
Mohammed, MS, Abduljabar, AM, Faisal, MM, Mahmmod, BM, Abdulhussain,
SH, Khan, W, Liatsis, P and Hussain, A

 Low-cost autonomous car level 2: Design and implementation for
conventional vehicles

https://researchonline.ljmu.ac.uk/id/eprint/19565/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Mohammed, MS, Abduljabar, AM, Faisal, MM, Mahmmod, BM, Abdulhussain,
SH ORCID logoORCID: https://orcid.org/0000-0002-6439-0082, Khan, W
ORCID logoORCID: https://orcid.org/0000-0002-7511-3873, Liatsis, P ORCID
logoORCID: https://orcid.org/0000-0002-5490-6030 and Hussain, A ORCID

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Results in Engineering 17 (2023) 100969

Available online 1 March 2023
2590-1230/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Low-cost autonomous car level 2: Design and implementation for
conventional vehicles

Mohammad S. Mohammed a, Ali M. Abduljabar a, Mustafa M. Faisal a, Basheera M. Mahmmod a,
Sadiq H. Abdulhussain a, Wasiq Khan b, Panos Liatsis c,*, Abir Hussain b,d,**

a Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad, 10071, Iraq
b School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK
c Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
d Department of Electrical Engineering Department, University of Sharjah, Sharjah, United Arab Emirates

A R T I C L E I N F O

Keywords:
Self-driving vehicle
Deep learning
Image processing

A B S T R A C T

Modern cars are equipped with autonomous systems to assist the driver and improve driving experience. Driving
assist system (DAS) is one of the most significant components of a self-driving vehicle (SDV), used to overcome
non-autonomous driving challenges. However, most conventional cars are not equipped with DAS, and high-cost
systems are required to equip these vehicles with DAS. Moreover, the design of DAS is very complex outside of
the industry while it requires going through the Electronic Control Unit (ECU), which has a high level of security.
Therefore, a basic system needs be installed in conventional cars which makes driving more efficient in terms of
driver assistance. In this paper, an intelligent DAS is presented for real-time prediction of steering angle using
deep learning (DL) and raw dataset collected from a real environment. Furthermore, an object detection model is
deployed to assist and warn the driver of various types of objects along with corresponding distance measure-
ment based on DL. Outputs from DL models are fed into the steering control system, which has Electronic Power
Steering (EPS). The steering angle is measured in real time using an angle sensor and is posted back to the
steering control system to make automated adjustments accordingly. Real-time tests are conducted on a 2009
Toyota Corolla equipped with a digital camera to capture live video stream, Controller Area Network (CAN-BUS)
messages, and a steering angle sensor. The performance evaluation of the proposed system indicates intelligent
steering control and driver assistance when evaluated in a real-time environment.

1. Introduction

Self-driving vehicle (SDV) is considered game changer in the intel-
ligent transportation and smart city context due to the significant role of
artificial intelligent (AI) during the recent years [1,2]. There are sig-
nificant positive impacts of SDV such as reducing traffic jam, saving fuel,
and fewer accidents due to human error factor [3]. Thus, SDV has
rapidly emerged among the hot researched topics recently and has
become a significant element of the industry, where experts predict that
it will have a significant impact on our society [4]. Composite of tech-
nologies are required to build an autonomous vehicle that include laser
sensors, radar sensors, GPS, camera devices, and computer vision algo-
rithms for the real time processing of data captured through these de-
vices. Camera devices, compared with other types of sensors such as

LIDAR, are inexpensive and able to capture additional information while
driving [5]. The goals of SDV are reducing the road accidents and
deaths, time consumption and driving time, and traffic reduction [6].
The reduction in road accident and deaths are performed by imple-
menting SDV on public road. SDVs are equipped with intelligent capa-
bilities that reduce road accidents by up to 90% due to intelligent
decision-making in dangerous conditions [7], which are usually
caused by human errors [8]. In addition, an efficient route to the
destination using built-in route optimization methods will reduce
carbon-dioxide emissions by 60% [8–10]. The reduction of time con-
sumption and driving time can be performed via intelligent systems
using efficient trajectory planning [6]. Compared to human driver,
autonomous vehicles can save up to 1 billion hours per day [7].
Furthermore, SDV will reduce the predicted future traffic resulted from
increasing world population in the urban cities which is a substantial

* Corresponding author.
** Corresponding author. School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK.

E-mail addresses: panos.liatsis@ku.ac.ae (P. Liatsis), abir.hussain@sharjah.ac.ae (A. Hussain).

Contents lists available at ScienceDirect

Results in Engineering

journal homepage: www.sciencedirect.com/journal/results-in-engineering

https://doi.org/10.1016/j.rineng.2023.100969
Received 23 September 2022; Received in revised form 14 February 2023; Accepted 16 February 2023

mailto:panos.liatsis@ku.ac.ae
mailto:abir.hussain@sharjah.ac.ae
www.sciencedirect.com/science/journal/25901230
https://www.sciencedirect.com/journal/results-in-engineering
https://doi.org/10.1016/j.rineng.2023.100969
https://doi.org/10.1016/j.rineng.2023.100969
https://doi.org/10.1016/j.rineng.2023.100969
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rineng.2023.100969&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Results in Engineering 17 (2023) 100969

2

future issue [11,12].
Several pilot studies related to SDV have been introduced in recent

years [4,13–15]. One aspect these pilot projects have in common is that
algorithms based on deep learning are used to perform certain driving
tasks, such as environmental awareness, lane planning, and even
steering wheel control. With the successful demonstration of autono-
mous prototypes based on deep learning, the focus of the automotive
industry is steadily shifting from vehicle prototype development to serial
production. However, the main challenge is to integrate neural networks
into serial manufacturing vehicles in a safe and reliable way.

In [35], the dataset was collected on a self-made track, and the
convolutional neural network model was trained on that dataset. A toy
car was crafted and used for testing the convolutional neural network
model. This method can work but it is far from testing a model in a
virtual environment in terms of difficulty and cost. In Ref. [16], three
cameras were used to record and build the dataset, both in real-world
and in the simulated environment. In Ref. [17], a deep learning-based
approach is presented for lane keeping in autonomous vehicles. The
framework helps the vehicle stay in its lane and avoid colliding with
other vehicles or obstacles. An end-to-end learning framework is used to
trains the deep neural network to predict the steering angle of the
vehicle based on the input from a front-facing camera. In Ref. [18], a
self-driving delivery car named Delicar is presented. The presented
system is designed to deliver products in the context of Bangladesh. The
car is equipped with deep learning algorithms that allow it to perform
lane keeping, object detection, and collision avoidance. The paper pre-
sented Diclar to improve delivery efficiency and increase safety. The
dataset is from Udacity simulator. In Ref. [19], an object detection
system is presented by utilizing an improved version of the YOLO v5
deep learning architecture. The system detects vehicles and estimates
their distances from the observer. This work was evaluated using
real-world data captured from a driving scenario. However, it didn’t
present any steering control system and the dataset used is limited. In
Ref. [16], a lane following based on deep-learning network is presented
for vehicles. The deep neural network architecture can detect lanes and
steering the vehicle accordingly. The network was trained and evaluated
on a driving scenes dataset. A method for steering control of a vehicle is
equipped with an automated lane centering system is presented in
Ref. [20]. The objective is to maintain the vehicle in the center of the
lane while driving on the road. The work described the implementation
of the automated lane centering system and its impact on the steering
control of the vehicle. To predict the steering angle, a CNN is used in
Ref. [21]. The goal is to improve the accuracy and stability of the ve-
hicle’s steering control system, which is a crucial aspect of autonomous
driving. A deep reinforcement learning approach is presented for

controlling the actions of an autonomous vehicle in Ref. [22]. While, a
method for controlling the steering of autonomous vehicles is presented
in Ref. [23]. The method combines deep learning, a type of machine
learning, with model predictive control, a control strategy for systems
modeled by differential equations. The goal is to produce a control
system that can make decisions based on both prediction and control.
The paper outlines the process and experiments used to evaluate the
method and demonstrates that it is effective for controlling the steering
of autonomous vehicles. Moreover, CNN is used to predict the steering
angle and acceleration of the vehicle based on input from various sen-
sors, and then use reinforcement learning to optimize the network’s
decision-making based on the vehicle’s performance. In Ref. [24], the
use of deep reinforcement learning (RL) is described for controlling
autonomous vehicles. The authors use a simulation environment,
CARLA, to train and evaluate the RL-based control system for steering.
The goal of the paper is to demonstrate the feasibility and effectiveness
of using RL for steering control in autonomous vehicles. Most of the
previous work are costly and the old cars are not transformed into
autonomous cars since the cost of producing a SDV is high. The first
Velodyne automotive lidar units (64 or 128 lasers) were available at an
approximate cost of about $75,000 per unit [25]. In contrast, the pro-
posed work aims to transform a conventional vehicle into an autono-
mous car with low cost by using single camera device. In addition, the
proposed algorithm is implemented in controlled and real environments
(on the road) to validate the proposed methodology. For this purpose, a
primary dataset is collected and analyzed for solving the problem of
autonomous driving. The contributions of the proposed work can be
summarized as follows.

1. Develop a low-cost solution to convert a conventional car into an
autonomous car using a single camera device.

2. Implementation of the proposed autonomous driving algorithm in
realistic and controlled environments to verify its effectiveness
which is performed by using Artificial Neural Network (ANN) for
image processing data analysis.

3. Collecting and analyzing primary data to standardize it for neural
network modeling. This is performed by the utilization of Snifter, an
open-source program, to capture and display actuator data. Also, the
use of an angle sensor to capture car’s steering angle since it was not
embedded from the manufacturer. In addition, we utilize NRF24L01
as a sender and receiver to wirelessly send steering angle
information.

4. Using of Controller Area Network (CAN-BUS) protocol to connect the
Electric Control Unit (ECU) and actuators of the car. The design and
implementation of a hardware circuit to interface with the CAN
network using a CAN-BUS shield.

The remainder of the manuscript is organized as follows. Section 2
provides the details of the proposed methodology with a description of
the dataset. Section 3 presents the simulation results with a discussion,
while Section 4 illustrates the conclusion and future works.

2. Materials and methods

The detail of the presented methodology and the materials used are
given in the following subsections.

2.1. Dataset

Along with the development of SDV, data collection on public
highways has been deemed a valuable activity to complete the training
of CNN model and deploy it on-road. In this work, we attempted to
gather and build primary dataset. This is mainly because of substantial
differences between published datasets and our dataset, such as road
marking, contain a numerous cracks and old bumps (which is not seen
mostly in well-developed structures). While the car is being driven

List of abbreviations

DAS Driving assistant system
SDV Self-Driving Vehicle
EPS Electronic Power Steering
ECU Electronic Control Unit
CAN-BUS Controller Area Network Bus
AI Artificial intelligent
GPS Global Positioning System
LIDAR Light Detection and Ranging
ANN Artificial Neural Network
CNN Convolutional Neural Network
SCS steering control system
PWM Pulse Width Modulation
GND Ground
GPIO General-purpose input/output
USB Universal Serial Bus

M.S. Mohammed et al.

Results in Engineering 17 (2023) 100969

3

Fig. 1. System diagram of the main component used in the utilized car.

Fig. 2. CAN-BUS shield from DFRobot.

Fig. 3. Sample of CAN-BUS packet shape.

M.S. Mohammed et al.

Results in Engineering 17 (2023) 100969

4

manually, the raw data from all sensors is acquired and stored. The data
obtained is used for training and testing purposes, such as vehicle/
pedestrian identification, and motion estimates [26].

To obtain the training data, the car is driven on the campus road of
University of Baghdad in a variety of lighting and weather conditions.
The campus road has two lanes, while in some sections it contains three
road lanes. It also has some cracked on it which is obtained within the
collected data. In addition, the data was acquired in different weather
conditions as the sun was low in the sky in some cases, causing glare to
reflect off the road surface and scatter the camera.

A Toyota Corolla 2009 LE class with one camera was used to acquire
the data. It is worth noting that a specific make or model of vehicle is not
required for our proposed system to work. This car, like other cars, has
ECU and several actuators are distributed at various car locations and
the Engine (please refer to Fig. 1). To make a connection between the
ECU and the actuators, some communication protocols are used to
manage the information sharing between the devices and this protocol
called Controller Area Network (CAN-BUS) protocol. CAN-BUS protocol,
developed via Bosch company, is employed to replace the direct wiring
connection between ECU and actuators. Moreover, a hardware circuit is
designed to use the CAN network where CAN-BUS shield is required.
This interface will provide reliable access to the network and with the
correct wiring and configuration, we will be able to read and write
messages to the network. The CAN-BUS Arduino shield v2.0 is employed
for the Arduino Microcontroller. It is compatible with the Arduino
standard interface and can be stacked on an Arduino UNO, Arduino
Leonardo or Arduino MEGA board. The shield integrates the MCP2515

CAN-BUS chip on the shield and has a CAN-BUS transceiver function.
With an on-board DB9 and CAN-BUS connector it is possible to select a
suitable port according to the host device. There is also an integrated
MicroSD socket for data storage which is a perfect solution for data
logging applications (The CAB_BUS shield is shown in Fig. 2).

The CAN-BUS network has two lines, CAN-LOW (CANL) and CAN
HIGH (CANH). Sample of CAN-BUS packet shape is shown in Fig. 3.

Snifter program, an open source provided by Adam Verga, is used to
record data, and display them on the computer. The captured actuators
are Throttle position, Signal left and right, and Vehicle speed. For
steering angle, the Corolla LE class is used for economic purpose. This
class comes with less sensors and navigation system with minimum
features; therefore, the steering angel sensor are not embedded from
manufacturer. An angle sensor is used to capture the steering angle. The
interface must provide the controlling environment on the part that
comes in the car, for this reason, controlling the steering system is one
goal of this interface. MPU 6050 is used to capture the position of the
shaft. Since it is a gyroscope, the data comes from it provides the posi-
tion in three-dimensional space, using Cartesian axis X, Y and Z. Also, we
can present the data with Aircraft principal axes Yaw, Pitch, and Roll.

The MPU 6050 uses I2C communication protocol to communicate
with the controllers that support this protocol, in this case, the Arduino
uno has only one interface for this protocol. In addition to I2C, the MPU
6050 has a First in First Out “FIFO” buffer with 1024-bytes, an interrupt
is required to read the data from this FIFO buffer, so that we used the INT
pin with I2C configuration to read the data from buffer as shown in
Fig. 4.

The wiring from steering angle sensor is not recommended because
the rotation of the steering will affect and lopped the wire. Thus, an
NRF24L01 as sender and receiver is used to send the information
without wiring as illustrated in Fig. 5.

All drivers are encouraged to maintain full attentiveness and drive
normally when collecting the data in which about 400,000 frames were
captured. To understand how the recording system works, refer to Fig. 6.

To summarize the workflow of the system presented, a single camera
was installed on top of the vehicle, with a gyro-scope sensor attached to
the steering wheel that reads the steering wheel angle (MPU-650). The
car was driven one lap at a time to collect and record the data. Frames
were captured using the camera. Using the MPU-6050 sensor and an
Arduino NANO, the steering angle were recorded. The vehicle speed and
throttle position were collected using the CAN-BUS network with a CAN-
BUS shield and an Arduino UNO. To achieve the best results from these
sensors, a program was designed having the following requirements.

Fig. 4. Wiring diagram to Arduino UNO with MPU 6050.

Fig. 5. Wiring diagram for (a) Arduino NANO with MPU 6050, NRF24L01 and 9v power source (sender), and (b) for NRF24L01 and Arduino UNO (receiver).

M.S. Mohammed et al.

Results in Engineering 17 (2023) 100969

5

Fig. 6. Dataset recording system.

Fig. 7. (a) Different types of road traffic and pedestrians, (b) Different types of road cracks and bumps, and (c) Different types of road signs and markings.

M.S. Mohammed et al.

Results in Engineering 17 (2023) 100969

6

● Multiprocessing is used which allows each sensor to work separately
without any throttling issues. This resulted in a valid and accurate
data set.

● The recording process was made much easier due to the program’s
pause, resume, quit, and save features.

● Data was stored in a CSV file.

Fig. 7 shows some samples of the recorded frames in the dataset.
A sample from the recorded CSV file is shown in Fig. 8.
The dataset, including the images frames and CSV file, can be ob-

tained from: https://drive.google.com/drive/folders/1ckcWE
JOOKJuyKMzdI0VEvbGdZ2Nft7uk?usp=share_link.

2.2. Network architecture

The architecture of CNN is developed from Ref. [27]. To reduce the
costs and time involved in the training, the design took account of
minimizing the trained parameters. Regulators and Batch-normalization
are performed to significantly speed up the learning [28]. Detailed in-
formation regarding the CNN architecture is provided in Table 1.

A normalization layer, five convolutional layers, and three fully
connected layers construct the network’s nine layers. The network re-
ceives the input image, after the separation process into YUV planes.
Image normalization is performed by the network’s first layer. The
normalizer is pre-programmed and cannot be changed throughout the
learning process. The normalization technique can be changed to fit the
network architecture and is expedited using GPU processing. Convolu-
tional layers were determined empirically after a series of tests with
varied layer configurations [27] to perform feature extraction.

Stride convolutions with a 22 stride and a 55 kernel were used in the
first three convolutional layers, while non-stride convolutions with a 33-
kernel size were employed in the last two convolutional layers. Three
completely connected layers follow the five convolutional layers, lead-
ing to an output control value, which is the projected steering angle
value. Exponential Linear Unit (ELU) is employed as an activation
function for all layers.

2.3. Controlling the steering system

One of the main objectives of this proposed work is to control the
steering system. Steering control requires two major components.

● The motor that can rotate the steering.
● The feedback that can be used to correct the steering angle.

Since the LE class does not have an angle sensor implemented within
the car system. After adding the MPU 6050 as angle sensor to the car, we
were able to develop a steering control system (SCS) using the afore-
mentioned components. We developed a cost-effective method to con-
trol the EPS motor. This is done by utilizing a sensor as part of EPS
system and overwriting them. This is performed without any physical
connection between the sensors and the controlling system. In this
manner, we achieved some advantage that makes SCS more reliable and
requiring no modification on the EPS system from hardware to software.

The proposed method uses a sensor called Torque sensor, this sensor
measures the torque that applied from the driver on the steering wheel

Fig. 8. CSV file of the recorded dataset on-road.

Table 1
The details of the CNN Architecture.

Layer (type) Output shape Number of Parameters

conv2d (Conv2D) (None, 31, 98, 24) 1824
conv2d_1 (Conv2D) (None, 14, 47, 36) 21,636
conv2d_2 (Conv2D) (None, 5, 22, 48) 43,248
conv2d_3 (Conv2D) (None, 3, 20, 64) 27,712
conv2d_4 (Conv2D) (None, 1, 18, 64) 36,928
flatten (Flatten) (None, 1152) 0
dense (Dense) (None, 100) 115,300
dense_1 (Dense) (None, 50) 5050
dense_2 (Dense) (None, 10) 510
dense_3 (Dense) (None, 1) 11
Total params: 252,219

Trainable params: 252,219
Non-trainable params: 0

M.S. Mohammed et al.

https://drive.google.com/drive/folders/1ckcWEJOOKJuyKMzdI0VEvbGdZ2Nft7uk?usp=share_link
https://drive.google.com/drive/folders/1ckcWEJOOKJuyKMzdI0VEvbGdZ2Nft7uk?usp=share_link

Results in Engineering 17 (2023) 100969

7

and send it the EPS ECU to possess it and make an output to the DC
motor to rotate and help the driver.

The torque sensor is built into the steering column. A multipole
magnet is mounted to the input shaft, and a yoke is mounted to the
output shaft. The input and output shafts are joined by the torsion bar. A
magnetic convergence ring assembly is placed outside of the yoke. The
magnetic convergence ring assembly contains two Hall ICs, which face
opposite to each other. The system detects the steering direction in
accordance with the direction of the magnetic flux that passes between
the Hall ICs. Furthermore, the system detects the steering torque in
accordance with the amount of change in the magnetic flux density
based on the relative displacement of the multipole magnet and the
yoke. The EPS ECU monitors the torque sensor signals provided as
outputs from the two Hall ICs to detect malfunctions.

When a driver turns the steering wheel to the right or left, the twist
that is created in the torsion bar creates a relative displacement between
the multipole magnet and yoke. At this time, the magnetic flux from the
N to S pole of the multipole magnet passes between the Hall ICs. The

system detects the steered direction of the steering wheel in accordance
with the direction of the magnetic flux that passes between the Hall ICs.
Hall IC1 and Hall IC2 are installed facing opposite to each other. As a
result, the output characteristics of the two Hall ICs are constantly
opposite each other. The system monitors the different outputs of these
Hall ICs in order to detect malfunctions. The magnetic flux density be-
comes higher as it gets closer to the center of the respective pole. A Hall
IC converts these magnetic flux fluctuations into voltage fluctuations, in
order to transmit the turning torque of the steering wheel to the EPS
ECU. Upon receiving the signals from the torque sensor, the EPS ECU
calculates the required assist torque and outputs it to the motor (Refer to
Fig. 9).

As it can be noted from Fig. 9, the Torque sensor is a hall sensor that
is affected by magnetic fields. Depending on the intensity of the magnet
field that applied near the sensor and depending on the polarity of the

Fig. 9. (a) Torque sensor of EPS system, (b) Torque sensor of EPS another view, (c) Torque sensor (magnetic fields when route to left side), and (d) Torque sensor
reading reference plot.

Fig. 10. The magnetic coil used to control the steering.

Fig. 11. H-Bridge wiring diagram to controlling an DC motor.

M.S. Mohammed et al.

Results in Engineering 17 (2023) 100969

8

magnet or the direction of the magnet field, when a magnet is near this
sensor, the parameter will affect the torque sensor and make it simulate
the driver torque even if the driver does not apply any torque to the
steering wheel. This will rotate the shaft to reduce the torque that is
measured from the torque sensor. Thus, to control the EPS motor, torque
sensor needs to be controlled by magnet, and to perform this, the
magnets intensity and polarity need to be controlled, meaning that an
electromagnet is required.

Since we need medium power magnet with low power consumption
and small size to fit underneath the steering system, we must make this
coil ourselves. Experimentally, we found that a 4.9-gauge copper wire
that rotates on the cylindrical core 900 times with a core dimension of
40 mm length and 8 m diameter, is efficient for the torque sensor as

shown in Fig. 10. In the event that this coil works under 0.9 A with
maximum voltage 32 V, the voltage required to make normal effect on
the steering shaft is determined experimentally and it is equal to 13 V.

In electromagnet, to control the intensity of the magnetic field, we
need to increase/decrease the voltage that supplied to the coil, and to
control the polarity, we need to change the direction of the current that
input to the coil. So, the controller itself cannot supply the coil with this
current and voltage, the maximum current out from Arduino UNO board
is 500 mA, and the maximum voltage is 5 V, for this reason, we need a
circuit that work as buffer or relay between the controller and the coil.
The H-bridge satisfies all the requirements we need, it is designed
specially to control the DC motor, and it is capable to change the current
and even change the voltage if its supplied pulse with modulation PWM
signal. The H-bridge requires two signals to control the current direction
state as shown in Fig. 11.

The steering controller in our work is divided into two parts: the first
part responsible for thinking, and the second part response to the first
part output. The first part can be represented by raspberry PI that sup-
ports python. While the second part was represented by Arduino UNO
board. It is noteworthy that in our system and for experimental pur-
poses, we replaced the raspberry PI with a laptop, in general, any

Fig. 12. The flow chart for the SCSP.

Fig. 13. (a) Difference between two consecutive frames, (b) Original image with difference between consecutive frames shown in (a).

Fig. 14. Applying a median filter and thresholds.

M.S. Mohammed et al.

Results in Engineering 17 (2023) 100969

9

platform run python program language can be considered.
To perform the communication between the two parts, Firmata is

used which is a generic protocol for communicating with micro-
controllers from software on a host computer. It is intended to work with
any host computer software package [29]. Firmata can be uploaded to
the UNO. On the other side, the host must have the Firmata package to
communicate with UNO, since we use python, pyFirmata is the package
utilized to communicate throw the Firmata protocol with the UNO.
Firmata protocol can reduce the programing time and enhance the speed

of the communication, even that, it eliminates the error that occurred in
the controller due the programing issues, just uploading the standard
code of Firmata in the controller without editing any line, and with
simple setup in python side, all the ports of the controller can be
uploaded. This method will give the following advantages.

● Our laptop does not have GPIO port like raspberry PI.
● All the controller ports are in the python environment, and we can

call them as needed.

Fig. 15. (a) A global threshold value of 10, (b) A global threshold value of 20, and (c) A global threshold value of 50.

Fig. 16. Samples of frames after subtracting and applying the threshold.

M.S. Mohammed et al.

Results in Engineering 17 (2023) 100969

10

● The transmutation rate is very fast.

Once all parts of the SCS are ready to operate, starting from the angle
sensor connecting to the laptop throw USB or wireless connection, the
broadcast data of the current angle of the steering shaft will be used for
the python program, the predicted angle from the CNN network will be

passed to the steering control system procedure (SCSP) which compares
among the current value and predict value of the angle sensor.
Depending on this operation, one function of three will be called, those
function responsible for the output state (turn left, turn right, no output),
if the value is positive, turn right will be called, if its negative, turn left is
called, if the value is 0 then the no-output will be called. This function
will call the Firmata and will change the ports connected to the H-bridge
to change the current directions as illustrated in Fig. 12.

3. Results

This section provides the results of the proposed SDV system. The
first approach was to try to subtract images from each other and to train
the model on the difference between the two images only. In Fig. 13 (a)
the red shadow represents the difference between the two images while
Fig. 13 (b) shows the difference only.

We also used a threshold to remove the small changes on the images.
For example, a tree leaf that moves slightly should be ignored. Fig. 14
shows how the threshold affects the images by applying three types of
thresholds. It is obvious the effect of the using Global threshold, Adap-
tive Mean threshold, and Adaptive Gaussian threshold compared with
the original image.

Fig. 15 shows the results after applying the subtractions, with a
global threshold of three different values, an Adaptive Mean Threshold,
and an Adaptive Gaussian Threshold. Visually the best threshold is the
Global threshold with a value of 20. In Fig. 16, the results of the new

Fig. 17. The comparison between the old Method and the New Method based on the loss.

Fig. 18. The Loss results for the models (a) without changing lanes signal, and (b) with changing lanes signal.

Table 2
Three Models Comparison for three different datasets.

Comparison Metrics M-10 K M-170 K M-400 K

Total Images 10,259 171,441 391,888
Recording Time 12 min 1 h & 45 min 4 h
Epochs 50 50 50
Loss 2.282 13.86 18.98
CSV File Size 0.95 MB 15.8 MB 33.8 MB
Frames Total Size 1.1 GB 16.7 GB 29.7 GB

Table 3
Comparison between Loss, Epochs and Training Time of the models.

Comparison Metrics M-100E a M-200E

Number of Epochs 100 200
Loss 15.4 10.3
Approximate Training Time 4 Hours 8 Hours

a M: Model, E: Epochs.

M.S. Mohammed et al.

Results in Engineering 17 (2023) 100969

11

frames after subtracting and applying the threshold are illustrated. We
trained the CNN model on this new method and compared it to the old
normal method. In Fig. 17, it can be shown that the old method got
better results.

In Fig. 18, we have benchmark two models trained on the same
dataset, however, the difference is one of them was trained on a dataset
in which the images and data were removed when the car was changing
lanes. We analyzed Fig. 18 and indicated that the CNN model got better
results when the data for the changing lanes were removed.

Table 2 compares three models trained on three different datasets,
namely, M − 10 K, M − 170 K, and M-400 K. The M − 10 K is trained
with 10,000 frames, M − 170 K is trained with 170,000 frames, and M −
400 K is trained with ~400,000 frames.

After 100 Epochs the loss of the model reached 15.4 and after 200
Epochs the loss reached 10.3 as indicated in Table 3.

By analyzing Table 3, it can be shown that double the time is
required to achieve a gain of 33.11%. Fig. 18 shows some samples of the
trained model results on-road for different cases.

Using feedback from the steering shaft to represent the position and
based on target position, the location of the steering shaft can be
updated through rotating it in the desired direction as shown in Fig. 19.
The results of AI model vary based on the data set that was used for the
training. We trained the model on a track with circular paths, and the
environment of the data set has a significant influence on the outcome.
Our analysis of previous images showed that the road in the data set has
two ways, and the presented model has learned to always take the left
and slower path. This is reflected in the negative range of the steering
angle, which indicates a leftward bias.

It is important to note that the data set we used to train the model is
limited, as we only captured 8 h of data recording the driver’s response
on the same track. As a result, the model is expected to perform well on
this track in 20% of driving situations, which is considered good per-
formance. On other roads, the performance of the model is likely to be
poor, with only 5% of driving situations handled effectively. Further-
more, the steering controller was built to handle the steering angle is
basic and relies on an electromagnetic coil to make calculated noise on
the hall sensor in the ESP system. The magnetic fields are used to control
the movement of the steering column by inverting the polarity of the
magnetic coil. This approach eliminates the need for wiring with the
car’s system, but its performance is weak and takes time to take effect.
To enhance the overall performance of our system and increase the
speed of the car while maintaining its safety, it would be beneficial to
use an open car that allows direct access to the ECU. This would enable
control of the EPS from the ECU or an external system built specifically
for this purpose.

As a summary: the proposed method developed a model that serves
as the brain of the self-driving car’s assistant system is novel for two
reasons. Firstly, it utilizes a convolutional neural network (CNN) to
predict the steering angle. By training the CNN model with frames from
a camera as inputs, it can accurately determine the steering angle and
make driving easier and safer. Secondly, the proposed system is quite
affordable, as it only requires the installation of a high-cost system. This

is important, as 85% of manufactured vehicles do not include these
supplementary features. In addition, the proposed method also involves
the use of a simulated environment to test and train the model before
deploying it in the real world. This is important, as the simulator can
generate a variety of scenarios and conditions that the self-driving car
may encounter in the real world. Furthermore, the Toyota Corolla 2009
vehicle with 4 h of raw vehicle sensors data was used to build the
dataset, which is then used to train the model. This provides a more
accurate and reliable model. Overall, the proposed method is novel in
that it utilizes a combination of efficient and affordable technology to
make driving easier and safer. The proposed system is a prototype that
requires more testing for safety, and this represents an important step
forward in the development of self-driving cars.

4. Conclusion

The development of a driving assistant system is a complex process
that requires a combination of hardware, software, and artificial intel-
ligence (AI) algorithms. However, converting the old car into self-
driving cars is a challenge. This work presents a simple, and effective
method for SDV, an old Toyota Corolla 2009 equipped with digital
camera for capturing live video stream. Our proposed system can be
used on any vehicle with the intension of modernizing old driving sys-
tem cars with new technology to achieve reliable driverless system. We
used object detection for the detection of objects using Deep Learning
algorithms. In this respect, the outputs from the DL model are used to
control the steering control system. A database for various road condi-
tions was collected and will be publicly available for the SDV re-
searchers. The results of the experiments showed that the CNN model
can be successfully used to accurately predict the steering angle of a
vehicle. The model achieved an average accuracy of good results on the
on-road experiments. This demonstrates that the proposed model can be
used to successfully develop a driving assistant system. In the future, we
plan to 1) extend the model to other tasks such as object detection and
lane detection, 2) collect more data from different vehicles to increase
the accuracy of the model, and 3) use other AI algorithms such as
recurrent neural networks (RNNs) and reinforcement learning to further
improve the performance of the driving assistant system.

Funding

This research received no external funding.

CRediT author statement

Mohammad S. Mohammed: Methodology, Software, Writing-
Original Draft Ali M. Abduljabar: Writing- Original Draft, Formal
Analysis Mustafa M. Faisal: Software, Resources, Vizualization
Basheera M. Mahmmod: Software, Data Curation Sadiq H. Abdul-
hussain: Conceptualization, Methodology, Supervision, Writing- Orig-
inal Draft, Writing- Review & Editing Wasiq Khan: Conceptualization,
Software Panos Liatsis: Methodology, Writing- Original Draft, Writing-

Fig. 19. Samples of the on-road testing.

M.S. Mohammed et al.

Results in Engineering 17 (2023) 100969

12

Review & Editing Abir Hussain: Methodology, Writing- Original Draft.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

The authors would also like to thank the University of Baghdad,
Liverpool John Moores University, Khalifa University of Science and
Technology, and University of Sharjah for their help and support.

References

[1] S. Karnouskos, Self-driving car acceptance and the role of ethics, IEEE Trans. Eng.
Manag. 67 (2) (2018) 252–265.

[2] V. Anupama, A.G. Kiran, SIDA-GAN: a lightweight generative adversarial network
for single image depth approximation, Res. Eng. 16 (2022) 100636.

[3] C. Urmson, And others, “Self-driving cars and the urban challenge, IEEE Intell. Syst.
23 (2) (2008) 66–68.

[4] P. Bansal, K.M. Kockelman, Forecasting Americans’ long-term adoption of
connected and autonomous vehicle technologies, Transport. Res. Part A Policy
Pract. 95 (2017) 49–63.

[5] X. Zhou, Y. Fang, Y. Mu, Learning single-shot vehicle orientation estimation from
large-scale street panoramas, Neurocomputing 367 (2019) 319–327.

[6] Z. Chen, Analysis and self-driving algorithm decision mode design, in: 2022 IEEE
2nd International Conference on Power, Electronics and Computer Applications
(ICPECA), 2022, pp. 93–97.

[7] J.M. Anderson, K. Nidhi, K.D. Stanley, P. Sorensen, C. Samaras, O.A. Oluwatola,
Autonomous Vehicle Technology: A Guide for Policymakers, Rand Corporation,
2014.

[8] S. Singh, Critical Reasons for Crashes Investigated in the National Motor Vehicle
Crash Causation Survey, 2015.

[9] S. Molina, S. Ruiz, J. Gomez-Soriano, M. Olcina-Girona, Impact of hydrogen
substitution for stable lean operation on spark ignition engines fueled by
compressed natural gas, Res. Eng. 17 (2023) 100799.

[10] I. Ourya, S. Abderafi, Clean technology selection of hydrogen production on an
industrial scale in Morocco, Res. Eng. 17 (2023) 100815.

[11] P. Undesa, World Urbanization Prospects: the 2018 Revision, vol. 26, 2018,
p. 2018. Retrieved August.

[12] M.K. Rohil, Y. Ashok, Visualization of urban development 3D layout plans with
augmented reality, Res. Eng. (2022) 100447.

[13] R. Ben Abdessalem, S. Nejati, L.C. Briand, T. Stifter, Testing vision-based control
systems using learnable evolutionary algorithms, in: 2018 IEEE/ACM 40th
International Conference on Software Engineering, ICSE, 2018, pp. 1016–1026.

[14] A. Arcuri, L. Briand, A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering, Softw. Test. Verif. Reliab. 24 (3)
(2014) 219–250.

[15] J. Fritsch, T. Kuehnl, A. Geiger, A new performance measure and evaluation
benchmark for road detection algorithms, in: 16th International IEEE Conference
on Intelligent Transportation Systems, ITSC 2013, 2013, pp. 1693–1700.

[16] A. Khanum, C.-Y. Lee, C.-S. Yang, Deep-learning-based network for lane following
in autonomous vehicles, Electronics 11 (19) (Sep. 2022) 3084.

[17] Z. Chen, X. Huang, End-to-end learning for lane keeping of self-driving cars, in:
2017 IEEE Intelligent Vehicles Symposium, vol. IV, 2017, pp. 1856–1860.

[18] M.K.A. Chy, A.K.M. Masum, K.A.M. Sayeed, M.Z. Uddin, Delicar, A smart deep
learning based self driving product delivery car in perspective of Bangladesh,
Sensors 22 (1) (Dec. 2021) 126.

[19] T.-H. Wu, T.-W. Wang, Y.-Q. Liu, Real-time vehicle and distance detection based on
improved yolo v5 network, in: 2021 3rd World Symposium on Artificial
Intelligence, WSAI, 2021, pp. 24–28.

[20] K. Cumali, E. Armagan, Steering control of a vehicle equipped with automated lane
centering system, in: 2019 11th International Conference on Electrical and
Electronics Engineering, ELECO, 2019, pp. 820–824.

[21] A. M P, G. R, M. Panda, Steering angle prediction for autonomous driving using
federated learning: the impact of vehicle-to-everything communication, in: 2021
12th International Conference on Computing Communication and Networking
Technologies, ICCCNT), 2021, pp. 1–7.

[22] A. Folkers, M. Rick, C. Buskens, Controlling an autonomous vehicle with deep
reinforcement learning, in: 2019 IEEE Intelligent Vehicles Symposium, vol. IV,
2019, pp. 2025–2031.

[23] T. Baumeister, S.L. Brunton, J. Nathan Kutz, Deep learning and model predictive
control for self-tuning mode-locked lasers, J. Opt. Soc. Am. B 35 (3) (Mar. 2018)
617.

[24] Ó. Pérez-Gil, et al., Deep reinforcement learning based control for Autonomous
Vehicles in CARLA, Multimed. Tool. Appl. 81 (3) (Jan. 2022) 3553–3576.

[25] C. Rablau, LIDAR–A new (self-driving) vehicle for introducing optics to broader
engineering and non-engineering audiences, in: Education and Training in Optics
and Photonics, 2019, 11143_138.

[26] H. Yin, C. Berger, When to use what data set for your self-driving car algorithm: an
overview of publicly available driving datasets, in: 2017 IEEE 20th International
Conference on Intelligent Transportation Systems, ITSC, 2017, pp. 1–8.

[27] M. Bojarski, et al., End to End Learning for Self-Driving Cars, 2016 arXiv Prepr.
arXiv1604.07316.

[28] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by
reducing internal covariate shift, in: International Conference on Machine
Learning, 2015, pp. 448–456.

[29] C.C. Arduino, Arduino. Cc, 2005 l{\’\i}nea]. Available, https://www.arduino.cc/
en/Main/ArduinoBoardNano. (Accessed 25 November 2016) [Último acceso.

M.S. Mohammed et al.

http://refhub.elsevier.com/S2590-1230(23)00096-8/sref1
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref1
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref2
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref2
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref3
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref3
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref4
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref4
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref4
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref5
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref5
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref6
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref6
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref6
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref7
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref7
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref7
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref8
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref8
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref9
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref9
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref9
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref10
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref10
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref11
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref11
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref12
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref12
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref13
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref13
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref13
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref14
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref14
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref14
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref15
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref15
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref15
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref16
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref16
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref17
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref17
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref18
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref18
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref18
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref19
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref19
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref19
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref20
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref20
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref20
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref21
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref21
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref21
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref21
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref22
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref22
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref22
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref23
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref23
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref23
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref24
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref24
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref25
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref25
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref25
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref26
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref26
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref26
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref27
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref27
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref28
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref28
http://refhub.elsevier.com/S2590-1230(23)00096-8/sref28
https://www.arduino.cc/en/Main/ArduinoBoardNano
https://www.arduino.cc/en/Main/ArduinoBoardNano

	Low-cost autonomous car level 2: Design and implementation for conventional vehicles
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.2 Network architecture
	2.3 Controlling the steering system

	3 Results
	4 Conclusion
	Funding
	CRediT author statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

