontophoresis and post- 
occlusion reactive hyperaemia (PORH) after incremental exhaustive 
rowing in sedentary and trained athletes (Stupin et al., 2018). The aim of 
this study was, therefore, to investigate the effect of acute exercise on 
local cutaneous thermal hyperaemia. A secondary aim of this study was 
to investigate the impact of exercise intensity on any potential changes 
to cutaneous thermal hyperaemia. The hypotheses of the study were that 
the cutaneous plateau response to local heating would be impaired after 
high, but not low, intensity exercise (Birk et al., 2013; Stupin et al., 
2018). 

2. Materials and methods 

2.1. Participants 

Participants (n = 12, 1 female) who were recreationally active (as 
assessed by short IPAQ physical activity questionnaire, <4 sessions per 
week), healthy (as assessed by PARQ health screening form), young (age 
range 20–40 years, mean = 25.7 ± 5 years), and non-smokers were 
recruited. Individuals with cardiovascular disease history, local forearm 
infection, limitations of physical activity, smokers or persons taking 
medication (including oral contraception) were excluded. The sample 
size (effect size of 0.75, beta = 0.80, alpha = 0.05) was calculated using 
previously reported data (Birk et al., 2013; Stupin et al., 2018). Partic-
ipants were informed of the procedures prior to participation and pro-
vided written and verbal informed consent. This study was approved by 
the Liverpool John Moores University Research Ethics Committee in 

accordance with the Declaration of Helsinki (ref: 17SPS010). Height and 
weight measurements were collected at the first laboratory visit (mean 
height [m] 1.8 ± 0.1, weight [kg] 78 ± 13, BMI 24 ± 3). 

2.2. Experimental design 

Participants attended the laboratories on two occasions for 30-min of 
exercise on a cycle ergometer (Lode Corival CPET, Lode B. V., Gronin-
gen, NL) at 50 % (low-intensity exercise, LOW) or 75 % (high-intensity 
exercise, HIGH) age-predicted maximum heart rate (HRpred = 208 −
[0.7 × age]) (Tanaka et al., 2001; Birk et al., 2013) (Fig. 1). Prior to 
(PRE), immediately following (IMM), and 1-h following the cessation of 
exercise (1HR), forearm cutaneous thermal hyperaemia was assessed. 
The order of the exercise visits was randomised and counterbalanced, 
separated by 4–7 days, and visits were performed at the same time of day 
to minimise circadian variation (Jones et al., 2010). The female partic-
ipant was tested in the early follicular stage (days 1–7) of the menstrual 
cycle to minimise hormonal involvement (Charkoudian et al., 2000). 
Participants reported to the laboratories having fasted from food for 4 h, 
abstained from alcohol and caffeine for 16 h, and refrained from exercise 
for 24 h prior to testing. Participants were advised to ingest 500 ml of 
water prior to testing to avoid dehydration. All testing visits took place 
in the same humidity and temperature controlled laboratory (23.3 ±
0.28 ◦C). 

2.3. Cutaneous thermal hyperaemia assessment 

Laser Doppler flowmetry (LDF; Moor Instruments VP2/PH2 laser 
probe, Moor Instruments, Axminster, UK) and local skin heating pro-
tocols were used to quantify cutaneous thermal hyperaemia (Roustit and 
Cracowski, 2013). Participants were positioned supine for instrumen-
tation and baseline stabilisation. LDF probes were attached using ad-
hesive tape to the volar aspect of the non-dominant forearm of 
participants, avoiding hair and visible veins. Resting baseline mea-
surements were collected for 5 min at local skin temperature. Local skin 
heating, using heating units with LDF probe housing ports (Moor In-
struments VHP-1 heating probe, Moor Instruments, Axminster, UK), 
commenced thereafter at a rate of 0.1 ◦C/s to 42 ◦C and was held for 30- 
min, eliciting an initial peak vasodilation within 10-min, and a rebound 
nadir. Following this, skin blood flow continued to increase for 20-min 
until a stable plateau was established. Local skin temperature was then 
increased to 44 ◦C (0.1 ◦C/s) for a further 15-min, after which a maximal 
value of cutaneous local vasodilation was produced (Minson et al., 2001; 
Minson, 2010). 

Local heating of skin may be susceptible to a ‘desensitisation’ phe-
nomenon, whereby a single skin site which is previously exposed to a 
heating protocol has a reduced functional response upon subsequent 
heating (Ciplak et al., 2009; Frantz et al., 2012). In order to avoid this 
issue for the sequential heating protocols employed in the current study, 
three separate LDF probes were positioned on the forearm, separated by 
at least 2 cm. The three separate sites allowed for the comparison of skin 
function at sites not previously heated (PRE, site A; IMM, site B; 1HR, 
site C). Digital photographs were taken of probe placements, and 
anatomical landmarks were annotated and measured for reproducibility 
in future visits. 

Intermittent systolic and diastolic blood pressure and heart rate were 
measured during the local heating protocols and exercise using an 
automated sphygmomanometer (Dinamap Procare 100, GE Medical 
Systems Ltd., Buckinghamshire, UK). Mean arterial pressure (MAP) was 
calculated using MAP = 2/3 diastolic BP + 1/3 systolic BP. Intra- 
exercise heart rate was continuously monitored using short-range 
telemetry (Polar FT1 and T31, Polar UK). Local skin temperature was 
recorded directly from the LDF probes/heating units. 
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2.4. Data analysis 

Microvascular flux (movement of red blood cells within the skin 
microvessels) was collected and quantified in arbitrary perfusion units 
(PU) by the LDF probes. Flux measurements were collected online 
(PowerLab 4/25, ADInstruments Ltd., Oxford, UK) and stored for anal-
ysis at a later date (LabChart v8.1.8, ADInstruments Ltd.). Minute av-
erages from the recorded data were extracted and stored for offline 
analysis. Resting values were averaged over 5-min; the axon reflex peak 
was defined as the largest minute average value to occur after 
commencement of heating within 10-min, and the axon reflex nadir as 
the lowest minute average following the axon reflex peak within the 
same 10-min. The 42 ◦C plateau value was defined as the minute average 
prior to increasing heat to 44 ◦C. Maximal values of flux were defined as 
the average of the final 5-minutes flux at 44 ◦C. Protocols for heating 
were programmed and saved offline (moorVMS-PC v4.0.6, Moor In-
struments Ltd.). LDF flux values were divided by MAP to provide an 
index of cutaneous vascular conductance (CVC = flux / MAP, PU⋅mm 
Hg− 1), to account for potential effects of changes in blood pressure on 
skin blood flow, and expressed as a percentage of maximum (%CVCmax 
= [CVC / CVCmax] × 100). 

2.5. Statistical analysis 

A linear mixed model was employed with stage (3 levels: PRE vs. 
IMM vs. 1HR) and intensity (2 levels: LOW vs. HIGH) as factors for each 
timepoint of the local heating response, e.g., baseline, axon reflex peak, 
axon reflex nadir, plateau and maximum. Haemodynamics and local 
skin temperatures pre/intra exercise were compared using linear mixed 
models, with main effects of time (pre- vs intra-exercise) and intensity of 

exercise (LOW vs. HIGH). Analyses were performed using SPSS (IBM 
SPSS Statistical Package 24). Statistical significance was set at P < 0.05 
and data expressed as mean ± 1 standard deviation. 

3. Results 

3.1. Exercise responses 

Exercise induced significant changes to all haemodynamic variables 
(Table 1). By design, exercise work rate was significantly higher during 
HIGH and there were significant differences between intra-exercise LOW 
and HIGH data in all variables except diastolic blood pressure and MAP, 
clearly indicating that the two testing conditions were physiologically 
distinct from one another. 

3.2. Blood pressure responses 

The MAP responses during the PRE, IMM and 1HR local heating 
protocols are presented in Table 2. There was no main effect of intensity 
(P = 0.19) and there was no main effect of stage (P = 0.25). There was a 
significant interaction between stage and time point (P = 0.02), 
whereby MAP was well maintained during local heating pre-exercise; it 
decreased by approximately 5 mm Hg approximately 45–60 min after 
exercise and returned back to pre-exercise baseline 1.5–2 h post- 
exercise. 

3.3. Cutaneous thermal hyperaemia 

Example tracings of raw skin microvascular blood flux responses to 
local heating around an acute bout of exercise are illustrated in Fig. 1. 

Fig. 1. Representative example tracing of skin blood 
flow responses to local heating before and after ex-
ercise at 3 distinct sites. Baseline measurements were 
recorded at local skin temperature (α). Local heating 
produces an initial axon-mediated reflex vasodilation 
that peaks within 10-min of heating (β), followed by a 
subsequent nadir (γ). Heating is maintained for 30- 
min at 42 ◦C, by the end of which a stable 
“plateau” response is achieved (δ). Heating then in-
creases further to 44 ◦C; the skin microvascular 
response reaches a stable maximal plateau after 
around 20-min of heating (ε), at which point local 
heating ceases. Abbreviations used: PU, arbitrary 
perfusion units.   

Table 1 
Exercise responses immediately following 30-min of low and high intensity exercise compared to baseline. Data reported as mean ± 1 SD.   

Low-intensity exercise High-intensity exercise Comparison 

Pre- 
exercise 

Intra- 
exercise 

Pre- 
exercise 

Intra- 
exercise 

Pre vs. Intra-exercise Low vs. high intensity Time × intensity interaction 

Systolic BP (mm Hg) 119 ± 9 138 ± 10 118 ± 8 156 ± 19 <0.001  0.025 0.016 
Diastolic BP (mm Hg) 64 ± 8 71 ± 11 62 ± 5 79 ± 20 0.002  0.435 0.135 
MAP (mm Hg) 82 ± 8 93 ± 9 81 ± 5 105 ± 17 <0.001  0.118 0.033 
Heart Rate (beats⋅min− 1) 54 ± 8 104 ± 6 55 ± 9 147 ± 6 <0.001  <0.001 <0.001 
Forearm skin temperature (◦C) 31.5 ± 1.2 32.0 ± 1.3 31.7 ± 1.4 33.0 ± 1.0 <0.001  0.012 0.036 
Work (W) – 84 ± 15 – 152 ± 25 –  <0.001 –  
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There was no main effect of stage (P = 0.63) or intensity (P = 0.39), nor 
an interaction effect (P = 0.16) for the maximal CVC response to 44 ◦C 
heating (LOW: PRE, 3.8 ± 1.1 PU⋅mm Hg− 1; IMM 3.9 ± 0.9 PU⋅mm 
Hg− 1; 1HR, 3.6 ± 1.2 PU⋅mm Hg− 1. HIGH: PRE 3.3 ± 0.8 PU⋅mm Hg− 1; 
IMM, 3.5 ± 0.9 PU⋅mm Hg− 1; 1HR, 3.8 ± 0.3 PU⋅mm Hg− 1). Data are 
therefore presented as %CVCmax. 

3.4. Comparison of cutaneous thermal hyperaemia 

3.4.1. Baseline 
There was a main effect of intensity (P < 0.001) and stage (P <

0.001), as well as an interaction between intensity and stage (P <
0.001). LOW resulted in an increase in baseline %CVCmax at IMM (PRE 
6.2 ± 1.7 vs IMM 16.2 ± 11.3 %CVCmax, P = 0.03) and was still 
increased at 1HR (PRE vs 1HR 10.5 ± 6.1 %CVCmax, P = 0.05), with no 
difference between IMM and 1HR (P = 0.29). HIGH increased baseline 
at IMM (PRE 7.0 ± 3.6 vs IMM 46.6 ± 14.2 %CVCmax, P < 0.001), with 
baseline blood flow returning to pre-exercise levels after 1HR (PRE vs 
1HR 11.2 ± 6.7 %CVCmax, P = 0.22). Baseline %CVCmax at IMM was 
significantly greater than at 1HR (P < 0.001). Baseline %CVCmax IMM 
was greater following HIGH than LOW (P < 0.001), but there was no 
difference in baseline %CVCmax at 1HR (P = 0.79) (Fig. 2). 

3.4.2. Axon reflex peak 
There was a main effect of stage (P < 0.001), but no main effect of 

intensity (P = 0.34) and no interaction effect of stage and intensity (P =
0.37). The axon reflex peak was increased IMM compared to PRE (PRE 
60.0 ± 16.7 vs IMM 72.7 ± 16.4 %CVCmax, P = 0.001). The axon reflex 
peak was still increased 1HR compared to PRE (PRE vs 1HR 75.3 ± 17.1 
%CVCmax, P = 0.001). There was no difference between IMM and 1HR 
responses (P = 0.99). 

3.4.3. Axon reflex nadir 
There was a main effect of stage (P < 0.001), but no main effect of 

intensity (P = 0.91) and no interaction effect of stage and intensity (P =
0.29). The axon reflex nadir, compared to PRE, increased at both IMM 
(PRE 46.8 ± 17.7 vs IMM 64.0 ± 17.3 %CVCmax, P < 0.001) and at 1HR 
(PRE vs 1HR 59.3 ± 17.5 %CVCmax, P = 0.01), with no significant dif-
ference between IMM and 1HR responses (P = 0.60). 

3.4.4. Plateau response 
There was no main effect of stage (P = 0.06), intensity (P = 0.58), nor 

any interaction effect of stage and intensity (P = 0.55) for plateau re-
sponses. There was a modest, but non-significant, increase to plateau 
responses IMM compared to PRE (PRE 85.5 ± 7.1 vs IMM 90.3 ± 3.4 % 
CVCmax, P = 0.06). There was no difference in plateau responses at 1HR 
compared to PRE (PRE vs 1HR 88.8 ± 11.7 %CVCmax, P = 0.55). 

4. Discussion 

The aim of this study was to investigate the effects of acute exercise 
on local cutaneous thermal hyperaemia in healthy young individuals. 

Cutaneous blood flow responses to rapid local heating were assessed 
before, immediately and 1-h after 30-min of low or high-intensity 
continuous cycling exercise. The main findings are twofold; 1) an 
acute bout of exercise causes an increased cutaneous axonal response 
following exercise, which sustains for at least 1-h post-exercise and was 
not dependent on exercise intensity, and 2) cutaneous endothelium- 
dependent vasodilation was largely unaffected by an acute bout of ex-
ercise. These findings have implications for the understanding of chronic 
skin microvascular adaptations to repeated exercise bouts, as well as the 
design of protocols involving the assessment of local cutaneous micro-
vascular function. 

Table 2 
Mean arterial blood pressure (mean ± 1 SD) responses before, immediately following, and 1-h after 30-min of exercise at LOW and HIGH intensities. P < 0.05 for 
interaction of timepoint * stage.  

Stage Pre-exercise Immediately post-exercise 1 h post-exercise 

Time- 
point 

Baseline Axon 
Peak 

Axon 
Nadir 

Plateau Max Baseline Axon 
Peak 

Axon 
Nadir 

Plateau Max Baseline Axon 
Peak 

Axon 
Nadir 

Plateau Max 

LOW 
(mm 
Hg) 

81 ± 6 80 ± 6 80 ± 7 80 ± 5 79 
± 7 

83 ± 7 82 ± 9 80 ± 6 82 ± 8 82 
± 6 

81 ± 6 81 ± 7 81 ± 7 81 ± 7 82 
± 7 

HIGH 
(mm 
Hg) 

80 ± 5 79 ± 6 79 ± 6 77 ± 5 78 
± 4 

83 ± 5 81 ± 6 80 ± 4 79 ± 6 76 
± 6 

76 ± 5 77 ± 5 76 ± 6 78 ± 7 78 
± 6  
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Fig. 2. Cutaneous thermal hyperaemia responses to rapid local heating, 
expressed as %CVCmax, before, immediately and 1-h after A) low-intensity ex-
ercise, and; B) high-intensity exercise. *P < 0.05 vs. pre-exercise within each 
intensity, $P < 0.05 vs. Baseline IMM during LOW. 
%CVCmax, percentage of maximal cutaneous vascular conductance; PRE, pre- 
exercise responses; IMM, immediately post-exercise responses; 1HR, 1-hour 
post-exercise responses. 
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Rapid local skin heating protocols elicit an initial axon-mediated 
vasodilation (or peak), followed by a more prolonged vasodilation, or 
plateau, response. In both phases, vasodilation occurs through complex 
pathways that lead to the production of NO and smooth muscle relax-
ation via hyperpolarization from EDHFs (Johnson et al., 2014). In the 
present study, acute exercise increased the axon reflex-mediated vaso-
dilation peak (as well as the subsequent rebound nadir). The mecha-
nisms of the axon reflex and nadir are not entirely clear, but are 
purportedly mediated via a number of mechanisms, including activation 
of transient receptor potential vanilloid-1 receptors in C-fibre afferent 
nociceptive neurons (Wong and Fieger, 2010), and to a lesser extent, 
neurokinin-1 receptor activation by substance P and calcitonin gene- 
related peptide released by nociceptive neurons (Schmelz et al., 
1997), β2 receptor activation via norepinephrine and neuropeptide Y 
released by sympathetic adrenergic nerves (Houghton et al., 2006; 
Hodges et al., 2008; Hodges and Sparks, 2013), as well as EDHF- 
mediated activation of calcium activated potassium (KCa) channels 
(Brunt and Minson, 2012). It is unknown whether exercise augmented 
any of these mechanisms, e.g., local nociceptive nerve activation, 
neurotransmitter release and/or responsiveness of the vasculature to 
these neurotransmitters, which would have contributed to the elevated 
post-exercise cutaneous axon reflex and nadir. Such alterations could 
have been mediated via exercise and/or thermoregulatory-induced ad-
justments, such as increases in sympathetic nerve activity (Ray and 
Wilson, 2004; Smith and Johnson, 2016), skin blood flow and/or skin/ 
core temperatures. It is likely that core temperature did increase during 
exercise and to a greater extent during HIGH, given the greater skin 
blood flow response compared to LOW. 

The implications of an elevated cutaneous axon reflex after exercise 
are not entirely clear. An increased axon reflex may minimise the heat 
transferred to local tissues to protect the skin from damage (Minson 
et al., 2002) and reduce the risk of pressure-induced ischaemic damage 
(Fromy et al., 2010). That said, the vasodilation associated with the axon 
reflex is transient so any alterations to the amount of heat transferred to 
the local tissues may be minimal. Given the role of sensory nerves in the 
cutaneous axon reflex and nadir, it is unclear if cutaneous thermal 
sensory function is modified after an exercise bout; findings of limited 
research are equivocal (Kemppainen et al., 1985; Ruble et al., 2005). A 
recent study (Stupin et al., 2018) reported that cutaneous vascular re-
sponses to post-occlusion reactive hyperaemia (PORH) were unchanged 
after incremental rowing exercise to exhaustion in sedentary in-
dividuals. These findings are somewhat inconsistent with the present 
study's findings of an elevated axon reflex response post-exercise and are 
likely due to differences in the method of vascular function assessment 
and the mechanisms of the cutaneous responses between local thermal 
and physical stimulation (Berghoff et al., 2002; Roustit and Cracowski, 
2013). 

In the present study, cutaneous endothelium-dependent vasodilation 
was largely unaffected by an acute bout of exercise. The largely 
endothelium-dependent plateau response to local heating was modestly 
increased (P = 0.06, Cohen's D effect size 0.96) immediately after ex-
ercise with no effect of intensity, suggesting cutaneous vascular endo-
thelial function was possibly improved by acute exercise. These findings 
are somewhat in contrast to previous studies investigating acute exercise 
effects on conduit vessels, which reported reductions or increases in 
FMD post-exercise (Gonzales et al., 2011; Johnson et al., 2012; Dawson 
et al., 2013). It has been suggested that 1) an immediate decrease in 
macrovascular function occurs after exercise cessation, which is fol-
lowed by a (supra)normalisation response, and, 2) the magnitude of the 
nadir and (supra)normalisation and duration of this biphasic pattern of 
response is influenced by numerous factors (e.g., the exercise stimulus, 
the aerobic capacity of the subject population, methodological factors, 
changes in arterial diameter, and antioxidant status) (Dawson et al., 
2013). Differences in micro- vs. macrovascular function responses to 
acute exercise are likely due to inherent differences in structure and 
function between conduit and skin vessels, as well as the different intra- 

exercise haemodynamic changes that occur in the more proximal 
‘conduit’ macrovessels relative to the distal skin microvasculature 
(Rizzoni et al., 2015). Furthermore, although both the FMD response 
and the plateau response to local skin heating rely on NO, the latter is 
more heavily influenced by NO (Minson, 2010). These differences in 
macro vs. microvascular function could underlie these disparate findings 
of conduit and cutaneous blood vessel responses to acute exercise. Stu-
pin et al. (2018) observed elevated cutaneous vascular responses to 
acetylcholine iontophoresis after incremental rowing exercise, which is 
consistent with the modest elevation in the endothelium-dependent 
plateau response to local heating in the present study and might be 
attributable to exercise-induced increased anti-oxidative capacity (Stu-
pin et al., 2018) and/or elevations in NO bioavailability, and/or endo-
thelium sensitivity to NO. 

A secondary aim of the present study was to investigate the impact of 
exercise intensity on any potential changes to cutaneous thermal 
hyperaemia. Despite clear differences in the cardiovascular, as well as 
many other, responses between the LOW and HIGH trials in the present 
study, there was no effect of intensity on the post-exercise elevated axon 
reflex and nadir. These findings suggest that changes in cutaneous 
vascular axon reflexes are not dependent on the intensity of the pre-
ceding exercise bout. In contrast to the aforementioned responses in a 
sedentary cohort in the previous study by Stupin et al. (2018), blunted 
cutaneous vascular responses to PORH and acetylcholine iontophoresis 
were evident after incremental exercise to exhaustion in a trained 
cohort. Given that decreases in macrovascular function post-exercise are 
more likely with increased intensity and duration of the preceding ex-
ercise bout (Birk et al., 2013), the higher absolute exercise workloads 
and duration in the trained rowers possibly caused the impaired cuta-
neous vascular function post-exercise observed by Stupin et al. (2018). 
However, given the methodological differences between the latter study 
and the present study, e.g., PORH and acetylcholine iontophoresis and 
local cutaneous thermal hyperaemia, respectively, mechanistic differ-
ences associated with these techniques may explain the contrasting 
findings between the studies. In the present study, there was no main 
effect of intensity on the endothelium-dependent plateau response to 
local heating. Whether a higher intensity and/or longer exercise bout 
than that used in the HIGH trial would have resulted in a reduced 
cutaneous endothelial, as well as axon reflex, function is not clear. 
Furthermore, cutaneous vascular function was assessed on the previ-
ously active forearm in the former study by Stupin et al. (2018), rather 
than an inactive limb in the present study. Whether differences exist 
between active vs. inactive limbs in potential changes in post-exercise 
cutaneous microvascular function is not known. 

4.1. Practical implications 

The findings of the present study have important practical implica-
tions when assessing cutaneous vascular function, particularly the 
design of protocols involving the assessment of cutaneous axon reflexes. 
Present findings have shown that an acute bout of exercise increases the 
cutaneous axonal response for at least 1-h post activity, which should be 
borne in mind when conducting an axon reflex test and interpreting 
responses after exercise/physical activity. Furthermore, caution should 
also likely be taken when performing assessments following heat 
exposure, which also results in elevations in skin blood flow. The find-
ings of the present study also contribute towards the understanding of 
chronic skin microvascular adaptations to exercise, whereby repeated 
elevations in cutaneous axon reflex (and possibly endothelial function) 
responses after recurrent exercise bouts may accumulate and result in 
beneficial neural and microvascular adaptations to exercise in-
terventions (Black et al., 2008; Simmons et al., 2011; Lanting et al., 
2017; Green et al., 2017; Atkinson et al., 2018). 
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4.2. Limitations 

There are some limitations worthy of consideration. Differences in 
heating rate do alter the contribution of the mechanisms involved in the 
cutaneous vascular responses to local heating (Hodges and Johnson, 
2009; Roberts et al., 2017). It is therefore possible that a different local 
heating protocol may have yielded different findings; however the lo-
gistics of alternative heating protocols, such as slow local heating (Black 
et al., 2008; Choi et al., 2014), might have prevented immediate and 
delayed post-exercise assessments. A further protocol related limitation 
is that as skin blood flow reached near maximal levels (~90–95 % of 
CVCmax) during the plateau phase of local heating, a ceiling effect may 
have occurred and that any elevations in the plateau phase may have 
been very small and/or masked by the near maximal levels. An alter-
native rapid local heating protocol to a lower temperature, e.g., local 
heating to 39 ◦C, would have induced a plateau response at a lower skin 
blood flow which could have allowed clearer changes in cutaneous 
endothelial function to be revealed (Choi et al., 2014). Following HIGH 
exercise, minor post-exercise hypotension (PEH) was present, consistent 
with previous research (Halliwill et al., 2013). PEH is thought to be 
mediated by both central and local mechanisms, such as prolonged 
vasodilatory activity in previously active tissues mediated via histamine 
(Barrett-O'Keefe et al., 2013; Luttrell and Halliwill, 2017), that possibly 
could have contributed to the elevated axon reflex vasodilation 
following acute exercise. Histamine has been shown to be only a modest 
mediator of the axon reflex response to local heating in skin micro-
vessels, however, albeit in the rested, e.g., pre-exercise, state (Wong and 
Minson, 2011), and elevated axon reflex vasodilation was present after 
both LOW and HIGH exercise (e.g., not just after HIGH). 

In conclusion, the findings of the present study indicate acutely 
increased cutaneous axonal responses to local heating following exer-
cise, suggesting augmented sensory afferent function post-exercise. In 
addition, acute exercise appeared to only slightly elevate endothelial- 
dependent plateau phase responses to local heating, indicating that 
cutaneous endothelial function may be modestly augmented post- 
exercise. 
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