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A B S T R A C T   

Modern cars are equipped with autonomous systems to assist the driver and improve driving experience. Driving 
assist system (DAS) is one of the most significant components of a self-driving vehicle (SDV), used to overcome 
non-autonomous driving challenges. However, most conventional cars are not equipped with DAS, and high-cost 
systems are required to equip these vehicles with DAS. Moreover, the design of DAS is very complex outside of 
the industry while it requires going through the Electronic Control Unit (ECU), which has a high level of security. 
Therefore, a basic system needs be installed in conventional cars which makes driving more efficient in terms of 
driver assistance. In this paper, an intelligent DAS is presented for real-time prediction of steering angle using 
deep learning (DL) and raw dataset collected from a real environment. Furthermore, an object detection model is 
deployed to assist and warn the driver of various types of objects along with corresponding distance measure-
ment based on DL. Outputs from DL models are fed into the steering control system, which has Electronic Power 
Steering (EPS). The steering angle is measured in real time using an angle sensor and is posted back to the 
steering control system to make automated adjustments accordingly. Real-time tests are conducted on a 2009 
Toyota Corolla equipped with a digital camera to capture live video stream, Controller Area Network (CAN-BUS) 
messages, and a steering angle sensor. The performance evaluation of the proposed system indicates intelligent 
steering control and driver assistance when evaluated in a real-time environment.   

1. Introduction 

Self-driving vehicle (SDV) is considered game changer in the intel-
ligent transportation and smart city context due to the significant role of 
artificial intelligent (AI) during the recent years [1,2]. There are sig-
nificant positive impacts of SDV such as reducing traffic jam, saving fuel, 
and fewer accidents due to human error factor [3]. Thus, SDV has 
rapidly emerged among the hot researched topics recently and has 
become a significant element of the industry, where experts predict that 
it will have a significant impact on our society [4]. Composite of tech-
nologies are required to build an autonomous vehicle that include laser 
sensors, radar sensors, GPS, camera devices, and computer vision algo-
rithms for the real time processing of data captured through these de-
vices. Camera devices, compared with other types of sensors such as 

LIDAR, are inexpensive and able to capture additional information while 
driving [5]. The goals of SDV are reducing the road accidents and 
deaths, time consumption and driving time, and traffic reduction [6]. 
The reduction in road accident and deaths are performed by imple-
menting SDV on public road. SDVs are equipped with intelligent capa-
bilities that reduce road accidents by up to 90% due to intelligent 
decision-making in dangerous conditions [7], which are usually 
caused by human errors [8]. In addition, an efficient route to the 
destination using built-in route optimization methods will reduce 
carbon-dioxide emissions by 60% [8–10]. The reduction of time con-
sumption and driving time can be performed via intelligent systems 
using efficient trajectory planning [6]. Compared to human driver, 
autonomous vehicles can save up to 1 billion hours per day [7]. 
Furthermore, SDV will reduce the predicted future traffic resulted from 
increasing world population in the urban cities which is a substantial 
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future issue [11,12]. 
Several pilot studies related to SDV have been introduced in recent 

years [4,13–15]. One aspect these pilot projects have in common is that 
algorithms based on deep learning are used to perform certain driving 
tasks, such as environmental awareness, lane planning, and even 
steering wheel control. With the successful demonstration of autono-
mous prototypes based on deep learning, the focus of the automotive 
industry is steadily shifting from vehicle prototype development to serial 
production. However, the main challenge is to integrate neural networks 
into serial manufacturing vehicles in a safe and reliable way. 

In [35], the dataset was collected on a self-made track, and the 
convolutional neural network model was trained on that dataset. A toy 
car was crafted and used for testing the convolutional neural network 
model. This method can work but it is far from testing a model in a 
virtual environment in terms of difficulty and cost. In Ref. [16], three 
cameras were used to record and build the dataset, both in real-world 
and in the simulated environment. In Ref. [17], a deep learning-based 
approach is presented for lane keeping in autonomous vehicles. The 
framework helps the vehicle stay in its lane and avoid colliding with 
other vehicles or obstacles. An end-to-end learning framework is used to 
trains the deep neural network to predict the steering angle of the 
vehicle based on the input from a front-facing camera. In Ref. [18], a 
self-driving delivery car named Delicar is presented. The presented 
system is designed to deliver products in the context of Bangladesh. The 
car is equipped with deep learning algorithms that allow it to perform 
lane keeping, object detection, and collision avoidance. The paper pre-
sented Diclar to improve delivery efficiency and increase safety. The 
dataset is from Udacity simulator. In Ref. [19], an object detection 
system is presented by utilizing an improved version of the YOLO v5 
deep learning architecture. The system detects vehicles and estimates 
their distances from the observer. This work was evaluated using 
real-world data captured from a driving scenario. However, it didn’t 
present any steering control system and the dataset used is limited. In 
Ref. [16], a lane following based on deep-learning network is presented 
for vehicles. The deep neural network architecture can detect lanes and 
steering the vehicle accordingly. The network was trained and evaluated 
on a driving scenes dataset. A method for steering control of a vehicle is 
equipped with an automated lane centering system is presented in 
Ref. [20]. The objective is to maintain the vehicle in the center of the 
lane while driving on the road. The work described the implementation 
of the automated lane centering system and its impact on the steering 
control of the vehicle. To predict the steering angle, a CNN is used in 
Ref. [21]. The goal is to improve the accuracy and stability of the ve-
hicle’s steering control system, which is a crucial aspect of autonomous 
driving. A deep reinforcement learning approach is presented for 

controlling the actions of an autonomous vehicle in Ref. [22]. While, a 
method for controlling the steering of autonomous vehicles is presented 
in Ref. [23]. The method combines deep learning, a type of machine 
learning, with model predictive control, a control strategy for systems 
modeled by differential equations. The goal is to produce a control 
system that can make decisions based on both prediction and control. 
The paper outlines the process and experiments used to evaluate the 
method and demonstrates that it is effective for controlling the steering 
of autonomous vehicles. Moreover, CNN is used to predict the steering 
angle and acceleration of the vehicle based on input from various sen-
sors, and then use reinforcement learning to optimize the network’s 
decision-making based on the vehicle’s performance. In Ref. [24], the 
use of deep reinforcement learning (RL) is described for controlling 
autonomous vehicles. The authors use a simulation environment, 
CARLA, to train and evaluate the RL-based control system for steering. 
The goal of the paper is to demonstrate the feasibility and effectiveness 
of using RL for steering control in autonomous vehicles. Most of the 
previous work are costly and the old cars are not transformed into 
autonomous cars since the cost of producing a SDV is high. The first 
Velodyne automotive lidar units (64 or 128 lasers) were available at an 
approximate cost of about $75,000 per unit [25]. In contrast, the pro-
posed work aims to transform a conventional vehicle into an autono-
mous car with low cost by using single camera device. In addition, the 
proposed algorithm is implemented in controlled and real environments 
(on the road) to validate the proposed methodology. For this purpose, a 
primary dataset is collected and analyzed for solving the problem of 
autonomous driving. The contributions of the proposed work can be 
summarized as follows.  

1. Develop a low-cost solution to convert a conventional car into an 
autonomous car using a single camera device.  

2. Implementation of the proposed autonomous driving algorithm in 
realistic and controlled environments to verify its effectiveness 
which is performed by using Artificial Neural Network (ANN) for 
image processing data analysis.  

3. Collecting and analyzing primary data to standardize it for neural 
network modeling. This is performed by the utilization of Snifter, an 
open-source program, to capture and display actuator data. Also, the 
use of an angle sensor to capture car’s steering angle since it was not 
embedded from the manufacturer. In addition, we utilize NRF24L01 
as a sender and receiver to wirelessly send steering angle 
information.  

4. Using of Controller Area Network (CAN-BUS) protocol to connect the 
Electric Control Unit (ECU) and actuators of the car. The design and 
implementation of a hardware circuit to interface with the CAN 
network using a CAN-BUS shield. 

The remainder of the manuscript is organized as follows. Section 2 
provides the details of the proposed methodology with a description of 
the dataset. Section 3 presents the simulation results with a discussion, 
while Section 4 illustrates the conclusion and future works. 

2. Materials and methods 

The detail of the presented methodology and the materials used are 
given in the following subsections. 

2.1. Dataset 

Along with the development of SDV, data collection on public 
highways has been deemed a valuable activity to complete the training 
of CNN model and deploy it on-road. In this work, we attempted to 
gather and build primary dataset. This is mainly because of substantial 
differences between published datasets and our dataset, such as road 
marking, contain a numerous cracks and old bumps (which is not seen 
mostly in well-developed structures). While the car is being driven 

List of abbreviations 

DAS Driving assistant system 
SDV Self-Driving Vehicle 
EPS Electronic Power Steering 
ECU Electronic Control Unit 
CAN-BUS Controller Area Network Bus 
AI Artificial intelligent 
GPS Global Positioning System 
LIDAR Light Detection and Ranging 
ANN Artificial Neural Network 
CNN Convolutional Neural Network 
SCS steering control system 
PWM Pulse Width Modulation 
GND Ground 
GPIO General-purpose input/output 
USB Universal Serial Bus  
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Fig. 1. System diagram of the main component used in the utilized car.  

Fig. 2. CAN-BUS shield from DFRobot.  

Fig. 3. Sample of CAN-BUS packet shape.  

M.S. Mohammed et al.                                                                                                                                                                                                                        



Results in Engineering 17 (2023) 100969

4

manually, the raw data from all sensors is acquired and stored. The data 
obtained is used for training and testing purposes, such as vehicle/ 
pedestrian identification, and motion estimates [26]. 

To obtain the training data, the car is driven on the campus road of 
University of Baghdad in a variety of lighting and weather conditions. 
The campus road has two lanes, while in some sections it contains three 
road lanes. It also has some cracked on it which is obtained within the 
collected data. In addition, the data was acquired in different weather 
conditions as the sun was low in the sky in some cases, causing glare to 
reflect off the road surface and scatter the camera. 

A Toyota Corolla 2009 LE class with one camera was used to acquire 
the data. It is worth noting that a specific make or model of vehicle is not 
required for our proposed system to work. This car, like other cars, has 
ECU and several actuators are distributed at various car locations and 
the Engine (please refer to Fig. 1). To make a connection between the 
ECU and the actuators, some communication protocols are used to 
manage the information sharing between the devices and this protocol 
called Controller Area Network (CAN-BUS) protocol. CAN-BUS protocol, 
developed via Bosch company, is employed to replace the direct wiring 
connection between ECU and actuators. Moreover, a hardware circuit is 
designed to use the CAN network where CAN-BUS shield is required. 
This interface will provide reliable access to the network and with the 
correct wiring and configuration, we will be able to read and write 
messages to the network. The CAN-BUS Arduino shield v2.0 is employed 
for the Arduino Microcontroller. It is compatible with the Arduino 
standard interface and can be stacked on an Arduino UNO, Arduino 
Leonardo or Arduino MEGA board. The shield integrates the MCP2515 

CAN-BUS chip on the shield and has a CAN-BUS transceiver function. 
With an on-board DB9 and CAN-BUS connector it is possible to select a 
suitable port according to the host device. There is also an integrated 
MicroSD socket for data storage which is a perfect solution for data 
logging applications (The CAB_BUS shield is shown in Fig. 2). 

The CAN-BUS network has two lines, CAN-LOW (CANL) and CAN 
HIGH (CANH). Sample of CAN-BUS packet shape is shown in Fig. 3. 

Snifter program, an open source provided by Adam Verga, is used to 
record data, and display them on the computer. The captured actuators 
are Throttle position, Signal left and right, and Vehicle speed. For 
steering angle, the Corolla LE class is used for economic purpose. This 
class comes with less sensors and navigation system with minimum 
features; therefore, the steering angel sensor are not embedded from 
manufacturer. An angle sensor is used to capture the steering angle. The 
interface must provide the controlling environment on the part that 
comes in the car, for this reason, controlling the steering system is one 
goal of this interface. MPU 6050 is used to capture the position of the 
shaft. Since it is a gyroscope, the data comes from it provides the posi-
tion in three-dimensional space, using Cartesian axis X, Y and Z. Also, we 
can present the data with Aircraft principal axes Yaw, Pitch, and Roll. 

The MPU 6050 uses I2C communication protocol to communicate 
with the controllers that support this protocol, in this case, the Arduino 
uno has only one interface for this protocol. In addition to I2C, the MPU 
6050 has a First in First Out “FIFO” buffer with 1024-bytes, an interrupt 
is required to read the data from this FIFO buffer, so that we used the INT 
pin with I2C configuration to read the data from buffer as shown in 
Fig. 4. 

The wiring from steering angle sensor is not recommended because 
the rotation of the steering will affect and lopped the wire. Thus, an 
NRF24L01 as sender and receiver is used to send the information 
without wiring as illustrated in Fig. 5. 

All drivers are encouraged to maintain full attentiveness and drive 
normally when collecting the data in which about 400,000 frames were 
captured. To understand how the recording system works, refer to Fig. 6. 

To summarize the workflow of the system presented, a single camera 
was installed on top of the vehicle, with a gyro-scope sensor attached to 
the steering wheel that reads the steering wheel angle (MPU-650). The 
car was driven one lap at a time to collect and record the data. Frames 
were captured using the camera. Using the MPU-6050 sensor and an 
Arduino NANO, the steering angle were recorded. The vehicle speed and 
throttle position were collected using the CAN-BUS network with a CAN- 
BUS shield and an Arduino UNO. To achieve the best results from these 
sensors, a program was designed having the following requirements. 

Fig. 4. Wiring diagram to Arduino UNO with MPU 6050.  

Fig. 5. Wiring diagram for (a) Arduino NANO with MPU 6050, NRF24L01 and 9v power source (sender), and (b) for NRF24L01 and Arduino UNO (receiver).  
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Fig. 6. Dataset recording system.  

Fig. 7. (a) Different types of road traffic and pedestrians, (b) Different types of road cracks and bumps, and (c) Different types of road signs and markings.  
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● Multiprocessing is used which allows each sensor to work separately 
without any throttling issues. This resulted in a valid and accurate 
data set.  

● The recording process was made much easier due to the program’s 
pause, resume, quit, and save features.  

● Data was stored in a CSV file. 

Fig. 7 shows some samples of the recorded frames in the dataset. 
A sample from the recorded CSV file is shown in Fig. 8. 
The dataset, including the images frames and CSV file, can be ob-

tained from: https://drive.google.com/drive/folders/1ckcWE 
JOOKJuyKMzdI0VEvbGdZ2Nft7uk?usp=share_link. 

2.2. Network architecture 

The architecture of CNN is developed from Ref. [27]. To reduce the 
costs and time involved in the training, the design took account of 
minimizing the trained parameters. Regulators and Batch-normalization 
are performed to significantly speed up the learning [28]. Detailed in-
formation regarding the CNN architecture is provided in Table 1. 

A normalization layer, five convolutional layers, and three fully 
connected layers construct the network’s nine layers. The network re-
ceives the input image, after the separation process into YUV planes. 
Image normalization is performed by the network’s first layer. The 
normalizer is pre-programmed and cannot be changed throughout the 
learning process. The normalization technique can be changed to fit the 
network architecture and is expedited using GPU processing. Convolu-
tional layers were determined empirically after a series of tests with 
varied layer configurations [27] to perform feature extraction. 

Stride convolutions with a 22 stride and a 55 kernel were used in the 
first three convolutional layers, while non-stride convolutions with a 33- 
kernel size were employed in the last two convolutional layers. Three 
completely connected layers follow the five convolutional layers, lead-
ing to an output control value, which is the projected steering angle 
value. Exponential Linear Unit (ELU) is employed as an activation 
function for all layers. 

2.3. Controlling the steering system 

One of the main objectives of this proposed work is to control the 
steering system. Steering control requires two major components.  

● The motor that can rotate the steering.  
● The feedback that can be used to correct the steering angle. 

Since the LE class does not have an angle sensor implemented within 
the car system. After adding the MPU 6050 as angle sensor to the car, we 
were able to develop a steering control system (SCS) using the afore-
mentioned components. We developed a cost-effective method to con-
trol the EPS motor. This is done by utilizing a sensor as part of EPS 
system and overwriting them. This is performed without any physical 
connection between the sensors and the controlling system. In this 
manner, we achieved some advantage that makes SCS more reliable and 
requiring no modification on the EPS system from hardware to software. 

The proposed method uses a sensor called Torque sensor, this sensor 
measures the torque that applied from the driver on the steering wheel 

Fig. 8. CSV file of the recorded dataset on-road.  

Table 1 
The details of the CNN Architecture.  

Layer (type) Output shape Number of Parameters 

conv2d (Conv2D) (None, 31, 98, 24) 1824 
conv2d_1 (Conv2D) (None, 14, 47, 36) 21,636 
conv2d_2 (Conv2D) (None, 5, 22, 48) 43,248 
conv2d_3 (Conv2D) (None, 3, 20, 64) 27,712 
conv2d_4 (Conv2D) (None, 1, 18, 64) 36,928 
flatten (Flatten) (None, 1152) 0 
dense (Dense) (None, 100) 115,300 
dense_1 (Dense) (None, 50) 5050 
dense_2 (Dense) (None, 10) 510 
dense_3 (Dense) (None, 1) 11 
Total params: 252,219 

Trainable params: 252,219 
Non-trainable params: 0    
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and send it the EPS ECU to possess it and make an output to the DC 
motor to rotate and help the driver. 

The torque sensor is built into the steering column. A multipole 
magnet is mounted to the input shaft, and a yoke is mounted to the 
output shaft. The input and output shafts are joined by the torsion bar. A 
magnetic convergence ring assembly is placed outside of the yoke. The 
magnetic convergence ring assembly contains two Hall ICs, which face 
opposite to each other. The system detects the steering direction in 
accordance with the direction of the magnetic flux that passes between 
the Hall ICs. Furthermore, the system detects the steering torque in 
accordance with the amount of change in the magnetic flux density 
based on the relative displacement of the multipole magnet and the 
yoke. The EPS ECU monitors the torque sensor signals provided as 
outputs from the two Hall ICs to detect malfunctions. 

When a driver turns the steering wheel to the right or left, the twist 
that is created in the torsion bar creates a relative displacement between 
the multipole magnet and yoke. At this time, the magnetic flux from the 
N to S pole of the multipole magnet passes between the Hall ICs. The 

system detects the steered direction of the steering wheel in accordance 
with the direction of the magnetic flux that passes between the Hall ICs. 
Hall IC1 and Hall IC2 are installed facing opposite to each other. As a 
result, the output characteristics of the two Hall ICs are constantly 
opposite each other. The system monitors the different outputs of these 
Hall ICs in order to detect malfunctions. The magnetic flux density be-
comes higher as it gets closer to the center of the respective pole. A Hall 
IC converts these magnetic flux fluctuations into voltage fluctuations, in 
order to transmit the turning torque of the steering wheel to the EPS 
ECU. Upon receiving the signals from the torque sensor, the EPS ECU 
calculates the required assist torque and outputs it to the motor (Refer to 
Fig. 9). 

As it can be noted from Fig. 9, the Torque sensor is a hall sensor that 
is affected by magnetic fields. Depending on the intensity of the magnet 
field that applied near the sensor and depending on the polarity of the 

Fig. 9. (a) Torque sensor of EPS system, (b) Torque sensor of EPS another view, (c) Torque sensor (magnetic fields when route to left side), and (d) Torque sensor 
reading reference plot. 

Fig. 10. The magnetic coil used to control the steering.  

Fig. 11. H-Bridge wiring diagram to controlling an DC motor.  
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magnet or the direction of the magnet field, when a magnet is near this 
sensor, the parameter will affect the torque sensor and make it simulate 
the driver torque even if the driver does not apply any torque to the 
steering wheel. This will rotate the shaft to reduce the torque that is 
measured from the torque sensor. Thus, to control the EPS motor, torque 
sensor needs to be controlled by magnet, and to perform this, the 
magnets intensity and polarity need to be controlled, meaning that an 
electromagnet is required. 

Since we need medium power magnet with low power consumption 
and small size to fit underneath the steering system, we must make this 
coil ourselves. Experimentally, we found that a 4.9-gauge copper wire 
that rotates on the cylindrical core 900 times with a core dimension of 
40 mm length and 8 m diameter, is efficient for the torque sensor as 

shown in Fig. 10. In the event that this coil works under 0.9 A with 
maximum voltage 32 V, the voltage required to make normal effect on 
the steering shaft is determined experimentally and it is equal to 13 V. 

In electromagnet, to control the intensity of the magnetic field, we 
need to increase/decrease the voltage that supplied to the coil, and to 
control the polarity, we need to change the direction of the current that 
input to the coil. So, the controller itself cannot supply the coil with this 
current and voltage, the maximum current out from Arduino UNO board 
is 500 mA, and the maximum voltage is 5 V, for this reason, we need a 
circuit that work as buffer or relay between the controller and the coil. 
The H-bridge satisfies all the requirements we need, it is designed 
specially to control the DC motor, and it is capable to change the current 
and even change the voltage if its supplied pulse with modulation PWM 
signal. The H-bridge requires two signals to control the current direction 
state as shown in Fig. 11. 

The steering controller in our work is divided into two parts: the first 
part responsible for thinking, and the second part response to the first 
part output. The first part can be represented by raspberry PI that sup-
ports python. While the second part was represented by Arduino UNO 
board. It is noteworthy that in our system and for experimental pur-
poses, we replaced the raspberry PI with a laptop, in general, any 

Fig. 12. The flow chart for the SCSP.  

Fig. 13. (a) Difference between two consecutive frames, (b) Original image with difference between consecutive frames shown in (a).  

Fig. 14. Applying a median filter and thresholds.  

M.S. Mohammed et al.                                                                                                                                                                                                                        



Results in Engineering 17 (2023) 100969

9

platform run python program language can be considered. 
To perform the communication between the two parts, Firmata is 

used which is a generic protocol for communicating with micro-
controllers from software on a host computer. It is intended to work with 
any host computer software package [29]. Firmata can be uploaded to 
the UNO. On the other side, the host must have the Firmata package to 
communicate with UNO, since we use python, pyFirmata is the package 
utilized to communicate throw the Firmata protocol with the UNO. 
Firmata protocol can reduce the programing time and enhance the speed 

of the communication, even that, it eliminates the error that occurred in 
the controller due the programing issues, just uploading the standard 
code of Firmata in the controller without editing any line, and with 
simple setup in python side, all the ports of the controller can be 
uploaded. This method will give the following advantages.  

● Our laptop does not have GPIO port like raspberry PI.  
● All the controller ports are in the python environment, and we can 

call them as needed. 

Fig. 15. (a) A global threshold value of 10, (b) A global threshold value of 20, and (c) A global threshold value of 50.  

Fig. 16. Samples of frames after subtracting and applying the threshold.  
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● The transmutation rate is very fast. 

Once all parts of the SCS are ready to operate, starting from the angle 
sensor connecting to the laptop throw USB or wireless connection, the 
broadcast data of the current angle of the steering shaft will be used for 
the python program, the predicted angle from the CNN network will be 

passed to the steering control system procedure (SCSP) which compares 
among the current value and predict value of the angle sensor. 
Depending on this operation, one function of three will be called, those 
function responsible for the output state (turn left, turn right, no output), 
if the value is positive, turn right will be called, if its negative, turn left is 
called, if the value is 0 then the no-output will be called. This function 
will call the Firmata and will change the ports connected to the H-bridge 
to change the current directions as illustrated in Fig. 12. 

3. Results 

This section provides the results of the proposed SDV system. The 
first approach was to try to subtract images from each other and to train 
the model on the difference between the two images only. In Fig. 13 (a) 
the red shadow represents the difference between the two images while 
Fig. 13 (b) shows the difference only. 

We also used a threshold to remove the small changes on the images. 
For example, a tree leaf that moves slightly should be ignored. Fig. 14 
shows how the threshold affects the images by applying three types of 
thresholds. It is obvious the effect of the using Global threshold, Adap-
tive Mean threshold, and Adaptive Gaussian threshold compared with 
the original image. 

Fig. 15 shows the results after applying the subtractions, with a 
global threshold of three different values, an Adaptive Mean Threshold, 
and an Adaptive Gaussian Threshold. Visually the best threshold is the 
Global threshold with a value of 20. In Fig. 16, the results of the new 

Fig. 17. The comparison between the old Method and the New Method based on the loss.  

Fig. 18. The Loss results for the models (a) without changing lanes signal, and (b) with changing lanes signal.  

Table 2 
Three Models Comparison for three different datasets.  

Comparison Metrics M-10 K M-170 K M-400 K 

Total Images 10,259 171,441 391,888 
Recording Time 12 min 1 h & 45 min 4 h 
Epochs 50 50 50 
Loss 2.282 13.86 18.98 
CSV File Size 0.95 MB 15.8 MB 33.8 MB 
Frames Total Size 1.1 GB 16.7 GB 29.7 GB  

Table 3 
Comparison between Loss, Epochs and Training Time of the models.  

Comparison Metrics M-100E a M-200E 

Number of Epochs 100 200 
Loss 15.4 10.3 
Approximate Training Time 4 Hours 8 Hours  

a M: Model, E: Epochs. 
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frames after subtracting and applying the threshold are illustrated. We 
trained the CNN model on this new method and compared it to the old 
normal method. In Fig. 17, it can be shown that the old method got 
better results. 

In Fig. 18, we have benchmark two models trained on the same 
dataset, however, the difference is one of them was trained on a dataset 
in which the images and data were removed when the car was changing 
lanes. We analyzed Fig. 18 and indicated that the CNN model got better 
results when the data for the changing lanes were removed. 

Table 2 compares three models trained on three different datasets, 
namely, M − 10 K, M − 170 K, and M-400 K. The M − 10 K is trained 
with 10,000 frames, M − 170 K is trained with 170,000 frames, and M −
400 K is trained with ~400,000 frames. 

After 100 Epochs the loss of the model reached 15.4 and after 200 
Epochs the loss reached 10.3 as indicated in Table 3. 

By analyzing Table 3, it can be shown that double the time is 
required to achieve a gain of 33.11%. Fig. 18 shows some samples of the 
trained model results on-road for different cases. 

Using feedback from the steering shaft to represent the position and 
based on target position, the location of the steering shaft can be 
updated through rotating it in the desired direction as shown in Fig. 19. 
The results of AI model vary based on the data set that was used for the 
training. We trained the model on a track with circular paths, and the 
environment of the data set has a significant influence on the outcome. 
Our analysis of previous images showed that the road in the data set has 
two ways, and the presented model has learned to always take the left 
and slower path. This is reflected in the negative range of the steering 
angle, which indicates a leftward bias. 

It is important to note that the data set we used to train the model is 
limited, as we only captured 8 h of data recording the driver’s response 
on the same track. As a result, the model is expected to perform well on 
this track in 20% of driving situations, which is considered good per-
formance. On other roads, the performance of the model is likely to be 
poor, with only 5% of driving situations handled effectively. Further-
more, the steering controller was built to handle the steering angle is 
basic and relies on an electromagnetic coil to make calculated noise on 
the hall sensor in the ESP system. The magnetic fields are used to control 
the movement of the steering column by inverting the polarity of the 
magnetic coil. This approach eliminates the need for wiring with the 
car’s system, but its performance is weak and takes time to take effect. 
To enhance the overall performance of our system and increase the 
speed of the car while maintaining its safety, it would be beneficial to 
use an open car that allows direct access to the ECU. This would enable 
control of the EPS from the ECU or an external system built specifically 
for this purpose. 

As a summary: the proposed method developed a model that serves 
as the brain of the self-driving car’s assistant system is novel for two 
reasons. Firstly, it utilizes a convolutional neural network (CNN) to 
predict the steering angle. By training the CNN model with frames from 
a camera as inputs, it can accurately determine the steering angle and 
make driving easier and safer. Secondly, the proposed system is quite 
affordable, as it only requires the installation of a high-cost system. This 

is important, as 85% of manufactured vehicles do not include these 
supplementary features. In addition, the proposed method also involves 
the use of a simulated environment to test and train the model before 
deploying it in the real world. This is important, as the simulator can 
generate a variety of scenarios and conditions that the self-driving car 
may encounter in the real world. Furthermore, the Toyota Corolla 2009 
vehicle with 4 h of raw vehicle sensors data was used to build the 
dataset, which is then used to train the model. This provides a more 
accurate and reliable model. Overall, the proposed method is novel in 
that it utilizes a combination of efficient and affordable technology to 
make driving easier and safer. The proposed system is a prototype that 
requires more testing for safety, and this represents an important step 
forward in the development of self-driving cars. 

4. Conclusion 

The development of a driving assistant system is a complex process 
that requires a combination of hardware, software, and artificial intel-
ligence (AI) algorithms. However, converting the old car into self- 
driving cars is a challenge. This work presents a simple, and effective 
method for SDV, an old Toyota Corolla 2009 equipped with digital 
camera for capturing live video stream. Our proposed system can be 
used on any vehicle with the intension of modernizing old driving sys-
tem cars with new technology to achieve reliable driverless system. We 
used object detection for the detection of objects using Deep Learning 
algorithms. In this respect, the outputs from the DL model are used to 
control the steering control system. A database for various road condi-
tions was collected and will be publicly available for the SDV re-
searchers. The results of the experiments showed that the CNN model 
can be successfully used to accurately predict the steering angle of a 
vehicle. The model achieved an average accuracy of good results on the 
on-road experiments. This demonstrates that the proposed model can be 
used to successfully develop a driving assistant system. In the future, we 
plan to 1) extend the model to other tasks such as object detection and 
lane detection, 2) collect more data from different vehicles to increase 
the accuracy of the model, and 3) use other AI algorithms such as 
recurrent neural networks (RNNs) and reinforcement learning to further 
improve the performance of the driving assistant system. 
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