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ABSTRACT 

Glaciers are a major erosive force that increase sediment load to the downstream fluvial system. 

The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. 

Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five 

sites within its proglacial zone over a 60 day period from July to September, 2011, representing part 

of the ablation season. Meteorological data were collected from two automatic weather stations 

proximal to the glacier. The time-series were divided into hydrologic days and the shape and 

magnitude of the SSC response to hydro-meteorological conditions (‘cold and wet’, ‘hot and dry’, 

‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and 

cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the 

categories. The distribution of monitoring sites and results of the multivariate statistical analyses 

describe the temporal and spatial variability of suspended sediment flux and the relative importance of 

glacial and paraglacial sediment sources in the proglacial zone. During the 2011 study period, ~ 60% 

of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus 

of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from 

diffuse and point sources of sediment throughout the proglacial zone and within the meltwater 

channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% 

higher than the average over the monitoring period, and ~20% of the total SSL was generated in that 

time. Determining how hydro-meteorological conditions and sediment sources control sediment 

fluxes will assist attempts to predict how proglacial zones respond to future climate changes. 

 

KEYWORDS:  suspended sediment; proglacial; British Columbia; sediment budget; turbidity; 

paraglacial sediment sources 
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Introduction  

Glaciers in British Columbia (BC), Canada, cover about 3% (~29,000 km
2
) of the landmass 

(Moore et al., 2009), and most have recorded appreciable area and volume losses in response to 

regional climate warming of 0.5 to 1.5°C per century since the end of the Little Ice Age (Schiefer et 

al., 2007; Bolch et al., 2010; Tennant et al., 2012). Although current global climate models do not 

explicitly include glacial evolution (Syvitski and Milliman 2007), it is expected that they will continue 

to retreat in response to the projected 1 to 4°C increase in global mean surface temperature, depending 

on the emission scenario, over the next 100 years (Collins et al., 2013).     

Changes in meteorological conditions and glacial retreat have been linked to increased variability 

of streamflow in recent decades, specifically the quantity and quality (i.e. temperature, sediment load, 

chemistry) of water and hydrograph timing (Déry et al., 2012; Kirtman et al., 2013). Consequently, 

there is much concern associated with the potential impacts of climate change, including glacial 

retreat, on river flows and sediment fluxes in BC (FBC, 2008; Moore et al., 2009; Déry et al., 2012).  

Glacial retreat exposes deposits of unconsolidated sediment that are vulnerable to rapid and 

extensive erosion and entrainment into the fluvial system (Ballantyne, 2002). These proglacial 

sediment sources tend to be spatially and temporally variable and transient, depending on site specific 

characteristics (Gurnell et al., 1996; Ballantyne, 2002; Tunnicliffe and Church, 2011). Immediately 

after exposure, the unconsolidated and water-saturated diamicton in the proglacial zone begins to 

adjust to subaerial conditions; loose sediments consolidate as the substrate drains, and slope angles 

decline (Ballantyne, 2002). Over time, the eluviation of fines, surface armouring, reduction in surface 

slope and vegetation colonization act to stabilize the proglacial zone and reduce sediment availability 

for fluvial entrainment and transport (Warburton, 1990; Gurnell et al., 1999; Orwin and Smart, 2004). 

Church and Ryder (1972) reported that erosion of glacial deposits in a proglacial or postglacial fluvial 

environment results in heightened sediment transport that continues as long as the sediment remains 

easily accessible for fluvial erosion and transportation. 
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The proglacial zone can function as a significant source or sink of sediment, which can vary over 

a single ablation season (Hammer and Smith, 1983; Warburton, 1990; Hodson et al., 1998; Orwin and 

Smart, 2004; Cockburn and Lamoureux, 2008; Stott et al., 2008), over the seasons of a year (Richards 

and Moore, 2003), from year to year (Hodgkins et al., 2003; Stott and Mount, 2007), over the 

paraglacial period due to “glacially conditioned sediment release” (Church and Ryder, 1972; 

Ballantyne, 2002), and over longer periods as glaciers expand and contract in response to broader 

climatic trends (Church and Slaymaker, 1989; Moore et al., 2009). Abnormally warm ablation 

seasons have been shown to increase sediment yield from the proglacial zone (Stott and Mount, 

2007), whereas, cooler seasons have been found to increase sediment storage (Hodgkins et al., 2003; 

Richards and Moore, 2003).  

Sediment sources in the proglacial zone also vary in response to site and meteorological 

conditions. Warburton (1990) found that 77% of the sediment output from the Bas Glacier d’Arolla in 

Switzerland was derived from the glacier and snout zone moraine deposits and that channel processes 

were primarily responsible for modifying sediment loads within the proglacial zone. Orwin and Smart 

(2004) conducted an intensive study of suspended sediment fluxes in the proglacial zone of the Small 

River Glacier, BC (located only ~50 km from the site of the present study), and found that the 

proglacial area was the source for up to 80% of the total suspended sediment yield transferred from 

the basin during part of the 2000 ablation season. Furthermore, subglacial sediment sources can be an 

important (Warburton, 1990; Swift et al., 2002; Haritashya et al., 2010) or not so important (Hammer 

and Smith, 1983; Orwin and Smart, 2004) component of the proglacial suspended sediment budget, 

and this depends on the slope of the proglacial zone and other site specific geologic, glacial and 

proglacial characteristics (Gurnell et al., 1996; Schiefer et al., 2001), as well as weather and climate 

patterns during the study (Richards and Moore, 2003; Moore et al., 2009).  

Given the diversity of findings in terms of the response of proglacial zones to hydro-

meteorological drivers and sediment sources, a better understanding of the processes of sediment 

exchange in proglacial zones and the effect of meteorological conditions on those processes could 

improve predictive modelling of river sediment dynamics and, thereby, the effect on downstream 
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aquatic ecosystems and water resources (Milner et al., 2009; Moore et al., 2009; Owen et al., 2009). 

The anticipated changes in climate (i.e. temperature and precipitation) and the complexity associated 

with such changes (IPCC, 2013) make it important to understand how fine-grained sediment fluxes 

from glacial and paraglacial sources could respond (Moore et al., 2009).  

The focus of this study is on the flux of fluvial suspended sediment < 2 mm through the proglacial 

zone and the influence of hydro-meteorological conditions. We monitored streamflow (Q) and 

suspended sediment concentration (SSC) in the proglacial meltwater channels of the Castle Creek 

Glacier, BC, during part of the snow-free period in summer 2011 and obtained meteorological data 

from proximal weather stations to: (i) examine the spatial and temporal response pattern of SSC; and, 

(ii) determine the sources of Q and suspended sediment load (SSL) under different hydro-

meteorological conditions. We hypothesize that: (i) short-term suspended sediment fluxes within the 

proglacial zone respond to hydro-meteorological conditions; and (ii) exposed sediment adjacent to the 

glacier snout contributes substantially to downstream sediment yield.  

 

Study area and methods  

Study area 

Castle Creek Glacier (CCG) (53
o
2’ N, 120

o
24’ W, unofficial name), has an area of ~9 km

2
, a 

length of ~6 km, an elevation range of 1870 to 2850 m above sea level (a.s.l.) and is located in the 

Cariboo Mountains of eastern BC, ~180 km south-east of Prince George (Figure 1, Beedle et al., 

2009). Beedle et al. (2009) used a series of annual push moraines and aerial photographs to determine 

that the glacier retreated 886 m between 1946 and 2007, an average of 14 m a
-1

 (Figure 1). After 

flowing through a small gorge and leaving the recently exposed proglacial zone, meltwater draining 

from CCG flows generally north-east for ~34 km before flowing into the upper Fraser River, which 

drains into the Pacific Ocean at Vancouver, BC, after a distance of  ~1375 km.  
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The scope of this study was on the meltwater channels and sediment sources in the proglacial area 

from the snout of the glacier 1870 m a.s.l. to the small gorge 1790 m a.s.l. The catchment area above 

the gorge was ~16 km
2
 and was ~60% glacierized in 2011 (Table I), stream distance was ~1.2 km 

with an average slope of ~3% (Figure 2). The area immediately downslope from the snout of the 

glacier was characterized by low relief till sheets, outwash fans, abandoned meltwater channels, and 

bedrock outcrops. The till deposits on the west side of the meltwater channel have been substantially 

eroded and modified by several abandoned meltwater channels incised to varying depths (up to 10 m) 

which end at abandoned outwash fans. The east side of the meltwater channel was characterized by 

two relatively intact till sheets separated by an outwash fan complex (Figure 1). Most of the proglacial 

zone is devoid of vegetation such that sediment is exposed to weathering and erosion. There are three 

streams that flow from the receding snout of CCG: (1) a small ice-marginal meltwater stream drains 

the east side of the glacier; (2) the main flow emanates from a subglacial channel portal on the 

northwest side of the glacier’s snout; and (3) a proglacial lake perched on a till sheet that extends out 

from the terminus of the glacier drains northwest over bedrock into the main channel (Figure 1).  

Methods  

Streamflow and SSC were monitored for 60 days between 13 July and 11 September 2011 (Julian 

Day (JD) 195 – JD 254) at five stations (Figure 1): three proximal sites (PS1, PS2 and PS3) on the 

meltwater streams from the glacier (1870 m a.s.l.); a middle site (MS) below the confluence of the 

three streams (~0.65 km from the glacier snout and 1800 m a.s.l); and a distal site (DS) at the bedrock 

gorge (~1.2 km from the glacier snout and 1790 m a.s.l.). The majority of the seasonal snowpack had 

already melted from the proglacial area prior to the start of data collection and thus the monitoring 

period does not represent the full ablation period. 

Meteorological data were collected from two automatic weather stations (AWS): one located on a 

bedrock ridge on the south side of CCG at 2105 m a.s.l.; the other was located on the low gradient till 

apron near MS, at ~1800 m a.s.l. (Figure 1). These stations are part of the Cariboo Alpine Mesonet 

operated by the University of Northern British Columbia (UNBC; Déry et al., 2010). The parameters 
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measured every 15 minutes by the AWSs include wind speed and direction, snow height, liquid 

precipitation (rainfall equivalent), air temperature, incoming solar radiation, relative humidity and 

atmospheric pressure. These meteorological parameters relate to snow and glacial ice accumulation 

and melt, and surface runoff, and thus determine the temporal and spatial pattern of streamflow and 

sediment flux processes.    

Streamflow (Q) was gauged at four sites (PS1, PS2, MS and DS) that were equipped with water 

level monitoring equipment. Hobo U20 pressure transducers (Onset Computer Corp., Bourne, MA, 

USA; resolution ± 4.5 mm) were fixed vertically in stilling wells and surveyed to local benchmarks to 

maintain vertical control throughout the study period. Barometric pressure from the lower AWS was 

used to correct the absolute pressure record from the pressure transducers to isolate pressure change 

due to water level. Stream gauging was conducted with an OTT – type (Ott, Kempten, Germany) 

horizontal impeller meter on a wading rod following the mid-section method (RISC, 2009). With the 

exception of one site (PS1), eight discharge measurements distributed over the wadeable range of Q 

were used to develop stage-discharge rating curves (Table II). The main channel was not safe to wade 

above 5 m
3
 s

-1
 and rating curve extensions were used to compute Q data above this level. Rating curve 

extensions are considered valid up to two times the maximum gauged flow and an estimate thereafter 

(WSC, 2012). In the worst case, 0.6% of the Q record at the DS was considered an estimate. The 5 

minute interval Q record for PS3 was deduced as the difference between the downstream record at 

MS and the sum of PS2 and PS1 records. This deductive method assumes that there is no other flow 

entering or leaving the channel within the reach, which would be false under certain conditions (i.e. 

snowmelt or intense precipitation) and thus Q and SSL at PS3 may have a larger margin of error.  

Suspended sediment concentration (SSC) was monitored at all five sites. During site selection, a 

DH 48 depth integrating suspended sediment sampler was used to confirm that the stream was well 

mixed and that the sample point was representative; as would be expected due to the turbulent nature 

of the flow (Gurnell et al., 1992, Navratil et al., 2011). Analite 195 turbidity probes (McVan 

Instruments Pty Ltd, Mulgrave, Australia) were installed on a floating apparatus with a water intake 

for the Teledyne Isco 6700 automatic samplers (Teledyne Isco, Inc., Lincoln, Nebraska, USA). The 
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sample interval and strategy varied from discrete 800 ml samples every 2, 3, 4 or 6 hours to daily 

composite samples based on the capacity of the field team to process samples. Discrete water samples 

were measured with a graduated cylinder, vacuum filtered in the field through pre-dried and pre-

weighed Whatman GF/D ashless 8 µm filter papers, labeled, stored, and brought back to the UNBC 

Landscape Ecology laboratory for gravimetric analysis of SSC. The use of 8 µm filter papers was 

based on the need to process hundreds of filter papers in the field. It is possible that this resulted in the 

loss of fine sediment <8 µm. However, the use of 8 µm filter papers is common in similar studies in 

proglacial environments (e.g. Hodgkins 1999; Orwin and Smart, 2004), and Gurnell et al. (1992) 

demonstrated that such filter papers retain most of the <8 µm fraction due to clogging of pores. We 

assessed the representativeness of 8 µm filter papers by filtering paired samples collected over a range 

of SSC at the five study sites, in which one sample was filtered in the field using 8 µm filter papers 

and the second was filtered in the laboratory using 0.45 µm cellulose nitrate membrane filters. The 

average difference was <8% (there was no significant difference between the sites), which is 

consistent with the findings of others (e.g. Gurnell et al., 1992) and thus we believe the use of 8 µm 

filter papers has a limited influence on estimates of suspended sediment loads and fluxes.  

The SSC samples were paired with the synchronous turbidity (Tu) value for the site. The fourth 

spread method (Jacobs and Dinman, 2013) was used as a quantitative method to remove outliers in the 

paired data. A probability plot correlation coefficient (PPCC) was computed for each data set and the 

critical value (CV) at the 5% significance level was obtained for the given sample size from a PPCC 

CV table (Filliben and Devaney, 2013). The null hypothesis that the data came from a population 

with a normal distribution cannot be rejected when the PPCC is greater than the CV (Filliben and 

Devaney, 2013). Linear regression equations were generated for each data set to compute SSC from 

the 5 minute Tu record (Table II).   

Two of the sites, PS1 and PS3 had data that exceeded the range of the Tu meter. These data were 

left in the analysis as a better option than deleting or fabricating values. The 95% confidence intervals 

show that there was greater uncertainty with the PS1 and PS3 regressions (Table II). PS1 was a small 

stream and the duration of exceedances decreased through the field season. The exceedances at PS3 
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occurred during periods of low flow, and were partially removed as erroneous data due to the sample 

intake point being too close to the streambed. Due to low flow volume, the effect of the exceedances 

on the SSL results at PS1 and PS3 was limited.  

The pressure transducers and Tu data loggers were programmed to observe water level and Tu 

every minute and to log an average value every 5 minutes. During the analysis, the 5 minute time-

series data sets were further smoothed with a 7-point moving average, while maintaining a five 

minute sample interval. Time-series computations and rating curve development were performed 

using the Aquarius Whiteboard Time-Series Software (Aquatic Informatics, Inc., Vancouver, BC, 

Canada). Data summaries were exported for principal component analysis (PCA) and cluster analysis 

(CA) in IBM SPSS Statistics 20.0 (IBM Corporation, Armonk, NY, USA).  

Parts of the statistical analysis and data summaries require daily values. To minimize the 

influence of the diurnal peak from the previous day, the time-series were divided based on the timing 

of diurnal minimum flow, which tended to occur between 0600 and 0800 Pacific Standard Time. For 

this study, 0600 was used to divide the 5 minute time-series data into ‘hydrologic days’ (i.e. 0600 – 

0559) whenever daily data were required.     

Data analysis 

The statistical analysis of the meteorological, proglacial hydrometric, and suspended sediment 

data was guided by the analysis of a similar data set by Orwin and Smart (2004) – for the nearby 

Small River Glacier (SRG), thereby enabling comparison – which is based on a proglacial hydrograph 

classification technique developed by Hannah et al. (2000). The analysis uses PCA and CA to reduce 

large time-series data sets into categories of similar data while maintaining as much of the underlying 

structure of the data as possible. Hannah et al. (2000) used the analysis to categorize discharge time-

series data into categories of ‘shape’ and ‘magnitude’ based on the diurnal hydrograph. Orwin and 

Smart (2004) indicate that the analysis is applicable to any time-series data with an underlying cyclic 

structure, and expanded the analysis to include proglacial suspended sediment data. Through the 

analysis, they were able to infer controls on the pattern of suspended sediment transport using four 
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separate classification procedures (Figure 3). The PCA and CA analyses were run on data matrices 

where “cases” refer to rows of data categories down the y-axis; and “variables” refer to columns of 

data categories across the x-axis. The following sub-sections describe the statistical procedures that 

were performed on the 2011 CCG proglacial data (i.e. as shown in Figure 3). 

Meteorological periods – Cluster Analysis 

The 15-minute meteorological data sets were averaged over the hydrologic day (0600 – 0559) and 

a CA was run to group the daily data into categories of similar conditions. The CA of meteorological 

data included cases of daily values for the variables: mean, maximum, and minimum air temperature; 

total precipitation; mean relative humidity; total solar radiation; and mean wind speed. Air 

temperature records from the upper and lower AWS were averaged for the analysis. The data were 

standardized (z-scored) prior to running the CA using Ward’s Method, and an agglomeration 

dendrogram was plotted to determine the number of meaningful clusters within the data. The raw data 

within each cluster were reviewed, and descriptive titles were assigned, which were broadly similar to 

those assigned by Orwin and Smart (2004).  

Streamflow driving factors – Principal Component Analysis 

To determine the main driving forces of Q (i.e. from glacial meltwater or precipitation), the input 

matrix for PCA had daily average Q for each site, total precipitation, solar radiation, average wind 

speed, and air temperature minimum, maximum and mean as variables, and hydrologic days as cases. 

The PCA was run using a VARIMAX orthogonal rotation with standard retention criteria. Low 

communality variables were removed from the analysis and the PCA was re-run on the remaining 

variables. The Kaiser-Mayer-Olkin measure of sampling adequacy (Tabachnick and Fidell, 1989) was 

used to assess the correlation matrix and suitability of the data set for PCA. Parallel analysis was used 

to identify the statistically significant eigenvalue for the data (O’Connor, 2000). Components with 

significant eigenvalues were retained to assess the driving factors of Q and the proportion of variance 

in the data explained by each component. A bi-plot of the two dominant components was generated 



This article is protected by copyright. All rights reserved. 

and descriptive titles (i.e. ‘ablation’ or ‘rainfall’) were assigned after assessing the data explained by 

the component. 

Suspended sediment response shape 

To assess the underlying suspended sediment response shape, an independent PCA was run on a 

data matrix with hydrologic days as variables and a 5-minute time step as cases for SSC data at each 

site. The PCA was run using a VARIMAX orthogonal rotation with standard retention criteria. 

Parallel analysis was used to identify the statistically significant eigenvalue for the data (O’Connor, 

2000). For each site, a scree plot was generated to confirm the break point in the principal 

components, and that components with eigenvalues > 1 were retained. Principal component loading 

scores were plotted against time to reveal the underlying shape of the 5-minute SSC data for each site. 

Days with similar diurnal suspended sediment response shape were identified by running a 

hierarchical CA on the principal component loading scores using Ward’s Method. Observations were 

standardized (z-scored) to remove major variations in SSC magnitude. Low communality variables 

were removed and an agglomeration dendrogram was plotted to visually identify the number of 

clusters. The shape structure of the raw data in the clusters was examined and appropriate titles (i.e. 

‘diurnal’ or ‘irregular’) were assigned. 

Suspended sediment response magnitude 

The classification of suspended sediment response magnitude was determined by running CA on a 

data matrix with daily SSC mean, minimum, maximum, range, standard deviation and daily total SSL 

as variables, with hydrologic days as cases for each site. Data were standardized (z-scored) prior to 

running the CA using Ward’s Method, and an agglomeration dendrogram was plotted to visually 

identify the number of clusters. The magnitude structure of the raw data in the clusters was examined 

and appropriate titles (i.e. ‘low’, ‘medium’ or ‘high’) were assigned. 
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Results and discussion  

Meteorological conditions 

The weather conditions over the first 24 days of the field season, from JD 195 to JD 218, were 

variable (Figure 4). Average daily temperatures tended to be < 8 °C and low to moderate precipitation 

was common. This period included one storm event on JD 211 when daily precipitation exceeded 30 

mm. After JD 218, the weather conditions tended to persist for periods; there were three warmer and 

drier periods, and two cooler and wetter periods. There was another intense storm on JD 234 (Figure 

4). During the onset of the intense rain event on JD 234, the tipping bucket rain gauge was damaged, 

and data for this event and thereafter were missed. Data for this event and the remainder of the field 

season were estimated from three nearby meteorological stations; two operated by Environment 

Canada (Cariboo Lodge near Valemount, EC ID 1171393; and Crescent Spur, EC ID 1092120) and 

one by the BC Ministry of Environment (McBride upper snow pillow, BC MOE ID 1A02P). A 

weighted average based on horizontal and vertical proximity to the study site was used. Fortunately, 

the remainder of the field season was dominated by a high pressure system and there was minimal 

precipitation. Field personnel were on site during both storm events and qualitative observations were 

made. The storm event on JD 211 was characterized by persistent precipitation throughout the day, 

while the storm event on JD 234 consisted of a series of intense squalls that began mid-afternoon and 

ended by early morning on JD 235. The onset of the event on JD 234 was synchronous with the 

diurnal peak, and Q was already moderate in response to warm weather on the previous two days.  

The CA of meteorological data allowed the field season to be divided into four categories that, 

upon reviewing the raw data within the category, were described based on air temperature and 

precipitation conditions (Figure 4). Those categories and the percent of the field season that they 

represent are: ‘cold and wet’ (17/60, 28%), ‘warm and damp’ (15/60, 25%), ‘hot and dry’ (26/60, 

43%), and ‘storm event’ (2/60, 3%). These categories were used for comparison of streamflow and 

suspended sediment response under different meteorological conditions.  
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Nine of the ‘hot and dry’ days occurred in early September when the approaching autumnal 

equinox limited the amount of daily insolation and the potential for ablation. Additionally, by this 

point in the field season, the annual snowpack had all but retreated from the proglacial zone and 

ablation zone of the glacier, leaving primarily ice melt to augment streamflow. Had this ‘hot and dry’ 

weather occurred earlier in the field season when the days were longer and annual snowpack was still 

present, the Q and SSC response could have been much different. Without these nine days in the data 

set, the field season was nearly balanced between the three main categories of meteorological 

conditions.  

Streamflow  

Streamflow during the field season was predominantly characterized by a diurnal pattern in 

response to air temperatures and meteorological conditions that cause snow and ice melt (Figure 5). 

Increased Q due to precipitation events can be thought of as being superimposed on this underlying 

diurnal response pattern.  

The PCA of Q and meteorological conditions reduced the data to their underlying components. 

The two dominant eigenvalues > 1 were used to generate a bi-plot, and descriptive titles were 

assigned (Figure 6). The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy index for the 

correlation matrix was 0.532 which indicated that the PCA was a suitable analysis; as a rule of thumb, 

if the KMO is > 0.5, PCA is a suitable analysis (Tabachnick and Fidell, 1989). 

The two components that were retained from the analysis explained 72% of the total variance in Q 

data (Figure 6). The first component was interpreted as ‘rainfall’ or stormy conditions and explained 

42% of the variance in Q. The second component was interpreted as ‘ablation’ and explained 30% of 

the variance in Q. Distance from the origin (0.0, 0.0) was interpreted as dominance of the driving 

factor on Q pattern for the site. Orwin and Smart (2004) found that the two component solution 

explained 77% of the total variability in the data from the 2000 field season at SRG; 55% was 

attributed to ‘ablation’, and 22% was attributed to ‘rainfall’. In the CCG analysis the days that were 

represented by ‘rainfall’ were not necessarily days with substantial precipitation, they may have just 
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not scored as ‘ablation’ driven days because they were overcast, cool and/or windy; thus, stormy 

conditions may be an equally applicable title for the component. The greater influence of the ‘rainfall’ 

component on Q in the CCG analysis may be a result of the later field season (JD 194 – JD 254 at 

CCG vs. JD 188 – JD 238 at SRG), and thus a lower influence of annual snowmelt ablation in the 

2011 Q data for CCG than in the 2000 Q data for SRG (Orwin and Smart, 2004).  

In general, all of the sites plot strongly positive on the ‘rainfall’ axis, but show less variation from 

the origin on the ‘ablation’ axis. Sites PS2, MS and DS were along the main stem of the Castle Creek 

meltwater channel, and all plot close together, and were strongly influenced by ‘rainfall’ and 

moderately influenced by ‘ablation’. As the distance from the glacier increased, the influence of 

‘ablation’ on Q patterns decreased and the influence of ‘rainfall’ increased; which was consistent with 

the results of Orwin and Smart (2004). Although the PS3 catchment had the greatest percent glacial 

cover, it was less influenced by ‘ablation’ and ‘rainfall’ than the sites along the main channel, which 

suggests a more stable source of flow from deeper within the glacier than the active ablation zone 

(Swift et al., 2002). PS1 plots negatively on the ‘ablation’ axis, which was interpreted as a stronger 

influence of ‘rainfall’ on Q than ‘ablation’ due to the small proportion of glacierized catchment area.  

The precipitation variable plotted positively on the ‘rainfall’ axis and negatively on the ‘ablation’ 

axis, while solar radiation plotted positively on the ‘ablation’ axis and negatively on the ‘rainfall’ 

axis; which was interpreted as ablation being generated by sunny days, and that cloudy days generated 

precipitation. The air temperature variables indicate a strong positive relation on the ‘ablation’ axis 

and near neutral on the ‘rainfall’ axis; which was interpreted as warm weather generated ablation, and 

that rainy weather was not necessarily cool. The wind speed variable plots neutral on the ‘ablation’ 

axis, which could be a result of net balance in the data, rather than no effect, and positive on the 

‘rainfall’ axis, indicating that wind speed increased during rainy or stormy weather. The trend of 

katabatic winds would have been observed more strongly at the lower meteorological station; this 

trend was muted by averaging the wind speed data from the upper and lower meteorological stations. 

It is likely that wind speed from the lower meteorological station alone would have plotted more 

positively on the ‘ablation’ axis. 
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Suspended sediment concentration response pattern 

Suspended sediment concentration responded similarly to streamflow; however, there are several 

instances of striking independence between the SSC and Q time-series at each site (Figure 5). The 

‘shape’ and ‘magnitude’ of suspended sediment response was categorized using PCA and CA. For 

this part of the analysis, the exceedances were left in the data sets; however, missing and partial days 

of data were omitted. The total number of useable days within the study period is reported in Table 

III.  

Suspended sediment response shape 

The PCA that was run on the 5 minute SSC data retained three components for each site. Principal 

loading scores on the three components were generated and plotted against time to reveal the 

underlying ‘shape’ of the components (Figure 7). Time is reported in decimal days counting up from 

zero, and data are for the hydrologic day (0600-0559). For instance, the first sample of the day is at 

0600, which is 6/24, or 0.25 of a day.  

The percentage of data that was represented by each principal component (PC) is reported for 

each site in Figure 7. Since the analyses were run independently for each site, the ‘shape’ of the PC 

was not necessarily comparable across sites; the days that make up PC1 at one site might fall into PC2 

at another site. Overall, PC1 and PC2 represented an average of 36% and 21% of the data, PC3 

represented an average of 8.5% of the data, and an average of 35% of the data was not represented by 

the any of the three PCs. All three PCs appeared to have a relatively well-defined pattern for PS1, 

PS3, MS and DS. The PC3 pattern appeared to be more stochastic for PS2, and appears to be double 

peaked at PS3, MS and DS. The results presented by Orwin and Smart (2004) were similar; PC1, PC2 

and PC3 represented an average of 37%, 20%, and 10%, respectively, of their suspended sediment 

data and PC3 also showed a more irregular response pattern. 

A CA was run on the PC loading scores, and the two cluster solution was used to categorize days 

as ‘diurnal’ or ‘irregular’ suspended sediment response ‘shape’ (Table IV). Comparisons of these 
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results with the results from the regression score loading plots (Figure 7) confirm that PC1 and PC2 

roughly represent the ‘diurnal’ data as a percentage, while PC3 and the remaining data that were not 

represented by a PC make up the ‘irregular’ data.  The distribution of ‘diurnal’ and ‘irregular’ 

response days is presented in Figure 8 with the hydrographs and sedigraphs, and Table IV shows the 

distribution within the meteorological categories. 

Suspended sediment response magnitude 

The CA of the SSC magnitude parameters separated the daily data into ‘high’, ‘medium’ and 

‘low’ categories (Figure 8, Table IV), and was a useful tool for looking at how the magnitude of SSC 

changed over the field season at a particular site. Sites MS and DS were dominated by ‘low’ 

magnitude response days, PS2 was dominated by ‘medium’ and ‘low’ response days, PS3 was split 

across the three magnitude categories, and PS1 had ‘high’ and ‘medium’ magnitude response days. 

Orwin and Smart (2004) report that on average 80% of their data fell into the ‘low’ magnitude 

category and 20% fell into the ‘high’ magnitude category.  

Since each CA was independent from the other sites, the scale of the magnitude varies, which 

limits the ability to compare the results of this analysis across sites. For example, the mean SSC for a 

‘medium’ day at PS2 was 112 mg l
-1

, while the mean SSC of a ‘medium’ day at PS1 was 292 mg l
-1

. 

A greater number of ‘medium’ and ‘high’ magnitude response days at PS2 (Tables IV and V) does not 

mean that there was more sediment transported at this site than at MS; it is more likely a result of 

lower peak sediment loads at PS2 that allow the scale of the analysis to be focused on a smaller range 

than at MS. The mean daily SSC for a ‘high’ magnitude day at PS2, MS and DS were 195, 336 and 

449 mg l
-1

, respectively (Table V).  Similarly, a small amount of very high data could stretch the scale 

of the analysis so that the majority of the data would fall into a ‘low’ magnitude category; in which 

case, the detail of the time-series data could become lost or obscured. Differences in scale between the 

sites were also reported for a similar analysis on the data from SRG by Orwin and Smart (2004), 

which they attributed to sediment availability in the contributing catchment area.  
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Suspended sediment load response to meteorological conditions 

Suspended sediment load was computed from the 5 minute time-series data, and summarized into 

hydrologic days. The time-series were then divided into the categories determined through PCA and 

CA. The quantity of sediment generated under the various conditions was computed and summarized 

as daily averages (Table VI). The values are reported in kg day
-1

 for the specified category; totals can 

be computed by multiplying values in Table VI by the corresponding values for number of days in 

Table IV. 

From the information in Table VI, it is possible to determine where, when and how much 

sediment was generated, transported, stored and evacuated from the basin during the 2011 field 

season. To simplify the information, it could be presented as percentage of total; however, the 

distribution of days across categories varied by site and is specific to the 2011 field season, which 

would make comparisons between locations or over different field seasons difficult; Hannah et al. 

(2000) also report this limitation with the analysis. As described previously, ‘shape’ and ‘magnitude’ 

parameters were essentially driven by hydro-meteorological conditions at the time of monitoring. 

Thus, the most applicable division of the field season is into the hydro-meteorological periods. From 

there, similar computations of totals and averages can be made, but reported in a simplified format 

that will be more useful for modelling applications, assessing subsequent years of data, or comparing 

data from other sites.  

Suspended sediment load and Q in Table VII were computed as a percentage of the daily average 

at DS for the specified meteorological category; the daily average SSL and Q values for each 

meteorological category at DS were included for back calculation purposes. Differences in source 

contribution to the total SSL at DS during the defined hydro-meteorological categories can be 

compared in Table VII and Figure 9.  

Mean daily SSL and Q were similar during ‘cold and wet’ and ‘hot and dry’ conditions at the 

catchment outlet, although the percent contribution from the monitoring locations to the total at DS 

varies. Glacial melt decreased during ‘cold and wet’ conditions, and while precipitation activated 
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some in-channel and proglacial sediment sources, low stream competency allowed storage on the 

outwash fan complex. There was a greater contribution from PS2 during ‘hot and dry’ conditions in 

response to ablation. Mean Q at DS was similar for ‘warm and damp’ and ‘hot and dry’, but mean 

SSL was greater for ‘warm and damp’ conditions and less SSL was derived from the three proximal 

sites. Aside from inputs downstream of MS, PS2 contributes the majority of the sediment load 

throughout the study period, varying between 32% during ‘storm’ events and 47% during ‘hot and 

dry’ periods (Figure 9). 

The SSL increased significantly in the reach between MS and DS (MS–DS) for all of the hydro-

meteorological periods; a minimum of 44% during ‘hot and dry’ conditions and a maximum of 57% 

during ‘storm’ events (Figure 9). The main source of sediment in the MS–DS reach was likely to be 

the main tributary stream in the study area which is confluent with the main stem of Castle Creek 

~150 m upstream of DS (Figure 1).  This tributary drains a small cirque glacier on the adjacent peak 

and the western slope of the proglacial zone (Figure 1). Field observations found abundant 

unconsolidated sediment within and adjacent to the meltwater stream flowing from the cirque glacier. 

It was not possible to adequately monitor SSL from the tributary during the 2011 field season due to 

low flow volume and high bedload transport. However, the main channel in the MS–DS reach was 

well established, and it was presumed that the majority of the SSL increase in the reach was from the 

tributary stream; diffuse paraglacial and channel marginal sediment sources within the reach would 

only be activated by snowmelt, intense precipitation or very high streamflow. As a seasonal average, 

there was a ~13% increase in flow and a ~48% increase in SSL in the MS–DS reach (Table 7 and 

Figure 9).  

The sum of the SSL from the three proximal streams was greater than that of MS for ‘cold and 

wet’, ‘warm and damp’, and ‘hot and dry’ conditions, indicating that there was sediment storage 

upstream of MS. Based on site observations and the longitudinal profile (Figure 2), storage 

predominantly occurred on the low gradient outwash fan complex immediately upstream of MS. The 

amount of storage on the outwash fan varied slightly over the three main hydro-meteorological 

periods, and was ~7% as an average for the study period. However, during the observed ‘storm’ 
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events, the SSL output from the three proximal stations was equal to the SSL at MS, indicating that 

sediment storage on the outwash fan complex was balanced with sediment evacuation and other 

sediment contributions upstream of MS triggered by high stream competency. 

While the balance of SSL and Q contribution shifts moderately under meteorological and 

streamflow conditions that account for 97% of the study period, ‘storm events’ were remarkably 

different as sediment contribution from the proximal sites became less important when channel 

processes, slope inputs and erosion of valley sandur were more active. During the two storm days that 

accounted for 3% of the study period, SSL and Q at DS were 596% and 211%, respectively, of the 

seasonal average. However, the percentage of the total SSL that was derived downstream of MS 

increased to 57% as diffuse and point sources of sediment within the MS–DS contributing area were 

triggered by intense precipitation and high water levels. Interestingly, the proportion of Q input 

downstream of MS was similar to other hydro-meteorological periods. Five grab samples were 

collected in the MS–DS catchment as the JD 234 event peaked. Two were collected from ephemeral 

channels that drained directly into Castle Creek, one upstream of the tributary, and one downstream of 

the tributary; they were measured at ~3600 mg l
-1

 and ~2000 mg l
-1

 respectively. The grab sample 

from the tributary was measured at ~4200 mg l
-1

, and the main flow of Castle Creek upstream and 

downstream of the confluence with the tributary was measured at ~1300 mg l
-1

 and ~2700 mg l
-1

, 

respectively. These peak values are comparable to those observed by other researchers (Gurnell et al., 

1996; Hodson et al., 1998), but much less than the ~12,000 mg l
-1

 reported by Orwin and Smart 

(2004).  

In Table VIII, values were computed based on the total SSL and mean Q for the study period to 

show the contribution during the specified meteorological category for each of the sites. Interestingly, 

~20% of the total seasonal SSL at DS was evacuated during the ‘storm’ events, which was ~ 4% 

higher than PS2 and MS (Table VIII). The SSL increase in the MS–DS reach was attributed to the 

contribution of sediment from diffuse proglacial sources via ephemeral channels and the activation of 

sediment sources along the channel of the tributary stream. PS1 and PS3 had a lower percent of their 

total SSL transported during ‘storm’ events than PS2, which is likely because of the dominance of 
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bedrock in the PS1 catchment and glacial ice in the PS3 catchment, and because of lower abundance 

of sediment sources that are activated by ‘storm’ events in these catchments. The response pattern of 

MS was very similar to PS2 because 75% and 86%, respectively, of the total SSL and Q were derived 

from PS2. The SSL at PS2 showed a greater increase with ‘storm’ events than the other proximal sites 

because unconsolidated extra-channel sediment sources proximal or adjacent to the glacier were 

activated by precipitation and increased streamflow.  

Daily suspended sediment yield (SSY) in Table IX was computed by dividing the mean sediment 

load for a given period (Table VII) by the contributing catchment area (Table I). For total yield, the 

mean daily SSY values are multiplied by the respective number of days of observation in the category 

(note that some sites are missing days, as reported in Table III). Interestingly, the SSY of the proximal 

sites tended to be greater than the SSY of MS. However, SSY between MS and DS increased with 

catchment area, which, as expected (Church and Slaymaker, 1989; Gurnell et al., 1996; Schiefer et 

al., 2001; Tunnicliffe and Church, 2011), disagrees with conventional sediment yield models 

(Syvitski and Milliman, 2007). During ‘cold and wet’ conditions the SSY at PS1 was greater than 

PS2, while it was less than PS2 for the other three meteorological conditions. Suspended sediment 

yield at MS was typically less than any of the proximal sites, indicating sediment storage within the 

proglacial channel network upstream of MS. The effect of ‘storm’ events on SSY was striking; 

compared to the mean for the study period, the minimum increase was 260% for PS3 and the 

maximum increase was 496% for DS. The downstream trend of increasing relative SSY during 

‘storm’ events was likely because of ephemeral stream inputs from diffuse proglacial sediment 

sources during the events. Warburton (1990) found that a large proportion of the SSY can be 

generated in a short period of high stream competency, and Orwin and Smart (2004) also found that 

sediment was evacuated during storm events. This triggered response from the proglacial zone should 

be expected to continue, in declining magnitude, until the end of the paraglacial period (Church and 

Ryder, 1972; Church and Slaymaker, 1989; Gurnell et al., 1996; Ballantyne, 2002). 
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Proglacial suspended sediment budget 

Based on the preceding analysis and field observations, a basic proglacial suspended sediment 

flux budget was developed to ascribe SSL to various sources based on the parameters defined by 

Warburton (1990). It was assumed that the error was normally distributed within the data and that the 

relative accuracy was valid. Again, it is important to emphasize that the sediment budget only applies 

to the study period, which represents part of the ablation season. The SSL contribution from the 

proximal sites was a combination of direct input from the glacier (GL), and input from moraine 

deposits at the terminus (M). Based on field observations, the SSL for PS1 was predominantly from 

M, while PS2 was mostly (80%) GL and PS3 may be split equally. Change in valley sandur (ΔVS) 

occurred on the outwash fan upstream of MS. With the exception of storm events, there was sediment 

stored upstream of MS, which can be defined as the difference between the input of sediment from the 

proximal sites and the amount of sediment measured at MS. The increase in the MS–DS reach was 

substantial throughout the field season. Based on field observations and accepting the limitations of 

the monitoring programme (cf. Gurnell et al., 1992), the increase in the MS–DS reach was attributed 

to tributary channel inputs (TR) with the exception of ‘storm’ events when ephemeral channels were 

observed to be actively contributing to SSL, and thus a portion of SSL would be from ΔVS. Direct 

hillslope inputs (SL) were observed along the right bank of the meltwater channel, upstream from the 

outwash fan and immediately downstream from the confluence of PS2 and PS3. The SL contribution 

is typically small, but episodic increases can be expected when triggered by high streamflow or spring 

snowmelt and freeze–thaw cycles.  The total yield (Y) from the proglacial catchment was measured at 

DS. Following this premise, the suspended sediment budget for the CCG proglacial zone can be 

defined as: 

Y (100%) = GL (39%) + M (20%) + ΔVS (-7%) + SL (0.5%) + TR (49%)               (Eqn 1) 

Values were used directly or subdivided, as stated in the preceding paragraph, from the 

percentage of mean daily SSL and, following the same premise, a suspended sediment budget could 

be drawn for any of the hydro-meteorological categories (Table VII). In the overall suspended 
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sediment budget for the CCG proglacial zone, GL and M in the active meltwater channels at the snout 

of the glacier accounted for 59% of the SSL input. For the budget, ΔVS was computed as -7%, 

showing sediment storage on the outwash fan complex upstream of MS. The difference between MS 

and DS was 49% as an average, and attributed to TR; however, this reach was not adequately 

quantified and a portion can be expected to be generated from ΔVS during snowmelt, ‘storm’ events 

and high flow.  

Intensive field measurements were conducted by Warburton (1990) to define the proglacial fluvial 

sediment budget for JD 134 – JD 211 of the 1987 ablation season at the Bas Glacier d’Arolla, 

Switzerland. The sediment yield was measured at proximal and distal ends of a 300 m proglacial 

reach. At the distal site, the catchment area was ~8 km
2
 and 70% glaciated. Using various sampling 

approaches, Y, SL, TR, M and ΔVS were measured or estimated. Proglacial sediment sources 

contributed 23% of the sediment received at the catchment outlet, and 95% of that contribution was 

generated from bank and channel erosion of valley sandur during a short period of meltwater flooding 

from JD 197 – JD 199. While SL and TR accounted for a small percentage of the total SSY, the GL 

and M contribution accounted for ~77%. The ΔVS was of overwhelming importance in modifying the 

sediment load from GL and four basic fluvial process subsets were identified: 1) channel marginal; 2) 

channel; 3) hillslope; and 4) slopewash. Since the GL component was estimated by quantifying the 

other variables and subtracting their total from the overall sediment yield, Y, the budget was not truly 

“closed”, and the cumulative error in the measurement of the other terms of the equation made the 

estimate precise to only ± 26% (Warburton, 1990).  

Orwin and Smart (2004) found that SL and ΔVS in the proglacial zone were the source of 80% of 

the suspended sediment flux for the central stream, and 30% for the north stream during the 2000 field 

season at SRG. They cite sediment availability within the proglacial channels, SSC and Q of glacial 

inputs, and contribution from extra-channel sediment sources as key differences between the streams 

they monitored.  
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 The SRG is a small (~7 km
2
) cirque glacier with a relatively steep and small proglacial zone 

(~14% and 2 km
2
) compared to that of CCG (~3% and 6 km

2
), which is an alpine valley glacier (~16 

km
2
). Also, the deglacierized study area at SRG had a greater elevation range (~450 m) compared to 

CCG (~70 m). The differences in the characteristics of the glacier and study site may partially explain 

the contrasting results. However, inter-annual variability of hydro-meteorological conditions and 

antecedent conditions, such as seasonal snowpack, can strongly influence proglacial Q and SSC which 

would affect the results of the analyses and thus comparisons between different sites and years of data 

(Gurnell et al., 1996; Swift et al., 2002; Richards and Moore, 2003; Cockburn and Lamoureux, 2008; 

Haritashya et al., 2010). For instance, a pilot study at the CCG in 2008, based on monitoring of Q and 

SSC at only three sites over 34 days, found a 35% increase in the MS–DS reach (Stott et al., 2009); in 

2011 the increase in that reach was 49%. The early study also documented that the reach between the 

glacier snout site and MS was a net sediment source; although the area immediately in front of the 

snout in 2008 was considerably different than that in 2011. This helps to illustrate the dynamic nature 

of the proglacial zone over a short period, and the need for further monitoring at this and other study 

areas.  

 

Conclusions and perspective 

The data collected from the July–September part of the 2011 ablation season showed that 

subglacial processes and moraine deposits exposed within the last few years were the dominant 

control on sediment flux patterns in the proglacial zone of the Castle Creek Glacier. The 

meteorological conditions that drive streamflow and suspended sediment response will be different 

every season, and further investigation would aid in the assessment of inter-annual variability. 

However, the results of the ‘shape’ and ‘magnitude’ analysis of the suspended sediment response 

pattern under the defined hydro-meteorological categories can be summarized for the sites along the 

main Castle Creek meltwater channel as: ‘warm and damp’ conditions generated a mixed response 

pattern that was influenced by antecedent conditions; ‘hot and dry’ conditions generated a strong 
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diurnal response pattern that evolved through the season as annual snow cover waned; and, ‘cold and 

wet’ conditions and ‘storm events’ tended to generate irregular data. Suspended sediment yield 

increased by ~500% of the seasonal mean during ‘storm’ events, which represented 3% of the data 

set. As such, the findings support our two hypotheses. The dominant source(s) of sediment to the 

proglacial channel will evolve as the glacier retreats or advances and new sediment sources become 

active while older sources become exhausted or stabilized. However, episodic pulses of high sediment 

loads triggered by storm events and high streamflow are likely to continue throughout the paraglacial 

period.   

The similarity and contrast of these results with the findings of other researchers, in addition to an 

early pilot study at this site, highlight the importance of seasonal conditions and site specific 

characteristics in determining the suspended sediment flux patterns. Additional research in targeted 

proglacial areas following this spatially distributed monitoring approach and analysis technique 

(Hannah et al., 2000; Orwin and Smart, 2004) would help establish glacial input end members for 

larger sediment budget and climate change models.  
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Table I.  Catchment areas and percent glacial cover for proglacial stream sampling sites. 

Site Total Area 
(km

2
) 

Glacierized 
(km

2
) 

Un-glacierized 
(km

2
) 

% Glacierized 

Castle Creek Glacier 8.96 8.96 0 100 

PS1 1.24E
1 

0.14E 1.1 11 

PS2 9.36E 7.19E 2.17 77 

PS3 1.73E 1.64E 0.09 95 

MS 12.69 8.96 3.73 71 

DS 15.68 9.46 6.22 60 
1E = Estimated 
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Table II. Summary data of regressions of (a) water level (WL) against discharge (Q), based on river 
gauging, and (b) suspended sediment concentration (SSC) against turbidity (Tu)1  

 Site N Normally 
Distributed 

Regression Equation R2 value 95% C.I. 

a) PS1 4 -- Q = 325.002*WL6.58 -- -- 

 PS2 8 -- Q = 13.125*WL2.056 -- -- 

 MS 8 -- Q = 18.864*WL1.873 -- -- 

 DS 8  Q = 27.321*WL1.946 -- -- 

b) PS1 18 Y SSC = 304.59 * Tu – 54.19 0.43 57.6 

 PS2 156 Y SSC = 252.53 * Tu + 8.63 0.79 2.8 

 PS3 82 Y SSC = 180.45 * Tu – 23.60 0.85 9.1 

 MS 176 Y SSC = 213.80 * Tu + 8.05 0.67 3.6 

 DS 169 Y SSC = 413.04 * Tu – 23.26 0.77 5.4 
1For plots see on-line supplementary material 
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Table III.  Turbidity (Tu) data summary for the proglacial monitoring sites for 2011 field season. 

Data Record Site 

PS1 PS2 PS3 MS DS 

Total days with data record 60 63 62 62 64 

No. of days JD195 – JD254 58 60 60 60 60 

Partial days 10 3b 2b -- -- 

Partial day exceedance d 48 -- 13 -- 1 

Missing days 2a 1b 3b -- -- 

Full day exceedances d 4 -- 2c -- -- 

Useable days within JD195-JD254 d 58a 56b 53 b, c 60 60 

% of record useable 97 89 85 97 94 

Number of 5 min data points 16134 16534 15567c 17280 17280 

Number of 5 min exceedances 6332 0 1707 0 33 

% of data within Tu range 61 100 89 100 100 

Max SSC d 707.1  427.4  1009.1 

 a late start of data collection; b low water; c two days of erroneous data excluded; d max SSC 
value as computed by regression equation   
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Table IV.  Summary of suspended sediment ‘shape’ and ‘magnitude’ analysis for proglacial 
monitoring locations for monitoring period, julian day (JD) 195 – JD 254 

Site Cluster 
Classification 

Cold and Wet 
(17 days) 

Warm and Damp 
(15 days) 

Hot and Dry 
(26 days) 

Storm 
(2 days) 

Days (N) 
60 

NT 

60 

PS1 Diurnal (Irregular) 15 (1) 12 (2)  18 (8) (2) 45 (13) 58 

High 
Medium 

Low 

10 (1) 
4 
1 

8 (2) 
4 
-- 

5 (8) 
13 
-- 

(2) 
-- 
-- 

23 (13) 
21 
1 

58 

PS2 Diurnal (Irregular) 1 (15) 7 (7) 21 (3) 2 31 (25) 56 

High 
Medium 

Low 

(1) 
1 (6) 
(8) 

(1) 
4 (1) 
3 (5) 

1 
12 (2) 
8 (1) 

2 
-- 
-- 

3 (2) 
17 (9) 

11 (14) 

56 

PS3 Diurnal (Irregular) 13 (4) 9 (4) 13 (8) 2 37 (16) 53 

High 
Medium 

Low 

7 (1) 
1 

5 (3) 

4 (1) 
5 (1) 
(2) 

2 (4) 
5 (3) 
6 (1) 

2 
-- 
-- 

15 (6) 
11 (4) 
11 (6) 

53 

MS Diurnal (Irregular) 2 (15) 10 (5) 23 (3) 2 37 (23) 60 

High 
Medium 

Low 

-- 
(3) 

2 (12) 

-- 
(1) 

10 (4) 

-- 
3 

20 (3) 

1 
1 
-- 

1 
4 (4) 

32 (19) 

60 

DS Diurnal (Irregular) 3 (14) 8 (7) 23 (3) 2 36 (24) 60 

High 
Medium 

Low 

(1) 
1 (3) 

2 (10) 

-- 
3 (2) 
5 (5) 

-- 
6 (2) 

17 (1) 

2 
-- 
-- 

2 (1) 
10 (7) 

24 (16) 

60 
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Table V.  Summary of suspended sediment response magnitude parameters and cluster analysis 
results. Values computed from daily data. Standard deviation is reported in parentheses 

Site SSC 

Magnitude 
Class 

Avg. 
SSCmin 

(mg l-1) 

Avg. 
SSCmax 

(mg l-1) 

SSCmean 

 (mg l-1) 

Avg. 
SSCrange 
(mg l-1) 

Avg. 
SSCStd.Dev. 

(mg l-1) 

Avg. Std. 
SSCrange 

(ratio) 

Avg. 

SSLoad (kg day-1) 

Days 
(N) 

Tot. 

Days 

(NT) 

PS1 High 

Medium 

Low 

433 
(168) 

16 (40) 

0** 

707 (0) 

683 (52) 

122 

644 (63) 

292 (99) 

38 

284 (168) 

667 (54) 

146 

80 (55) 

233 (36) 

41 

1.0 (1.0) 

27 (196) 

6.0 

5619 (3698) 

2313 (577) 

640 

36 

21 

1 

58 

PS2 High 

Medium 

Low 

119(44) 

80 (17) 

65 (10) 

356 (84) 

176 (32) 

111 (18) 

196 (58) 

112 (19) 

81 (13) 

236 (50) 

96 (35) 

45 (14) 

58 (14) 

20 (8) 

9 (3) 

2.2 (0.8) 

1.3 (0.6) 

0.7 (0.3) 

108893 (68359) 

29072 (9564) 

17323 (5572) 

5 

26 

25 

56 

  

PS3 High 

Medium 

Low 

174 (92) 

102 (32) 

43 (28) 

393 (70) 

319 (74) 

192 (78) 

306 (90) 

199 (49) 

92 (40) 

219 (81) 

216 (60) 

149 (71) 

63 (33) 

54 (20) 

33 (16) 

2.0 (1.6) 

2.3 (0.8) 

4.9 (3.3) 

13387 (6898) 

7211 (2628) 

2817 (2305) 

21 

15 

17 

53 

MS High 

Medium 

Low 

193 

88 (30) 

74 (17) 

499 

311 (72) 

147 (35) 

336 

161 (39) 

103 (24) 

305 

233 (53) 

73 (26) 

84 

47 (12) 

16 (6) 

1.6 

2.7 (0.7) 

1.0 (0.4) 

301577 

68120 (35730) 

28630 (13223) 

1 

8 

51 

60 

DS High 

Medium 

Low 

211 
(108) 

162 (41) 

97 (22) 

968 (45) 

396 (116) 

210 (55) 

449 (152) 

238 (53) 

143 (32) 

757 (71) 

233 (120) 

113 (45) 

189 (50) 

51 (25) 

26 (12) 

5.0 (3.0) 

1.6 (1.2) 

1.2 (0.5) 

367279 (249474) 

100484 (49369) 

41631 (15893) 

3 

17 

40 

60 
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Table VI.  Summary of average suspended sediment load (kg day-1) for each sub-category. Averages 
for ‘irregular’ response shape data are reported in brackets. The values reported in the body of the 
table are arithmetic means for the given category. Weighted averages were used to account for the 
disproportionate number of days in each category for the ‘shape’ and ‘magnitude’, and total 
summary. Table IV reports the the number of days in each category 

Site Cluster Classification Cold and Wet Warm and Damp Hot and Dry Storm Weighted 

Avg. 

Average 

PS1 Diurnal (Irregular) 4927 (5829) 3567 (4736) 2866 (4188) (17200) 3740 (6400) 4336 

High 
Medium 

Low 

6430 (5829) 
2240 
640 

4320 (4736) 
2061 

-- 

4044 (4188) 
2413 

-- 

(17200) 
-- 
-- 

5177 (6400) 
2313 
640 

5619 
2313 
640 

PS2 Diurnal (Irregular) 20774 (23451) 26874 (30702) 27595 (30822) 142879 34650 (26366) 30952 

High 
Medium 

Low 

(74606) 
20774 (26345) 

(14886) 

(109527) 
37951 (23263) 
12105 (16425) 

74572 
28013 (32911) 
21096 (26643) 

142879 
-- 
-- 

120110 (92067) 
29926 (27462) 
18644 (16275) 

108893 
29072 
17323 

PS3 Diurnal (Irregular) 7625 (8329) 8568 (5267) 4642 (10877) 29600 7994 (8838) 8249 

High 
Medium 

Low 

10932 (15130) 
8460 

2829 (6062) 

11378 (10915) 
6320 (9060) 

(547) 

11824 (12552) 
5818 (9982) 
1268 (6863) 

29600 
-- 
-- 

13659 (12709) 
6286 (9752) 
1978 (4357) 

13387 
7211 
2817 

MS Diurnal (Irregular) 33109 (29683) 24089 (58396) 32791 (41514) 191799 39051 (37468) 38444 

High 
Medium 

Low 

-- 
(53905) 

33109 (23627) 

-- 
(138134) 

24089 (38462) 

-- 
54363 

29555 (41514) 

301577 
82021 

-- 

301577 
61278 (74962) 
28069 (29574) 

301577 
68120 
28630 

DS Diurnal (Irregular) 50233 (61070) 53448 (85171) 58527 (70122) 444324 78140 (69231) 74577 

High 
Medium 

Low 

(213187) 
56034 (95476) 
47332 (35537) 

-- 
82680 (203185) 
35908 (37966) 

-- 
93841 (74156) 
46063 (62054) 

444324 
-- 
-- 

444324 

(213187) 
86712 (120159) 
44053 (37953) 

367279 
100484 
41613 
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Table VII.  Percent (%) of mean daily suspended sediment load (SSL) and streamflow (Q) relative to 
the distal site (DS) during meteorological periods determined by principal component analysis 
 

Meteorological 

period 

Cold and Wet 
28% (17 days) 

Warm and Damp 
25% (15 days) 

Hot and Dry 
44% (26 days) 

Storm 
3% (2 days) 

Seasonal 
100% (60 days) 

Site % of 

mean SSL 

at DS 

% of 

mean Q 

at DS 

% of 

mean SSL 

at DS 

% of 

mean Q 

at DS 

% of 

mean SSL 

at DS 

% of 

mean Q 

at DS 

% of 

mean SSL 

at DS 

% of 

mean Q 

at DS 

% of 

mean SSL 

at DS 

% of 

mean Q 

at DS 
PS1 8 3 5 2 6 2 4 4 6 2 

PS2 39 71 42 76 47 77 32 75 42 75 

PS3 13 10 11 10 12 10 7 11 11 10 

∑ PS1 + PS2 + PS3 61 84 59 87 64 89 43 89 59 87 

MS 51 84 52 88 56 89 43 88 52 87 

DS 

* 

100 

(59158) 

100 

(3.60) 

100 

(68252) 

100 

(3.69) 

100 

(59865) 

100 

(3.69) 

100 

(444324) 

100 

(8.05) 

100 

(74577) 

100 

(3.81) 

* Mean SSL (kg d-1) and Q (m3 s-1) has been included for DS for back calculation purposes 
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Table VIII.  Meteorological summary of suspended sediment load (SSL) and streamflow (Q) for each site. 

Values computed as a percentage of the seasonal total SSL and seasonal mean Q  

Meteorological 
period 

Cold and Wet 
28% (17 days) 

Warm and Damp 
25% (15 days) 

Hot and Dry 
44% (26 days) 

Storm 
3% (2 days) 

Seasonal 
100% (60 days) 

Site % of 
seasonal 

SSL 

% of 
seasonal 

Q 

% of 
seasonal 

SSL 

% of 
seasonal 

Q 

% of 
seasonal 

SSL 

% of 
seasonal 

Q 

% of 
seasonal  

SSL 

% of 
seasonal 

Q 

Total SSL 
(t) 

Mean Q 
(m

3 
s

-1
) 

PS1 32 37 21 19 34 34 14 11 251 0.09 

PS2 22 25 23 25 39 43 17 7 1733 2.85 

PS3 30 27 23 24 34 41 14 8 437 0.38 

∑ PS1 + PS2 + PS3 24 26 23 24 37 43 16 7 2421 3.36 

MS 22 26 23 24 38 43 17 7 2307 3.32 

DS 23 27 23 24 35 42 20 7 4475 3.81 
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Table IX.  Suspended sediment yield (SSY) for the Castle Creek Glacier catchment during the 2011 
field season, expressed as mean daily SSY (t km-2 d-1) and total SSY (t km-2) (in parentheses) for each 
sub-basin 

Site 
(km

2
) 

Cold and Wet 
(17 days) 

Mean daily (Total) 

Warm and Damp 
(15 days)  

Mean daily (Total) 

Hot and Dry 
(26 days) 

Mean daily (Total) 

Storm 
(2 days) 

Mean daily (Total) 

Seasonal 
(60 days) 

Mean daily (Total) 

PS1 (1.24) 4.01 (64.3) 3.00 (42.0) 2.64 (68.6) 13.9 (27.7) 3.49 (202) 

PS2 (9.36) 2.48 (39.7) 3.08 (43.1) 2.99 (71.8) 15.3 (30.6) 3.31 (185) 

PS3 (1.73) 4.49 (76.3) 4.37 (56.8) 4.05 (85.0) 17.1 (34.2) 4.76 (253) 

MS (12.69) 2.37 (40.3) 2.80 (42.0) 2.66 (69.3) 15.1 (30.3) 3.03 (182) 

DS (15.68)  3.77 (64.1) 4.35 (65.3) 3.82 (99.2) 28.3 (56.6) 4.76 (285) 
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Figure 1. Location of Castle Creek Glacier (inset) and proglacial zone of the Castle Creek Glacier 

with the 2011 sampling locations, approximate watershed boundaries and lower meteorological 

station. Turbidity and suspended sediment data were collected at monitoring stations, water level and 

streamflow data were additional parameters collected at the gauging stations. 

  



This article is protected by copyright. All rights reserved. 

 

 

Figure 2. Longitudinal stream profile for Castle Creek proglacial meltwater channel: BF LB – 

bankfull left bank, BF RB – bankfull right bank, CB – channel bottom, OF T1 though T4 – outwash 

fan transects 1 through 4. Datum was arbitrarily set 100 m below the highest benchmark, and zero 

channel distance was set as the outflow of the proglacial lake upstream of site PS2 (Figure 1). 
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Figure 3. Flow chart detailing the classification procedure used to extract suspended sediment 

transfer patterns (source: Orwin and Smart 2004). 
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Figure 4. Mean daily air temperature and precipitation with results of cluster analysis for dominant 

meteorological conditions during study period. Figure 5.Streamflow (Q) and suspended sediment 

concentration (SSC) time-series (5 minute data interval) from five proglacial monitoring sites, for the 

period Julian day (JD) 195 – JD 254, 2011. Scale of y-axis varies according to range of data. 

  



This article is protected by copyright. All rights reserved. 

 



This article is protected by copyright. All rights reserved. 

 

 

Figure 5. Streamflow (Q) and suspended sediment concentration (SSC) time-series (5 minute data 

interval) from five proglacial monitoring sites, for the period Julian day (JD) 195 – JD 254, 2011. 

Scale of y-axis varies according to range of data. 
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Figure 6. Principal component loading of daily meteorological and streamflow (Q) variables on 

principal component one and two explained 42% (PC1) and 30% (PC2) of the total variance in the 

principal component analysis. Distance of the variable from the origin indicates relative dominance of 

the Q generating processes; PC1 and PC2 were interpreted as ‘Rainfall’ and ‘Ablation’, and have been 

titled accordingly on the axes of the figure. 
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Figure 7. Principal component loading score plots for 5 minute SSC data from each gauging station; 

all full hydrologic days of data were retained as variables for the analysis. Percent of the data 

represented by each principal component is reported for each site. Time, on the x-axis, is reported in 

arbitrary decimal days (06:00 is 0.25 of the way through a regular day). 
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Figure 8. Composite figures showing suspended sediment shape (diurnal or irregular) and magnitude 

(1 = low; 2 = medium; 3 = high) classification results from principal component analysis and cluster 

analysis and daily mean streamflow (Q) and suspended sediment concentration (SSC) for each of the 

proglacial monitoring sites. PS1, PS2, and PS3 are missing days in the shape and magnitude 

classification due to low water, partial days of data, erroneous data or no data (see Table III). Figure 

continued over three preceding pages; x-axes in Julian Days. 
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Figure 9. Schematic diagram of percent (%) contribution of suspended sediment load (SSL) and 

streamflow (Q) relative to the total at the downstream gauging site (DS) over the 2011 field season 

and during the four defined hydro-meteorological categories 


