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Abstract
Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the

main target sites of many naturally-occurring, insecticidal plant compounds and agricultural

pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particu-

larly toxic to insects and have been successfully used as pesticides including on flowering

crops that are visited by pollinators. Pyrethrins, from which they were derived, occur natu-

rally in the nectar of some flowering plant species. We know relatively little about how such

compounds—i.e., compounds that target sodium channels—influence pollinators at low or

sub-lethal doses. Here, we exposed individual adult forager honeybees to several com-

pounds that bind to sodium channels to identify whether these compounds affect motor

function. Using an assay previously developed to identify the effect of drugs and toxins on

individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyre-

throid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins

(aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning

behaviour. Bees exposed to these compounds spent more time upside down and fanning

their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin,

aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We

also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees

affected the time spent upside down (i.e., failure to perform the righting reflex). Our data

show that low doses of pyrethroids and other nectar toxins that target sodium channels

mainly influence motor function through their effect on the righting reflex of adult worker

honeybees.
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Introduction
Honeybees (Apis mellifera) are among the most economically valuable animal pollinators on
which one third of worldwide crop productivity depends [1, 2]. The annual economic value of
honeybees, as pollinators alone, is estimated to be £190 million in the United Kingdom [3] and
$0.15–19 billion per year in the United States of America [4]. However, the number of honey-
bee colonies has declined in recent years in many countries [5, 6]. Understanding why these
declines are occurring is essential, if we are to ensure pollinator prosperity and food security.
Evidence suggests that declines are attributable to an interactive effect of parasites, pathogens,
agricultural intensification and pesticide usage [7–9], but pesticides could play a critical role
[10].

Most research to date on how pesticides influence bees has focused on neonicotinoids. Sub-
lethal doses of these pesticides have an adverse effect on honeybee navigation [11–13], learning
and memory [14] and motor function [15, 16]. For these reasons, three of the most commonly
used neonicotinoids, clothianidin, imidacloprid and thiamethoxam, were restricted for use in
the European Union for two years [17]. Opponents of this neonicotinoid moratorium argue
that pesticides, with potentially worse consequences for pollinators, will be used in their place.
Among these pesticides are pyrethroids [7]. Synthetic pyrethroids are pesticides that are
derived from one of six natural pyrethrins, cinerin I, of the pyrethrum flower, Tanacetum
cinerariifolium [18]. These compounds target S6 segments of voltage gated sodium channels
found in insect nervous systems [19]. Their main mode of action as insecticides is to cause
paralysis [19], and they have relatively higher LD50 values for insects compared to neonicoti-
noids (Table 1). Pyrethroids may have similar sub-lethal effects to neonicotinoids on bee health
but fewer studies have investigated this [7, 20].

Bees and other pollinators encounter toxins such as pesticides and naturally-occurring plant
toxins in the nectar and pollen of plants on which they feed [24–26]. Nectar toxins include
sodium channel activators, although there are no reports of naturally occurring pyrethrins or
synthetically-produced pyrethroids in nectar to date. For example, the aconitine-like com-
pounds, lappaconitine, leucostine A and 6-O-acetylacosepticine, are found in the nectar of
monkshood species (Aconitum septentrionale) [25]. Pyrethrins have been found in floral tissues
including seeds [27] and so it is possible that they occur naturally, but this has not been previ-
ously reported.

As well as to naturally occurring secondary metabolites, honeybees may be exposed to
widely used synthetic pyrethroids whilst foraging [20]. Choudhary and Sharma [28] found that
the pyrethroid, λ-cyhalothrin remained in nectar and pollen of the mustard plant (Brassica jun-
cea) on which honeybees forage, for 72 h post application. Furthermore, at the point of applica-
tion, the concentration of λ-cyhalothrin was 0.79 ppm in nectar and 1.52 ppm in the pollen of
B. juncea. Bees also have the potential to be exposed to pyrethroids when they feed on aphid

Table 1. LD50 Values and Concentrations of Compounds. LD50 values of pyrethroids [5, 21–23] and their maximum detected concentrations in wax, pol-
len and bees as well as the total detected concentration [5]. The mean LD50 value was calculated and displayed when several LD50 values had been reported
in the literature.

Pyrethroids Dose (ng/bee) LD50 (ng/μl) LD50 (ppm) Wax (ppm) Pollen (ppm) Bees (ppm) Total (ppm)

Cyfluthrin 10 0.22 0.22 0.045 0.034 0 0.079

Tau-Fluvalinate 10 1.56 1.56 204 2.67 5.86 213

Permethrin 10 0.705 0.705 0.372 0.092 19.6 20

Allethrin 10 48.8 48.8 1.1 0.1 0.4 1.6

doi:10.1371/journal.pone.0133733.t001
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honeydew, because many aphid species have become resistant to pyrethroid insecticides and
excrete these compounds in honeydew [29–31].

The likelihood of bees encountering high doses of pyrethrins/pyrethroids and nectar toxins
in the field varies depending on the compound. For example, bees may encounter concentra-
tions of up to 7.5 ppm of tau-fluvalinate within the hive, because this compound is deliberately
administered by beekeepers as an in-hive miticide [5, 32, 33]. Mullin et al. [5] also found per-
methrin, at concentrations of 2.5 ppm, in honeybee hives. However, the same study only
detected cyfluthrin, at concentrations of 0.01 ppm. GTX, pyrethrin and aconitine have been
reported to be present in nectar at concentrations of ~50 ppm [26], 1 ppm [34] and ~1 ppm
[25], respectively.

Previous studies have investigated the effects of pyrethroids on survival and learning and
memory in bees [3, 5–7, 20, 35] but none have investigated their influence on honeybee motor
function. Assays of motor function can often reveal subtle effects on behaviour that are not
revealed in survival studies. Here, we used an assay of motor function, used previously to assess
how drugs and toxins affect honeybee behaviour [15, 16, 36, 37]. We used four synthetic pesti-
cides, permethrin, cyfluthrin, allethrin, and tau-fluvalinate (Fig 1). All of these compounds are
used either as pesticides on crops or as miticide treatments within honeybee colonies. We also
tested two nectar toxins known to influence sodium channels: aconitine and GTX. These com-
pounds bind to different sites on voltage gated sodium channels.

Materials and Methods

Honeybees
Honeybees (Apis mellifera var. Buckfast) were obtained from the National Bee Unit, York, UK.
Honeybees were maintained outdoors between June and August 2013 at Newcastle University.
They were allowed to forage freely and had not been treated with chemical mite treatments
with oxalic acid for approximately six months before experimentation. Forager bees were col-
lected from outside the hive, every afternoon, in small plastic vials, cold anaesthetised for 3–4
min, and then restrained in a brass harness as in [42]. Each bee was fed 1 M sucrose to satiety
and then placed in a humidified plastic box overnight. Approximately 18–24 h after harnessing,
bees were fed 10 μl of a treatment solution using a 2-ml Gilmont micrometer syringe (GS-
1200). Approximately 45 min after feeding, bees were transferred to a 150 x 15 mm Petri dish,
where they were left to acclimatise for 15 min. Each bee was observed for 10 min continuously.
For the pyrethroid/nectar toxin study, the behaviour of 16 bees was analysed per treatment
(n = 6 x 16 = 96 bees in total). For the GTX dose dependent study, the behaviour of 15 bees was
analysed.

Fig 1. Chemical structures of compounds used in this study. (A) grayanotoxin I [38]; (B) aconitine [39];
(C) pyrethrin [40]; (D) allethrin [41]; (E) cyfluthrin [21]; (F) permethrin [22]; (G) tau-fluvalinate [23].

doi:10.1371/journal.pone.0133733.g001
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Pyrethroids and nectar toxins
Six Na+ channel activators were used in these experiments (Table 2). The pesticides, cyfluthrin,
permethrin, tau-fluvalinate and allethrin I, and the nectar toxin, aconitine, were obtained from
Sigma Aldrich (�99% purity). We administered a dose of 1 ng/μl of each pyrethroid and for
aconitine (10 μl of solution = 10ng/bee = 1 ppm). Grayanotoxin I (GTX) was isolated from a
methanol extract of dried flowers of Rhododendron ponticum using semi-prep high perfor-
mance liquid chromatograph as reported previously [26]. The concentration of GTX in the
nectar of this population of R. ponticum found on the Isle of Cumrae, Millport Scotland, was
determined to be 3.7 ng/μl using methods described in [26]. Therefore, we chose to administer
GTX at a dose of 37 ng/bee (10 μl of solution/bee). Pyrethroids and nectar toxins (with the
exception of GTX) were dissolved in dimethyl sulphoxide (DMSO) to make stock solutions at
a DMSO concentration of 1/1000. A dried sample of GTX was dissolved in water to make a
working concentration of 3.7 ppm. Both GTX and control sucrose solutions had DMSO added
to them to ensure that the dose of DMSO was consistent between treatments. Stock solutions
of cyfluthrin, permethrin, tau-fluvalinate, allethrin I and aconitine were diluted with 1 M
sucrose solution to give a working sub-lethal concentration of 1 ppm, equivalent to a dose of
10 ng/μl (except for GTX).

Grayanotoxin dose dependent study
Two concentrations of GTX were used for this study: 10 μM (3.7 ppm) and 100 μM (37 ppm)
(corresponding to doses of 37 ng/bee and 370 ng/bee, respectively). These concentrations were
chosen because they represent the range of concentrations found in nectar [26]. A 1 M sucrose
control solution was also used, to which DMSO was added, to result in a DMSO concentration
of 1/1000.

Table 2. Compounds used in this Study, the LD50 Values for Bees and Their Interactions with Voltage-
Gated SodiumChannels.

Compound and Origin LD50 (ppm)
in bees2

Interaction with Voltage-Gated Sodium
Channel

Grayanotoxin: Found in members of the
Ericaceae family, mainly Rhododendron spp.
[43]

Unknown Binds to receptor site 2, segment 6, domain
IV. Binds preferentially to activated NaV
channels and prevents inactivation
resulting in repetitive discharges. [43]

Aconitine: Found in Aconitum spp. plants of
the Ranunculaceae family, also known as
monkshood and wolfsbane. [43]

Unknown Binds to receptor site 2, segment 6, domain
IV. Binds preferentially to activated NaV
channels and prevents inactivation
resulting in repetitive discharges. [43]

Pyrethrin: Found in Tanacetum spp. of the
Asteraceae family. [5]

1.48 Binding site unknown. [43]

Allethrin: A type I pyrethroid. Synthetic
homologue of natural cinerin I, of Tanacetum
spp. The first synthetic pyrethroid. [43]

48.8 Binding site unknown, but may target ‘site
7.’ Inhibits deactivation of NaV channels,
prolonging opening. [19, 43]

Cyfluthrin: A type I pyrethroid. Synthetic
homologue of natural cinerin I, of Tanacetum
spp. [43]

0.22 Binding site unknown, but may target ‘site
7.’ Inhibits deactivation of NaV channels,
prolonging opening. [19]

Permethrin: A type I pyrethroid. Synthetic
homologue of natural cinerin I, of Tanacetum
spp. [5]

1.12 Binding site unknown, but may target ‘site
7.’ Inhibits deactivation of NaV channels,
prolonging opening. [19]

Tau-fluvalinate: A type II pyrethroid (no
cyclopropane ring). Synthetic homologue of
natural cinerin I, of Tanacetum spp. [5]

15.86 Binding site unknown, but may target ‘site
7.’ Inhibits deactivation of NaV channels,
prolonging opening. [19]

doi:10.1371/journal.pone.0133733.t002
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Behavioural Observations
Behavioural observations were manually entered by the experimenter into Observer 5.0 soft-
ware from Noldus Information Technology B.V. as previously described [36]. The observation
period was 10 min per individual. All treatments were observed in a given day of the experi-
ment. The order in which the bees assigned to each treatment were observed was randomized
each day. Behaviours recorded are described in Table 3. The behaviours that we chose to record
were determined in a pilot study to be the most prevalently observed behaviours; these behav-
iours have also been observed in previous studies from our laboratory [15, 36]. Three behav-
iours (walking, still, upside down) were mutually exclusive. A bee was defined as being upside
down when it had fallen onto its back and failed to right itself. Wing fanning behaviour and
grooming were classified as forms of ‘still’ behaviour (and are represented within this category
in the figures). For example, a bee could be both ‘still’ and ‘wing-fanning.’ For this reason, wing
fanning and grooming behaviour were analysed separately from the walking, still, and upside
down behaviours. All behaviour was continuously recorded over the 10 min interval.

Statistics
Generalized linear models (GLM) were used to analyse the behaviour data in IBM SPSS 19.0. A
Tweedie model with a log link was used to analyse both percent of the interval and mean dura-
tion data. A negative binomial with log link was used to analyse the bout data. Sidak’s pairwise
post hoc comparisons (PC) were used to determine which treatments had effects that were sig-
nificantly different from controls.

Results

Sodium channel activators and their effect on motor function
Control bees spent on average ~50% of their time walking (Fig 2A–2C). These bees also spent
an average of ~50% of their time standing still (Fig 2D–2F). Control bees spent only ~5% of
their time upside down (Fig 2G–2I). When control bees were standing still, they spent less than
2% of their time wing fanning (Fig 2J–2L) and an average of ~27% of their time grooming
(Fig 3).

Bees fed with pyrethroids and nectar toxins that activate sodium channels did not spend
less time walking or still than the control group even though bees fed with allethrin, GTX, and
aconitine had shorter bouts of walking behaviour than the control group (Fig 2C, Table 4).
However, when bees were fed with the pyrethroids and nectar toxins, they spent 5–10% more

Table 3. Behaviours. Descriptions of behaviours recorded using Noldus Observer 5.0, over the ten min
observation period.

Behaviour Description of the Behaviour

Walking Bee is walking around including on the sides and top of the petri dish

Remaining Still Bee is standing still, but may be carrying out another behaviour e.g. grooming.

Falling Upside Down Bee is lying on its back

Abdomen Grooming Bee is using a leg to groom its abdomen

Leg Grooming Bee is using one leg to groom another leg

Face Grooming Bee is using a leg to groom its face

Antennae Grooming Bee is using a leg to groom its antennae

Proboscis Grooming Bee is using a leg to groom its proboscis

Wing Fanning Bee is fluttering its wings or attempting to fly

doi:10.1371/journal.pone.0133733.t003
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time upside down (Fig 2G–2I). In particular, bees fed GTX, cyfluthrin and permethrin had sig-
nificantly longer lasting bouts of upside down behaviour (Fig 2I; Table 4). The only other
behaviour affected by pyrethroids and nectar toxins was wing fanning behaviour. Bees fed alle-
thrin and cyfluthrin spent less time wing fanning than the control bees (Fig 2J; Table 4); these

Fig 2. Acute effects of pyrethroids and nectar toxins, at a dose of 10 ng/bee (37 ng/bee for GTX I), on
honeybeemotor function and wing fanning behaviour. This figure illustrates how compounds affect the
percentage of time, number of bouts and mean duration of: (A-C) walking; (D-F) still; (G-I) upside down; (J-L)
wing fanning. Sample size N = 16/treatment. * indicates P<0.05. [C = control, Ac = aconitine, Al = allethrin,
GTX = grayanotoxin I, Cyf = cyfluthrin, Flu = tau-fluvalinate, Per = permethrin].

doi:10.1371/journal.pone.0133733.g002

Fig 3. Acute effects of pyrethroids and nectar toxins, at a dose of 10 ng/bee (37 ng/bee for
grayanotoxin I), on honeybee grooming behaviour. This figure illustrates how compounds affected the
percentage of time that bees spent: (A) grooming (pooled total of all grooming behaviours); (B) abdomen
grooming; (C) leg grooming; (D) facial grooming (E) proboscis grooming; (F) antennal grooming. Sample size
N = 16/treatment. * indicates P<0.05. [C = control, Ac = aconitine, Al = allethrin, GTX = grayanotoxin I,
Cyf = cyfluthrin, Flu = tau-fluvalinate, Per = permethrin].

doi:10.1371/journal.pone.0133733.g003
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bees also had fewer bouts of wing fanning (Fig 2K; Table 4). Tau-fluvalinate, on the other
hand, caused bees to have longer bouts of wing fanning compared to the control (Fig 2L;
Table 4).

The amount of time bees spent grooming was unaffected by the pyrethroids and the nectar
toxins in our study (Fig 3, S1 Fig, Table 5). The only class of grooming behaviour significantly
affected by the compounds we tested was antennal grooming (Fig 3F; Table 5); bees fed with
aconitine and allethrin spent less time grooming the antennae than the control bees.

Grayanotoxins have dose-dependent effects on honeybee motor
function
The first experiment tested only one dose of each of the compounds. To establish that the effect
we observed was dose-dependent, we tested a concentration series of GTX. GTX was chosen
because it had the strongest effect on the ability of bees to perform the righting reflex, resulting
in more time spent upside down in the first experiment (Fig 2G). In general, as dose increased,
we saw that bees spent more time upside down than control bees (Fig 4; Table 6). We did not
find significant effects of dose on any of the other main motor function variables we measured
(walking, still, grooming, wing fanning, Fig 4, Table 6). We also examined grooming behaviour
in detail (Table 6, S2 Fig); GTX affected the time spent grooming the antennae but it also
caused longer bouts of proboscis and facial grooming (S2 Fig and Table 6).

Discussion
This study revealed that, on average, low doses of pyrethroids and nectar toxins that target
sodium channels mainly affect the ability of honeybees to gain postural control after falling over.
The compounds that had the strongest effect on the righting reflex were GTX, cyfluthrin, and
permethrin. We also observed that the effect of GTX on the righting reflex was dose-dependent.

Table 4. Pyrethroid/Nectar Toxin Study Summary Statistics. P values and Chi-squared values (with degrees of freedom indicated) for statistical analysis
of motor, wing fanning and total grooming behaviour.

% Interval Bouts Mean Duration

Behaviours χ6
2 P χ6

2 P χ6
2 P

Walking 5.29 0.507 10.0 0.123 18.2 0.006

Still 4.48 0.613 18.6 0.005 7.92 0.244

Upside Down 28.9 <0.001 12.3 0.055 76.0 <0.001

Total Grooming 2.26 0.894 4.67 0.587 4.25 0.642

Wing Fanning 26.7 <0.001 13.9 0.030 19.8 0.003

doi:10.1371/journal.pone.0133733.t004

Table 5. Pyrethroid/Nectar Toxin Study Summary Statistics. P value and Chi-square values (with degrees of freedom indicated) for statistical analysis of
grooming behaviour.

% Interval Bouts Mean Duration

Behaviours χ6
2 P χ6

2 P χ6
2 P

Proboscis Grooming 6.90 0.330 9.41 0.152 7.87 0.248

Abdomen Grooming 3.97 0.681 10.2 0.116 4.81 0.569

Leg Grooming 2.57 0.860 3.94 0.685 6.41 0.379

Antennae Grooming 15.7 0.015 10.2 0.117 13.9 0.031

Facial Grooming 6.75 0.345 3.30 0.770 8.12 0.229

doi:10.1371/journal.pone.0133733.t005
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Two of these compounds, allethrin and cyfluthrin, also reduced wing fanning behaviour, but tau-
fluvalinate caused bees to perform bouts of wing fanning that were significantly longer than the
control bees. Notably, pyrethroids or nectar toxins that target sodium channels did not have
strong effects on grooming behaviour.

Fig 4. Acute effects of two concentrations of GTX (10 μM and 100 μM) on honeybeemotor function
and wing fanning. This figure illustrates how the different concentrations of GTX affect the percentage of
time, number of bouts and mean duration of: (A-C) walking; (D-F) still; (G-I) upside down; (J-L) wing fanning.
Sample size N = 16/treatment. * indicates P<0.05. [C = control, Ac = aconitine, Al = allethrin,
GTX = grayanotoxin I, Cyf = cyfluthrin, Flu = tau-fluvalinate, Per = permethrin].

doi:10.1371/journal.pone.0133733.g004

Table 6. GTX Dose-Dependent Summary Statistics.

% Interval Bouts Mean Duration

Behaviours χ6
2 P χ6

2 P χ6
2 P

Walking 2.00 0.368 0.204 0.903 5.58 0.062

Still 4.85 0.090 1.01 0.604 3.11 0.211

Upside Down 15.7 <0.001 0.829 0.661 6.93 0.031

Total Grooming 3.99 0.136 4.09 0.129 1.02 0.601

Abdomen Grooming 1.29 0.526 2.96 0.227 0.981 0.612

Leg Grooming 0.826 0.662 4.17 0.124 0.495 0.781

Facial Grooming 5.07 0.079 7.49 0.024 3.95 0.139

Proboscis Grooming 4.66 0.097 7.07 0.029 1.31 0.519

Antennae Grooming 26.2 <0.001 3.12 0.210 5.37 0.068

Wing Fanning 4.22 0.122 4.13 0.127 4.92 0.085

doi:10.1371/journal.pone.0133733.t006
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We used a suite of compounds from both natural and synthetic sources to test general
effects of sodium channel activators on bee behaviour. We expected that the main difference in
the compounds that we used was the way their chemical structure interacted with sodium
channels to influence behaviour. It is important to emphasize that the structures of the honey-
bee’s voltage gated sodium channels have not been elucidated–the genes for the subunits of
these receptors have not been cloned nor heterologously expressed [44]. Therefore, interpreta-
tion of how sodium channel activators affect the honeybee nervous system is based on studies
in rats, mosquitos, mites and ticks [44–46]. In these organisms, the target sites are only known
for a few of the compounds we tested. For example, GTX and aconitine both target receptor
site 2 within the S6 segment of insect voltage-gated sodium channels [47], but the exact binding
sites of allethrin, cyfluthrin, permethrin and tau-fluvalinate are unknown. Furthermore, it has
been difficult to identify the binding sites of pyrethroids because of their high hydrophobicity
and high binding affinity [43, 48]. One review claims that studies of pyrethroid binding to
sodium channels in rat brain neurons identified a new receptor site termed ‘site 7’ [19]. How-
ever, this site has never been formally described [45]. Interestingly, in general, the nectar toxins
aconitine and GTX had a greater influence on honeybee behaviour than the synthetic pesti-
cides. The effect of GTX could be due to the fact that we used a larger dose (3.7 ppm as opposed
to 1 ppm of the other compounds), as our experiment that varied the dose of GTX revealed the
impact on the righting reflex was dose-dependent. It could also be a result of the complex struc-
ture of GTX (Table 2). Futures studies of the structure of honeybee sodium channels will per-
mit a greater understanding of the way that pyrethroids and other toxins interact with these
proteins.

From an ecological perspective, it is surprising to find toxins in nectar that activate sodium
channels. Plants produce floral nectar as a reward for visiting pollinators. Nectar toxins are
metabolically expensive for plants to produce and mainly act as a chemical defence against her-
bivores. The ecological reasons for this are not clear, but it is possible that nectar containing
such compounds could be a mechanism for specialization in plant-pollinator interactions if
insect visitors that were not effective pollinators were susceptible to them [24, 26].

Several of the sodium channel activators used in this study affected wing fanning behaviour.
Only a few studies of motor function that have used this assay have seen elevated wing behav-
iours in bees in response to chemical exposure [15, 36, 37]. Within the colony, honeybees stand
at the entrance of the hive and rapidly fan their wings, to send air currents through the hive for
ventilation and to spread pheromone signals [49]. Fanning is also performed to maintain the
temperature, humidity and carbon dioxide levels within the hive and also to concentrate honey
[49, 50]. Our data suggest that compounds that target sodium channels affect the circuits gov-
erning this behaviour, perhaps indicating that neurons in these circuits express sodium chan-
nels composed of different subunits to those in other neurons. Thus, it is possible that when
bees are exposed to sodium channel activators (e.g. tau-fluvalinate to treat mites) this affects
wing fanning which in turn affects the temperature, humidity and carbon dioxide levels within
the hive, which, in turn, may affect brood growth.

Previous studies have shown that bees fed with toxins exhibit changes in behaviour that
include failure to perform the righting reflex and more grooming and standing still [51]. The
pyrethroids and nectar toxins we assayed affected the righting reflex, but with the exception of
GTX, they did not increase the amount of time spent grooming. In fact in the case of aconitine
and allethrin, the time spent antennal grooming was lower than the control group. In contrast,
the bees given the highest dose of GTX spent more time antennal grooming, and had longer
bouts of proboscis and facial grooming. Furthermore, the previous study of toxin-induced
‘malaise’ also reported the occurrence of specific behaviours, such as time spent curled up and
abdomen dragging, which we did not observe in this study [51]. Therefore, with the exception
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of GTX, we predict that ingestion of pyrethroids and aconitine at a 1ppm dose does not cause a
malaise reaction in bees. Instead, the influence of these compounds could simply be a disrup-
tion of motor function by specifically affecting the neural circuits involved in performing this
behaviour.

Supporting Information
S1 Fig. The mean number of bouts and bout durations for the grooming behaviours
depicted in Fig 3.
(TIF)

S2 Fig. The grooming behaviour of the bees fed with doses of GTX in Fig 4.
(TIF)
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