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Abstract
Corrosion in reinforced concrete (RC) structures is associated with a reduction of the rebar diameter, loss of interfacial
bond, cracking, and eventual spalling and probable collapse of the structure. The negative effects of corrosion on structural
safety, durability, and longevity imposes significant costs on the national economy. Therefore, planned non-destructive testing
(NDT) of concrete structures is essential to enhance the safety and economic sustainability of infrastructure. Previous work
by the research group has established the capability of the ultrasonic Synthetic Aperture Focusing Technique (SAFT) as a
tool for detection of rebar corrosion. This work extends the previous research towards application of statistical learning for
ascertaining the corrosion severity through analysis of SAFT images of the rebar. Using features extracted from images, a
Gaussian mixture model (GMM) is implemented to classify the severity of corrosion damage to the rebar. The results from the
research positively demonstrate the potential of the proposed technique as an enabler for decisions pertaining to maintenance
and timely repair of concrete infrastructural assets.

Keywords Accelerated corrosion · Corrosion severity · SAFT · Statistical learning · Gaussian mixture model

1 Introduction

Concrete and steel are the most widely used construction
materials. A well-designed concrete structure is durable,
and the concrete cover provides protection to the steel from
adverse environmental conditions. However, material degra-
dation occurs over time [1], especially in coastal areas,
through corrosion, due to the high chloride content of sea
water [2]. The chloride ions percolate through concrete cover,
thereby depleting the passivating layer and initiating rebar
corrosion [3]. The corrosion products are expansive and cre-
ate surface breaking cracks, thereby, increasing the risk of
spalling, and further accelerating the penetration of more
chloride ions [4]. Even though corrosionmay take a long time
to become evident, the process adversely affects strength and
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durability. Therefore, detecting rebar corrosion in the early
stages, and an understanding of the severity level are neces-
sary for efficient infrastructural asset management.

The inspection of RC structures involves visual assess-
ment and other NDT techniques for decisions pertaining
to repair and rehabilitation. However, detection of inter-
nal defects is a challenging task. There has been on-going
research on the development of more effective and reliable
NDE methodologies for accurate damage detection and sys-
tematic management of infrastructure. Themost familiar and
widely used in-situ electro-chemical technique to assess the
corrosion vulnerability is the half-cell potential technique.
The application and implementation procedure are described
in theASTMC876 code of practice [5].Work associatedwith
this technique for evaluating the probability of rebar corro-
sion is reported in [6, 7].

The other NDTmethods, which use elastic waves, i.e., the
impact echo (IE) and acoustic emission (AE) are applied for
flaw and void detection in concrete structures. The authors
in [8] examined the influence of impact duration of the
IE technique to ascertain the depth and location of cracks,
through analysis of the phase spectrum of received signals.
IE based detection of voids in pre-stressed concrete gird-
ers, using frequency domain methods is reported in [9]. The
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authors concluded that the shift in frequency to the lower
regime is associated with the presence of defects. However,
the efficiency of the IE method is influenced by wavelength
limitations, and the technique fails to detect smaller sized
defects in concrete structures. The Acoustic Emission (AE)
method involves real-time in-situ monitoring through recep-
tion of elastic waves by special surface mounted sensors in
RC slabs to track the progressing development of cracks due
to corrosion [10]. The effect of seasonal variations in temper-
ature on the AE signals has been investigated in [11]. Further
investigations related to distribution of corrosion damage
along the rebar in concrete specimens using AE have been
presented in [12]. The emphasis on the relationship between
energy acquired through AE sensors and crack growth rate
in pre-stressed tendons in bridges is examined in [13, 14].

Ground penetrating radar (GPR) based assessment, an
electromagnetic NDT technique, has been implemented to
detect the location of steel reinforcement [15, 16] and estima-
tion of concrete cover depth and size of voids [17, 18]. GPR
can be used for subsurface imaging and the effect of corrosion
on GPR images is investigated in [16]. The authors report
attenuation of reflected signal amplitude originating from
corroded rebars. Analysis of GPR signals in time and fre-
quency domain, for detection of rebar corrosion in concrete
slabs is presented in [19]. The authors observe a reduction in
the amplitude of signals, where there is a loss in the cross-
sectional area due to pitting corrosion.

Ultrasonic NDT techniques are widely popular primarily
for evaluating the quality of the concrete and for detection
of subsurface flaws, and voids. The ultrasonic guided waves
(UGW) approach has been adopted for detection and location
of rebar debonding in [20]. Detection of cracks generated
due to rebar corrosion in concrete beams using UGW is
explored in [21]. Reduction in peak-to-peak amplitudes of
UGW signals due to rebar corrosion in concrete beams has
been reported in [22]. Subsurface imaging with ultrasound
using SAFT has been pioneered by Schickert et al. [23] and
subsequently applied for detection of artificial debonding
around rebars in [24]. The authors in [25], investigate changes
in the SAFT images of rebars subjected to various levels of
accelerated corrosion. A comparative study on contact and
non-contact based ultrasonic methods for imaging of rebars
subjected to various stages of corrosion is presented in [26].
A gradual disappearance of the rebar signature in the SAFT
images has been established as an indicator of progressive
corrosion. Recent developments on advanced sensing and
imaging systems have been presented in [27]. The authors in
[28] implemented compressional sampling theory as a tool to
improve classical ultrasonic tomography for damage locali-
sation in structures. The SAFT imaging technique has been
improved using spatial apodization filters in [29].

The literature review shows that the primary focus of
NDT of concrete structures is on detection and localiza-
tion of structural defects such as voids, cracks, estimation
of concrete cover, and localization of rebar and prestressed
tendons by utilizing time and frequency domain analysis
and image processing algorithms. A few researchers have
investigated statistical data driven approaches (Gaussian and
Weibull mixture modelling) andmachine learning to identify
and characterize damage in materials like ceramic compos-
ites using AE parameters [30]. Similar AE parameter-based
classification of subsurface damage in wind turbine blades,
using GMM is reported in [31]. The classification of the
extent of rebar corrosion in concrete structures, using lin-
ear discriminant analysis is discussed in [32]. Identification
of tensile and shear crack damage in a shear wall using AE
sensors and GMM is presented in [33]. The authors in [34],
propose aK-NN and a random forest-basedmethod for quan-
titative evaluation of chloride induced corrosion in concrete
beams. Similar work through application of random forest
and ANN (Artificial Neural Network) for prediction of chlo-
ride concentration in marine concrete is reported in [35].
Research related to evaluation of integrity and detection of
defects in concrete pile foundations is demonstrated through
deep learning in [36]. The application of linear regression
and ANN for estimation of the initiation time of rebar cor-
rosion is presented in [37] and prediction of the mechanical
properties of rubberised concrete is investigated in [38]. The
photographs of cracked and uncracked concrete bridge decks
and pavements were used to determine the crack length and
width [39] using convolutional neural networks (CNN).

The above summary demonstrates that there is a devel-
oping interest on implementation of statistical data and
machine learning driven approaches for classification of
damage severity in concrete structures. In this paper, the
authors present a novel data driven approach using features
extracted from SAFT images, to classify various levels of
corrosion. To induce corrosion, a laboratory based acceler-
ated corrosion setup is developed. Ultrasonic reflection data
is acquired by scanning over the rebar locations in a 4×4 grid
and SAFT images are generated. The features extracted from
these images are input into a GMM classifier, which identi-
fies corrosion severity. To the best of authors’ knowledge, the
image-based classification of corrosion and cracking sever-
ity in concrete structures has not been reported previously in
the literature.

The paper is organised as follows. The details of the
mix design, sample dimensions and rebar arrangement are
presented in “Specimen Details”. The laboratory-based cor-
rosion set up is described in Sect. 3. The SAFT imaging
approach is discussed in “Methodology of Ultrasonic Scan-
ning”. The imaging results are presented in “Results and
Discussion section”. The classifier is discussed in detail in
Sect. 9. The paper ends with a Sect.15.
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Fig. 1 Schematic diagram of a cross section of slabs 1 and 2

2 Experimental Details

The geometrical arrangement of the rebars within the con-
crete slab samples are shown in Fig. 1. Three prismatic
specimens of dimensions 4 50mm × 450mm × 120mm are
fabricated with a grid of four embedded rebars of 16 mm
diameter in the x-direction and four 12 mm diameter rebars
in the y-direction. The length of the rebars is 350 mm inside
the specimen. Ordinary Portland cement (53MPa grade) and
20mm nominal sized coarse aggregates were used to cast the
specimens. In concrete slabs, the side cover is 40 mm, and a
clear cover of 40 mm from the top is provided.

The rebar nomenclature along X and Y axes are defined
as Xn

m and Yn
m , where m refers to rebar number and n refers

to slab specimen number.
The mix proportion (by weight) of concrete ingredients

are shown in Table 1. The RC slabs were cured for 28 days in
a curing tank before the experimental inspection. The applied
ultrasonic scanning technique is explained in Sect. 4.

3 Accelerated Corrosion Setup

The normal corrosion process may take a long time; in order
to expedite the process, the accelerated corrosion technique
is implemented. In the present setup, a potential of 30 Volts is
generated by a constant DC source following developments
in [8, 25, 26]. A tank is filled with 5% NaCl solution (elec-
trolyte) and the sample is immersed partially up the level of
the 16 mm rebar, i.e., the depth of the saline water is 40 mm.

The rebar is connected to the positive terminal and a cop-
per plate is connected to the negative terminal of the DC
source. Each corrosion cycle is of 24 h duration during which
the current is recorded at intervals of 15 s, using a data acqui-
sition system, as shown in Fig. 2.

Fig. 2 Setup of Accelerated Corrosion for slabs

Fig. 3 Ultrasonic scanning setup

4 Ultrasonic ScanningMethodology

Ultrasonic scanning is performed above each rebar on the
slab surface at various stages of corrosion. Compressional
wave transducers with centre frequency of 250 kHz were
used for transmission and reception in a tied-together mode
along the rebar axis. The excitation signal was triggered with
a pulser-receiver setup as shown in Fig. 3. The acquired A-
scans were digitized in an oscilloscope (5 MHz sampling
frequency) in a time window of 500 µs. Petroleum jelly is
used as the couplant between the transducers and the concrete
surface.

The slab surface is marked with grid lines at an interval of
10 mm in both directions. A tied-together method of scan-
ning is followed, where the source and receiver transducers
are placed next to each other, and waveforms are acquired at
various grid points along a linear aperture. The experimental
inspection is carried out over the rebar and each aperture con-
sists of 30 inspection points for every corrosion stage. A total
of 30 × 8 × 18 = 4320 wave forms were acquired to gen-
erate SAFT images for all samples. The acquired signals are
analysed and processed by the SAFT algorithm, and vertical
cross-sectional images through the rebar axes are generated
corresponding to various levels of corrosion.
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Table 1 Concrete mix design
Specimen Cement Coarse aggregate Sand Water

Slabs 1, 2 and 3 1 3 2.12 0.45

Fig. 4 The Ultrasonic scanning approach

5 Imaging Approach

Vertical cross-sectional images of the rebars at different
corrosion stages are generated using the SAFT program
developed in the MATLAB platform, following the expla-
nations provided in [23–26]. The waveforms, acquired at
various locations as shown in Fig. 4, are first normalised to
the initial surface wave arrival to circumvent coupling issues.

The Time of Flight (TOF) of the traveling ultrasonic com-
pressional wave, originating from the source to a subsurface
grid point and back to the receiver, is calculated throughEq. 1
as [25, 26]:

T OF =
∣
∣
∣
∣

dS
r + dR

r

Vc

∣
∣
∣
∣

(1)

where, dsr = distance between the source transducer Si and
grid point r(m, n). dR

r = distance between the grid point
r(m, n) and receiver transducer Ri T OF = Time of flight
from Si to Ri via the grid point r(m, n) Vc = Velocity of
Compressional wave.

The image value Im, n , associated with the grid point r(m,
n) is obtained as a sum of the contributions from the A-scans
received from K source-receiver combinations, as shown in
Eq. 2 as [25, 26]:

Im, n =
∑K

i=1
Ai (T OF) (2)

where Ai (t)= amplitude of the A-scan received at the
receiver of the i th source-receiver pair.

The current technique involves the acquisition of signals
reflected by rebars; therefore, any change to the rebar and
the rebar-concrete interface are bound to affect the reflected
signal. However, the inhomogeneous subsurface of concrete
causes a lot of scattering of the incident field which creates

structural noise, which might mask the objects to be iden-
tified. The coherent summation of the A-scan amplitudes,
corresponding to various source-receiver locations and grid
points in the SAFT image eliminates the noise in the data
which can be significant in singleA-scanmeasurements [23].
Further The SAFT imaging is an intuitive visualisation tool
for inspecting features or changes in the concrete subsurface.

6 Results and Discussions

The observations during accelerated corrosion of concrete
specimens such as mass loss of the extracted rebars and their
images are presented in the next sub-section. The ultrasonic
scanning is performed and acquired data is fed into the SAFT
algorithm developed in the MATLAB platform. This gener-
ates images of the rebar at various levels of corrosion and
classification of corrosion severity using these images is dis-
cussed in the following subsections.

6.1 Corrosion Process

The concrete specimens are subjected to an accelerated cor-
rosion process, explained in Sect. 3. The current values are
monitored at intervals of 15 s during each 24-h corrosion
cycle and graphs of the current in amperes as a function of
time are shown in Fig. 5.

After every 24 h, the current value is observed to drop,
which can be due to the reduction in themoisture content dur-
ing the process of ultrasonic scanning between the corrosion
cycles. The theoretical mass loss is estimated by integrating
the current using Faraday’s law as follows [32]:

�m = M

ZF

t2∫

t1

I dt (3)

where, � m = Mass loss in grams, M = Molar mass of Fe,
Z = Valency of Fe, F = Faraday’s constant, I = Current in
Amperes.

The slab 1 is corroded in six levels of corrosion, three of
which are pre-cracking, and the remaining are cracked stages.
Accelerated corrosion is performed at eight levels for slab 2,
and ultrasonic data is collected at all phases. In slab 3, the
corrosion experiment is performed until 11 days of corrosion
and no cracks were also observed due to a faulty electrical
connection.
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Fig. 5 Current plot for a slab 1; b slab 2

Table 2 Mass loss of the rebar
system Specimen Corrosion

stages
Corrosion period
(h)

Actual mass loss
(g)

Theoretical mass
loss (g)

Error
(%)

Slabl 1 Pre-cracking
stage I

144 96.2 101.5 5.2

Pre-cracking
stage II

Pre-cracking
stage III

Cracked stage I

Cracked stage
II

Cracked stage
III

Slab 2 · Pre-cracking
stage I

168 137.7 131.5 4.5

· Pre-cracking
stage II

· Pre-cracking
stage III

· Pre-cracking
stage IV

· Cracked stage
I

· Cracked stage
II

· Cracked stage
III

· Cracked stage
IV

Slab3 · Pristine 264 NA NA NA

· 4 days
corrosion

· 8 days
corrosion

· 11 days
corrosion
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Fig. 6 Photographs of extracted 16 mm rebars from a slab 1; b slab 2;
c slab 3

The theoretical mass loss of the rebar arrangement after
the entire accelerated corrosion process is shown in Table
2. After 144 h and 168 h of accelerated corrosion for slabs
1 and 2 respectively, the actual mass loss (weighed) of the
rebar arrangement is comparedwith the theoretical value cal-
culated from Eq. 3.

The theoreticalmass losses for the slabs 1 and 2 are 101.5 g
and 131.5 g respectively. The actual mass losses obtained
after the extraction of rebars are 96.2 g and 137.7 g, showing
variations of 5.2% and 4.5% respectively, which are very
reasonable. For slab 3, no change in the measured current
was observed and there was a suspected loss of connection
between the supply wire and the rebar grid. There was no
loss of mass of the rebars.

Physical examination of the 16 mm rebars from slabs 1, 2
and 3 were performed post extraction after the final stage of
corrosion, and the corresponding photographs are shown in
the Fig. 6. Rebars from slabs 1 and 2 show pitting corrosion
along with reduction in the cross-sectional diameter along
the rebar. As shown in Figs. 6a, b, the side rebars (X1

1, X
1
4,

X2
1, andX

2
4) are corrodedmorewhen compared to themiddle

rebars; the reason being that the exposure to NaCl solution
is relatively more for the side rebars.

The middle rebars are affected by the corrosion only at
the ends. The corrosion process did not occur in slab 3 due
to a faulty electrical connection and therefore, the rebars do
not show any visible corrosion, as shown in the Fig. 6c.

The 12 mm layer of rebars extracted from the slabs 1, 2
and 3 are shown in Fig. 7. As explained in the Sect. 2, the con-
crete specimens are immersed up to 40 mm, due to which the

Fig. 7 Photographs of extracted 12 mm rebars from a slab 1; b slab 2;
c slab 3

12mm rebars have less exposure and do not undergo substan-
tial corrosion. Only mild corrosion is observed at the ends,
as shown in Fig. 7. A more detailed discussion is presented
in Sect. 7.3.2

Figures 8 and9 show the cracked images of slabs 1 and2.A
fine surface breaking crack at the level of rebar is observed on
the sides (A and B) after the 4th corrosion cycle in both slabs
(Figs. 8a and 9a). With the progress in corrosion, the widen-
ing of cracks and oozing of corrosion product is observed
(Figs. 8c and 9d).

6.2 Vertical SAFT Images with Ultrasonic Setup (slab
1–16mmRebars)

The vertical cross-sectional SAFT images of 16 mm rebars
from slab 1 are discussed in this subsection.

The pre-cracking stage I and pre-cracking stage II images
of rebar X1

1 and X1
4 (Fig. 10) depict a bright continuous patch

of blue colour (negative amplitude) and red colour (positive
amplitude) of high intensity at the level of rebar. In pre-
cracking stage III (3 days of corrosion), the red coloured
(+ ve amplitudes) patch starts to disappear from the SAFT
image. After the cracked stage I (4 days of corrosion), a
further weakening of the rebar intensity (+ ve amplitudes)
is observed, and a fine crack starts to appear on the side
surface (Fig. 8a). At the advanced level of corrosion, i.e.,
cracked stages II and III, the rebar intensities are diminished
(+ ve and − ve amplitudes) considerably. At this level, the
extracted rebars also show significant corrosion (Fig. 6a) and
the horizontal cracks on the side surface at the level of rebar
also widen (Figs. 8b, c).
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Fig. 8 Cracked images of slab 1
after a 4 days of corrosion
(Cracked stage I); b 5 days of
corrosion (Cracked stage II);
c 6 days of corrosion (Cracked
stage III)

Fig. 9 Cracked images of slab 2
after a 4 days of corrosion
(Cracked stage I); b 5 days of
corrosion (Cracked stage II);
c 6 days of corrosion (Cracked
stage III); d 7 days of corrosion
(Cracked stage IV)

Pre-cracking stage I Pre-cracking stage II Pre-cracking stage III

Cracked stage I Cracked stage II Cracked stage III

Pre-cracking stage I Pre-cracking stage II Pre-cracking stage III

Cracked stage I Cracked stage II Cracked stage III

Rebar

Rebar

Fig. 10 SAFT images of rebar X1
1, X

1
4 of slab 1 at a pre-cracking stage I; b pre-cracking stage II; c pre-cracking stage III; d cracked stage I;

e cracked stage II; f cracked stage III. The rectangular box has been added to emphasise the rebar location. Color bars are unitless
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Pre-cracking stage I Pre-cracking stage II Pre-cracking stage III

Cracked stage I Cracked stage II Cracked stage III

Pre-cracking stage I Pre-cracking stage II Pre-cracking stage III

Cracked stage I Cracked stage II Cracked stage III

Rebar

Rebar

Fig. 11 SAFT images of rebar X1
2, X

1
3 of slab 1 at a pre-cracking stage I; b pre-cracking stage II; c pre-cracking stage III; d cracked stage I;

e cracked stage II; f cracked stage III. The rectangular box has been added to emphasise the rebar location. Color bars are unitless

The SAFT images related to rebar X1
2, X

1
3 of slab 1 is

shown in Fig. 11. The diminishing of rebar image amplitudes
is not observed with progress in corrosion. This extracted
rebars also do not show any sign of significant corrosion
(Fig. 6a). The middle rebars are not affected by accelerated
corrosion process due to the larger concrete cover on the
sides, which explains the observation. The SAFT images
from slabs 2 and 3 follow a similar trend and consider-
ing the length, these figures have not been included in this
manuscript.

The intensity of wave amplitude is affected by corrosion
of rebar and the changes occur at the rebar-concrete interface.
The ultrasonic wave undergoes scattering in multiple direc-
tions and significantly low amplitudes reach the receiver.
In situations of severe corrosion, the changes owing to the
accumulation of rust product and micro cracking of the sur-
rounding concrete, which finally leads to surface breaking
cracks as shown in the Fig. 12

In summary, with the progress in corrosion, the rebar
image intensities for slabs diminish (Fig. 10), which is con-
sistent with authors’ observations in previously published
research [25, 26]. The reasonmay be attributed to attenuation
and scattering of the incident compressional wave, due to the
formation corrosion product around the rebars. Therefore,
the rebar disappearance phenomenon in the SAFT images
can be a diagnostic indicator for corrosion activity in con-
crete structures.

Fig. 12 Schematic representation of ultrasonic wave attenuation and
dispersion due to corrosion

7 Statistical Classification

The classification of data into various categories originates
from pattern recognition studies associated with machine
vision. Different statistical learning algorithms have been
developed to ensure better classification. These methods
are categorised into two types: unsupervised and supervised
learning methods. In unsupervised learning, labelled infor-
mation of various classes is not available in the training data
set. Whereas, in supervised learning, the pre-defined infor-
mation is available for the classification process. Among
various unsupervised learning methods, the Gaussian mix-
ture modelling (GMM) is a widely used technique. In this
article, we propose GMM for classification of the rebar cor-
rosion severity, using features extracted from SAFT images.
We provide a brief description about identifying the number
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Fig. 13 A flowchart of Gaussian mixture model algorithm

of classes, the flow chart of the classification process, and the
model development in the subsequent subsections.

7.1 GaussianMixture Modelling

Gaussian mixture modelling is an unsupervised classifica-
tion method, in which the data is assumed to follow a
multivariate normal distribution. This technique has been
previously used in different areas such as civil engineering
[33], medicine [40], and in the food industry [41]. The GMM
algorithm calculatesGaussian functions that optimally create
the boundaries separating the training data set into multiple
clusters. The test data is classified according to their local-
ization relative to the boundaries.

The flowchart in Fig. 13 is a brief description of the imple-
mentation of the GMM technique, adopted in this work. The
SAFT images at various levels of corrosion from slab 1 (refer
to Fig. 10 for details) is used as training data. Referring to
Fig. 13, the white line emphasised by the red dotted ellipse
represents the spatial data from which a 2 × 1 vector is
extracted consisting of the feature vectors i.e., maximum,
and minimum values; the same operation is performed on
every A-scan in the saft image.

After extraction, the optimal GMM parameters (mean,
covariance, and mixture coefficient) that best reflect the dis-
tribution of the training feature vectors are estimated through
an iterative process. The technique is summarised in the
following steps and the mathematical and algorithmic devel-
opment follows the procedures using Eqs. 4, 5, 6, 7, 8 [33,

42, 43]. The first author developed the algorithm of GMM in
MATLAB using Eqs. 4, 5, 6, 7, 8.

1. The mean (μk), covariance (
∑

k) and mixture coefficient
(πk) are initialized where k denotes the number of a spe-
cific Gaussian cluster and k = 1 to N , with N as the
assumed number of clusters.

2. The probability of each data point or feature vector x j
(j = 1 to M) belonging to a cluster ‘k’ is calculated as
follows

P
(

x j |πk , μk ,
∑

k

)

= πk × N (

x j |μk ,
∑

k

)

∑N
i=1 πi × N (

x j |μi ,
∑

i

) (4)

where,

N (

x j |μk ,
∑

k

) = 1√
2π|∑i | exp

{
1
2

(

x j − μk
)T ∣

∣
∑

k

∣
∣
−1(

x j − μk
)}

μk

is the mean vector;
∑

k is the covariance matrix.

3. The Log Likelihood (LLH) is calculated for the chosen
system of Gaussian functions using the following for-
mula:

LLH =
M

∑

j=1

ln

{
N

∑

i=1

πi × N
(

x j |μi ,
∑

i

)
}

(5)
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Fig. 14 Gaussian cluster functions for the training data set from rebar X1
1 with a k = 2; b k = 3; c k = 4; d k = 5; e variation of LLH for k = 3;

f BIC plot

4. The Gaussian parameters are updated using the Expec-
tation Maximization Algorithm as follows:

π
(z+1)
k = 1

n

M
∑

j=i

P

(

x j |π(z)
k , μ

(z)
k ,

∑(z)

k

)

(6)

μ
(z+1)
k =

∑M
j=1

{

P
(

x j |π(z)
k , μ

(z)
k ,

∑(z)
k

)

× x j
}

∑M
j=i P

(

x j |π(z)
k , μ

(z)
k ,

∑(z)
k

) (7)

∑(z+1)

k

=
∑M

j=1

{

P
(

x j |π(z)
k , μ

(z)
k ,

∑(z)
k

)

×
(

x j − π
(z)
k

)T (

x j − π
(z)
k

)}

∑M
j=i P

(

x j |π(z)
k , μ

(z)
k ,

∑(z)
k

)

(8)

where z = iteration number.

5. The steps 2–4 are repeated until the log-likelihood values
converge. [43, 44]

The training data set is used to establish the optimal
number of classes for clustering the unlabelled data. After
determining the number of Gaussians, the test data is utilised
to estimate the severity of corrosion. The classification accu-
racy is represented by a confusion matrix. The determination
of number of classes are covered in the next section.
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Table 3 Comparison of Gaussian parameters

Mean and Covariance Training data from slab I

Rebar X1
1 Rebar X1

4 Rebar X1
1 & Rebar X1

4

µ1;
∑

1 [12.97, − 20.204];

[

13.93 −13.68

−13.68 27.12

]

[10.90, − 17.95];
[

15.15 −16.1

−16.1 32.9

]

[12.34, − 19.32];
[

17.6 −16.7

−16.7 33.08

]

µ2;
∑

2 [21.024, −

41.26];

[

20.9 −35.019

−35.019 29.64

]

[22.53, − 37.38];

[

25.67 −30.72

−30.72 152

]

[26.55, −

40.8];

[

26.55 −20.03

−20.03 48.94

]

µ3;
∑

3 [41.08, − 70.16];

[

92.9 −63.9

−63.9 148.45

]

[46.56, − 61.33];

[

100.15 −100.74

−100.74 128.66

]

[44.05, −

65.65];

[

107.8 −69.52

−69.52 109.08

]

7.2 Determination of the Optimal Number
of Gaussians Clusters

In this work, the initial training data set consists of features
extracted from rebar X1

1 images across all corrosion stages.
The training data is classified into 5, 4, 3 and 2 clusters. Cor-
responding to each case, the Bayesian information criterion
(BIC) is calculated according to Eq. (9) [33]:

BIC = −2LLH + p × ln(T ) (9)

where, LLH = Converged value of likelihood, T is the total
number of observations, and p = 3*r, which corresponds to
total number of parameters estimated (e.g., for 5 clusters p
= 15, since for each Gaussian cluster, there are 3 parame-
ters, i.e., r = 3). The BIC values are plotted as a function
of the number of clusters and the ‘elbow’ point in the curve
gives the optimal number of classes or clusters. For a cho-
sen number of clusters, the Gaussian parameters are updated
according to Step 4 described in the previous subsection and
the LLH value is tracked, and it starts to converge. As a
demonstration, the variation of LLH as a function of number
of iterations for k = 3 is shown in Fig. 14e, in which the 3
cluster GMMmodel is found to converge after 22 iterations.
As observed in Fig. 14f, the reduction in the BIC value is
not significant beyond three clusters, which indicates that 3
clusters are adequate for classification of the training data set
[33].

A similar approach is adopted for determining the num-
ber of classes for the training data set extracted from rebar
X1
4 and the Gaussian parameters are compared with those

corresponding to X1
1. Three optimal clusters are identified in

this case as well and a comparison of the optimal Gaussian
parameters (μ,

∑
) for the two data sets is shown in Table 3.

Since the parameters are similar for both the cases, the
data sets from X1

1 and X1
4 are combined to generate a new

training data set and the number of optimal Gaussian clusters
and corresponding parameters are estimated for corrosion
severity classification.

Figure 15e shows the LLH variation for the 3 clusters for k
= 3 and the model is observed to converge after 50 iterations.
With the combined training data set, it is observed in Fig. 15f
that the BIC value does not reduce significantly beyond three
clusters. Therefore, the adequacy of three clusters for classi-
fication is established.

7.3 Corrosion Severity Classification Based on SAFT
Images

Based on the developments in the previous subsection, the
classifier is tested with different sets of test data. The results
are shown in this section.

7.4 Classification of 16mmRebars

The GMM classification model is developed, and the three
classes are labelled as "low level corrosion", "medium level
corrosion", and "high level corrosion", as shown in Fig. 16,
based on the developments in Sects. 7.1 and 7.2. Figure 16
shows the confusion chart of GMM model with the fea-
tures being combined from images of rebars X1

1 and X1
4

belonging to slab1. The confusion chart shows that 91.7%
and 99.5% of the feature vector values, corresponding to
pre-cracking stages I and II are associated with “low level
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Fig. 15 Gaussian cluster functions for the training data set the combined training data set from rebars X1
1 and X1

4 for a k = 2; b k = 3; c k = 4; d k
= 5; e variation of LLH for k = 3; f BIC plot

Fig. 16 Confusion chart of GMM model

corrosion”. With progress in corrosion 78.9% and 85.4%
belong to “medium level corrosion” and in the advanced level
of corrosion, almost 100% data belongs to “high level corro-
sion” corresponding to cracked stages I and II. The test data
extracted from the SAFT images of middle rebars at various
levels of corrosion are now investigated.

Figures 17a–g show the distribution of the features cor-
responding to rebar X1

2 at various levels of corrosion. It is
observed that the GMM correctly classifies the features as
“low level corrosion”, which is consistent with the actual
photographs presented in Fig. 6a that show very little corro-
sion damage to the rebar.

Similarly, for rebar X1
3, which did not undergo significant

mass loss (Fig. 6a), the features are classified as “low level
corrosion” in the confusion matrix shown in Fig. 18g.

Figures 19 and 20 present analysis of the data from the side
rebars X2

1 and X2
4, which underwent significant corrosion.

The data had been acquired at seven stages of corrosion. For
pre-cracking stages I, II and III, the data is classified as “low
level corrosion” (Figs. 19 and 20a–c).

However, the percentage of the data points at pre-cracking
stage IV associated with "low level corrosion" is 40% and
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Fig. 17 Corrosion classification of rebar X1
2 of slab 1 in a pre-cracking stage I (PC-I); b pre-cracking stage II (PC-I); c pre-cracking stage III (PC-I);

d cracked stage I (CS-I); e cracked stage II (CS-II); f cracked stage III (CS-III); g confusion chart

21% respectively and the majority of the data (57.5% and
79%) have migrated to the “medium corrosion level” cluster
indicating progress in the corrosion relative to the cases in
Figs. 19 and 20d. This stage is also the last stage before crack-
ing of the slab and association of the features with "medium
level corrosion" is therefore, correct.

In the cracked stage I (Figs. 19 and 20e), 84% and 73.5%
of the data are associated with “medium level corrosion”,
a higher proportion compared to the previous stage; there
is also a visible shift of the data towards the “higher level
of corrosion” zone. From cracked stage II, the rebar data is
classified as “high level corrosion”.

The classification of the features of rebar X2
2 and X2

3,
shown in Figs. 21a–g, follows a similar trend as the other
rebar and the clustering is in the “low corrosion level” zone
(92% or above) across different stages. This complies with
the low level of mass loss observed in Fig. 6b.

The confusion charts of rebars from slab 3 are shown in
Fig. 22. The rebar signatures in the SAFT images do not
change significantly across various levels of corrosion and
the extracted rebars were found not to have undergone mass
loss (Fig. 6c), possibly due to a faulty electrical connection.

The GMM algorithm associated the majority of the data with
“low level corrosion”, which is expected.

To summarize, the implemented GMM based classifier
algorithm successfully identifies the level of corrosion sever-
ity in three different slabs. This approach, therefore, has
a good potential of providing useful insight regarding the
prevailing condition of rebar corrosion inside the concrete
structure, even when it is not apparent. Therefore, the use of
unsupervised statistical learning algorithms like GMM can
be a tool for directing repair and rehabilitation works.

7.5 Classification of 12mmRebar Data

This section discusses about the feature vectors extracted
from SAFT images of the 12 mm rebars. The range of the
feature values are different and therefore the classifier model
for the 16 mm rebars would not work in this case and a
dedicated GMM classifier should be developed. Figures 23
and 24 shows the feature data extracted from the images of
the side rebars Y 1

1 and Y 2
1 at different corrosion stages.

The 12 mm rebars did not undergo substantial corrosion
(except at the ends), as observed in Figs. 7a–c, due to a lower
exposure level to the NaCl solution. The centroid of data
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Fig. 18 Corrosion classification of rebar X1
3 of slab 1 in a pre-cracking stage I (PC-I); b pre-cracking stage II (PC-I); c pre-cracking stage III (PC-I);

d cracked stage I (CS-I); e cracked stage II (CS-II); f cracked stage III (CS-III); g confusion chart

points in Figs. 23 and 24 at various levels of corrosion do not
migrate significantly. Therefore, the classification of corro-
sion severity of 12 mm rebars into different clusters is not
performed.

To summarize, the experimental waveforms are nor-
malised with respect to the initial surface wave arrival to
eliminate variation in amplitudes arising out of coupling
issues. Best practices have been followed based on expe-
rience of the investigators, since the effect of coupling on the
waveforms is a complex phenomenon that cannot be fully
eliminated in contact-based measurements. Regarding other
sources of noise in the signals, the acquisition involves aver-
aging and the SAFT algorithm incorporates a summation
process which would lead to lower levels. Future research
will involve applications of the proposed methodology on
data acquired through non-contact sensing platforms (e.g.,
GPR) and on real structural systems.

8 Conclusions

The article presents classification of the level of corrosion of
rebars and associated corrosion severity through implemen-
tation of an unsupervised GMM based algorithm, utilizing
simple features extracted from SAFT images of rebars. As
observed in the rebar images, the pixel intensities diminish
with progress in corrosion, which is consistent with research
previously published by the authors. A novel approach of
pattern recognition is implemented by inputting the feature
vectors (maximum and minimum amplitudes of rebar signa-
tures) into a GMM based classifier, which identifies cluster
boundaries for three levels of corrosion severity. The results
from the test data are consistent with physical observations of
corrosion damage to the extracted rebars. The proposed tech-
nique, therefore, has a strong potential of providing useful
inputs for pre-emptive maintenance and efficient manage-
ment of concrete structural assets . This work opens many
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Fig. 19 Corrosion classification of rebar X2
1 of slab 2 in a pre-cracking

stage I (PC-I); b pre-cracking stage II (PC-II); c pre-cracking stage III
(PC-III); d pre-cracking stage IV (PC-IV); e cracked stage I (CS-I);

f cracked stage II (CS-II); g cracked stage III (CS-III); h cracked stage
IV(CS-IV); i confusion chart

new avenues and future research will involve investigations
with data obtained from real life structures.

The proposed technique requires prior information of
rebar locations, which may be found out from existing draw-
ings and/or by rebar locator or GPR based survey . In fact, the

proposed technique can be used along with the GPR survey
and therefore provide complimentary information regarding
the status of the rebar. Moreover, the proposed technique is a
contact-based and therefore require more time and is suitable
for localized NDT operations.
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Fig. 20 Corrosion classification of rebar X2
4 of slab 2 in a pre-cracking

stage I (PC-I); b pre-cracking stage II (PC-II); c pre-cracking stage III
(PC-III); d pre-cracking stage IV (PC-IV); e cracked stage I (CS-I);

f cracked stage II (CS-II); g cracked stage III (CS-III); h cracked stage
IV(CS-IV); i confusion chart
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Fig. 21 Corrosion classification of rebar X2
2 of slab 2 in a pre-cracking stage I; b pre-cracking stage II; c pre-cracking stage III; d pre-cracking

stage IV; e cracked stage I; f cracked stage II; g cracked stage III; h cracked stage IV; i confusion chart for rebar X2
2; j confusion chart for rebar X

2
3

Fig. 22 Confusion charts for rebar X3
1, X

3
2, X

3
3, and X3

4 of slab 3
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Fig. 23 The rebar signature
extracted from SAFT images of
rebar Y 1

1 of slab 1 at
a pre-cracking stage I;
b pre-cracking stage II;
c pre-cracking stage III;
d cracked stage I; e cracked stage
II; f cracked stage III

Fig. 24 The rebar signature
extracted from SAFT images of
rebar Y 2

1 of slab 2 at
a pre-cracking stage I;
b pre-cracking stage III;
c cracked stage I; d cracked stage
IV
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