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Abstract 

To conserve biodiversity scientists monitor wildlife populations and their habitats. 

Current methods have constraints such as the costs of ground or aerial surveys, 

limited resolution of freely-available satellite images, and expensive high resolution 

satellite images. Recently researchers started to use unmanned aerial vehicles (aka 

UAVs or drones) for wildlife and habitat monitoring. Here we tested whether we 

could detect nests of the critically endangered Sumatran orang-utan on imagery 

acquired from camera mounted drone to determine distribution and density. Our 

results show that the distribution of nests compares well between aerial and ground 

based surveys and that relative density (nest/km) shows a significant correlation 

between these two survey types. The results also indicate that both methods can be 

used to detect significant differences in relative density between previously degraded 

reforested and enriched areas. We conclude that orang-utan nest surveys from 

drones are a promising survey method to determine distribution and (relative) density 

of this and perhaps other ape species. 

 

Introduction 

A central task of conservation science is the monitoring of species abundance and 

their habitat. Generally such monitoring is conducted by ground surveys or from 



small manned airplanes (Buckland et al. 1993; Buckland et al. 2004). The former are 

often costly and take considerable effort when areas are large. Aerial surveys have 

the advantage of being able to cover large areas, but are often very costly, risky due 

to crashes (Sasse 2003), not always possible due to unavailability of aircraft, and 

cannot be used for species ranging under thick vegetation.  

Habitat monitoring is often undertaken by a combination of ground-truthing and land-

cover classification on medium resolution satellite images, which are freely available 

(Hansen et al. 2013). The advantage of this approach is that large areas can be 

classified, however due to the medium resolution of the imagery not all land-covers 

can be classified accurately. Differences between logged and unlogged forests for 

example are very subtle and thus are practically undetectable (Szantoi et al. in 

review).  In addition, areas in the tropics often have thick cloud cover which can 

interfere with obtaining a clear satellite image.  

Because of this, conservation workers have recently started to use unmanned aerial 

vehicles or drones (hereafter drones) for wildlife surveys and habitat monitoring. 

Drones have been used for a variety of wildlife distribution and density studies 

ranging from terrestrial to marine species. In addition studies have assessed species 

in a variety of habitats ranging from savannahs to dense tropical rainforests (Jones, 

et al. 2006; Koski, et al. 2010; Getzin et al. 2012; Koh & Wich 2012; Anderson & 

Gaston 2013; Hodgson et al. 2013; Vermeulen et al. 2013; Chabot et al. 2014). 

In this paper the focus is on preliminary data that were gathered to assess the 

usefulness of drones in determining Sumatran orang-utan distribution and density. 

Sumatran orang-utans are a critically endangered great ape species that has seen a 

huge decline over the past decades as a result of habitat loss and degradation (van 

Schaik et al. 2001; Wich et al. 2008; Wich et al. 2011; Wich et al. 2012). Traditionally 

orang-utan distribution and density are assessed by conducting linear transects and 

counting their nests along the transect (van Schaik, Priatna & Priatna 1995; Buij et 

al. 2003).  On average an adult Sumatran orang-utan builds a nest between 1.7-1.9 

times a day, for resting during midday and at night. These nests can be constructed 

at different positions in a tree such as on top of the canopy, inside the canopy close 

to the trunk, and atop a large branch (Buij et al. 2003). The ground based nest 

survey method is expensive and time-consuming due to the relatively large areas 

that orang-utans range through, as well as the difficulty of traversing the often 

mountainous or swamp terrain in which they occur. Studies have shown that human 

observers can detect orang-utan nests from manned helicopters (Ancrenaz et al. 

2005), and that birds nests can be observed from drones (Mulero-Pázmány et al. 

2014). However such aerial surveys require the cost and availability of a professional 

pilot, aircraft, and flight infrastructure, and are not without risk of catastrophe.  

Therefore we aimed to determine whether these same surveys could be derived 

from images acquired from a camera mounted drone, at a much lesser cost and risk 

of serious accident.  



Methods 

This study was conducted in October and November 2013 in the Leuser Ecosystem, 

North Sumatra, Indonesia (Fig 1). The research area consists of a formerly illegally 

cleared area that had been planted with oil palm by two local plantation companies, 

which has been in the process of assisted reforestation since 2008.  The region to 

the south of the formerly cleared area consists of national park forest that has been 

illegally selectively logged (Fig 2).  

Ground surveys 

To determine orang-utan distribution and relative density, 16 transects were 

randomly planned in the area using the design function in Distance 6.2 (Thomas et 

al. 2010). Transects had varying lengths with a mean of 0.8km (sd = 0.5). Along 

each transect, two experienced observers walked slowly and recorded the 

perpendicular distances of all identified nests from the transect line (Fig 3). 

Perpendicular distances were measured with a rangefinder or measuring tape. In 

addition the height of the nest was estimated to the nearest meter, the circumference 

of the tree at breast height (cm) was measured with a measuring tape, and a 

botanist (RA) identified nesting trees to the species or genus level. For comparisons 

between the regenerated forests of different ages, transects were split into 5 for the 

area planted in 2008, 6 for 2009, 2 for 2010, 4 for 2011, 11 for 2013, and 8 transects 

in the slightly less degraded area that only underwent enrichment planting (~400 

seedlings planted per hectare instead of ~1,100+).  

Aerial surveys 

We flew over the ground transects with a Skywalker 2013 drone that used an HK 2.7 

autopilot. For ground control software we used Mission Planner software 

(http://planner.ardupilot.com/) on a standard Windows-based laptop. Two types of 

missions were conducted: nest transects and mapping. For the transect missions the 

exact same coordinates of the ground transects were used to program the mission 

waypoints. We flew two missions to cover all nests along the transects, at an altitude 

of 80m above ground level (agl). For the mapping missions, we flew a lawnmower 

pattern mission over the whole study area at an altitude of 150m agl.   

The drone was equipped with a top forward facing Canon S100 camera, with a 

Canon Hack Development Kit (CHDK: http://chdk.wikia.com/wiki/CHDK) firmware 

enhancement.  The CHDK package allows for additional functionality, with in this 

case the primary use being a script that allows for images to be taken automatically 

at 2 second intervals. Images were obtained without using the zoom function of the 

camera.  

Orthomosaic 

The internal GPS of the camera was used to geotag the images. A total of 2,238 

images were used to produce a 5.22 km2 orthomosaic, with a ground resolution of 

http://planner.ardupilot.com/
http://chdk.wikia.com/wiki/CHDK


5.36cm/pixel. The orthomosaic was produced with Pix4Dmapper software 

(https://pix4d.com/).  

Nest detection 

Two observers manually examined the aerial transect images for nests (Fig 3), with 

subsequently the location each determined on the compiled orthomosaic. In order to 

compare the relative density of nests from the aerial and ground based surveys, we 

only included those from the air that were within the maximum perpendicular 

distance at which nests were able to be seen on the ground (25m).  

Data analyses 

The data were not normally distributed, thus non-parametric analyses were applied. 

All analyses were conducted in R and ArcGIS ArcMap. Medians and 25th and 75th 

percentiles are presented where applicable. For analyses comparing the nest 

densities between areas, the transects that covered more than one area were split 

into sub-transects so that that each was comprised of the same classification. 

Therefore, the sample size on those tests is larger than the initial number of 

transects. The Kernel Density Estimation (KDE) tool within the Spatial Analysis 

extension for ArcMap was used to determine areas of detected nest concentration. 

Kruskall-Wallis post-hoc comparisons were adjusted using the Dunn-Sidak 

procedure (Dunn 1964). 

 

Results 

The number of nests observed along transects during ground surveys varied from 

0/km to 36.7/km (median = 11.5/km; 0, 11.68; n = 16). The aerial surveys also 

yielded a highly variable number of nests, ranging from 0/km to 10.7/km (median = 

0.5/km; 0, 1.63; n = 16). As expected the number of nests observed per kilometre 

surveyed was significantly higher in ground than aerial surveys (Wilcoxon-signed 

rank test: v = 36; p = 0.014; n = 16), with the overall number detected from the air 

being just 17.4% of the nests found during the ground surveys. The number of nests 

per kilometre surveyed showed a significant correlation between ground and aerial 

surveys (Spearman’s rho = 0.89; p < 0.0001; n = 16). A preliminary comparison of 

factors that might influence detectability of the nests from the air showed that the 

mean tree circumference for nesting trees for which the nest was only observed 

during ground surveys was 69.2cm (sd = 10.9, n = 84 ) and was 70.0cm (sd = 18.5, 

n = 9) for nesting trees in which nests were observed on the aerial images. Nest 

height was 10.3m (sd = 2.8) and 10.2m (sd = 3.1) respectively. Of the total number 

of nests observed on aerial images for which tree species was determined 55.5% 

occurred in pioneer species from the genus Macaranga and Mallotus.  Of nests that 

were only observed from the ground this percentage was 38.0. 

https://pix4d.com/


The number of ground nests/km varied significantly between the different areas 

(Kruskall-Wallis test: X2 = 14.50, df = 5, p = 0.013, Fig 4). Post-hoc tests showed that 

the number of nests/km is significantly higher in the enriched area than the sector 

replanted in 2008 (p = 0.04). A similar significant pattern was found for aerial 

nests/km (Kruskall-Wallis test: X2 = 23.89, df = 5, p < 0.001). Here post-hoc tests 

again showed that the enriched area had significantly more nests than the area 

reforested in 2008 (p = 0.008), but also more than in the area reforested later in 2011 

(p = 0.04) and 2013 (p < 0.001). 

We calculated Kernel distributions for both the ground and aerial nests to obtain an 

impression of the areas where most nests were found, and how they compared 

between the ground and aerial surveys. Although no formal comparison of the 

distributions was attempted, Figure 5 shows that the distributions are similar.   

 

Discussion 

This preliminary study shows that orang-utan nests can be detected from the air 

using a small drone mounted with a standard consumer-grade camera. Although the 

number of nests/km were significantly higher for the ground than the aerial surveys, 

results show that the number of nests observed during each survey type is 

significantly correlated. In general, both survey methods detected more nests in the 

area that were degraded but not fully cleared, and thus only underwent enrichment 

planting, than in the other areas that were fully replanted with indigenous forest tree 

species. Although no formal testing was conducted, the nest distributions of ground 

and aerial nests seem comparable. Although it is not known yet which factors 

influence whether a nest will be observed on aerial images or not mean tree 

circumference and nest height seemed similar between nests that were observed 

from the air compared to those only observed from the ground. Although no formal 

statistical comparison was feasible, the percentage of nests in pioneer species 

seemed a factor that might be of influence because the percentage of nests in 

pioneer species was 55.5% for nests observed on aerial images compared to 38.0% 

of nests that were only observed from the ground. Because the canopy in areas with 

more pioneer species seemed more open it could be that canopy openness 

influences nest detectability. This hypothesis is supported by a study on chimpanzee 

nests found that canopy openness was the most important factor determining nest 

detectability (van Andel et al. 2015). 

The current study provides evidence that orang-utan nests can be detected from still 

images obtained from a drone. During aerial surveys with manned aircraft it was 

possible to correlate aerial nest data to ground nest survey data and derive orang-

utan densities from those (Ancrenaz et al. 2005). We have not yet tested this for 

orang-utans, but the fact that the number of nests/km did correlate significantly 

between ground and aerial surveys indicates that the latter for orang-utan nests from 



drones might also allow for such estimates. Caution is needed here though, as the 

number of nests detected per transect during the drone survey was much lower than 

those from the ground survey. It could potentially be that drone surveys lead to a 

higher number of transects with zero nests than do ground surveys, which could 

influence density estimates in a way that is difficult to correct for. We detected nests 

in the aerial surveys from all but one of the ground transects, with the exception 

being a transect where only one nest was observed on the ground survey, so 

potentially this is not a concern. More comparative studies are needed to determine 

whether transects with low nest numbers in ground surveys also yield few detected 

nests from the air. 

The nest density distribution maps showed similarity in distribution between the 

ground and aerial nest densities. Future studies are currently underway to assess in 

detail whether orang-utan nest density can be directly derived from aerial images 

obtained from a drone. 

These results corroborate recent findings from another study that used drones to 

detect chimpanzee (Pan troglodytes) nests (van Andel et al. 2015). Because in some 

chimpanzee populations there are a varying proportion of nests built on the ground 

(Koops et al. 2007), estimating density is potentially challenging and needs to 

incorporate location specific parameters. These findings suggest that drones can 

also be used to determine the distribution and potentially the density of other great 

apes.  

The overall effectiveness of using drones for great ape surveys and in general for 

wildlife survey work, depends on whether the large number of still images need to be 

assessed manually for the presence of nests, or whether this can be done via 

computer vision algorithms that detect nests automatically. An early pilot on this for 

orang-utan nests shows promising results (Chen et al. 2014), but more research 

needs to be conducted to develop a user-friendly method that can detect ape nests. 

An important next step is to carefully evaluate the full costs of using drones for aerial 

surveys compared to ground surveys. Such comparisons need to not only take into 

account the cost of equipment, but also the necessary time for training to operate 

and maintain the drone system, as well as in analysing data. Such comparisons are 

however necessary for wildlife surveys in general (Vermeulen et al. 2013).  

In conclusion, using drones for orang-utan nest detection seems feasible to 

determine their distribution and relative density in the three land covers assessed; 

but more studies need to be conducted to determine their applicability for estimating 

orang-utan density. 
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Figure legends 

Fig 1: Map that shows the location of the restoration site in Sumatra. The forest layer 

was produced by WWF. 

Fig 2: Orthomosaic of the study area. The orthomosaic was processed with 

Pix4Dmapper by Pix4D. 

Fig 3: Photo of nests as observed from the ground (left) and from the air (right) 

Fig 4: Box plots showing the ground (a) and aerial (b) nest density for the different 

areas. Refor = fully reforested area, Enrich = Enrichment planted area. Note: the 

scales are different in the two plots and the overall density from the drone 

photographs is 1/6 of the ground counts. 

Fig 5: Maps showing the Kernel nest densities for the nests observed from the 

ground (a) and from the air (b).   
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