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A B S T R A C T   

Background: Presence of left ventricular diastolic dysfunction (DD) is key in the pathogenesis of heart failure with 
preserved ejection fraction (HFpEF). However, non-invasive assessment of diastolic function is complex, 
cumbersome, and largely based on consensus recommendations. Novel imaging techniques may help detecting 
DD. Therefore, we compared left ventricular strain-volume loop (SVL) characteristics and diastolic (dys-)function 
in suspected HFpEF patients. 
Method and results: 257 suspected HFpEF patients with sinus rhythm during echocardiography were prospectively 
included. 211 patients with quality-controlled images and strain and volume analysis were classified according to 
the 2016 ASE/EACVI recommendations. Patients with indeterminate diastolic function were excluded, resulting 
in two groups: normal diastolic function (control; n = 65) and DD (n = 91). Patients with DD were older (74.8 ±
6.9 vs. 68.5 ± 9.4 years, p < 0.001), more often female (88% vs 72%, p = 0.021), and more often had a history of 
atrial fibrillation (42% vs. 23%, p = 0.024) and hypertension (91% vs. 71%, p = 0.001) compared to normal 
diastolic function. SVL analysis showed a larger uncoupling i.e., a different longitudinal strain contribution to 
volume change, in DD compared to controls (0.556 ± 1.10% vs. -0.051 ± 1.14%, respectively, P < 0.001). This 
observation suggests different deformational properties during the cardiac cycle. After adjustment for age, sex, 
history of atrial fibrillation and hypertension, we found an adjusted odds ratio of 1.68 (95% confidence interval 
1.19–2.47) for DD per unit increase in uncoupling (range: − 2.95–3.20). 
Conclusion: Uncoupling of the SVL is independently associated with DD. This might provide novel insights in 
cardiac mechanics and new opportunities to assess diastolic function non-invasively.   

1. Introduction 

Heart failure (HF) affects over 26 million people worldwide and is 
associated with high morbidity and mortality rates [1,2]. Echocardiog-
raphy is traditionally used to quantify left ventricular ejection fraction 
(LVEF). Interestingly, despite having clinical complaints, a significant 
portion of all HF patients demonstrate a preserved LVEF (i.e., HFpEF) 
[3]. Etiology of HFpEF is not completely understood, but it is currently 

accepted that HFpEF is caused by pathophysiological processes affecting 
the myocardium (e.g. metabolic, ischemic, toxic, and genetic) and/or 
affecting the loading conditions of the heart (e.g. hypertension, atrial/ 
ventricular cardiac arrhythmias, valvular or structural defects) [4]. 

Diagnosis of HFpEF is challenging [4,5]. The gold standard is inva-
sive pressure measurements evaluating the presence of elevated pul-
monary capillary wedge pressure as a measure for LV diastolic 
dysfunction (LVDD). Due to its invasive nature, several attempts have 
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been made to establish alternative diagnostic means, including scoring- 
systems such as the HFA-PEFF or H2FPEF algorithms that adopt a 
combination of echocardiographic markers, comorbidities, and (non-) 
invasive testing [4,6,7]. Due to the heterogeneity in the clinical pre-
sentation and incomplete understanding of the underlying pathophysi-
ology of HFpEF, there is no clear consensus on methods to diagnose 
HFpEF [8,9]. Nonetheless, studies agree that LVDD plays a central role 
in HFpEF diagnosis, characterized by impaired myocardial relaxation 
during diastole, increased wall stiffness, and/or elevated filling pres-
sures [10]. 

The strain(ε)-volume loop (SVL) is an echocardiography-based 
measure that evaluates the dynamic relationship between LV volume 
and global longitudinal strain across the total cardiac cycle [11–15]. We 
previously reported that the SVL can successfully detect changes in 
systolic and diastolic function upon alterations in pre- and afterload, an 
ability that is also present when using the invasive pressure-volume 
curve [16,17], whilst the SVL can also distinguish between various 
cardiac abnormalities [11], and has potential to provide additional 
predictive value in clinical populations [12,18]. Therefore, this study 
will evaluate the relation between the SVL characteristics and presence 
of diastolic dysfunction (DD) in patients suspected of having HFpEF. We 
hypothesized that SVL, and especially parameters related to the diastolic 
part of the loop, are associated with presence of DD. 

2. Methods 

2.1. Study design and population 

In this cohort study, we prospectively included patients who were 
referred to the outpatient HFpEF clinic at the Maastricht University 
Medical Center (MUMC+) between January 2015 and July 2019 [7]. 
Patients underwent a diagnostic work-up at baseline and the diagnosis of 
HFpEF was based on the European Society of Cardiology HF guidelines 
(2016) [7,19]. Exclusion criteria were non-sinus rhythm during echo-
cardiography examination, such as atrial fibrillation or ventricular 
pacing, and more than moderate mitral valve regurgitation or calcifi-
cation, as these conditions hampered diastolic function assessment ac-
cording to the 2016 ASE/EACVI recommendations. Additionally, 
patients with insufficient echocardiography image quality were 
excluded. We included all patients with normal diastolic function or DD 
according to the 2016 ASE/EACVI recommendations (Fig. 1 & Appendix 
Fig. 1) [20]. Patients provided written informed consent and the cohort 
complies with the Declaration of Helsinki. The Medical Ethics Review 
Committee of the Maastricht University Medical Center approved the 
initial cohort study (NL67997.068.18). 

The primary purpose of our study was to explore the association 
between SVL characteristics and presence of diastolic function in HFpEF. 
For this purpose, patients who fulfilled the inclusion criteria were allo-
cated according to expert consensus on diastolic function assessment 
into I) normal diastolic function (control) or II) DD (dysfunction) [20]. 

Fig. 1. Flow diagram of patient selection for this study. Control, normal diastolic function; Dysfunction, diastolic dysfunction. *Algorithm as used in the 2016 ASE/ 
EACVI recommendations. 
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2.2. Transthoracic echocardiography and strain analyses 

Echocardiography was performed as part of clinical routine accord-
ing to guideline recommendations [21] and was subsequently analyzed 
with speckle-tracking echocardiography, as described in detail earlier 
[22]. Briefly, temporal LV global longitudinal strain (GLS) on 2D ul-
trasound cine-loops was obtained by manual endocardial and myocar-
dial tracing of the apical two-, three-, and four-chamber according to 
current consensus recommendations using dedicated speckle-tracking 
method (TomTec, 2D Cardiac Performance Analysis v1.4, ImageArena 
v4.6); all investigators were blinded to all other clinical data [23]. Im-
ages were excluded for analysis if apical views were missing or image 
quality was insufficient according to a standard operating procedure, 
including poor myocardial wall visibility or traceability during the 
cardiac cycle in more than two segments in a single view, or a too low 
frame rate (<50 frames per second). 

2.3. Strain(ε)-volume loop analysis 

Temporal myocardial global longitudinal strain values and temporal 
LV volume values were exported from the dedicated software (2D Car-
diac Performance Analysis v1.4, Image Arena v4.6) to text-files. Using 
an in-house developed MATLAB script (The Mathworks Inc., version 
2019a, Massachussetts, USA) we imported the volume and GLS curves 
values to construct SVL adapted from earlier work [11,24]. Firstly, 
markers for end diastole and end systole were adjusted based on the 
maximum and minimum of the LV volume curve, respectively [23]. 
Secondly, 300-point cubic spline interpolations were applied to both the 
systolic, and diastolic parts of the curves to obtain equidistant sampling 
for differential analysis. Next, drift compensation was applied on both 
the volume and strain curves to achieve closed SV-loops. The longitu-
dinal strain-volume relationship was assessed using the following pa-
rameters (Appendix Fig. 2): (a) early systolic slope during the first 5% of 
volume ejection (ES slope), (b) strain(ε)-volume slope during systole (S 
slope), (c) end-systolic longitudinal strain (peak strain), (d) strain 
(ε)-volume slope during the first 5% of volume increase (ED slope) and 
(e) last 5% of volume increase (LD slope) during diastole, and (f) 
uncoupling (UNCOUP), defined as the average difference in strain be-
tween systole and diastole (systolic strain – diastolic strain) for any given 
volume during these phases. Uncoupling is also divided in uncoupling 
during the lower two-thirds of the total volume and the final third of 
total volume to represent the early and the active mitral inflow phase, i. 
e., (g) early (UNCOUP ED) and (h) late (UNCOUP LD) uncoupling 
[11,25]. Individual SVL plots were manually assessed blinded from 
other results to detect fluctuations in temporal strain or volume 
tracking. The obtained SVL parameters including the patient ID and 
other measurement and analysis information, were automatically 
transferred into a Microsoft Access database using a local Open DataBase 
Connectivity (ODBC) connection. 

2.4. Statistical analysis 

Statistical analysis was performed using R-studio version 1.4.1106 
(RStudio, PBC) [26]. All parameters were visually inspected for 
normality using histograms, Q-Q plots, and the Shapiro-Wilk test. 
Continuous variables were reported as mean ± standard deviation (SD) 
or median [interquartile range] and categorical variables as proportions. 
Differences between groups were assessed using a t-test or a non- 
parametric equivalent. Proportions were tested using chi-squared tests 
or Fisher’s exact tests. To assess the association between SVL parameters 
and DD, backward stepwise logistic regression was used. The first model 
included the SVL parameters, i.e., UNCOUP, S slope, ES slope, Peak 
Strain, ED slope, and LD slope. Based on the Wald test, independent 
variables were excluded from the model until all independent variables 
remained significant. Collinearity was detected for UNCOUP, UNCOUP 
ED and UNCOUP LD. Therefore, backward selection was repeated 

replacing UNCOUP with UNCOUP ED and UNCOUP LD separately, 
resulting in three models with the different uncoupling parameters. 
Based on the lowest Akaike information criterion (AIC) the model with 
UNCOUP was selected for subsequent multivariable analysis. Addi-
tionally, for the final model the association was assessed for each of 
2000 bootstrapped samples, and the 95% confidence interval was 
computed determining the odds ratio at the 2.5th and 97.5th percen-
tiles. P-values of <0.05 were considered significant. 

3. Results 

A total of 383 patients enrolled in this cohort were initially eligible 
for analysis (Fig. 1). We excluded 126 (33%) patients because of non- 
sinus rhythm during echocardiograph. Moreover, we excluded an 
additional 10 (2.6%) patients due to insufficient image quality for 
speckle-tracking imaging, whilst we did not have to additionally exclude 
patients based on mitral valve disease. Of these remaining 247 patients, 
we excluded 36 (14%) due to fluctuations in temporal volume tracking 
after evaluating the SVL. This resulted in 211 patients to be classified 
according to 2016 ASE/EACVI recommendations. Due to missing pa-
rameters used in the 2016 ASE/EACVI algorithm (n = 20) and classifi-
cation of diastolic function as indeterminate (n = 35), 156 patients were 
available for statistical analyses and were classified as: control (n = 65, 
42%) or DD (n = 91, 58%). 

Patients with DD were significantly older, more frequently female, 
and had higher NT-proBNP levels compared to controls (Table 1). We 

Table 1 
Clinical baseline characteristics.   

Control 
(N = 65) 

Dysfunction 
(N = 91) 

P- Value 

Age (years) 68.5 ± 9.44 74.8 ± 6.85 <0.001 
Female sex, n (%) 47 (72.3%) 80 (87.9%) 0.021 
Body mass index (kg/m2) 30.5 ± 6.30 31.0 ± 5.63 0.577 
Systolic blood pressure (mmHg) 150 ± 18.2 156 ± 30.1 0.147 
Diastolic blood pressure (mmHg) 79.0 ± 10.3 75.2 ± 12.9 0.045 
Laboratory values    

NT-proBNP (pg/ml) 163 [85.6–417] 420 [217–945] <0.001 
Medical History, n (%)    

Hypertension 46 (70.8%) 83 (91.2%) 0.001 
Significant CAD 7 (10.8%) 19 (20.9%) 0.130 

Missing 4 (6.2%) 2 (2.2%)  
Acute coronary syndrome 5 (7.7%) 6 (6.6%) 1.000 
Atrial fibrillation 15 (23.1%) 38 (41.8%) 0.024 
Valve Replacement 1 (1.5%) 7 (7.7%) 0.140 
Hypercholesterolemia 28 (43.1%) 40 (44.0%) 1.000 
Kidney disease 10 (15.4%) 23 (25.3%) 0.167 
Sleep apnea 16 (24.6%) 18 (19.8%) 0.559 
Pulmonary embolism 3 (4.6%) 2 (2.2%) 0.650 
COPD 11 (16.9%) 14 (15.8%) 0.827 
Anemia 7 (10.9%) 18 (19.8%) 0.184 
Transient ischemic attack 1 (1.5%) 8 (8.8%) 0.087 

Missing 5 (7.7%) 0 (0%)  
Stroke 4 (6.2%) 6 (6.6%) 1.000 
Peripheral artery disease 2 (3.1%) 12 (13.2%) 0.058 
Diabetes Mellitus 13 (20.0%) 30 (33.0%) 0.101 

Symptoms, n (%) 
NYHA class   0.297# 

1 5 (7.7%) 3 (3.3%)  
2 28 (43.1%) 39 (42.9%)  
3 26 (40.0%) 42 (46.2%)  
4 1 (1.5%) 6 (6.6%)  

Missing 5 (7.7%) 1 (1.1%)  
Expert diagnosis, n (%)    

HFpEF 37 (56.9%) 74 (81.3%) <0.001 

#P-value for trend. Data are given as n (%), mean ± standard deviation, or 
median [interquartile range]. CAD, coronary artery disease; COPD, chronic 
obstructive pulmonary disease; HFpEF, heart failure with preserved ejection 
fraction; NT-proBNP, N-terminal-pro hormone B-type natriuretic peptide; 
NYHA, New York Heart Association. Percentage missing values below 5% was 
discarded in this table. 
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found no differences between groups in BMI or systolic blood pressure. 
Patients with DD more often had a history of atrial fibrillation and hy-
pertension than controls, whilst no differences in the prevalence of other 
cardiovascular diseases were found between the groups. In line with 
current DD algorithms, we found significantly higher LV mass, left atrial 
volume indexes, E- and A-peak velocities, RV systolic pressure, and 
lower lateral/septal e’ velocities in DD compared to controls (Table 2). 
We found no significant differences between groups in LVEF, end- 
diastolic/systolic diameters or E/A-ratio. 

Strain(ε)-volume loop, SVL. We found no significant differences be-
tween groups in the early/late systolic and diastolic slopes or in peak 
strain (Table 3). A significantly higher uncoupling (total, early diastolic, 
late diastolic) was found in DD compared to control (Fig. 2, Fig. 3). 
Subsequently, we performed multivariable logistic regression to identify 
SVL characteristics that are independently associated with DD. Back-
ward, stepwise selection resulted in a model with total uncoupling as the 
sole independent variable. The odds of DD increased with 63% (odds 
ratio (OR) 1.63. 95% confidence interval (CI) [1.21–2.25]) per one-unit 
increase in uncoupling (bootstrapped OR 1.67, 95%CI [1.24–2.30]), 
while values for uncoupling ranged from − 2.95 to 3.20 in this cohort. 
Total uncoupling remained independently associated with presence of 
DD when adjusting for age, sex, history of hypertension and history of 
atrial fibrillation (adjusted OR 1.68, 95% CI [1.19–2.47], bootstrapped 

OR 1.79, 95% CI [1.20–2.81]). Additional correction for NT-pro-BNP 
resulted in an adjusted OR 1.81 (95%CI [1.26–2.70]) with complete 
case analysis and n = 1 missing in DD. When using endocardial global 
longitudinal strain instead of myocardial strain, uncoupling remained 
independently associated with diastolic dysfunction (OR 1.54 [95%CI 
1.14–2.13]). Additionally, we explored the trend in SVL parameters over 
different sub-groups. Fig. 4 shows the distribution of SVL parameters for 
patients diagnosed with HFpEF and non-heart failure in both the control 
and DD group. No visual clustering was observed for SVL parameters, 
nor were differences found for HFpEF compared to non-heart failure 
patients. 

4. Discussion 

The purpose of our study was to explore the association between the 
strain(ε)-volume loop (SVL) and DD in patients suspected of HFpEF. We 
present the following findings: first, patients with DD were slightly 
older, more often female, and more often had a medical history of hy-
pertension and atrial fibrillation compared to controls. Secondly, we 
found significant differences in SVL characteristics between both 
groups, with patients with DD demonstrating a significantly larger early 
and late diastolic ‘uncoupling’ compared to control. This finding means 
that, compared to systole, the diastolic relationship between longitudi-
nal strain and volume is altered. In other words, early in diastole the LV 
shows less longitudinal deformation for a given change in volume. Such 
differences in loop characteristics were specifically observed during 
diastole, with no differences between groups for systolic characteristics 
(e.g., peak strain, S slope). Finally, upon correcting for age, sex, medical 
history, and NT pro-BNP, we reinforced that uncoupling of the SVL 
remained independently associated with presence of DD. Taken 
together, this means that the SVL provides additional information to 
identify presence of DD in suspected HFpEF patients. 

Our finding that the SVL can detect abnormalities in different cardiac 
pathologies is in line with earlier studies. Specifically, in previous work 
we found uncoupling to be higher in both patients with aortic regurgi-
tation and aortic stenosis, whilst changes in uncoupling were also 
significantly related to cardiac remodeling after aortic valve replace-
ment [11,12]. Pagourelias et al. detected a greater uncoupling in 
potentially stiffer hearts in hypertrophic cardiomyopathy [27]. Inter-
estingly, Hubert et al. found a smaller area enclosed by the SVL in pa-
tients with HFpEF and amyloidosis compared to healthy controls [15]. 
However, this smaller area could be partly attributed to a difference in 
stroke volume between the groups, whereas the definition of DD 
involved single echocardiographic parameters and cardiac pathologies 
rather than the 2016 ASE/EACVI recommendations [28,29]. Our study, 
therefore, adds the novel insight that the association between systolic- 
diastolic uncoupling and presence of DD remained present when 
normalizing for stroke volume. 

A possible explanation regarding underlying causes for higher 
uncoupling in those with DD could be a difference in the contribution of 
longitudinal and circumferential deformation in relation to volume 

Table 2 
Conventional echocardiographic characteristics of cohort.   

Control 
(N = 65) 

Dysfunction 
(N = 91) 

P- Value 

LV Ejection fraction (%) 61.9 ± 7.0 60.7 ± 7.2 0.330 
LV Mass Index (g/m2) 73.9 ± 13.1 85.2 ± 21.2 <0.001 
LV End Systolic Diameter (mm) 32.0 ± 3.5 32.0 ± 5.5 0.971 
LV End Diastolic Diameter (mm) 48.0 ± 4.3 47.1 ± 6.3 0.252 
LA volume index (mL/m2) 32 [27–39] 44 [36–53] <0.001 

Missing 0 (0%) 3 (3.3%)  
E peak (cm/s) 63.0 [55–83] 83.0 [63–108] <0.001 
A peak (cm/s) 77.3 ± 18.8 86.2 ± 28.9 0.024 

Missing 3 (4.6%) 5 (5.5%)  
Lateral e’ (cm/s) 8.6 [7.7–10.1] 6.90 [6.0–9.1] <0.001 

Missing 0 (0%) 10 (11.0%)  
Septal e’ (cm/s) 7.5 [6.9–8.6] 5.6 [4.8–6.2] <0.001 

Missing 0 (0%) 10 (11.0%)  

E/A ratio 
0.85 

[0.70–1.00] 
0.90 

[0.70–1.38] 0.440 

Missing 3 (4.6%) 5 (5.5%)  

E/e’ average 8.5 [7.0–10.3] 
13.9 

[10.8–16.4] 
<0.001 

Missing 0 (0%) 11 (12.1%)  
Tricuspid regurgitation peak 

velocity (m/s) 
2.5 [2.2–2.7] 2.9 [2.5–3.3] <0.001 

Missing 3 (4.6%) 10 (11.0%)  
Estimated RV systolic pressure 

(mmHg) 
30.0 

[25.0–35.0] 
40.0 

[30.0–46.3] <0.001 

Missing 3 (4.6%) 11 (12.1%)  
Good RV function, n (%) 60 (92.3%) 77 (84.6%) 0.391 

Missing 4 (6.2%) 10 (11.0%)  
LV Hypertrophy, n (%)   <0.001# 

None 65 (100%) 25 (27.5%)  
Concentric remodeling 0 (0%) 36 (39.6%)  
Concentric left ventricular 
hypertrophy 0 (0%) 8 (8.8%)  

Eccentric left ventricular 
hypertrophy 

0 (0%) 22 (24.2%)  

Grade Diastolic Dysfunction, n 
(%)*    
Grade I 0 (0%) 30 (33.0%) <0.001# 
Grade II 0 (0%) 40 (44.0%)  
Grade III 0 (0%) 11 (12.1%)  
Missing E/A ratio 0 (0%) 5 (5.5%)  
Cannot determine 0 (0%) 5 (5.5%)  

*Based on classification according to guidelines [20]. #P-value for trend. Data 
are given as n (%), mean ± standard deviation, or median [interquartile range]. 
LA, left atrial; LV, left ventricular; RV right ventricular. 

Table 3 
Strain volume loop characteristics.   

Control 
(N = 65) 

Dysfunction 
(N = 91) 

P- Value 

S slope (%/ml) 0.432 ± 0.125 0.458 ± 0.175 0.284 
ES slope (%/ml) 0.426 ± 0.281 0.399 ± 0.341 0.599 
ED slope (%/ml) 0.764 ± 0.617 0.591 ± 0.513 0.067 
LD slope (%/ml) 0.295 ± 0.249 0.357 ± 0.285 0.153 
UNCOUP (%) − 0.0506 ± 1.14 0.556 ± 1.10 0.001 
UNCOUP ED (%) − 0.0999 ± 1.27 0.572 ± 1.89 0.002 
UNCOUP LD (%) 0.0480 ± 1.02 0.525 ± 0.976 0.004 
Peak Strain (%) − 18.0 ± 3.54 − 17.7 ± 3.13 0.657 

ED, early diastolic; ES, early systolic; LD, late diastolic; S slope, systolic slope; 
UNCOUP, uncoupling. 
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change since deformation in both directions contributes to LV volume 
changes [30]. In healthy individuals, we have repeatedly observed a 
pronounced decrease in deformation in early diastole before LV volume 
increases [11]. This pronounced longitudinal deformation of the LV 
might facilitate a negative LV pressure during early diastole, comparable 
to the diastolic untwist, as a driving force for passive LV filling [31,32]. 
Interestingly, these changes in early diastole were not observed in our 
study. Moreover, those with DD even demonstrated a further attenuated 
longitudinal deformation in early diastole, resulting in an uncoupling 

between the systolic and diastolic strain-volume relation. Despite the 
absence of (marked) changes in longitudinal strain, volume increased. 
Possibly, changes in circumferential strain compensate for this change in 
LV volume. Altogether, this might suggest mitigation of passive relax-
ation and the accompanying pressure gradient in the LV during early 
diastole, potentially caused by altered hemodynamics, in DD. An alter-
native explanation for the difference in uncoupling between both groups 
may relate to metabolic changes in DD. Several studies have found 
changes in cardiac metabolism in patients with DD, including altered 

Fig. 2. Average Strain-Volume relationship for both normal diastolic function (n = 65) and diastolic dysfunction (n = 91). Bold line represents systolic strain-volume 
relationship, thin line represents diastolic strain-volume relationship. Higher uncoupling is represented by the average distance between the systolic and diastolic 
line, i.e., for most of the strain-volume relationship the diastolic strain is more negative for any given volume then the systolic strain for that same volume. No 
standard bars were added for visualization purposes. Control, normal diastolic function; dysfunction, diastolic dysfunction. 

Fig. 3. Uncoupling of the Strain – Volume Loop. (A) Uncoupling averaged during entire cardiac cycle, (B) early diastolic uncoupling, and (C) late diastolic 
uncoupling for patients with normal diastolic function and diastolic dysfunction. Control, normal diastolic function; Dysfunction, diastolic dysfunction. 
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calcium reuptake, impaired myocardial energetics, mitochondrial 
function, or myocardial steatosis, of which some have been shown to 
cause abnormalities in both active relaxation and stiffness [2,33–37]. 
These alterations may lead to a distinct pattern of cardiac dynamics, 
throughout the cardiac cycle, as observed with the SVL. Future studies 
are warranted to further explore the mechanism of cardiac metabolism 
and dynamics. 

We explored the SVL parameters for patients with asymptomatic DD 
i.e., non-heart failure, compared with HFpEF patients, since these are 
considered different entities. Previous research showed different (he-
modynamic) characteristics, which also applies to different grades of 
diastolic dysfunction [38–41]. However, we did not (visually) detect 
distinctive clustering of SVL parameters between HFpEF and non-heart 
failure patients in this cohort (Fig. 4). 

Limitations. Diastolic function was assessed using the 2016 ASE/ 
EACVI recommendations, but we recognize that invasive pressure 
measurements remain the gold standard. Moreover, a substantial num-
ber of patients had indeterminate diastolic function and were therefore 
excluded from analysis, emphasizing the difficulties in diastolic function 
assessment. Nonetheless, our data provide additional support for using 
SVL to detect changes during the cardiac cycle that are not simply 
detected using the more widely adopted and accepted echocardio-
graphic parameters, peak values or ejection fraction. Secondly, using 
2D-echocardiography we could only assess longitudinal strain in rela-
tion to volume, and therefore the known role of circumferential strain 
remains uncovered [30]. Thirdly, since the effects of arrhythmias on the 
SVL are yet to be elucidated, we excluded patients with atrial fibrillation 
paced rhythm, limiting the possible clinical applicability of the SVL. 

In conclusion, this exploratory study found an association between 

uncoupling of the SVL and presence of DD as determined by the ASE/ 
EACVI-algorithm in suspected HFpEF patients. These measurements of 
the SVL provide more insight in the hemodynamic consequences of DD 
and might aid in future work to detect DD non-invasively. Future 
research should focus on the SVL in relation to invasive pressure mea-
surements and pressure gradients to further explore the hemodynamic 
explanation for increased uncoupling. Additionally, for its clinical po-
tential it is of importance to investigate the (additional) discriminative 
capabilities for specific diagnostic purposes and its value in predicting 
future cardiovascular events or evaluate response to (non)pharmaco-
logical therapy. 
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